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ABSTRACT

As part of this dissertation work, a long term observing station at Clay Bank on the York 
River in Virginia has been established and maintained since 2006, and was used to gain a 
better understanding of sediment processes in a muddy estuary and in muddy coastal 
environments in general. While data from this NSF-funded Multi-Disciplinary Benthic 
Exchange Dynamic (MUDBED) observing system has and will be used by other students 
for this general purpose, this dissertation focuses specifically on better understanding and 
interpretation of the data collected by key instrumentation regularly deployed at the 
observing station, especially the acoustic Doppler velocimeter (ADV).

Chapter 1, the introduction to this dissertation, provides an overview of the setting for the 
MUDBED observing system, namely the York River Estuary, Virginia, and briefly 
discusses some o f the scientific and societal issues that motivate the ongoing study of this 
environment. Background is provided into the history of the MUDBED observing system 
and into the properties and operation o f the ADV and other key instruments applied in 
this dissertation, including the Laser In Situ Scattering Transmissometer (LISST) and two 
particle cameras. In the context o f describing these instruments, the science papers 
associated with the dissertation (Chapters 2 through 6) are introduced.

Chapter 2 describes use of SonTek ADVs within the real-time components o f the 
MUDBED observing system and findings based on ADV observations through 2009. 
ADVs deployed at Clay Bank, and also at a more biologically-dominated down-river site, 
provided long-term estimates of water velocity, bottom stress, suspended sediment 
concentration, sediment settling velocity (ws), and bed stress under spatially and 
seasonally variable conditions. Bed credibility and ws were found to be inversely 
correlated in both time and space, but both tended to remain more consistent in time at 
the biological site. At the physical site the credibility increased and ws decreased 
following seasonal increases in river discharge.

Chapter 3 reports on dual use of a mixing tank for calibrating SonTek ADV acoustic 
backscatter (ABS) and for direct Doppler measurement o f ws. This study utilized the fact 
that, absent net vertical volume flux, the average vertical velocity registered by an ADV 
across a horizontal plane is equal to the sediment’s mean ws. A series o f calibrations were 
run for sand sizes between 63 and 150 pm . A grid o f ADV measurements revealed that 
the mean vertical velocity registered by the ADV was indeed consistent with each grain 
size’s ws as independently measured in a settling tube. Also, a systematic increase in the 
proportionality between sand concentration and ABS was observed with increasing grain 
size.

Chapter 4 compares ABS from five 6-MHz Nortek ADVs versus five 5-MHz SonTek 
ADVs to examine the relative roles played by inter-vendor, intra-vendor, and sediment 
variability in determining their ABS response. Significant ABS offsets were found for 
both vendors’ ADVs. Before offset correction, ABS was more consistent among Nortek

xix



or SonTek units which had consecutive serial numbers. Sand calibrations indicated that 
the higher frequency Norteks were more susceptible to attenuation. For well-mixed silty- 
mud in the lab, calibration slopes for both vendors were close to the theoretical value for 
a constant grain-size suspension. In the field, however, a clearly different slope suggests a 
change in the acoustic properties o f suspended particles with concentration.

Chapter 5 characterizes suspended sediment at Clay Bank in the presence of both muddy 
floes and pellets through use o f an ADV for bulk ws, pump samples for mass 
concentration, and a LISST plus a high definition (non-video) particle camera for size 
distribution. Mass concentration, bulk ws and an abundant ~90 mm size class were found 
to be in phase with velocity and stress, consistent with the suspension of relatively dense, 
rapidly settling and resilient pellets. Volume concentration of an abundant ~300 mm class 
peaked well after stress and velocity began to decrease, consistent with the formation of 
lower density, slowly settling and fragile floes.

Chapter 6 builds on Chapter 3 by utilizing two separate ADV methods to measure ws and 
comparing both to observations from settling tubes. As well as direct Doppler 
measurement of sand, ws for mud was measured by assuming a Rouse balance between 
upward Reynolds flux and downward settling. Rouse-balance ADV estimates o f ws were 
collected at Clay Bank for muddy floes and confirmed in situ by a high-definition video 
settling column. Observations suggested that, in the absence of significant particle 
aggregation/disaggregation, (i) measurement of ws and (ii) ws itself are both relatively 
insensitive to the local intensity o f fluid turbulence for ws up to several cm/s.

xx



Application of Acoustics and Optics for the Characterization of 
Suspended Particulate Matter within an Estuarine Observing System



CHAPTER 1 

INTRODUCTION

2



1.1 Observing Systems

Observing systems allow for almost continuous collection of data records, some reported 

in real-time, which enable scientists to better understand long-term and short-term 

processes, many of which directly affect the quality o f human life. Observing systems 

that allow for detection of short term changes that affect human lives include (for 

example): the National Oceanic and Atmospheric Administration’s (NOAA) National 

Data Buoy Center’s DART buoy system for tsunami detection in both the Pacific and 

Atlantic Oceans as well as the Gulf o f Mexico and the U.S. Geological Survey 

nationwide real-time Streamflow program to monitor river discharge for the prediction of 

floods. The models to forecast the tsunamis and floods save lives but would be much less 

reliable without the good quality data from these observing stations.

Probably one of the best-known networks o f observing systems is the around 1500 

weather stations reporting to the NOAA National Weather Service (NWS). Forecasts 

based on past and present observations from these weather stations are used on a daily 

basis for things as mundane as deciding to take a sweater to wear because the temperature 

is expected to drop this afternoon, to lifesaving decisions such as ordering the evacuation 

of areas in New York and New Jersey when Category 1 Hurricane Sandy was predicted 

to make landfall in that area. The decision turned out to be a sound one since the eye of 

the nearly 1000-mile wind-field named Sandy made landfall near Atlantic City, NJ on

3



Figure 1
Coastline Counties of the United States by Coastline Region
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Figure 1.1. A) Coastline counties along the East Coast marked in green. Cities with 
populations over 250,000 are labeled. B) Percentage change in population density 
(number o f people per square mile) between 1960-2008 along the Chesapeake Bay. 
(Wilson and Fischetti, 2010)
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October 29, 2012, where it joined a Nor’Easter to become a superstorm. Sandy ultimately 

affected 23 states causing snowstorms, widespread power outages and flooding across 

some of the most densely populated areas o f the United States, including New York City, 

causing an estimated $50 billion in damages, making it one o f the most costly in US 

history (Washington Post, 2012; San Francisco Chronicle, 2012; Wilson and Fischetti, 

2010).

Twenty-nine percent of the United State’s population resides in 254 coastline counties 

located along the country’s saltwater edges identified in Figure 1.1 A. Almost 50 percent 

of the population in the 23 coastal states resides within the coastline counties of those 

states. Most of the populations along the coast in 1960 were in the metropolitan areas but 

since then the areas between have filled in leaving very little area along the coast without 

human impact (Wilson and Fischetti, 2010). The high density o f the population along our 

coasts, especially areas along the East Coast with its gently sloping topography and the 

highest population densities o f the nation, are very vulnerable. With sea-level rise and a 

more intense storm pattern expected in the future it is more important than ever to have 

good quality data from observing systems to protect our people. But observation stations 

can also be used to understand natural processes and recognize changes occurring within 

our ecosystems due to our changing environment. These changes impact not only 

people’s lives and property but our nation’s natural resources as well (for example: land 

use for food sources, natural habitat and recreation, energy sources, fisheries).
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1.1.1 Why an observing station in the York River, Virginia?

An observing station set up in an estuary allows for the study o f present day 

hydrodynamic and sediment dynamics processes during the most energetic periods of 

episodic events when most of the erosion and transport processes are likely occurring. 

The conditions during these events are prohibitive for the use o f vessels and personnel to 

collect the information. Without an observing station the cost o f  regularly repeated data 

collections, necessary to understanding the long and short term changes in the dynamics, 

using vessels and personnel is also prohibitive and biased toward more quiescent periods. 

The York River Estuary is an ideal choice among the Chesapeake Bay estuaries as the 

Virginia Institute of Marine Science is located near the mouth o f the York making 

deployment and maintenance o f equipment on the observing system more cost effective 

than other estuaries of the Chesapeake Bay.

Effective management recognizes that climate change and sea-level rise are affecting our 

natural resources. Change in ecosystems is inevitable, yet often unpredictable; therefore it 

is important to rigorously monitor the environment and living resources (Duffy, 2008). 

Significant research that ties in well with a hydrodynamic and sediment dynamic 

observing station has been and continues to be conducted on the Chesapeake Bay and its 

tributaries including, but are not limited to the following:
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Local Sea-level Research

A sea-level curve, using only Chesapeake Bay area sea-level data, estimates the relative 

sea level (RSL) at the beginning of the Holocene to be about 60 meters below present sea 

level. This is about the depth of the deepest parts o f the Susquehanna River palaeo- 

channel beneath the present Chesapeake Bay. The curve shows a relatively rapid rise in 

sea-level in the period from the beginning o f the Holocene to approximately 6000 years 

ago of -12.5 mm/year. The present rate o f relative sea level rise (RSL) for the lower 

York River area is 3.95 ± 0.27 mm/year. While this is less than seen in the early 

Holocene, the lower York is expected to see sea-level rise of 0.7 ± 0.21 meters above 

present day levels by 2050, among the highest experienced along the US East coast 

(Colman et al, 1992; Boon et al, 2010; Boon, 2012; Sallenger et al., 2012).

The absolute sea level rise (ASL) measured at Gloucester Point on the York is estimated 

to be 1.37 ± 1.19 mm/year. Over fifty percent o f the relative sea level in the Mid-Atlantic 

States is due to subsidence (subsidence = RSL -  ASL). A large portion has been 

attributed to the collapse o f a last glacial forebulge. As the glacial ice receded it caused a 

post-glacial rebound of the previously underlying crust and subsequent subsidence of the 

forebulge (Gomitz and Seeber, 1990; Engehart et al., 2009; Hobbs et al., 2010). 

Anthropogenic subsidence, compaction of the sedimentary layer when groundwater is 

removed, has also been attributed to further lowering the elevation near the confluence of 

the Pamunkey and Mattaponi rivers where they flow into the York River Estuary.
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Groundwater pumped for cooling water at the pulp plant caused subsidence (between 

1940 and 1971) of up to 4.8 mm/year, or more than twice the rate o f the surrounding 

watershed (Davis, 1987; Holzer and Galloway, 2005; Boon et al., 2010). Ongoing 

compaction of disturbed sediment along the rim and outer edge of the Chesapeake Bay 

comet or meteor strike crater and megablock faulting just inside the crater also likely 

enhances local subsidence of the lower York River (Powars & Bruce 1999; Boon et al.

2010).

Population

Study of the effects of sea level rise must not be limited to just the states bordering the 

sea but should also include those areas inland affected by the sea’s tidal range. The inland 

Chesapeake Bay and its tributaries (including the York River in Virginia) have counties 

along the tidal excursion which account for over 14% of the coastline counties identified 

by Wilson and Fischetti (2010). O f the 36 counties along the coasts o f  the Chesapeake 

Bay, six in 2008 were found to be within the top 20 coastline counties, of 254, with the 

highest population density including: the city of Baltimore in Maryland; and the Virginia 

cities of Norfolk, Portsmouth, Hampton, Newport News; and the county of Fairfax. The 

population densities for four o f these counties have increased more than 500 percent 

since 1960. Thirteen others have grown by more than the 70 percent increase seen in the 

rest of the United States, over half o f those more than 250 percent. (Figure 1 .IB). This 

increase in the population density means that more people than ever before along the
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shores of the Chesapeake Bay are vulnerable to sea level rise and the associated changing 

weather patterns causing more intense storms and tidal flooding. Not only their lives, 

their homes, and their livelihoods will be affected, but also the natural resources o f the 

bay and its tributaries that many depend on to survive or, at the very least, to provide a 

better quality of life. The Gloucester, York and James City Counties bordering the York 

River are representative of the above average population density increases seen in other 

coastal counties (Wilson and Fischetti, 2010).

Geoloeic History

In order to better plan for sea level rise it is necessary to understand hydrodynamic and 

sediment dynamics processes involved. The geologic record o f the coastal plain around 

the Chesapeake Bay shows that during the Pleistocene (~2.6 MY to ~11,700 years ago) 

there were large oscillations in global sea level due to the repeated advance and retreat of 

the northern hemisphere ice sheets. Every time the sea level rose, marine terraces and 

scarps were cut into the earlier formations and the sediment eroded was moved around 

and eventually deposited. Because of the terraces and scarps we can make good estimates 

o f how high the sea level rose for each successively lower stand. However, because the 

same sedimentary material was reworked during each high stand it is difficult to guess 

exactly how it was moved around and deposited unless we apply the Law of 

Uniformitarianism and assume the processes that are working on the sediment today are
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the same as those that were present during the previous high stands (Mixon et al., 1989; 

Johnson and Hobbs, 1990; Hobbs 2010).

Local Storm Inundation Research and Land Loss Projections

Impacts of rising sea-level are increased erosion or up-land conversion, resulting in less 

usable land and an influx of suspended sediment into the water column. Shoreline studies 

using photo rectification and shoreline digitizing found the average long-term, since 

1937, erosion rate to be -0.24 meters/year for the shorelines along the York River 

Estuary. Man-made accretion occurred, up to 1 meters/year, in locations where 

breakwaters were installed while the shorelines along the Catlett Islands experienced 

erosion rates of almost -2 meters/year. Whether the shore will respond by erosion or 

upland conversion depends on elevation, sediment type and supply, wave energy, tidal 

range, and rate of sea-level rise (Leatherman et al, 1995; Milligan et al, 2010a-c).

Even with the effects of sea-level to date, waterfront property owners have had little 

reason to be concerned until water levels exceed the vertical limits o f the astronomical 

tide and become “extratidal”. The level that separates “normal” from “above normal” 

water levels varies because tidal range varies from place to place. Therefore a true 

measure o f the flooding potential is when the water level exceeds the highest 

astronomical tide (HAT) for a specific location. Tidewatch and Chesapeake inundation
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Prediction System (CIPS) are two programs dedicated to real-time observations and 

modeling to forecast flooding. Repeated flooding will affect not only homeowners, but all 

levels of Virginia’s coastal resources, including transportation, infrastructure, military 

installations, marine ecosystems, agriculture, human health, and recreation. (Boon et al., 

2008).

Local Wetlands Research

Mixon et al. (1989) identifies the sedimentary units deposited during the Holocene along 

the York River estuary system and exposed sub-aerially as consisting of two main units. 

The first unit is up to 3 meters of soft coastal mud captured by salt marshes, usually 

medium to dark gray with grayish-brown peat. These muddy deposits are found mostly 

near the mouth in salt marshes fringing the edges of Goodwin Islands, Plum Tree Island 

and Mobjack Bay. The second unit is alluvial deposits of light to medium gray and 

yellowish gray, fine to coarse gravelly sand and sand gravel, silt and clay. These deposits 

are found mostly in the brackish to fresh water marshes along the upper York and along 

the Mattaponi and Pamunkey, and are also found in narrow beaches, in flood plain 

environments, and on point bars along the estuary.

These tidal marshes are important to the estuarine system as they provide high primary 

productivity, have important habitat and nursery value, provide erosion buffering and
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filtering capacity useful for trapping sediment, pollutants and nutrients. There are four 

Chesapeake Bay Virginia National Estuarine Research Reserve sites with wetland 

marshes along the York River. There is one each in the polyhaline, mesohaline, 

oligohaline and freshwater salinity regimes with largely pristine vegetation communities 

documented to have abundant fauna characteristic o f their individual community types. 

Over time, changes in the vegetation communities have been documented for each site. 

These changes have been attributed to relative sea level rise since salt tolerant perennial 

species (for example: Spartina alternifolia and S. cynosuroides) have become more 

prominent (Perry and Hershner, 1999; Davies, 2004; Perry and Atkinson, 2009).

Local Fisheries Research

Eelgrass (Zostera marina), growing at the most southern limit o f its range, is an 

important nursery habitat for many species o f fish and shellfish. It is also home to many 

small animals that provide food for commercially and recreationally important fish. 

Record warm temperatures in the summer of 2005, combined with nutrient pollution, 

caused large beds o f the grass to die off. In some areas the buried seeds and rhizomes 

have allowed the beds to become reestablished but in most other areas the sediment is 

mixed up into the water column and reduces light and interferes with re-establishment o f 

the grasses. This results in a continuing loss o f nursery area potentially affecting future 

recruitment. (Scheffer et al, 2001; Duffy, 2008). Increasing temperatures could cause loss 

from the Chesapeake Bay of cold-water species such as soft-shell clams and winter
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flounder. Deterioration of habitat quality and increasing diseases due to rising 

temperatures could also cause declines of economically important species such as the 

blue crab, menhaden and rockfish (Glick et al., 2007; Duffy, 2008).

Additional Monitoring Project

The Chesapeake Bay monitoring program, a bay-wide cooperative effort since 1984, 

involves Maryland, Pennsylvania, Virginia, the District of Columbia, several federal 

agencies (including National Estuarine Research Reserve System and US Geological 

Service), 10 academic institutions and over 30 scientists. Twenty times a year, nineteen 

physical, chemical and biological characteristics are monitored in the Bay’s mainstem 

and many tributaries. These include: freshwater inputs, nutrients and sediment, chemical 

contaminants, plankton, benthos, finfish and shellfish, underwater bay grasses, water 

temperature, salinity and dissolved oxygen. The datasets collected can be found at 

http://www.chesapeakebay.net/data

1.1.2 Introduction to Chapter 2 — York River Observing System

Chapter 2 describes the observing system maintained as part of the National Science 

Foundation MUDBED (Multi-Disciplinary Benthic Exchange Dynamics) project. From 

December 2006 until March 2009, tripod-mounted 5 MHz ADVs were deployed within 

50 cm above the seabed at two muddy sites along the York River Estuary. The project
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identifies the down-river Gloucester Point site as more biologically dominated and the 

up-river Clay Bank site as more physically dominated. The ADVs used provide long­

term estimates of water velocity, bottom stress, suspended sediment concentration, 

sediment settling velocity, and bed stress under spatially and seasonally variable 

conditions. The results from this time period, described in this chapter, indicate that 

settling velocity tends to be higher at the biological site. Suspended sediment 

concentration and seabed erodibility tend to be higher at the physical site. Sediment 

settling velocity and bed erodibility were found to be inversely correlated in both time 

and space, but both tended to remain more consistent in time at the biological site. At the 

physical site the erodibility increases and settling velocity decreases following the winter 

and spring increases in river water discharge. (Cartwright et. al, 2009).

Chanees in the Observing System since March 2009

After March, 2009 the monitoring of the biological site was discontinued, as the results 

from this site were not as variable in time. Effort and resources were instead concentrated 

at Clay Bank, the more dynamic, more physically dominated site. Like the more 

physically dominated site where the ADV continues to be maintained, the configuration 

of the deployments have been dynamic in an effort to provide additional information to 

address scientific questions that have arose. For example: two ADVs were deployed on 

separate tripods (allowing for future work to look at collocated spatial variability to be 

estimated for the parameters calculated from the ADV burst data), two ADVs were
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deployed on the same tripod (allowing for future work looking at seasonal variability in 

the log layer) and additional optical instruments were deployed, such as the LIS ST and 

RIPScam -  both described later in section 1.3 (allowing for the study of the variability in 

the suspended particle size distribution to describe the variation in the temporally 

changing concentration and settling velocity -  see Chapter 5). The timeline of the 

deployment and retrieval o f  the tripods and their associated instrumentation areprovided 

in section 1.1.3. The burst-averaged ADV data are provided in CHSD data report 

CHSD2013-01.

The methods section of chapter 2 describes the effort needed to collect real-time data 

from the ADV, an instrument not designed to collect both internally and send real-time 

results. The program developed by Franktronics, Inc., has proven to be very robust in 

handling this procedure, especially in times when the communications link was broken. 

The serial-to-Ethemet (S2E) convertor deployed on the tripod proved had problems 

because it required a lot of power, and quit converting data for transmission before 

retrieval of the tripod was scheduled. Another weak link was the power supply to the 

FreeWave radio on the surface buoy attached to the tripod. During extended cloudy 

periods the solar panel was not able to keep the FreeWave radio battery charged and 

communication lapsed. The use o f the surface buoy with a freeWave radio and a repeater 

on the piling was eliminated, and the communications problems solved, by moving the 

S2E to the crows-nest piling with the tripod wired directly to it.
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Future changes to the observing system, to be used in Kelsey Fall’s PhD work, include 

the addition of a 3-D anemometer mounted on the crow’s nest to measure local wind 

turbulence, a string of 6 HOBO conductivity and temperature sensors to capture changes 

in water column stratification and a tower of 4 Nortek (6 MHz) Vector ADVs to measure 

changes in velocity, concentration, bulk settling velocity and stress in the water column.

Calibration Cruises

Cruises using a profiler equipped with at least an ADV and submersible pump were 

performed each time a tripod was deployed in an effort to provide in situ measurements 

of concentration of burst averaged acoustic backscatter and SPM from pump samples. 

This calibration procedure is described in Chapter 2. Section 1.1.4 is a timeline of when 

the cruises occurred, the instruments used, and the number o f “bursts” and pump samples 

collected. CHSD data report CHSD2013-01 contains the burst average calibration cruise 

data.

Ancillary Data Sets

Bottom characterization cruises have been conducted in the general vicinity o f the Clay 

Bank tripod since May 2011 on about a monthly basis (twice monthly in some cases), 

generally corresponding with either a Spring (within 3 days of new or full moon) or Neap 

tide (within 3 days of halfway between the new and full moons). The plan is to continue
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these cruises into the foreseeable future. For each o f these cruises, sub-cores are collected 

for X-ray and core logger analysis as well as % moisture and grain-size distributions at 1 

cm intervals through the depth of the core. Two cores are also measured for surface 

erodibility using a Gust microcosm developed based on Gust and Mueller, 1997 and 

modified by The University o f Maryland Center o f Environmental Sciences (UMCES). 

Previous bottom characterization cruises have also been conducted in the Clay Bank area 

during the time the observing station has been established and used by several VIMS 

students for their Master’s and PhD work (Dickhudt, 2008; Rodriguez-Calderon, 2010; 

Kraatz, in prep.). These cruises are only mentioned in the interest o f completeness. Data 

from them will not be used in this dissertation.

1.1.3 Timeline o f Tripod Data Collected 2006-2012

Appendix 1 contains information (metadata) such as o f when the tripods were deployed, 

retrieved, including what instruments were used. Data are available in Data Report 

CHSD2013-01.

1.1.4 Timeline o f Calibration Cruise Data collected 2006-2012

Appendix 2 contains information (metadata) such as o f when the calibration cruises 

occurred, instruments used, number of “bursts” from which instruments, and number of 

pump samples collected. Data are available in Data Report CHSD2013-01.
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1.2 Acoustic Instruments

As recently as 2002 optical sensors were more commonly used than acoustic sensors for 

suspended sediment measurements (Thome and Hanes, 2002). Studies such as Ogston 

and Sternberg (1995) paired optical backscatter sensor water velocity instruments, with 

corrected electromagnetic current meters such as the intrusive Marsh-McBimey model to 

study sediment transport. Acoustic sensors were mostly used in the study of non-cohesive 

sediment concentrations in the coastal zone (Crawford and Hay, 1993; Harris et al., 2003; 

VanderWerf, 2007; Thome et al., 2009). The Acoustic Doppler Velocitimeter (ADV), 

first sold by SonTek in 1993, however, is proving to be an excellent instrument for the 

measure of currents, wave and turbulent flow parameters, because of its rapid stable 

response and zero offset, as well as measurement of suspended sediment concentration 

using its acoustic backscatter (Voulgaris and Trowbridge, 1998; SonTek, 2001). These 

instruments are now more commonly being used to measure concentrations in rivers and 

in mixed sediment regimes (Gray and Gartner, 2009; Cartwright et al., 2009; Hanes, 

2011). Thome and Hay (2012) however states “The use o f acoustics for estimating 

sediment concentration in flocculating (cohesive) suspensions is still problematic and 

requires fundamental studies on the interaction of sound with aggregated fine-grained 

particles, before quantitative inversions can be formulated.”. More study is also needed 

on acoustic response to natural mixed grain-size suspensions.
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1.2.1 Acoustic Doppler Velocimeter (ADV) Background

Receiver Transmitter

Sample
Volume

Figure 1.2. A) Acoustic Doppler Velocimeter showing the acoustic pulses being sent 
from transmitter to the sample volume and the acoustic reflect off deflector (suspended 
particles) transported by the water (acoustic backscatter) measured by 3 receivers. B) 
Depending on the changes in frequency received by the three receivers, because of the 
movement of the suspended particles, a 3-dimensional velocity is calculated. (Modified 
from Nortek, 2005; Nortek, 2010)
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How the ADV Works

Two commercially available ADVs used in this dissertation are the Nortek Vector (6 

MHz) and the SonTek ADVOcean (5 MHz). They both utilize a bistatic design, i.e., 

separate acoustic transducers to transmit and receive sound waves. The geometry of three 

receivers in relation to the transmitter creates a fixed remote sample volume (Figure 

1.2A), which allows for the study of single-point, high-resolution 3D velocity fields with 

little or no flow obstruction. The ADV cannot measure the velocity o f water unless it has 

scatterers (suspended particulate matter) to reflect the sound back to the receiver. The 

echo (reflected sound) is called acoustic backscatter. By definition, acoustic backscatter 

is the echo of the acoustic wave reflected back along the same axis as the transmitter. 

However, since the ADV is bistatic, the acoustic backscatter as mentioned in this 

dissertation, is the reflected sound wave measured by each of the three receivers.

The ADV current meter measures the velocity o f the water by a principle called the 

Doppler effect. The Doppler effect can be perceived as the change in the frequency of 

the sound as an object passes by (for example, a passing motorcycle). For the ADVs in 

this project, the frequency of the sound sent by the transmitter, / 0, is related to the new 

frequency of the echo returned to the receiver, / ,  by the velocity of the source (what the 

sound is reflected off of), vs, in relation to the stationary receiver and the speed of sound 

for water, C, as seen in equation 1.1 (Rosen and Gothard, 2009):

f  = & f °  < ■• * >
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The speed of sound in water is affected by the temperature and density (including

salinity) (SonTek, 2001; Nortek, 2005).

The Doppler technology utilizes the backscatter to determine the speed and direction of 

the particle, and thus the flow of the water carrying it (providing the scatterer is not 

swimming itself), at the sample volume. If the particle is moving perpendicular to the line 

connecting the sample volume (reflected transmitted sound) and the receiver then there is 

no Doppler shift and no velocity registered in that direction. If the distance is increasing 

between the particle and receiver, the frequency o f the sound received decreases (positive 

velocity o f the particle) and if  the distance is decreasing, the frequency increases 

(negative velocity o f the particle).

With three receivers focused on the same sample volume, the velocity (the particle 

movement) is measured in 3-dimensional space and later rotated to Cartesian (XYZ) 

vectors (Figure 1.2B). The X-axis is defined as positive from the sample volume out in 

the direction of receiver 1 and negative from the sample volume in the opposite direction. 

The Y-axis is the perpendicular horizontal axis and is positive in the direction between 

receivers 1 and 2. The Z-axis is the perpendicular vertical axis with the positive direction 

being up from the sample volume. The ADV is more sensitive to the Z-velocity (the 

component parallel to the transmit beam) than it is to the X- or Y-velocity because of the 

geometry of the transmit/receive beam pair. This means the Z-velocity yields a lower
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measurement uncertainty (SonTek 2001; Nortek, 2005).

Acoustic Backscatter

The signal strength is a measure of the power of the reflected acoustic signal (also called 

the acoustic backscatter strength), and is recorded by internal components for each 

receiver. This component outputs a signal referred to as the RSSI (Received Signal 

Strength Indicator) in decibels (dB) that is proportional to the logarithm of the echo

strength. This signal is recorded in the unit o f counts. One count is equal to about 0.43 dB

(with a variation o f 0.40 to 0.47) (Lohmann, 2001). Lohmann (2001) suggests using the 

following relation to “range normalize” the echo level (EL) in dB:

EL =  AMP * 0.43 +  20log10(R') + 2a w * R +  20R J  a p * d r  (1.2)

(a) (b) (c)

where AMP is the stored counts, R is the range along the acoustic beam in m, a w is the 

water absorption in dB/m, and a p is particle attenuation in dB/m. The terms (a), (b) and 

(c) account for the loss o f the o f the returned echo strength due to (a) acoustic spreading 

with distance from the transmitter, (b) water absorption, and (c) particle attenuation. 

Term (a) is really not necessary when using an ADV since the sample volume is or 

can/should be set to be a fixed distance from the transducer when the ADV is being used 

to estimate sediment concentration (described below). This means the only variables are 

a w and a p. At frequencies of 5 and 6 MHz, the change in aw due to salinity is
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negligible, and even though a 10°C change in temperature can almost double aw, it will 

contribute less than 1 dB to the normalized echo level (Ainslie and McColm, 1998). 

According to Lohmann (2001), the final term (c) can be ignored when the SPM 

concentrations are low as ap will be small. In general, using an ADV makes “range 

normalizing” the echo unnecessary. The range is set by the geometry of the sensor.

For a given particle type and size distribution, acoustic backscattering strength within the 

sample volume is expected to be proportional to the logio of the particle concentration. 

Theoretically if suspended sediment concentration, C, increases from Ci to C2 by a factor 

of 2 (i.e., C2/C 1 = 2), then, in the absence of attenuation, the power o f the return signal, P, 

will also increase by a factor o f 2 (i.e., P2/P 1 = 2), meaning the volume scattering strength 

will increase by about 3 dB (i.e., 10*logio (P2/P 1)) (Lohrmann, 2001). Then the ADV 

acoustic backscatter in counts is expected to increase by (3 dB)/(0.43) -  7 counts. The 

findings o f Cartwright et al. (2012) indicate that the acoustic backscatter from ADVs 

does generally increase linearly with log 10 o f the concentration. In the field, however, 

ADV counts do not precisely increase by 7 for every factor o f two in concentration. This 

is because particles in suspension in estuarine and coastal environments are a mixture of 

sizes and types that change in time as total concentration changes. Also, the dB to counts 

conversion factor o f -0.43 may vary somewhat from ADV to ADV. Variations in the 

conversion factor among 10 sensors is investigated in Chapter 4. In addition, if  

concentrations become high enough, at some point attenuation will begin to overwhelm
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backscatter (e.g., Traykovski et al., 2000). At that point, the rate of increase in 

backscatter with increased concentration will slow and eventually reverse, such that 

backscatter will then decrease with greater concentration.
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Figure 1.3. Schematic relationship between grain-size and attenuation contributions, 
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regression line (from Cartwright et al., 2012)
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Roll o f Frequency and Grain-size in the Strength o f  the Acoustic Backscatter

Each acoustic frequency has a different particle size sensitivity (e.g., Flammer, 1962; 

Thome and Campbell, 1992; Lohmann, 2001; Thome and Hanes, 2002; Gartner, 2004; 

Topping et al., 2006). Sensitivity is the acoustic volume scattering strength for a given 

concentration. The peak sensitivity occurs at a value of approximately ka—1 (Figure 4.2) 

where k is the acoustic wave number (lidX, where X is acoustic wavelength in cm) and a 

is the particle radius in pm (assuming a sphere o f uniform density). Below the transition 

zone where is k a « l ,  absorption of sound due to viscous losses tends to dominate 

attenuation (Figure 4.2), and, for a given frequency, the volume scattering strength 

becomes proportional to a4, i.e., the radius o f the particle to the fourth power. This means 

that as particle size decreases further below ka=l, the strength o f the scattering for a 

given concentration dramatically decreases. The qualitative effects o f this sensitivity are 

seen in Figure 1.3, where the acoustic response for the mud-dominated cases (which have 

ka « 1) are dramatically lower than the acoustic response of the sand cases (which have 

ka on the order o f ~1) (Jackson and Richardson, 2007; Wright et al., 2010; Ainslie and 

McColm, 1998)

For particles larger than ka » 1 ,  multiple scattering and particle interactions tend to 

dominate the attenuation (Figure 1.3), and the volume scattering strength becomes 

linearly proportional to a (i.e., radius to the first power). As the frequency increases, the 

sediment size within the transition zone (ka^l) decreases (e.g. -100  pm for 5 MHz and 

-50  pm for 10 MHz). For a given frequency, with k a > ~  1, the strength of scattering still
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increases with particle radius, but not as markedly. The qualitative effects of this k a > ~  1 

sensitivity are also seen in Figure 1.3, where the acoustic response for the sand cases still 

increases with a, but not nearly as dramatically as the difference in backscatter between 

the mud alone and sand alone cases. Although not within the range shown in Figure 1.3, 

the concentration at which the proportionality between backscatter and concentration 

eventually reverses is also a function of ka, with the reversal occurring at lower 

concentrations for smaller ka (i.e., at lower concentrations in response to higher 

frequencies or in response to smaller grain sizes) (Jackson and Richardson, 2007; Wright 

et al., 2010; Ainslie and McColm, 1998)

Most of the work on acoustic response has been performed on individual grain-sizes, 

mostly of coarse-grain non-cohesive material. ADVs are now more commonly being used 

to measure concentrations in muddy rivers and in mixed sediment regimes (Gray and 

Gartner, 2009; Cartwright et al., 2009; Hanes, 2011). More study is also needed on 

acoustic response to natural mixed grain-size suspensions. Thome and Hay (2012) state 

“The use of acoustics for estimating sediment concentration in flocculating (cohesive) 

suspensions is still problematic and requires fundamental studies on the interaction of 

sound with aggregated fine-grained particles, before quantitative inversions can be 

formulated.”
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Differences between Nortek and SonTek ADVs

The transmit frequency of the SonTek ADVOcean and the Nortek Vector is 5 MHz and 6 

MHz, respectively. Each instrument has a set o f  fixed velocity ranges. The acoustic 

frequency and the velocity range used determine the ping rate (nominally 80-500 Hz for 

the SonTek and 100-250 Hz for the Nortek). The user set “sample rate” determines how 

often the pings are averaged together, with the instrument pinging as fast as possible, for 

an outputted sample. Decreasing the sample rate increases the number o f pings averaged, 

thereby decreasing the error in the average. (SonTek 2001; Nortek, 2008).

The geometry of the round transmitter and three rectangular receivers sets the distance 

from the transmitter to the center o f the roughly cylindrical sample volume for the 

SonTek to 18 cm and the Nortek to 15.7 cm. The diameter o f the sample volume cylinder 

is determined by the intersection of the transmit and receive beams and is roughly the 

diameter o f the transmit ceramic, 12 and 15 mm for the SonTek and Nortek, respectively. 

The SonTek sample volume height is controlled by software to be 18±1 mm giving a 

sample volume of approximately 2 cm3. The Nortek allows the user to specify the sample 

volume height between 5 to 20 mm resulting in sample volume of approximately 0.8 to 

35 cm3, respectively. Increasing the sample volume increases the number of pings 

averaged per sample and decreases the error in the average (SonTek, 2001; Nortek, 

2005).
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1.2.2 Use o f  the ADV to measure suspended particulate matter (SPM) concentration 

and settling velocity

The use of the ADV for velocity and turbulence measurements is well understood 

(SonTek, 2001; Nortek, 2005; Voulgaris and Trowbridge, 1998). Chapter 2 shows that 

ADV derived bed stress, Tb, plotted against ADV derived eroded mass, M, agrees well 

with the independent measure o f M  versus stresses applied in a Gust microcosm. More 

work however needs to be done to better understand how the concentration, C, and the 

settling velocity, ws, (derived from the ADV turbulence and backscatter parameters) used 

in the calculation of M  is affected by the acoustic response to cohesive and mixed 

sediment suspensions. The goal o f this dissertation is to look at the use o f the ADV to 

measure both SPM concentration and settling velocity.

Concentration

Using the profiler shown in Figure 1.4A pump samples were collected, during 2007-2008 

MUDBED calibration cruises, concurrently at the same water depth as ADV backscatter. 

The pump samples were analyzed using gravimetric methods. Figure 1.4B displays best- 

fit linear regressions between ADV backscatter in count and the log of the SPM 

concentrations used to convert ADV backscatter to concentration in Chapter 2. The 

regression curves, and those from more than 30 cruises between 2006-2012, are used to 

convert backscatter from benthic mounted ADVs to concentration. There is, however,
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abundant scatter in the data. There has been a good deal o f research on the response of 

acoustics to non-cohesive sediment, recently, for example, by Hamilton and Hall (2012) 

and Moate and Thome (2012). In contrast, there has been comparatively little done on 

cohesive sediments that form floes or are formed into fecal pellets by benthic organisms.

Chapter 4 explores the acoustic response to natural sediment in the laboratory and 

Chapter 5 studies the change in acoustic response to changes in suspended sediment 

throughout a tidal cycle.
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Figure 1.5. Example estimates o f settling velocity (ws) from ADV data collected on 
benthic tripods deployed in the York River Estuary, Virginia. (Cartwright et al., 2009)

Settling Velocity

Also in Chapter 2 it is shown that since the ADV can measure both suspended sediment 

mass concentration, C, and vertical water velocity, w, within the same sampling volume,
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including turbulent fluctuations, the ADV can be used to estimate the settling velocity, 

ws, for the sediment in suspension. Example estimates o f settling velocity from a series of 

bursts collected using an ADV can be seen in Figure 1.5. (A burst is a series of rapid 

samples collected over a relatively short, specified period o f time. Bursts are normally 

collected during a set time interval, for example: one burst o f 900 samples collected at 10 

Hz for a duration of 90 seconds every fifteen minutes). The settling velocities in Figure

1.5 were calculated following Fugate and Friedrichs (2002), assuming a local balance 

within the water column between upward turbulent transport by turbulent Reynolds flux 

and downward settling by gravity. However, concentration due to washload, Cbackground, 

doesn’t contribute to the population settling out o f the water column so it should be 

subtracted from the mean burst concentration. The Cbackground, can be estimated by 

finding the lowest burst average concentration during a given period of interest. A logical 

candidate is during a slack water during Neap tide. Modifying the following formula 

fromChapter 2 by subtracting the Cbackground, the formula for obtaining the settling 

velocity can be written:

. . .  _ <-C >—C background
W s t b u l k )  -  < W ' C’>  (L 3 )

where primes indicate turbulent fluctuations from the mean, and angle brackets indicate a 

burst average. w,(buik) is considered the bulk sediment settling velocity for a burst since 

the sediment in suspension isn’t o f only one size class, but is an average of all the “non­

background” sediment in suspension, A less variable w,(b„ik) can found by plotting the 

<  C > —Cbackground vs. <  w'C' > for a series o f bursts. The slope equals ws(buik)
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(Fugate and Friedrichs, 2002; Cartwright et al., 2009).

While the settling velocities calculated using this ADV method were found to be 

reasonable in Chapter 2, verification of the methodology needs to be obtained. Chapter 3 

addresses the ability o f the ADV to measure settling velocity in a calibration chamber in 

a laboratory setting, and Chapter 6 takes it a step further to provide verification in situ 

using independent video settling chamber methodology, the Particle Imaging Camera 

System (PICS).

Chapters 3 and 4 explore the use o f the ADV to measure settling velocity and 

concentration.

1.2.3 Introduction to Chapter 3

While the ADV is designed to determine the fluid velocity, it is important to recognize 

that it is actually the velocities o f the scatterers themselves that are measured. Thus in a 

calibration tank designed to relate sediment-induced backscatter to sediment 

concentration, the vertical velocity registered by an ADV at a given point is actually the 

true fluid velocity plus the sediment’s settling velocity. And absent net vertical volume 

flux of the fluid, the average vertical velocity registered by an ADV across a horizontal 

plane is equal to the mean sediment settling velocity. For this study described in Chapter 

3, a series of ADV calibrations were run in a 118-liter re-circulating tank for six sand

32



sizes between 63 and 150 pm. A grid o f ADV measurements distributed in a horizontal 

plane across the tank revealed that the mean vertical velocity registered by the ADV in 

each case was indeed consistent with each grain size’s settling velocity as independently 

measured by a “rapid sand analyzer” laboratory settling tube (Cartwright et al., 2012).

In a series o f acoustic calibration experiments, a systematic increase in the 

proportionality between sand concentration and backscatter was observed with increasing 

grain size. These were an expected increase from the proportionality between mud 

concentrations and backscatter. For naturally occurring mud and sand solutions, the 

backscattering was intermediate between the mud and sand, rather than reaching a level 

that was the sum of the two backscattering amplitudes. This may be explained by the 

interrelationship between the acoustic backscattering, attenuation, and the particle size- 

frequency range (Cartwright et al., 2012).

1.2.4 Introduction to Chapter 4

This chapter compared acoustic backscatter (ABS) response to sand, mud, and mixed 

sediment in the lab and in situ among ten relatively similar acoustic Doppler velocimeter 

(ADV) units: five 6-MHz Nortek Vector AD Vs and five 5-MHz SonTek ADVOcean- 

Hydras. This approach allowed for an examination o f the relative roles played by inter­

vendor, intra-vendor, and sediment variability in determining their ABS response. As
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well as consistently responding more strongly to sand than to mud, ABS in counts (a 

logarithmic unit proportional to decibels) revealed clear offsets apparent among the 

various instruments within both vendors. One of the ADVs from each vendor was defined 

as a reference unit, and the offsets in counts o f the other four ADVs from each vendor 

were adjusted to become consistent with the reference unit. For either vendor, pre­

correction ABS response was more similar if  the vendor’s units had been purchased 

together with consecutive manufacturer’s serial numbers and subsequently had not had 

electronic components replaced. After adjustment, ABS counts for all the SonTek vs. 

Nortek ADVs largely lay along a single curve. The SonTek vs. Nortek ABS curve began 

with a slope of -1:1 at low backscatter; but at higher ABS, the response of the 5-MHz 

SonTek ADVs increased more rapidly than that o f the 6-MHz Norteks, suggesting that 

the backscatter registered by the higher frequency Norteks was more susceptible to 

attenuation. Plots of the logio of sand concentration (logio C) vs. ABS for concentrations 

from ~ 10 to 600 mg/L was significantly quadratic for both the Nortek and SonTek ADV 

although more strongly so for the Nortek. In contrast, mud calibrations o f logio C vs. 

ABS (for ~20 to 700 mg/L) were not quadratic for either vendor, providing less clear 

evidence of ABS attenuation. For well-mixed silty mud in the lab, the slope o f the 

calibration of logio C vs. ABS for both vendors was close to the theoretical value 

expected for a single, constant grain-size suspension. In the field, however, the 

calibration slope of logio C vs. ABS was significantly smaller, which suggested a change 

in the acoustic properties of the suspended particles with increasing C. When calculating 

predicted ABS in counts in response to varying proportions o f different grain sizes,

34



results showed that transforming logarithmic counts back to linear units o f acoustic 

power before adding them together allowed successful prediction of the expected 

acoustic response.

1J Optical Instruments

Optical instruments are often used for measuring SPM concentration, size distributions 

and settling velocity (Ahn, 2012; Fettweis, 2012; Mikkelsen, 2012; Cross, 2012; Garcia, 

2012; Sherwood et al., 2012, Todd et al., 2012). Optical instruments, however, are highly 

susceptible to biofouling because the windows have to be clear for the laser, or light 

source, to pass through. So it is not feasible to paint them with antifouling paint like the 

type that is used on the transducers of the ADV, as described in Chapter 2, to discourage 

growth. Also, moderate biologic growth that entirely blocks optics can still be relatively 

transparent to acoustics. Wipers have been used on optical instruments, but they typically 

consume a lot o f power, so the length o f time the optical instrument can be deployed is 

still usually significantly shorter than for an acoustic instrument. The deployment time 

for optical instruments in the York River Estuary can be as little as one week in the warm 

summer months in shallow water, to no more than a couple o f months in the colder 

winter months. Acoustic instruments, however, can be deployed for several months in the 

summer and practically all winter long if  there is enough battery life and file storage.
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Two of the most commonly used, commercially available, optical instruments for 

measuring suspended sediment concentration and size distribution, respectively, are the 

Seapoint Optical Backscatter Sensor (OBS) and the Sequoia Laser In situ Scattering 

Transmissometer (LISST-100X). The OBS is a very simple instrument that uses light 

reflected back from the surface of the particles in suspension to infer the SPM 

concentration. The amount of backscattered light is directly related to the concentration 

of particles in suspension, but the amount o f light reflected changes with the size o f the 

particles. Clay size particles will scatter back much more light relative to the same 

concentration of sand size particles (Battisto, 2000). OBS sensors were deployed in the 

MUDBED observing system as an auxiliary sensor with the LISST-100X. The LISST- 

100X uses forward scattering from a laser to measure the particle size distribution from

2.5 - 500 pm. A detailed described of the LISST-100X follows in Section 1.3.1, as it is 

used extensively in Chapter 5.

Several specialized optical instruments are being used today for measuring size 

distributions and settling velocities that employ either a digital still or video camera 

(Davies, 2011; Mikkelson et al., 2012; Smith and Friedrichs, 2012; Cartwright et al.,

2011). Two of these instruments, the RJPScam and the PICS, were used in Chapters 5 

and 6 and are described below in Sections 1.3.2 and 1.3.3.
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1.3.1 LISST background

The Sequoia Laser In Situ Scattering Transmissometer (LISST-100X) uses laser 

diffraction to measure the suspended particle size distribution in 32 logarithmically 

spaced size classes over the range 2.5 to 500 pm. Light is emitted by a laser diode with a 

wavelength of 670 nm and passes through a focusing lens, then through the 5 cm length 

sampling volume (Figure 1.6). After passing through another focusing lens, the scattered 

light is collected by a set of concentric ring detectors. Particles in the sampling volume 

refract the beam, forming a diffraction pattern. For simple particle geometries (spheres), 

the diffraction pattern can be predicted theoretically (Agrawal and Pottsmith, 2000). The 

measured diffraction pattern, as sampled by the ring detectors, is then inverted based the 

theoretical result, giving an estimate of the actual particle size distribution. The nature of 

forward scattering by spheres is such that the scattering angle is inversely proportional to 

particle diameter. The inner rings detect the largest particles, and the outer rings detect 

the smallest. The LISST does not use pumps, so that physical disturbances to the water 

column, which might breakup aggregates or floes, are minimized. Traykovski et al. 

(1999) conducted a series of laboratory tests using natural particles ranging in size from 

coarse sand (710 pm) to silt (<5 pm). They demonstrated that the LISST was able to 

accurately resolve unimodal size distributions within the measurement range. 

Uncertainties using LISST-100 detectors may arise when particles are non-spherical or 

exceed the instrument range, or when SPM concentration or stratification o f the water 

column is large (Styles, 2006; Fettweis, 2008). Styles (2006) showed that small scale
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salinity fluctuations can cause small angle scattering patterns that are indistinguishable 

from particle scattering. In the absence of the above confounding effects, LISST-100 

instruments have been shown to be well suited for measuring floe sizes, because the 

diffraction patterns induced by flocculated mud are formed by the floes and aggregates 

themselves, and not by the primary grains composing the aggregates. Multiple diffraction 

can become a problem when total transmission is lower than about 20-30% and results in 

a shift in the derived size distribution towards smaller size classes (Agrawal and 

Pottsmith, 2000).

1.3.2 RIPS cam background

The Remote In situ Particle Settling Camera (RIPSCam), developed specifically for the 

MUDBED project, contains a Canon EOS XSi 12 MP digital SLR camera with a pair of 

red LED line lights connected to a strobe controller to provide a focused, controllably 

flashed light sheet (Figure 1.7A). The light sheet illuminates the center o f a clear acrylic 

7 cm ID vertical tube, approximately 50 cm below the tube opening at the top of the 

bottom frame, which is deployed approximately 0.9 mab. A pneumatic knife valve opens 

and closes across the top of the tube to admit external particles (Figure 1.7B). The 

camera, the strobes, and the knife valve are controlled by an internal micro-computer 

running Windows XP. The computer also collects and stores the particle images, 

communicates with the surface buoy, and controls sampling and remote communications. 

Sampling can be initiated at any interval. The knife valve is opened for several minutes

39



3Kte view

Schi4vl»80radwps 
arotA.rcr.wMi 
wef r t tM  endcope and 
O-ring M att around.

N X*\ 
.C -  A a

 *! f "
Two 12V0CK
to o k *  C harged  fcwn cotor
prnnm, p w v  oui to  cm cfli 
and comvMMr LED array* c7) 
V t o W  COteOtdMOp

P o w r  from cotar p r od  to 
b d m w  vgnaf from canw ra
to fro w t o o  (twrul and athamwi) B

LEO arrays

BuWiaed o o m e d x  2 -  
9wtk*od power to
ectom al ¥ toverp i#no

Two 12 VDC O veftve»d V iew

LED Array*

i

Figure 1.7. A) RIPSCam bottom frame ready for deployment on March 19, 2009. B) 
Side and overhead schematic views of the central section o f the RIPSCam (right). 
(Cartwright et al., 2011)

40



before sampling and then closed just prior to sampling to limit internal motion in the 

tube. During sampling, a 2-sec time exposure image is first collected with the strobes 

flashed at 0.35-sec intervals. This is then followed by a sequence o f 5 flash exposures at 

1-sec intervals. Each image frame is 21 mm high, 31.5 mm wide, and the depth of focus 

is approximately 1 mm. Calcium hypochlorite hydrated pellets in a mesh bag is normally 

added to the bottom of the settling tube (approximately 0.25 m below the sample section) 

to limit biofouling (Cartwright, 2011).

1.3.3 PICScamera background

The Particle Imaging Camera System (PICS) developed by Smith and Friedrichs (2011,

2012) is a high definition video camera system that is used to measure particle size 

distribution and settling velocity o f the component particles (Figure 1.8A). It has been 

designed to have a single chamber whereby the current is allowed to flow through until 

the sample is captured by closing ball valves at each end. After sampling, the 5-cm 

(inside diameter) chamber is mechanically turned to a vertical position to become a 

settling column (Figure 1.8B). During periods o f weak currents, less than 15 cm/s, the 

ball valves are closed to collect the sample with the column already in the vertical 

position as soon as the profiler reaches the desired sample depth. The camera and laser 

diode light, providing a uniformly thin, ~1 mm, strobed sheet o f  light, are located on the 

bottom half o f the column (Figure 1.8C). The turbulence is allowed to dissipate for 

approximately 15-30 sec, and a 30 second image is collected. The video camera utilized 

by the PICS is a Prosilica/AVT GC1380 with 1024x1380 pixel resolution at up to 20 fps,
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with a resolution of a particle sizes distributed between 30 and —1000 pm. The length of 

the settling column above the imaging plane and strobe duration permits resolution of 

settling velocities between 0 and 15 mm/s (Smith and Friedrichs, 2011; Cartwright et al., 

2012).

Particles large enough to be accurately characterized in terms o f both settling velocity 

and size (diameter, d>30 pm) are tracked by Particle Tracking Velocimetry (PTV) 

methods described by Smith and Friedrichs (2012). The automated process of tracking 

the particles makes collection of relatively long sampling records possible and allows for 

a large number o f particles to be tracked. This provides better statistical characterization 

of size, settling velocity and density o f particle populations, especially o f relatively low 

abundance large macroflocs (d> 150 pm), which can account for a large percentage o f the 

total volume concentration in suspension (Smith and Friedrichs, 2012; Cartwright et al., 

2012)

Turbulence introduced during sample capture, thermally induced circulation, volume 

displacement of settling particles, and motion of the settling column all create fluid 

motion within the sampling tube and interfere with the measurement o f settling velocity 

of the particles. Smith and Friedrichs (2012) describe the automated Particle Image 

Velocimetry (PIV) method used by PICS to estimate the space- and time-variant fluid
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velocity fields through which the larger particles settle. The smallest detected particles 

(d<30 pm) are used as natural tracers to estimate the local fluid velocity (Figure 1.9). The 

local fluid velocity is subtracted from the velocity of each larger detected particle (d>30 

pm) to determine the net settling velocity o f each larger particle. The PTV-PIV 

automated image processing frees the PICS from needing a stable platform as required by 

most settling velocity systems and allows sample collection throughout the whole water 

column. (Cartwright et al., 2012).

Chapters 5 and 6 couple optical instruments with the ADV to better understand the 

settling velocity measured by the ADV
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1.3.4 Introduction to Chapter 5

Settling velocity (ws) o f a mud particle o f known diameter (D) and density (p) in the 

York estuary can be theoretically predicted based on well-established relationships 

between the force of gravity and the opposing fluid resistance to be ws ~ D x p (Dyer, 

1984). Disaggregated mud in the York, based on the D and p o f its component mineral 

grain size, -5-10 pm, would be expected to have ws < to «  0.1 mm/s. However, ws for 

mud in the York under relatively turbid (concentration > -  0(50) mg/L) has been found 

to be on the order of 0.2 to 2 mm/s (Cartwright et al., 2009). These larger settling 

velocities are due to the packaging of the principle mineral grains into flocculants or into 

fecal pellets created by benthic organisms. Data collected, for Chapter 5, in the Clay 

Bank region of the York River during a 25 hour period in July 2009 using a LISST 100X 

(range of 2.5- 500 pm) and RIPScam video images (range o f 20 pm to 20mm) show 

evidence for both muddy floes and pellets in the lower 1 m of the water column 

(Cartwright et al., 2011).

The results from the tidal anchor station sampling at Clay Bank (Cartwright et al., 2011) 

indicate the dominate floe size at slack tide reached -300 pm. Larger, much more scarce 

floes, o f -1 mm were also observed during periods of decreasing stress. As the stress 

increased to between 0.2-0.3 Pa the dominant floe size was reduced to -  200 pm. Dining 

this time, a second population of more resilient, denser particles (~ 95 pm) was also 

present in suspension. This second population particle size is consistent with pellets 

identified for this region in the seabed by Rodriguez-Calderon (2010) and Kraatz (2012).
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The settling velocity calculated during high stress, when the floe size was at its minimum 

and the pellet population was present, was measured using an ADV to be over 1 mm/sec. 

As the stress decreased and the larger floes formed, the ws dropped to around 0.8 mm/sec. 

The size of the flocculants and composition o f the suspended concentration, and the 

resultant settling velocity, would be expected to vary (tidally, spring/neap, seasonally and 

longer term) due to the changing stresses present as well as the varying constituent 

particles and SPM concentration (Cartwright et al., 2011).

1.3.5 Introduction to Chapter 6

Acoustic Doppler Velocimeters (ADVs) can be used to measure (i) relatively large (< ~ 

0.5 cm/s) sediment settling velocities (ws) by direct Doppler measurement of sediment 

motion relative to the surrounding fluid and (ii) relatively small ws (< ~ 0.2 mm/s) by 

assuming a Rouse balance between upward Reynolds flux and downward settling. 

Advantages o f ADV-based ws estimates include their non-intrusive nature, their 

resilience to high energy and biofouling and, for these two specific methods, their relative 

insensitivity to precise calibration of acoustic backscatter for sediment concentration. In 

the past, however, these ADV-based estimates of ws had not been confirmed by 

independent measurements of ws using other instruments observing the same particle 

populations. Here, independent observations o f ws utilizing gravimetric and video settling 

tubes are shown to be consistent with these two types o f ADV-based ws measurements 

for large and for small ws, respectively. Direct Doppler-based ADV estimates of ws were
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collected for sand in a laboratory mixing tank and confirmed by a Rapid Sediment 

Analyzer gravimetric settling tube. Rouse-balance ADV estimates were collected in the 

York River estuary for muddy floes and confirmed in situ by a particle tracking/particle 

image velocimetry settling tube. These lab and field-based observations in this chapter 

both suggest that, in the absence of significant particle aggregation/disaggregation, (i) 

measurement of ws and (ii) ws itself are both relatively insensitive to the local intensity of 

fluid turbulence.
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2.1. Abstract

As Part of the National Science Foundation MUDBED (Multi-Disciplinary Benthic 
Exchange Dynamics) project, we have deployed 5 MHz SonTek ADVs at two muddy 
sites along the York River estuary for the last 3 years. One of the two MUDBED 
Observing System sites is more biologically dominated, whereas the other is more 
physically dominated. At both sites, internally recorded ADV data have proven 
invaluable in allowing reliable long-term estimates o f water velocity, bottom stress, 
suspended sediment concentration, sediment settling velocity, and bed erodibility under 
spatially and seasonally variable conditions. Nonetheless, it has been challenging to 
reliably collect these ADV data in a real-time mode. Working with Franktronics, Inc., an 
automated terminal emulator has been developed to allow ADV data to be logged 
internally and burst data to be automatically transferred off the internal logger every 15 
minutes in near real-time. To facilitate wireless data transmission, we have placed a 
serial-to-Ethemet converter in an underwater housing on our benthic tripod. This allows 
us to transmit near-bed ADV data via an Ethernet cable up to a relatively small surface 
buoy, wirelessly transmit the signal via an Ethernet radio and omni-directional antenna 
on the buoy to a nearby stationary platform, and relay the ADV data via a second 
Ethernet radio and a uni-directional antenna back to VIMS. At VIMS, the data stream is 
received into a local intranet, which isolates the wireless Ethernet links from general 
internet traffic. To date, the results o f ADV deployments at the MUDBED observing 
system sites indicate that settling velocity tends to be higher at the biological site, 
whereas suspended sediment concentration and seabed erodibility tend to be higher at the 
physical site. In addition, sediment settling velocity and bed erodibility are inversely 
correlated in both time and space. Finally, settling velocity and erodibility remain more 
consistent in time at the biological site, whereas erodibility increases and settling velocity 
decreases at the physical site following winter/spring increases in river water discharge.

2.2. Introduction

Deployments o f turbulence-resolving Acoustic Doppler Velocimeters (ADVs) are 

providing insights into fine erodibility and settling as part of the National Science 

Foundation Mult-Disciplinary Benthic Exchange Dynamics (MUDBED) project 

(Friedrichs et al., 2008). Bed erodibility and settling velocity are among the most 

sensitive, yet poorly constrained, parameters in fine sediment transport models (Harris et 

al., 2005). Although ADVs were originally designed for velocity measurement only, the
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backscatter associated with the acoustic returns can be successfully calibrated for 

suspended sediment concentration (Fugate and Friedrichs, 2002). In addition, acoustic 

returns registered by ADVs can be used to track local seabed elevation, highlighting 

periods of erosion or deposition. Furthermore, ADVs are noninvasive, their acoustic 

signal is resistant to biofouling, and acoustic backscatter measurements are temporally 

and spatially collocated with turbulent velocity measurements.

However, a limitation of the ADV system’s off-the-shelf commercial logger has been the 

inability to both log the burst data internally and display the data in a real-time format 

simultaneously. It is important to have both capabilities so that real-time data are not lost 

in case communications between the instrument and the shore-based real-time data server 

are interrupted. A second limitation with regards to ADV communication has been the 

need to transmit a “hard-break” in order to communicate directly with the ADV. While 

this is not problematic when communicating directly through a serial communication 

cable to the instrument, it is difficult to transmit a hard break over a wireless serial radio 

modem.

A successful and sustained real-time observing system incorporating ADVs on benthic 

tripods in the York River estuary allows rapid response benthic sampling of additional 

environmental parameters to be targeted to key events and locations where suspended 

sediment concentration, bed elevation, seabed erodibility, and/or suspended particle
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properties are evolving most rapidly. The practical advantages o f real-time 

communications with ADVs are also significant in that potential interruptions in data 

collection and possible equipment failures can be identified immediately and repaired far 

earlier than was the case when we were dependent solely on periodic, pre-scheduled 

instrument turnarounds.

The MUDBED observing system’s two benthic arrays (locations indicated by “B” 

symbols in Fig. 2.1) benefit from being situated within the larger VIMS/CBNERR 

(Virginia Institute of Marine Science/Chesapeake Bay National Estuarine Research 

Reserve) network. The VIMS/CBNERR observing system (Moore and Reay, 2009) 

consists of continually recording water quality and sea level recorders, wind sensors, and 

wave and current sensors concentrated along the York River estuary (Fig. 2.1). The 

VIMS/CBNERR observing system also monitors portions o f neighboring estuaries.

Scientifically, the MUBED sites further benefit from the presence of a strong gradient in 

biological vs. physical control of seabed properties (Schaffher et al., 2001), as illustrated 

by the X-radiographs displayed as part o f Fig. 2.1. The two MUDBED sites are similar 

in that they are both dominated by mud and are both moderately energetic. However, 

bioturbation is more prevalent within the seabed in the vicinity of the down-estuary 

"biological” site, and physically-induced layering is more commonly seen near the up- 

estuary “physical” site (Dickhudt et al., 2009). This trend is illustrated in Fig. 2.1 by the
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Figure 2.1. Location of MUDBED benthic ADV tripods (indicated by “B”) within the 
VIMS/CBNERR Observing system. X-radiograph images from cores collected along the 
York River estuary are courtesy of L. Schaffiier.

distinct patterns seen in X-radiographs at locations bracketing the MUDBED sites. In the 

upper York River estuary, disturbance by sediment transport reduces macrobenthic 

activity and sediment layering is commonly preserved. In the lower York layering is 

typically destroyed by bioturbation (Schaffener et al., 2001). This gradient provides a 

natural laboratory for investigating the relative roles o f biological vs. physical processes 

in affecting sediment resuspension and subsequent settlement.
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The remainder o f this paper consists of two main parts: first a “Methods” section which 

describes the physical, electronic and communications structure o f the ADV-based 

MUDBED observing system and, second, a “Results” section which provides a 

significant example application of MUDBED ADV data, namely better understanding of 

seasonal variation in fine sediment erosion and settling.

Figure 2.2. SonTek 5 MHz ADVOcean sensor mounted in a downward looking 
position on a MUDBED tripod.
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2.3. Methods 

ADV Description

The ADVs used in the MUDBED observing system are SonTek 5MHz ADVOcean 

Probes. The ADV sensor (Fig. 2.2) is a heavy-duty stainless steel assembly consisting of 

one acoustic transmitter and three acoustic receivers. The ADV’s 2-cm3 sampling 

volume is located approximately 18 cm below the center transmitter. The probe’s x-axis 

is defined by the orientation of the ADV’s number 1 receiver, which is marked by a small 

indentation on the sensor head. The acoustic sensor is mounted on a signal-conditioning 

module with internal receiver electronics. Included in the module used for this paper are 

the following optional sensors: compass, 2-axis tilt sensor, strain gauge pressure sensor 

and temperature sensor. The ADVOcean Probe with optional sensors has a total length of 

39 cm (SonTek, 1997).

Underwater mate-able connectors are used to connect the module via a high frequency 

cable to the processor housing, called the “Hydra”. The Hydra (a watertight cylinder 75 

cm long with a 16-cm diameter) houses the ADV’s internal recorder with a memory card 

and battery packs for autonomous deployment. The ADV can be deployed in either a 

continuous real-time mode or an autonomous burst mode. In the real-time mode, the data 

streams continuously out of the instrument via a cable connected to the Hydra using an 

underwater mate-able connector and a DB9 connector to plug into a RS-232 serial port on 

a computer. In the autonomous mode, the burst data is stored in binary format on the
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memory card. A burst is a set number o f samples, (1200 samples/burst, in our 

application) taken at a set interval (15 minutes in our case). The sampling rate we have 

chosen is 10 Hz. At the start o f each burst, the ADV outputs the burst header, in ASCII 

format, over the serial port. The header contains the serial number, burst number, date 

and time of the burst, the probe and sampling volume distances to the seabed, the battery 

voltage and system diagnostic data.

In order to communicate with the data logger in the Hydra, a “hard-break” needs to be 

sent via the RS232 serial communication cable to “wake up” the instrument. A hard- 

break is a serial communication signal that causes a reset in the logger electronics and 

returns the system to command mode from deploy mode. A hard-break requires holding 

the transmit serial communication lines high for a period o f 300 ms.

Tripod Preparation

The ADV, cable and Hydra are all wrapped with Saran Wrap and electrical tape to help 

protect their surfaces from biological growth and are then mounted on a tripod that stands 

approximately 1 meter tall. The aluminum tripod is painted with a primer followed with 

Interlux Trilux 33 Antifouling Paint. The ADV’s transducer and receiver faces are 

painted with a thin coat of Interlux MicronCSC Antifouling Paint. Fig. 2.3 shows a 

tripod ready for deployment on the back of the R/V Elis Olsson and one in the foreground
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covered with three months worth o f biofouling. The housings, sensors and the tripod are 

each equipped with zinc anodes for corrosion protection. The ADV probe is mounted in 

a downward looking position on a center post and secured with 316 stainless steel band 

clamps and heavy-duty cable ties. The metal o f the band clamps and instruments are 

insulated from each other and from the tripod using pieces o f plastic shelf liner. All band 

clamps are then wrapped with electrical tape to facilitate later removal o f biological 

growth.

A Sequoia Scientific Instruments Laser In Situ Scattering Transmissometer (LISST), 

which measures suspended particle size distribution between 2.5 and 500 microns, is the 

second of three instruments mounted on the tripod. A YSI 6600 Conductivity, 

Temperature and Depth sensor (CTD), equipped with a turbidity probe, is the third. The 

#1 receiver on the ADV probe faces in the same direction as the front end of the LISST. 

A Seapoint Optical Backscatter Sensor (OBS) is cabled to the LISST’s auxiliary input 

and mounted on one of the tripod legs at the same height above the bottom as the ADV 

sampling volume.

Underwater mate-able plugs allow all three instruments output their data in real-time 

mode via RS232 serial communication cables. Serial communication, however, is slow 

and hard to transmit wirelessly via serial radio modems. Several different serial radio
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Figure 2.3. Fully equipped tripod ready for deployment on board the R/V Elis Olsson 
(background). The tripod in the foreground had been deployed at least three months.

modems were tried with minimal success. The hard-break needed to communicate with 

the ADV is particularly difficult to transmit over wireless serial communication. 

Ethernet protocol, on the other hand, was found to be quick to transmit, and it does 

allow a hard-break to be sent to the ADV, allowing for 2-way communication between 

the instrument and the computer collecting the real-time data.

An underwater serial-to-Ethemet converter instrument (S2E) was developed using an 

empty Hydra housing provided by SonTek. A StarTech 4-port RS-232 Serial-to-Ethemet
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Figure 2.4. SonTek housing (yellow) retrofitted with a 4-port serial-to-Ethemet 
converter (white housing on endcap) and an A-to-D converter to monitor battery usage 
(red housing on endcap).

over IP Adapter Device Server (Manufacture’s part number NETRS232 4) was mounted 

inside (Fig. 2.4). The StarTech interface converter allows for four serial devices to be 

connected and serial output converted to Ethernet with a TCP/IP network transport 

protocol and a data transfer rate of up to 115.2 Kbps. The three serial wet-pluggable 

connector pigtails that connect to the LISST, CTD and ADV serial ouput ports were 

molded to a single wet-pluggable connector to be plugged into the S2E serial input port. 

The output port of the S2E is connected via a wet-pluggable connector to an Ethernet



*r

On piling: Freewave radio repeater, 
directional arrtenna, solar panel, 

batteries, navigation light
On buoy: Freewave radio, rechargabie 

battery pack, solar panels, omni­
directional antenna, navigation light

Ethernet cable 
connecting buoy 

and tripod

On Andrews Flail rooftop: 
router; Freewave radio, 

directional antenna

Fiber optic cable 
to VIMS internet

On tripod: Sontek ADV, S2E 
converter, USST, CTD

Computers in lab for collecting real-time data

Figure 2.5. Flowchart o f Ethernet communication between instruments mounted on 
tripod and computers in the lab collecting real-time data.
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cable. The S2E is powered by the same type o f SonTek battery packs used in the Hydra 

to power the ADV. A SuperLogic A-to-D convertor was mounted inside the S2E and 

connected to the battery packs and the fourth serial port to allow the voltage of the battery 

packs to be monitored. The S2E is wrapped and mounted on the tripod along with the 

other instruments.

Communications Data Flow

Fig. 2.5 shows the path of travel of the Ethernet communications between the instruments 

and the computers collecting the real-time data. Fifty meters o f Falmat Extreme Net 

underwater network data/power cable is used to transmit the information via Ethernet 

between the S2E and the top-hat buoy on the surface (Fig. 2.5 top right.). Two-thirds of 

the cable is attached to a 3/16” mooring chain to act as a ground line that can be grappled 

to retrieve the tripod if the surface float above it is lost. The chain is connected at one 

end to the tripod and at the other end to a 100-kg concrete clump that acts as an anchor 

for the top-hat buoy. A heavier 3/8” mooring chain is connected between the concrete 

clump and the buoy, and the last one third o f the cable is attached to it. Care must be 

taken to make sure the chain is shorter than the cable to prevent unnecessary strain on the 

cable and connectors.

The top-hat buoy to which the chain is connected is a yellow Rolyan lighted float collar 

can buoy, model B1428L (Fig. 2.6). The buoy was modified by the manufacturer to have
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Figure 2.6. The Roylan top-hat buoy modified for PVC pipe insert to house FreeWave 
radio and battery pack.

a 5” open tube at the top. A water-tight PVC pipe canister was made to fit in the top of 

the buoy (Fig. 2.6 insert). This canister houses a rechargeable battery pack produced 

specifically for this application by Battery Bam consisting o f twelve Enersys Cyclon
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0860-0004 E-cell 2-volt/4.5-Amp-Hr sealed lead acid batteries and an HTplus FreeWave 

radio modem. The battery pack is recharged with four flexible Discover Power solar 

panels (11 watt, 12 volt, 7 amp). Over charge of the batteries is prevented by the 

Momingstar SunSaver-10 Solar controller housed in the buoy insert with the radio and 

batteries. The Ethernet cable connected to the tripod is connected to the radio using wet- 

pluggable connectors. The length of cable that is part o f the connector pigtail was kept as 

short as possible when molded to the Ethernet cable to reduce the interference introduced 

by using non-Ethernet cable in the communications system. The signal is broadcast 

through an omni-directional fiberglass radome-enclosed base antenna. At the top o f the 

canister, for navigation purposes, is a Sealite SL-60 Marine Light Amber (set for a 1 

second flash length every 4 seconds). This light has a self-contained rechargeable battery 

and solar panel.

The Ethernet signal travels from the FreeWave radio in the buoy to another HTplus 

FreeWave radio mounted on the piling (Fig. 5 top left). The piling is a three-pole dolphin 

sunk 5 meters into the bottom, with height above water o f 4 meters at mean low tide. A 

crows-nest platform was erected approx 1 meter from the top end o f the piling and has 

approximately a 1-meter radius. The piling is marked for navigation with another Sealite 

SL-60 (whose flash pattern is the same as the buoy’s) and a yellow day marker labeled 

“VIMS CB” (Fig. 7). The buoy is deployed within 100 meters o f the piling. Power on 

the piling is provided by three 12-volt, 63-amp-hour rechargeable batteries (8A22NF) 

housed in a large battery box (Port Supply 3669942). The batteries are kept charged by
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Figure 2.7. “VIMS CB” piling (photo by T. Gass). Insert photo of FreeWave radio 
installation on piling (photo by L. Kraatz).
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an 80-watt Solar Panel (sharp 80) from PowerUp. In the near future, a 400-watt wind 

turbine (Air-MX-1), also from PowerUp, will be installed to charge the batteries during 

times that the solar panel cannot. A PowerUp 30-Amp Charge Controller (PS30) for the 

solar panel and the FreeWave Radio are housed in Pelican 1400 cases mounted on the 

railing of the crows-nest (Fig. 2.7 insert). A fishing throw-net is placed over the top of 

the crows-nest to discourage osprey from nesting on it.

The radio mounted on the piling acts as repeater between the radio in the buoy and one 

mounted in a Pelican 1400 case on the roof o f Andrews Hall on the VIMS campus in 

Gloucester Point, VA (Fig. 2.5, middle left). These FreeWave HTplus radios broadcast 

between the range of 902 and 928 MHz. Over the wireless Ethernet connection, data is 

transmitted at a rate of up to 867 kbps. Use o f a repeater can slow the transmit rate to 

approximately half that. The antennas on both the piling and the rooftop of Andrews Hall 

are FreeWave 890-960 MHz 10-dB 7-element welded Yagi directional units. Directional 

antennas are use to facilitate more reliable higher rates o f data transfer.

Data Collection

All transmissions among the radios are on an isolated intranet kept separate from the 

VIMS-wide intranet by a DLINK wired router (model number EBR2310), mounted in a 

Pelican 1400 case on the roof o f Andrews Hall (Fig. 2.5 middle left). The router is 

physically connected to the VIMS intranet via a fiber optic cable. Fiber optic cable was 

chosen because the buildings at VIMS are susceptible to lightning strikes.
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In our VIMS lab, system control laptops are set up with Startech.com IP-Extender 

Manager. This software works with the serial-to-Ethemet converter and allows virtual 

communication ports to be set up on computers to collect the data coming from the 

instruments. A single laptop can be used to collect data from the ADV, LISST, CTD and 

the A-D converter, the last o f which is used to monitor the battery power in the S2E. 

Two-way communications are possible with each o f the instruments, the S2E and all the 

radios. With the use of Window Remote Desktop Connection, the data laptops can be 

accessed from anywhere within the VIMS intranet, and, with VPN Client, 

communication with the ADVs and other instruments is accessible from anywhere the 

internet is available.

Most oceanographic field instruments are designed to be used in either a real-time mode 

or to be deployed autonomously. Because we are interested in collecting a burst o f data 

every 15 minutes from the ADV, and we want to have the data available as soon as the 

burst is collected, software had to be developed to allow us to do repeatedly switch 

between modes. Franktronics, Inc., developed a software GUI called the “VIMS ADV 

Binary Downloader” (Fig. 2.8). This GUI is composed of three panels. The first is the 

“Terminal” panel. In this panel we can connect directly to the ADV data logger and talk 

to it as though we were connected directly with a serial cable. We are able to send a 

hard-break to wake the instrument and send commands such as “show system” to get a
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list o f the system parameters and “show deploy” to show a list o f the Deployment 

parameters, as well as any other command recognized by the ADV.

The second section of the GUI is the “Schedule” panel. In this panel the Instrument time, 

Burst Interval, Sample Rate and the number o f Samples/Burst to be collected can be set. 

The start time for the first scheduled burst can also be set. Once the “Deploy button” is 

clicked, the “Start Time” is sent to the ADV which will collect a burst at the scheduled 

time. The file name, limited to five characters, is automatically set to the day plus 

one number for the year. For example, Au309, for August 30, 2009, has a prefix o f two 

letters for the month and three numbers for the day/year. The ADV data-logger appends 

three more digits starting with 001 and increases by 1 for each burst collected throughout 

the day.

Following a pre-determined delay after the scheduled burst start time, the Downloader 

sends the instrument a hard-break and requests a File List from the instrument recorder. 

The list is then displayed in the “Download” panel. The most current file is downloaded 

from the device and any other files not stored in the Download Directory on the data 

collection computer are also downloaded. The ADV data logger can store only 255 files, 

so at midnight the memory card is reformatted to erase all the files for the day (96 files 

each day when files are restarted every 15 minutes). Nothing is deleted if all the files 

have not been verified as having been downloaded to the download directory. The
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Figure 2.8. VIMS ADV Binary Downloader developed by Franktronics, Inc., for 
collection o f ADV real-time bursts.

download directory and the file extension can be changed in this panel before the 

program is started by clicking the “Deploy” button in the “Schedule” panel.

The program adds the “Burst Interval” (15 minutes) to the last “Start Time” for a new 

“Start Time” and redeploys the instrument. Fig. 2.9 shows a schematic of the download 

schedule. The new start time is displayed in the “Schedule” panel along with the “Next
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£
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Figure 2.9. Schematic of the download schedule for ADV Binary.

Download” time. The advantage of this program is the ability to download each burst 

within minutes of completion o f the burst. The burst is also stored on a memory card in 

the instrument in case there is a problem with the communications and it is not 

downloaded properly. If this happens, the program sends a cell phone text and/or an 

email to preset phone numbers or email addresses to let the administrator know a problem 

exists. If a problem occurs while the instrument is deployed, the instrument appends each 

subsequent burst to the end of the file until taken out o f  deploy mode. The files that are 

downloaded to the download directory are automatically backed up to the CHSD Linux 

server for archival using cwRsync, a program that is able to bridge PC and Linux 

platforms.

The next step in developing seamless data delivery will be is to take the binary data that 

is being archived on the CHSD Linux server and convert it to ASCII format. In ASCII 

format MATLAB will be used to calculate burst average statistics. Burst-average
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velocity, suspended sediment concentration, and bottom stress will be calculated, as well 

as the settling velocity and bed erodibility corresponding to each burst. These values will 

then be stored in a relational database.

A publically viewable website and interactive exhibit is also being developed to display 

the real-time data. A touch-screen monitor will be mounted in the main hall o f our 

building to allow visitors to query the site and navigate between the different instruments 

and the corresponding data. Both the external website and local interactive display will 

allow the user to choose the timeframe o f the data to be displayed -- anywhere from 

hours, to days, to months.

2.4. Results

In this section we provide an example application o f ADV data from the MUDBED 

observing system. In this case the ADV data are being used to better understand the 

nature o f seasonal variations in fine sediment erosion and settling.

Calibration o f  ADV and Example Time-Series

When properly calibrated, ADV backscatter can provide a useful estimate o f suspended 

sediment concentration (Fugate and Friedrichs, 2002). Fig. 2.10 displays best-fit linear 

regressions between ADV backscatter in counts and the log o f total suspended solids 

(TSS). The ADV measurements are from a 5MHz SonTek ADV Ocean Probe deployed
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Figure 2.10. In situ calibration of ADV backscatter for total suspended solids based on 
filtered pump samples collected at MUDBED observation system sites.

on a profiler within -100 m of our identical model benthic tripod-mounted ADV. Also 

on the profiler is a high capacity submersible pump used to collect water samples for 

TSS analysis. Pump samples collected in the field were stored in the dark on ice during 

transit back to the lab. At VIMS the samples were then passed through pre-weighed 

-0.7 micron pore-size glass fiber filters, dried at 100 deg C, and reweighed.
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For individual cruises, the regressions between backscatter and the log(TSS) were 

strongly linear. But notable shifts in shifts in the calibration curves were seen between 

calibration cruises (Fig. 2.10). Attempts were made to use distinct calibration curves 

for different times of year. However, the most consistent and sensible results from the 

benthic tripods were found when a single calibration based on all pump samples 

together was used. It may be that the acoustic properties o f sediment at ~35 cmab (the 

tripod ADV sampling height) vary somewhat less than properties higher in the water 

column where pump samples were more commonly collected.

Fig. 2.11 displays example data for burst-averaged current speed, burst-averaged 

suspended sediment concentration and elevation o f the seabed. Although the strength 

of the tidal current, the seabed grain size and the seabed percent mud were similar at 

both locations, there was a tendency for higher sediment concentrations and greater 

amplitude changes in seabed elevation at the physical site. This difference has been 

interpreted to be due ultimately to a tendency for an along-channel transition in water 

column mixing to occur seasonally in the vicinity of the physical site (Dickhudt et al.., 

2009; Lin and Kuo, 2001). The seasonal front at the physical site ephemerally traps 

sediment, leading to temporarily high sediment concentrations, rapid deposition, and 

subsequent rapid erosion of easily resuspended sediment (Dickhudt et al., 2009).
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Figure 2.11. Example time-series based on ADV output collected ~35 cm above the bed 
at the MUDBED sites, (a) The more biologically-influenced (“biological”) site and (b) 
the more physically-influenced (“physical”) site: (i) burst-averaged current speed, (ii) 
burst-averaged total suspended solids concentration, (iii) seabed elevation.
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(a) Biological site (b) Physical site

Slope = ws 
= 0.55 mm/s

Slope = wsC 
= 1.5 mm/s

<C> (mg/liter)

Figure 2.12. Example estimates o f sediment settling velocity (ws) from ADV data 
displayed in Fig. 2.11(a) for the biological MUDBED site and from data displayed in 
Fig. 2.11(b) for the physical MUDBED site.

Settling Velocity and Bed Erodibilitv

Assuming a local balance within the water column between upward turbulent transport by 

turbulent Reynolds flux and downward settling by gravity yields:

< w 'r >  = ws < 0  (2.1)

where w is vertical water velocity, C is suspended sediment mass concentration, w, is 

sediment settling velocity, primes indicate turbulent fluctuations, and angle brackets 

indicate a burst average. Within a few tens o f centimeters o f the bed, this balance
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commonly holds to with 1-10% at temporal scales as short as a few minutes (Fugate and 

Friedrichs, 2002). Because the ADV can measure both C  and w within the same 2-cm3 

sampling volume, including turbulent fluctuations, one can use the slope of <w'C>  vs. 

< 0  to estimate ws (Fig. 2.12). Applying this ADV-based method, settling velocity was 

found to be generally higher at the biological MUDBED site relative to the physical 

MUDBED site.

Output from AD Vs at the MUDBED sites can also be used to provide an indirect 

estimate o f bed credibility (Friedrichs et al., 2008). Traditionally, bed credibility is 

determined by applying controlled stresses to the bed, either in situ or on seabed cores in 

a lab setting, and then recording the amount o f material suspended as stress is increased. 

The result is a graph of total eroded mass as a function of bed stress. Such direct 

measurements were collected periodically by at the MUDBED sites in 2006-2008 by 

(Dickhudt et al., 2009) using a Gust microcosm. Because the ADV documents both 

bottom stress (/*) and suspended sediment concentration (C), similar data can also be 

derived from in situ ADV time-series. Although the ADV cannot control stress, a 

bottom-mounted ADV still documents time-varying bed stress via h  = - r  where

r is fluid density, and w’ and w’ are turbulent fluctuations in horizontal and vertical 

velocity. Estimating the vertical integral of C during a period of slowly increasing 

current speed then gives an estimate o f eroded mass as a continuous function o f /*.
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Figure 2.13. Comparison o f ADV-based estimates o f eroded mass as a function of 
bottom stress to data measured by a Gust microcosm (microcosm data from Dickhudt 
et al., 2009).
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Close to the bed, a reasonable approximation for the vertical variation in suspended 

sediment concentration below and above an ADV sampling at height z0 is given by the 

Rouse profile in the form o f a power law (Friedrichs et al., 2008):

C = C0 (z/Zc)'r (2.2)

Where C„ is observed C within the ADV sampling volume, and the Rouse Parameter P  =

1 /92.5 ws (tb/r)' . Although there are several simplifying assumptions inherent in (2.2), 

including nearly steady flow, settling velocity independent o f z, no sediment-induced 

stratification, and the presence of a logarithmic velocity layer, a simple vertical 

integration of (2.2) can still provide a rough estimate o f eroded mass, M  (Friedrichs et al., 

2008):

where h is the height o f the integration.

Fig. 2.13 compares the results o f ADV-based eroded mass vs. stress as inferred from 

ADV data with eroded mass vs. stress measured directly at the same sites using a Gust 

microcosm. Both the Gust microcosm and the ADV-based estimates of eroded mass 

suggest that the response of the seabed to stress at the physical site tends to be bimodal 

(Fig. 2.13b). Some of the time, the mass eroded by a given stress at the physical site is

(2.3)
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Figure 2.14. (a) ADV-based estimates o f sediment settling velocity, (b) ADV-based 
estimates of eroded mass at 0.2 Pa along with analogous eroded mass data measured by a 
Gust microcosm (microcosm data from Dickhudt et al., 2009)

similar to the trend seen at the biological site, and some of the time much more sediment 

is eroded at the physical site. In either case, the general trends document by ADV-based 

estimate and the more direct microcosm measurement are remarkably consistent.
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To examine seasonal trends in characteristic settling velocity and seabed erodibility at the 

biological and physical sites, the ADV data analysis methods shown in Figs. 2.12 and 

2.13 were performed on for all available ADV time-series at the two MUDBED 

Observatory sites (Fig. 2.14). The MUDBED ADV time-series, which extend back to 

late 2006 at the biological site and early 2007 at the physical site, were first divided into 

discrete 3.5-day segments. Linear regressions were then used to produce an independent 

estimate o f ws and eroded mass twice-a-week during each week for which AD Vs were 

operating. Each linear regression performed on eroded mass vs. bed stress was used to 

define a best-fit estimate o f eroded mass at 0.2 Pascals o f stress. The results o f this ADV 

analysis as displayed in Fig 2.14 show the following: (1) Suspended sediment settling 

velocity tends to be higher at the biological site, whereas seabed erodibility tends to be 

higher at the physical site (ii) Sediment settling velocity and bed erodibility are inversely 

correlated in both time and space, such that settling velocity tends to increase as 

erodibility decreases, (iii) Settling velocity and erodibility remain more consistent in time 

at the biological site, whereas erodibility increases and settling velocity decreases in the 

winter/spring at the physical site. The results o f the seasonal ADV data analysis confirm 

and clarify the findings o f Dickhudt et al. (2009), which were based Gust microcosm 

measurements. Together, Friedrichs et al. (2008) and Dickhudt et al. (2009) concluded 

that lower erodibility and higher settling velocity is consistent with “equilibrium” 

biological processing, whereas high erodibility and lower settling velocity is 

characteristic o f episodic winter/springtime deposition following high river discharge 

(Fig. 2.15).
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Figure 2.15. Conceptual model for sediment transport in the York River estuary, 
including changes in seabed structure and patterns o f concentration, seabed erodibility 
and suspended sediment settling velocity (Dickhudt et al., 2009).
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CHAPTER 3

Dual Use of a Sediment Mixing Tank for Calibrating Acoustic Backscatter and 
Direct Doppler Measurement of Settling Velocity*

By Grace M. Cartwright, Carl T. Friedrichs, and Paul D. Panetta

♦Published as: Cartwright, G.M., C.T. Friedrichs, and P.D. Panetta, 2012. Dual use of a 
sediment mixing tank for calibrating acoustic backscatter and direct Doppler 
measurement o f settling velocity. Proceedings, OCEANS 2012, Institute o f Electrical and 
Electronics Engineers, CD ISBN 978-1-4673-0830, 7 p.
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3.1. Abstract

While the Acoustic Doppler Velocimeter (ADV) is designed to determine fluid velocity, 
it is important to recognize that it is actually the velocity o f the scatterers themselves 
that is measured. Thus in a calibration tank designed to relate sediment-induced 
backscatter to sediment concentration, the vertical velocity registered by an ADV at a 
given point is actually the true fluid velocity plus the sediment’s settling velocity. And 
absent net vertical volume flux, the average vertical velocity registered by an ADV 
across a horizontal plane is equal to the mean sediment settling velocity. For this study, 
a series o f ADV calibrations were run in a 118-liter re-circulating tank for six sand sizes 
between 63 and 150 microns. A grid o f ADV measurements distributed in a horizontal 
plane across the tank revealed that the mean vertical velocity registered by the ADV in 
each case was indeed consistent with each grain size’s settling velocity as independently 
measured by a “rapid sand analyzer” laboratory settling tube. In addition, a systematic 
increase in the proportionality between sand concentration and backscatter was 
observed with increasing grain size.
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Figure 3.1. In situ pump samples from the York River estuary, Virginia, analyzed for 
total suspended solids. Concentrations are used to calibrate the acoustic backscatter 
from ADVs deployed on nearby benthic tripods. (Cartwright et al., 2009)
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Figure 3.2. Example estimates o f settling velocity (ws) from ADV data collected on 
benthic tripods deployed in the York River Estuary, Virginia. (Cartwright et al, 2009)

3.2. Introduction

Size distribution and settling velocities are features o f suspended sediment particle 

populations that affect nearly every aspect o f particle fate and transport, including 

physiochemical (re-suspension, deposition and flocculation) and biological (production, 

mineralization and repackaging) processes (Dyer and Manning, 1999; Hill et al., 2001; 

Van Leussen, 1999). Optical instruments are commonly used to determine in situ and 

bench top suspended size concentration and settling velocity, including such example 

instruments as the PICcamera, the LISST-ST, and the DIGIHOLOCAM (Smith and 

Friedrichs, 2011; Ahn, 2012; Davies, 2010). In estuarine and coastal waters, these 

instruments are generally limited to short-term field deployments due to their
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susceptibility to bio-fouling. The Acoustic Doppler Velocimeter (ADV), however, is an 

instrument that is able to withstand the bio-fouling associated with field deployments 

lasting several months and has been found to provide reasonable estimates o f in situ 

suspended sediment concentrations (C) and particle settling velocity (ws) when 

calibrated with pumped suspended sediment concentrations collected at the study site 

(Fugate and Friedrichs, 2002; Voulgaris and Meyers, 2004). But in situ estimates o f C 

and ws such as those illustrated in Figures 3.1 and 3.2 tend to exhibit significant scatter, 

largely because of changing particle size and density, and the simultaneous presence of 

multiple particle types (Cartwright et al., 2009; Cartwright et al., 2011).

To ultimately facilitate better interpretation o f in situ observations, this study used a 

laboratory sediment mixing tank to simultaneously measure sediment solids 

concentration, acoustic backscatter, and particle settling velocity under more highly 

controlled conditions than are possible in the field. We utilized an ADV along with 

various single grain-size sand suspensions as well as sand-mud mixtures over a range of 

concentrations. In the next sections o f this paper we describe the VIMS acoustic 

calibration chamber and the ADV’s properties, our approaches in measuring sediment 

concentration, size and settling velocity, and the results o f  our experiments. Our main 

findings include the well constrained proportionality between acoustic backscatter and 

mass concentration for a given particle type at moderate concentrations, the clear 

proportionality between acoustic backscatter and grain size for a particles o f a given
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(a)

Sampling
Tubes

Figure 3 3 . a) VIMS sediment mixing tank, with suspended sediment sampling tubes 
highlighted, b) example placement o f ADV in chamber, with pump circulation outlets 
highlighted.

density, and the novel use o f direct Doppler velocity measurements to measure 

sediment settling velocity within a multi-use sediment mixing tank.

3 3  Methods

Acoustic Calibration Chamber

The design of the VIMS sediment mixing tank that we utilized for acoustic calibration 

is based on similar chambers the lead author has used at NIWA in Hamilton, NZ, and at 

the University o f East Anglia in Norwich, UK. The VIMS chamber, built by the
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Physics Department machine shop at the College o f William and Mary (Figure 3.3), has 

inside dimensions, which measure 31.6 cm square at the top and 1.5 meters tall down 

the center. The top meter o f the chamber is square and the bottom 0.5 meter tapers to 

facilitate the collection of sediment to be pumped back to the surface. At the bottom of 

the taper is an insert which minimizes sediment trapping comers and helps return all of 

the sediment back into the pump inlet.

A Cal Pump MS900 marine pump powers the circulation of the water in the tank, 

which according to the manufacture’s performance curve, pumps at a rate o f 44.2 

liters/minute with a head of approximately 2 meters. The pump is kept cool by 

placement in a water bath with tap water running through a submersed coiled copper 

tube. After passing through the pump, the chamber water is re-circulated through a four­

way splitter to four jet outlets, one centered on each wall o f the chamber 25 cm below 

the top. The water jets meet forcefully in the center o f the chamber, level with the 

outlets. Once the jets converge, the dominant flow o f the chamber is downward toward 

the pump inlet, but some o f the sediment is carried above the level o f the outlet tubes by 

a component of upward flow also produced at the jet convergence point.

The chamber has several sliding sampling tubes situated along one side that can be 

pushed in to the center o f chamber to allow the collection of water samples. The flow 

rate out of one of the sampling 1.27 cm (I.D.) tubes has been measured to be on the
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order of 1 m/s (1970 cm3 in 16.4 sec). This is sufficient to capture a representative 

portion of the suspended sediment given the chamber circulation rate (Battisto, 2000). 

The water can later be analyzed for suspended solids concentrations to be paired with 

ADV backscatter collected at that same location in the chamber.

Acoustic Doppler Velocimeter

The ADV used in this study is a SonTek ADVocean sensor (Figure 3.3b). The sensor is 

mounted in a downward looking position on a plate that is clamped to a second plate 

attached to the top of the calibration chamber. Each plate can be moved to change the 

position of the ADV in relation to the top o f the chamber. The ADV is a bi-static sonar, 

which means it uses separate transmit and receive beams. The location of the ADV 

sample volume is determined by the geometry o f the three acoustic receivers around the 

centrally located 5-MHz acoustic transmitter. These receivers, encased in stainless steel, 

radiate out at 120° azimuth intervals and angle away from the transmitter. A ~2 cm3 

sample volume is created ~18 cm below the transmitter, corresponding to where beams 

projected out from the receivers would intersect the transmit beam (SonTek, 1997). The 

transmitter emits a short pulse, and the receivers listen to an echo that is range gated to 

correspond to travel time from the sample volume to the receiver. At 10 Hz, the ADV 

records the velocity of scatters in three directions (x, y and z), the amplitude of the 

signal strength of the “echo” received by each o f the receivers (beams 1, 2 and 3), and
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the percent correlation between the transmit and receive signals for each beam. The 

units for

Figure 3.4. (a) sand captured on 63 micron sieve showing some impurities, (b) sand 
captured on 106 micron sieve with no visible impurities.

the amplitude of the return “echo” are in “counts”, a unit proportional to decibels, i.e., a 

logarithmic scaling o f the amplitude o f the backscatter. The ADV also records water 

pressure and temperature, as well as compass direction, tilt, and roll o f the sensor.

Sediment Sample Preparation

To isolate constant density, relatively simple-shaped particles o f  known sizes, a sample 

o f clean quartz sand was sorted into 6 size classes from 4 phi (63 pm) to 2.5 phi (150 

pm) using 0.25 phi graduations. The size classes in this study are identified by the size 

of the sieve the sand was captured on. Sub-samples o f the sand were placed on the 2.5 

phi sieve and mechanically shaken through the 6 sieves with a Ro-tap for 30 minutes. 

The literature suggests that there was no significant difference in the distributions 

obtained from a Ro-Tap after shaking durations ranging from 10 to 30 minutes, but we
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opted for the longer time since we were sieving more than 20 grams at a time (Sanford 

and Swift, 1971). The sand captured on each sieve from the different subsamples was 

then combined together by size class. Next, the sand from each size class was 

individually shaken through all the sieves a second time for an additional 45 minutes in 

an effort to make sure what was captured on each sieve was only sand from that sieve 

size to a quarter phi size larger. Figure 3.4 shows the sand collected on the 4.0 phi (63 

pm) sieve and the 3.0 phi (106 pm) sieve. Most o f the impurities (i.e., non-quartz 

particles) were concentrated on the two smallest sieve sizes.

Acoustic Response to Grain-size Experiments

A separate regression was determined for each of the sand size classes described in 

Section C. The ADV in Figure 3.3 is mounted for the experiments described below in 

Section E. For the grain-size experiments described in this Section, the ADV was 

lowered until the ADV sample volume was level with the sampling tube marked by an 

arrow in Figure 3a. For each grain-size experiment, a series o f the aliquots o f processed 

sand was added to the chamber to bring the expected concentration to approximately 25, 

50, 75, 100, 150, 200, 250 mg/L, respectively. Although the chamber was designed to 

have as few places as possible for the sand to settle out of suspension, it was noticed 

that the exposed edges o f the tubes designed to allow for sampling of the water actually 

became sediment traps, and there were also spots along the taper at the bottom o f the 

chamber where the sediment “stuck” and wasn’t re-circulated. (Later experiments have
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shown that even though all the sand isn’t kept in suspension, the center o f the chamber 

stays homogeneous if it is allowed some time to reach equilibrium.) A 10-minute ADV 

backscatter burst, sampled at 10 Hz, was collected for each sand concentration. Before 

the addition of the next sand aliquot, the sample tube, inserted into location of the ADV 

sample volume, was flushed with water as the chamber continued to circulate. An 

approximately 2-liter water sample was collected from the appropriate sampling tube 

and analyzed for suspended solids concentration.

ADV Settling Velocity Measurements

Six separate settling velocity experiments were conducted, one for each size class o f the 

sand described in Section C. The experiments were conducted in the winter when the 

water coming from the tap was only 12-14 °C. As the water warmed, air bubbles were 

released. Since bubbles are a strong reflector o f acoustic sound, it was imperative to 

verify that the bubbles were completely dissipated, so the chamber was left to sit 

overnight with the pump running. The next day, a series o f 10 minute ADV bursts were 

taken and analyzed until the backscatter and mean velocity in the vertical direction for 

that location stabilized. A decrease likely would be seen from the previous burst if  a 

significant number of bubbles were still present. Tap water was used so that passive 

reflectors inherent to non-purified water were still available for the acoustic signal for 

the zero sand concentration conditions. Note that the backscatter from passive reflectors 

in tap water is strong enough to provide a reliable Doppler velocity measurement, but
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weak enough that backscatter from added sand entirely overwhelms the passive 

reflector signal.

Once it was verified that any remaining bubbles were not going to interfere, for each 

ADV settling velocity experiment enough sand was added to the 118 liters of water in 

the chamber to bring the concentration to approximately 200 mg/L (except for the 75 

micron size class -- there was only enough sand available for that size class to bring the 

concentration to 123 mg/L). The chamber was filled to the maximum capacity o f 118L 

in order to bring the ADV sample volume above the circulation outlets (see Figure 

3.3b). A grid (see * symbols in Figure 3.7) was created across the top of the chamber, 

with 6 locations (3 cm apart) along the x-axis and 6 locations (3 cm apart) along the y- 

axis, for a total o f 36 positions. A 10-minute “burst” with a sampling rate of 10Hz was 

collected at each of these positions. The mean velocity in the z direction (<w>) and the 

standard deviation about the mean (w’) was calculated for each burst.

Rapid Sand Analyzer Settling Velocity Measurements

The Rapid Sand Analyzer (RSA) is a 12-cm inside-diameter column filled with tap 

water (Figure 3.5). Sediment to be analyzed is placed on the drop pan. When the pan is 

released, a computer records a time series o f the change in weight o f sediment collected 

on the weight dish suspended by a wire a fixed distance below the balance mounted at
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the top of the column. The known distance between the drop pan and the weight dish is 

divided by time to give the settling velocity for each time period o f  the time series. The

Figure 3.5. Rapid Sand Analyzer housed at the Army Corps o f Engineers Field Research 
Facility (FRF) in Duck, NC

temperature o f the water is recorded so that the density and viscosity o f the water can be 

calculated. The settling velocity is then associated with a theoretical sediment grain 

size, assuming the sediment is composed of typical quartz sand particles with a constant 

density of 2.65 g/cm3. The percentage o f sand, by weight, is determined for each 

settling velocity, thus providing a grain- size distribution for the sample. Removing 

sediment with slow settling velocities (<63 pm) prior to analysis ensures that the 

column can clear in less than 10 minutes, reducing the amount o f time between samples.
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Figure 3.6. Rapid Sand Analyzer results for sand collected on the 106 pm sieve. For 
this size sieve, the RSA effective bulk settling velocity was calculated to be 1.31 ± 0.06 
cm/sec. (mean and standard deviation calculated from sample replicates)

Each size class prepared as described in Section C was passed through the FRF RSA in 

duplicate or triplicate. For each sample, approximately 0.3 grams of sand was placed on 

the drop pan. Using less than 0.5 g sample permits grains to settle at distances in excess 

o f two grain diameters from each other so they settle without the acceleration or 

deceleration due to grain interactions (Sanford and Swift, 1971). The balance was tared
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software was started at the same time a button was pushed to mechanically release the 

drop pan to disperse the sand. This step introduces the greatest chance for error since 

both the start button and the disperse button have to be pushed at exactly the same time 

for the best possible fall velocity measurements. The timing software then records the 

weight of the sediment settling on the weight tray at a sampling rate o f 10 Hz. The time- 

series distribution of settling velocities for a given RSA run is integrated to derive a 

single effective bulk settling velocity for that drop pan release.

3.4. Results

Settling Velocity Experiments

Figure 3.6 is an example of the settling velocity results measured for each of the sieve 

sizes using the FRF RSA. The effective bulk settling velocity was calculated for each 

replicate of each sieve sample. The mean and standard deviation about the mean of the 

replicates were then calculated and are listed in Table 3.1.

Figure 3.7a shows the flow pattern in the z-direction as interpolated from the grid of 

burst-averaged ADV velocity measurements collected 18 cm from the top of the 

chamber. The jets from the four circulation outlets (see outlets identified in Figure 3.3b) 

meet in the center o f the chamber 25 cm from the top and cause an upward flow of up to 

5 cm/sec. This upward flux returns to the lower section o f the chamber along the edges
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Figure 3.7. a) Mean vertical velocity recorded by the ADV <w>, within the 
sample grid measured 18 cm from the top o f the chamber for the 125 mm sieve 
case. Each location in the sample grid is marked with an *. b) Regression of mean 
vertical ADV velocity versus distance from the center o f the tank.
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Figure 3.7. c) Circular fit o f regression to allow for estimate o f <w> for areas not 
directly measured for.

o f the tank (as indicated by the negative numbers and blue color in Figure 3.7a). By 

collecting the grid o f ADV measurements 5 cm above the jet outlets, we know that the 

horizontally integrated vertical volume flux of water through the total horizontal cross- 

section of the tank must be zero. Because o f the geometry o f the ADV, it was 

impossible to directly measure vertical velocities all the way to the far edges o f the 

chamber. When the ADV burst-averaged z-velocities are plotted versus the distance of 

each grid point from the center o f the tank, however, a clear linear relation is seen 

(Figure 3.7b). A linear regression fitted through the points was therefore used to 

estimate the ADV vertical velocities out to the far edges o f the tank (Figure 3.7b). It
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was then possible to horizontally integrate the inferred burst-averaged ADV vertical 

velocities over the entire horizontal tank cross-section.

Absent a net vertical volume flux of water, it follows that the average vertical velocity 

registered by an ADV across a horizontal plane is equal to the mean vertical velocity of 

the dominant scatterers relative to the water, i.e., the mean sediment settling velocity. 

This may seem counter-intuitive, since the horizontally-integrated net vertical flux of 

sediment at the height of the ADV grid must also be zero (since C is not increasing or 

decreasing). Nonetheless, the mean velocity o f the sediment is still negative, because 

the Doppler calculation measures only the velocity o f  the scatters, not their mass flux. 

The downward flux of sediment associated with settling has a non-zero mean velocity 

defined as Ws. In contrast, the balancing upward flux o f sediment associated with 

vertical circulation cells o f water has, by definition, a zero mean water velocity. This 

concept is analogous to the balance between upward Reynolds flux o f sediment and 

downward settling often seen in benthic boundary layers.

The grid o f ADV measurements distributed in a horizontal plane across the tank 

revealed that the mean vertical velocity registered by the ADV for each sieve case was 

indeed consistent with each grain size’s settling velocity as separately measured by the 

FRF RSA settling tube. Figure 8a displays these extrapolated and then horizontally- 

averaged ADV velocities, each calculated individually for a single sieve size, plotted
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error bars are -t-/- 1 standard error; line is 1 :1

3.5

CO

o

2.5
o

1.5

o

0.5

1 1.5 2 2.5 3
W s from R S A  (cm /s)

so
£  2.5o

o
"co-Oo
CO

S 1.5
CO

1 1.5 2 2.5 3
W s from R S A  (cm/s)

Figure 3.8. a) RSA Ws and Individual Flow Fit Ws comparison b) RSA Ws and Global Flow Fit 
Ws comparison
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against Ws as measured by the RSA. The green line is the 1:1 ratio line. Each circle 

represents the mean settling velocity by both methods for one of the 6 grain-sizes tested 

and the lines are the standard deviations about that mean. Table 3.1 lists these mean 

ADV-inferred settling velocities and standard errors for these “individual flow fit” 

cases.

In theory, the slope of the regression in Figure 3.7b should be identical for each settling 

velocity case, since the settling velocity only contributes to the vertical offset o f the

curve. The circulation pattern o f the water itself controls the slope. Thus the scatter in 

Figure 3.8a can be reduced by using all of the observations to calculate a single best-fit 

slope for use in every ADV spatial velocity extrapolation. Doing so yields slightly 

different ADV means and reduced standard error bars as displayed in Figure 9b and 

Table 3.1 for the “global flow fit” case.

Table 3.1 

Effective Settling Velocity
FRF RSA Individual Flow Fit Global Flow fit Ws-circular

Sieve Size Mean StdDev Mean Stddev Mean Stddev Reeression
PHI Micron cm/s cm/s (cm/s) (cm/s) (cm/s) (cm/s) (m) (b)

4.00 63 0.85 0.07 0.93 0.66 0.96 0.13 •0.63 6.68
3.75 75 0.98 0.08 0.91 0.63 1.02 0.13 •0.61 6.52
3,50 90 1.08 0.17 1.25 0.70 1.09 0.14 •0.67 6.83
3.25 106 1.31 0.06 1.29 0.49 1.50 0.10 •0.59 5.89
3.00 125 1.77 0.15 1.80 0.51 1.81 0.10 •0.63 5.86
2.75 150 2.81 0.31 3.08 0.59 2.88 0.12 -0.68 5.10
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Figure 3.9. The solid lines are the regression curve o f the acoustic backscatter and the 
log 10 concentrations for each sand size distribution. The dashed lines are the mixed mud 
and sand regressions curves, and the dotted lines are the mud only regression curves from 
Newbill, 2010.

Acoustic Response to Grain-size Experiments

ADV backscatter in counts was plotted against the log 10 o f the measured suspended 

sediment concentration for each of the acoustic response to grain-size experiments 

(Solid lines in Figure 3.9). The relationship was linear up to the highest concentration 

measured for all sand distributions (nominally 250 mg/L). A systematic increase in the
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proportionality between sand concentration and backscatter was observed with

increasing grain size.

Also included in Figure 3.9 are regression curves from previous experiments) using 

natural bottom sediment collected from the bed of the York River estuary at sites known 

as Clay Bank (CB) Channel, CB Shoal, and Ferry Pier (FP) (Newbill, 2010). The CB 

Channel sample was 80% mud and 20% sand, the CB Shoal sample was 99% mud and 

1% sand, and the FP sample was 90% mud and 10% sand. The grain-size o f the dis­

aggregated mud measured by pipet analysis was <5 pm and the sand D50 grain-sizes 

for the CB and FP sites were 106 pm and 125 pm, respectively (Newbill, 2010). The 

dashed lines in Figure 3.9 represent the naturally mixed sediment regressions and the 

dotted lines are regression curves from mud only samples from the Clay Bank and Ferry 

Point Shoals.

3.5 Discussion

SettUne Velocity Experiments

In Figure 3.7 it can be seen that the area where the settling velocity o f the sediment was 

estimated in the tank was not a simple flow field. The discharge from the circulation 

pump was divided into four outlet jets that met in the middle o f the chamber. Above the 

level of the outlets this caused an upward flow of water in the center o f the chamber and
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a downward flow along the far edges o f the tank. Because o f the size and shape of the 

ADV, it was impossible to measure velocity close to the edges o f the calibration 

chamber. Therefore a regression of the velocity in the w direction vs. distance from the 

center of the tank was used to estimate what the flow would be in the areas where it 

could not be measured. When the flow was integrated over the whole area, the 

circulatory flow of the water cancelled out, and the spatially-averaged apparent residual 

velocity measured by the ADV was consistent with the sand settling velocity as 

measured independently using a Rapid Sand Analyzer for all six size classes measured.

Acoustic Response to Grain-size

For the second portion of the experiment, a systematic increase in the proportionality 

between sediment concentration and backscatter amplitude was observed with 

increasing grain size. In Figure 3.9, using a 5 MHz ADV, a decrease in acoustic 

backscatter response was seen as the grain size o f the sand decreased. Theoretically this 

behavior is expected in the range of particle sizes where scattering and particle-particle 

interactions dominate attenuation (Jackson and Richarson, 2007; Topping et al., 2007). 

The acoustic backscattered amplitude in the mud was much lower than the sand as is 

expected for these particle sizes (<63 micron) and these frequencies used, where the 

backscattering is low and the absorption tends to dominate the attenuation.
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Interestingly, when the mud and sand were mixed, the backscattering was intermediate 

between the mud and sand, rather than reaching a level that was the sum of the two 

backscattering amplitudes. This may be explained by the interrelationship between the 

acoustic backscattering, attenuation, and the particle size-frequency range.

5-

4.5
Multiple scattering and 

partide-partide interactions 

tend to dominate 

attenuation

10 MHz transition between 
15 absorption and single scattering

FP Sand

5 MHz transition 

between absorption '-9 -smhz ‘ 

and single scattering " • " 10MHz.

ISO 200 250

Dis-aggregated Grain-size diameter (pm)
Mud'<eo

Figure 3.10. Schematic relationship between grain-size and attenuation contributions, 
highlighting the role of frequency. The black squares show where the Clay Bank and 
Ferry Pier dis-aggregated component sand and mud grain-sizes fall along the 5 MHz 
frequency regression line.
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What was not expected was the nearly identical response of the natural samples from 

the Clay Bank channel and shoal containing 1% and 20% sand, respectively. Figure 10 

shows a schematic relationship between grain-size and attenuation contributions, 

highlighting the role of the acoustic frequency. Acoustic attenuation is a measure of the 

energy loss of sound propagation in media. Acoustic absorption is that property of any 

material that changes the acoustic energy of sound waves into another form, often heat, 

which it to some extent retains, as opposed to that sound energy that material reflects or 

scatters. The acoustic wavelength (1) is related to the frequency by

A =  v i  (3.3)

where v is the speed of sound (0.165 cm/ps) and f  is the frequency of the ADV (5 or 

10 MHz), ka  is calculated as

k a =  ^  a  (3.4)A

where a is the radius of the grain particle, and k  is the acoustic wavenumber.

Figure 3.10 displays the diameter of the grain-size plotted against ka  for two 

frequencies. The red line represents the SonTek ADV used in this paper’s experiments 

at 5 MHz frequency, and the blue line is a frequency of 10 MHz (the frequency o f the 

Nortek ADV to be added in future work). When ka  »  1, multiple scattering and 

particle-particle interactions tend to dominate attenuation. When ka  «  1 absorption
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tends to dominate attenuation. When ka  «  1 there is a transition between these two 

end-members. The Clay Bank sand for both the channel and shoal has a D50 grain-size 

of 106 jam that falls right in the center o f the transition zone for 5 MHz. It is possible 

that the acoustic response to the sand in the mud sample for Clay Bank samples was 

more absorption dominated rather than scattering dominated. This may explain why the 

same concentrations of both samples gave similar acoustic responses even though the 

channel contained almost 20% more sand than the shoal.

3.6 Future W ork

Future work will further explore these interrelationships by systematically studying the 

frequency response of the backscattering and attenuation independently. This will 

include exploration of the response of acoustic backscatter and attenuation of various 

mud/sand mixtures as a function of frequency and concentration using SonTek and 

Nortek AD Vs (5 and 6 MHz, respectively) as well as IJTEX Scientific Instruments 

INSPECTIONWARE program with a series of acoustic transducers from 0.5 to 10 MHz
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CHAPTER 4

Comparison of SonTek ADVOcean-Hydras and Nortek AJDV Vectors for 
measuring suspended sediment concentration via acoustic backscatter

By Grace M. Cartwright and Carl T. Friedrichs
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4.1 Abstract

This study compared acoustic backscatter (ABS) response to sand, mud, and mixed 
sediment in the lab and in situ among ten relatively similar acoustic Doppler 
velocimeter (ADV) units: five 6-MHz Nortek Vector ADVs and five 5-MHz SonTek 
ADVOcean-Hydras. This approach allowed for an examination o f the relative roles 
played by inter-vendor, intra-vendor, and sediment variability in determining their ABS 
response. As well as consistently responding more strongly to sand than to mud, ABS in 
counts (a logarithmic unit proportional to decibels) revealed clear offsets apparent 
among the various instruments within both vendors. One of the ADVs from each vendor 
was defined as a reference unit, and the offsets in counts o f the other four ADVs from 
each vendor were adjusted to become consistent with the reference unit. For either 
vendor, pre-correction ABS response was more similar if  the vendor’s units had been 
purchased together with consecutive manufacturer’s serial numbers and subsequently 
had not had electronic components replaced. After adjustment, ABS counts for all the 
SonTek vs. Nortek ADVs largely lay along a single curve. The SonTek vs. Nortek ABS 
curve began with a slope of ~1:1 at low backscatter; but at higher ABS, the response of 
the 5-MHz SonTek ADVs increased more rapidly than that o f the 6-MHz Norteks, 
suggesting that the backscatter registered by the higher frequency Nortek units were 
more susceptible to attenuation. Plots of the logio o f sand concentration (logio C) vs. 
ABS for concentrations from ~ 10 to 600 mg/L was significantly quadratic for both the 
Nortek and SonTek ADV although more strongly so for the Nortek. In contrast, mud 
calibrations of logio C vs. ABS (for ~20 to 700 mg/L) were not quadratic for either 
vendor, providing less clear evidence of ABS attenuation. For well-mixed silty mud in 
the lab, the slope of the calibration of logio C vs. ABS for both vendors was close to the 
theoretical value expected for a single, constant grain-size suspension. In the field, 
however, the calibration slope of logio C vs. ABS was significantly smaller, which 
suggested a change in the acoustic properties of the suspended particles with increasing 
C. When calculating predicted ABS in counts in response to varying proportions of 
different grain sizes, results showed that transforming logarithmic counts back to linear 
units of acoustic power before adding them added together allowed successful 
prediction of the expected acoustic response.
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4.2 Introduction

Sediment transport is an important process that greatly affects the geomorphology of 

coastal environments such as estuaries (Dalrymple et al., 1992). Yet sediment 

movement has implications beyond physical changes. Because particles can be a source 

of both nutrients and toxic material like pollutants, suspended sediment transport can 

redistribute these, thus exerting major control on estuarine water quality (Friedrichs et 

al., 2008; MacDonald et al., 2012). In limiting light transmission, suspended sediment 

can also influence photosynthesis, and sediment deposition can interfere with shipping 

channels navigation (Gartner, 2004). In tidally energetic estuaries, the suspended 

sediment field constantly changes; over hourly, the spring-neap cycle, and seasonal 

timescales. Aggregate sizes, suspended sediment concentration and settling velocities 

can often shift on multiple time scales, making it difficult to study the condition o f these 

highly variable systems (Fugate and Friedrichs, 2003; Gartne, 2004; Vousdoukas et al., 

2011). A crucial part of sediment transport that needs to be better understood and 

measured is the concentration of suspended solids.

Although originally designed to measure velocities, the acoustic Doppler velocimeter 

(ADV) is now widely used to determine suspended sediment concentration in coastal 

and estuarine systems (Fugate and Friedrichs, 2002; Voulgaris and Meyers, 2004; 

Cartwright et al., 2012; Baeye et al., 2012). Advantages o f ADVs include non-intrusive
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measurements, resistance to biofouling and high energy conditions, relative simplicity 

of operation, and simultaneous measurement of velocity and turbulence, as well as 

acoustic backscatter. Specifically, ADV receiver components measure the power o f the 

acoustic echo off of suspended particles. An estimate o f suspended sediment 

concentration can then made by applying an empirical relationship to the measured 

acoustic backscatter recorded by the ADV in “counts”. Empirical relationships between 

acoustic backscatter intensity and suspended sediment concentration in general have 

often been derived via by laboratory calibrations (Rehman and Vincent, 1990, Thome et 

al., 1993, Voulgaris and Meyers, 2004, Cartwright et al., 2009, MacDonald et al., 2012, 

Moate and Thome, 2012).

Backscatter in counts registered by both SonTek and Nortek ADVs is defined such that 

one count equals 0.43 dB (with a variation of about 0.40 to 0.47) (Lohrmann, 2001; 

SonTek, 2001). For acoustic backscatter sensors in general, decibels are defined by 1 

dB = 10 logio(P/Po), where P is the power of the backscatter registered at the receiver 

relative to an instrument-specific reference power, Po (e.g., Hodges). That is why ADV 

backscatter in counts is typically found to be proportional to the logarithm of sediment 

concentration, rather than being linearly proportional. For a given particle type with a 

single grain size, if concentration, C, increases from time 1 to time 2 by a factor of two 

(i.e., C2/C 1 = 2), then, in the absence o f attenuation, the power of the return signal, P, 

will also increase by a factor o f two (i.e., P2/P 1 = 2), meaning the volume scattering
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strength will increase by 10*logio (P2/P 1) -  3 dB (e.g., Lohrmann, 2001; Hodges, 2010). 

The ADV acoustic backscatter in counts is then expected to increase by (3 dB)/(0.43) — 

7 counts, varying linearly with the logio of C. In the field, however, ADV backscatter 

does not increase by precisely 7 counts for every factor o f two in logio concentration. 

This is because particles in suspension in estuarine and coastal environments are a 

mixture of sizes and types who proportions and properties may change as the total 

concentration changes. Also, the dB to counts conversion factor of —0.43 may vary 

somewhat from for different ADVs due in part to the efficiency of the transducer to 

convert electrical voltage to an acoustical wave. In addition, if concentrations become 

high enough, at some point attenuation will begin to decrease the backscatter (e.g., 

Traykovski et al., 2000). At that point, the rate o f increase in backscatter with increased 

concentration will slow and eventually reverse, such that backscatter will then decrease 

with greater concentration.

Most of the previous work on the acoustic response of suspended sediment has been 

performed on well-sorted, narrow distribution grain-sizes, mostly of coarse-grain non- 

cohesive material (Hanes et al. 1988, Vincent, 2007, VanderWerf et al., 2007, Green et 

al., 2004). Recently, acoustic backscatter, including backscatter from ADVs, has 

increasingly been used to measure concentrations in muddy rivers and in mixed 

sediment regimes (Gray and Gartner, 2009; Cartwright et al., 2009; Hanes, 2011). Even 

in strictly non-cohesive regimes, the presence of multiple grain sizes add additional
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Figure 4.1 . In situ calibration of backscatter from VIMS SonTek ADVOcean-Hydras 
for total suspended solids based on filtered pump samples collected at MUDBED 
observation system sites in the York River estuary (from Cartwright et al., 2009).

complexities because each acoustic frequency is most sensitive to specific particle sizes 

that, in turn, is related to the size o f the particles relative to the acoustic wavelength 

(e.g., Flammer, 1962; Thome and Campbell, 1992; Lohrmann, 2001; Thome and 

Hanes, 2002; Gartner, 2004; Topping et al., 2006). Muddy aggregates and floes add 

further complications because they do not acoustically behave like the solid mineral

120



grains for which existing theory has been developed. As stated recently by Thome and 

Hay (2012), “The use o f acoustics for estimating sediment concentrationin flocculating 

(cohesive) suspensions is still problematic and requires fundamental studies on the 

interaction of sound with aggregated fine-grained particles, before quantitative 

inversions can be formulated”.

The MUDBED observing site in the York River estuary, USA, represents the world’s 

longest, nearly continual deployment o f ADVs for the purpose of documenting 

sediment concentration in a muddy, mixed grain-size environment (Friedrichs et al., 

2008). Maintaining this long-term observing system has necessitated rotation o f several 

SonTek ADVOceans sensors in the field over time (Cartwright et al., 2009). Field 

calibrations o f these multiple ADVs has documented substantial scatter in the 

relationship between mass concentration and ADV backscatter among various cruises 

(Figure 4.1). In order to improve observations o f the sediment dynamics in mixed 

sediment environments like the York, it would be beneficial to determine what part of 

the scatter in Figure 4.1 is due to changing sediment properties and what part is due to 

variability in the responses of the various SonTek ADVs themselves. Furthermore, the 

MUDBED observing system has recently acquired several additional ADVs from a 

second vendor, namely Nortek ADV Vectors at 6 MHz, to add to its long-term 

observing system. Addition of this second set o f ADVs, with a slightly higher frequency
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Table 4.1. Summary of ADVs used in various comparisons along with their serial numbers, acquisition/repair year and 
acoustic backscatter offset shift (see text for additional explanation).

NORTEK SONTEK

ADV serial number VCH VEH VCH VCH VCH 
4844 4493 4854 4856 4921 B336 B337 B338 B339 B3084

VIMS acquisition year 
repair year

2005 2006 2011 2011 2011 
2011

2006 2006 2006 2006 2006 
2011

Run 1: 21 Jun'12 
Inter-/intra-vendor,paint/no-paint

X X X X X X  X X

Run 2: 18Jul'12 
Inter-/intra-vendor, no-paint

X X  X X X X

Run 3: 22 Jun '12 
Method Reproducabilty

X X

Run 4: 24 Jan‘13 
Mud (silty-clay) calibration

X X

Run 5: 11 Jul’12, 
Sand calibration 20 JuT 12

X X

Run 6: 28 Jan’13, 
Mixed (sandy mud) calibration 1 Feb ‘13

X X

In-situ calibration 24 Jul ‘ 12
Muddy floes

X X

Offset in counts
needed to match reference ADV

-3.97 3.38 0 -0.82 4.96 -32.75 -1.21 -6.8 0 -9.14



and a different electronic package, argues for a systematic comparison o f the acoustic 

backscatter response of the sensors from these two vendors.

The following sections of this chapter first describe the SonTek ADVOcean-Hydra and 

Nortek Vector ADV models in more detail, along with the specific ADV arrangement 

and settings applied in this study. Sediment preparation and pump sampling for the 

mixing tank and field experiments are explained next, together with the procedures for 

collecting ABS data during the various experimental runs. In the results and discussion 

section, general trends in ABS response are discussed in terms of the relative roles 

played by inter-vendor, intra-vendor and sediment variability. Inter- and intra vendor 

response of ABS to a single concentration of mud is used to test the effects of anti- 

fouling paint, test method repeatability, and, most importantly, to assign offset 

corrections to make all the ABS readings more consistent with either a SonTek or a 

Nortek reference unit. ABS comparisons incorporating adjusted offsets are then used to 

explore consistencies between the SonTek and Nortek models (such as their similar 

ABS response to changes in grain size) and differences between the two models (such 

as their varying sensitivity to attenuation of backscatter). Finally, ADV response to 

mixed sediments is discussed in the context o f how to sum ABS responses due to sand 

plus mud.
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Figure 4.2. A) 110-liter mixing tank containing -700 mg/L silty-clay solution used for 
mud calibration (Table 4.1, Run 4). The height o f the ADV sampling volume and 
associated sample tube are marked by green tape. B) SonTek ADVOcean-Hydra (with 
wide white stem) and Nortek Vector ADV (with narrow black stem) set up for sand 
calibration (Table 4.1, Run 5). Also in the tank are a cluster o f five other acoustic 
transducers, results from which are not discussed here.

4.3 Methods

4.3.1. ADV Sensors and Settings

The response of acoustic backscatter (ABS) from multiple ADVs to suspended



sediment was investigated via series of laboratory mixing tank experiments carried out

at VIMS between June 2012 and January 2013, along with an in situ ADV calibration 

cruise in the York River estuary in July 2012. A total o f ten ADVs from two vendors 

were inter-compared, namely five Nortek 6-MHz ADV Vector units and five SonTek 5- 

MHz ADVOcean-Hydra units (Table 4.1). The Norteks were acquired by VIMS in 

2005, 2006 and 2012, and only two were from a common production run. In contrast, 

all five SonTeks were acquired by VIMS in 2006, and four were from a single 

production run. Over the years, the electronics o f one of the Norteks and one of the 

SonTeks were replaced by the manufacturer, which may have altered their individual 

ABS response somewhat.

In terms of other ADV properties that affect ABS response, the sampling volumes for 

the Nortek Vector and the SonTek ADVOcean-Hydra units were fixed by their 

manufacturers to be 15 cm and 18 cm below their central transmitters, respectively. The 

size o f the sampling volume for all the measurements in this study was kept at each 

manufacturer’s default value of approximately 2 cm3. Additional settings which do not 

affect the systems’ ABS response were set in this study as follows: All o f the Norteks 

recorded data at a sampling rate o f 8 Hz and a velocity range o f ±  1 m/s, while all the 

SonTeks recorded at 10 Hz with a velocity range ± 2 m/s. In both the lab and the field, 

all ADV bursts lasted 5 minutes.
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4.3.2. Laboratory and Field Arrangement o f  ADVs

All the laboratory ADV experiments utilized the 110-liter VIMS sediment mixing tank 

(Figure 4.2), which is 1.5-m tall, square in cross-section, with an inside width of 31.6 

cm, and tapers at its base to facilitate the return of sediment to be pumped back to its 

upper section (Cartwright et al., 2013). A 44-liter/minute Cal Pump MS900 powers the 

circulation of water in the tank. After passing through the pump, tank water is re­

circulated through a four-way splitter to four jet outlets, one centered on each tank wall, 

25 cm below the top of the tank. Sliding sampling tubes situated along one side o f the 

tank can be pushed in to the center o f the chamber to allow the collection of ground- 

truth water samples. In all the tank experiments, the Nortek and SonTek ADVs were 

always mounted such that their sampling volumes coincided with the height o f the 

sample tube located 57 cm below the top of the mixing tank (Figure 4.2). Pairs of 

Nortek and SonTek ADVs were rotated through for use in the various tank experiments. 

The high capacity circulating pump incorporated into the design o f the tank aims to 

keep the chamber well mixed over the course o f any given lab experiment. Our 

experience has shown that mud is largely well-mixed throughout the tank. But for sand­

sized sediment, there still exists a notable vertical gradient in concentration at steady 

state, decreasing toward the top of the tank. Collection o f water samples at the height of 

the ADV sampling volume avoided problems from this vertical gradient in tank sand 

concentration.
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An in situ comparison of Nortek versus SonTek ABS response in the York River 

estuary was conducted on 24 July 2012 using the R/V Elis Olsson, anchored at 37 deg 

20.52 min N, 76 deg 37.51 min W, in the vicinity o f the Clay Bank study site described 

in Chapter 2 (Cartwright et al., 2009). One Nortek ADV and one SonTek ADV (Table 

4.1) were mounted on the front o f the ROSE (Real-time Oceanographic Sensing 

Equipment) profiler (Figure 4.3A) such that a fin on the back of ROSE turned the 

ADVs into the oncoming tidal current. The ADV sensors were mounted such that their 

sampling volumes were each 37 cm above the feet o f the profiler, which also 

corresponded to elevation of the intake hose leading to a ~20 liter/minute Dayton Model 

1P809 submersible pump. The anchor station was maintained for just over six hours on 

24 July 2012, encompassing an entire flood tide. ROSE was lowered once each hour for 

a downward profile. On the way back up, ROSE was stopped at three levels, one within 

the bottom third o f the column, one within the middle third, and one within the top third 

(Figure 4.3B). ROSE was kept at each sample height for at least 5 minutes while a 

sample burst was collected by each ADV. A water sample was pumped during each 

burst and collected on deck in 0.5-liter bottles.
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Figure 4.3. A) ROSE profiler with SonTek ADVOcean-Hydra (with wide white stem) 
and Nortek Vector ADV (with narrow black stem) from October 2012, but set up as 
used for this study’s July 2012 in situ ADV calibration. Also mounted on ROSE in July 
2012 were a pump with an inlet at the ADVs’ sampling height, a LISST and a CTD. 
The tall instrument to the left is a video settling column which was not used in July 
2012. B) Example CTD profile showing typical depths o f top, middle and bottom ADV 
sample bursts.

4.3.3. Sediment Processing

Suspended sediment mass concentrations in both the lab and field were determined by 

filtering of water samples for total suspended solids (TSS). Based on the sample pump 

rates and the inside diameter o f the water intake tubes, the velocity at the sample intakes 

in the field and in the lab were each more than 1 m/s. High intake speeds were designed
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specifically to prevent possible sorting of grains at the intake associated with the inertia 

of more massive particles (Battisto et al., 1999). The goal o f pump sampling was simply 

to calibrate for TSS; thus particle break up within the sampling hoses was not an issue. 

Between collection and filtering, water sample bottles were kept in dark cold storage. 

Water samples were then passed through 47-mm diameter, pre-weighed 0.7 mm glass 

fiber filters and dried for overnight at 103°C. The next day the individual filters were 

repeatedly weighed as they continue to dry until consecutive weights agreed to within 

0.5 mg.

Sediment was prepared for use in mixing tank experiments as follows. Mud “stock 

solutions” were created from bottom sediment samples collected near the Clay Bank 

study site in the York River estuary using a GOMEX boxcore. One stock solution was 

made from bottom sediment collected on 12 July 2012 at CHSD lab stations BC5022 to 

BC5024, and a second was made from sediment collected on 8 January 2013 at CHSD 

stations BC5078-BC5080. In each case, the top centimeter from subsamples o f several 

boxcores were combined and wet-sieved through a 63-mm screen size. These filtrates 

were each allowed to settle for one week, and a large portion o f  the surface liquid was 

decanted off. After homogenizing the remaining portion, filtering (as described in the 

previous paragraph) was used to determine each solution’s mass concentration. The 

concentration of the 2012 and 2013 stock solutions were determined to be 27.3 ± 3.6 

g/L and 74.9 ± 0.2 g/L, respectively, where ± are standard errors. Based on pipette
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analysis, the 2013 stock solution was determined to be 78.9 ± 0.3% clay and 21.1 ± 

0.3% silt, respectively. The percent clay and silt o f the 2012 stock solution was not 

determined. Sand-sized material was prepared for mixing tank experiments by passing 

commercial quartz sand though a stack of sieves and collecting that which passed 

through a 180-mm screen but was retained a 150-mm screen.

4.3.4. Individual Mixing Tank Experiments

In 2012 and 2013, several mixing tank experiments were performed to inter-compare 

ABS response among Nortek and SonTek ADVs (identified as Runs 1 through 6, with 

specific dates and ADV serial numbers indicated in Table 4.1). Runs 1 and 2 each 

compared multiple ADVs, whereas Runs 3 through 6 each compared a single Nortek to 

a single SonTek. It was never possible to intercompare all ten ADVs at once because 

the MUDBED long-term observing site (Cartwright et al., 2009) always required some 

instruments to be dedicated to field work.

Inter-fintra-vendor variability, paint/no-paint (Runs 1 and 2):

As part o f Run 1, the sensors o f several ADVs were painted with a thin coat of 

antifouling paint (Trilux 33) in the same manner as they are painted for tripod 

deployments at the MUDBED observing site (Cartwright et al., 2009). The thickness of 

the paint was the thinnest layer possible which did not expose the color o f the
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underlying transducer. After the coating had dried, a “painted” sample burst was 

collected for each ADV. All paint was then removed from the sensors, and each ADV 

was re-inserted one at a time into the chamber, and a “non-painted” sample burst was 

collected. Run 2 which included two ADVs unavailable for Run 1, used only unpainted 

sensors. (None of the other lab or field measurements utilized painted ADVs.) Runs 1 

and 2 each utilized the 2012 stock solution, diluted by additional tank water. Runs 1 and 

2 occurred a month apart, so the mixing tank was drained in between, and the sediment 

concentrations for the two runs were not identical. For each run, the concentration 

(reported under results) was measured via the sampling tube at the height o f the ADV 

sampling volume.

Method repeatability limit (Run 3):

To determine the repeatability o f the ADV sampling procedure in the calibration 

chamber, one Nortek ADV was inserted and removed from the calibration chamber ten 

times. Care was taken to place the instrument each time such that its sample volume 

would be in the same location, and a 5-minute data burst was recorded for each 

insertion. The procedure was then repeated ten times for one SonTek ADV. 

Approximately 400 mL of the 2012 stock solution was added to the calibration chamber 

for Run 3 to bring the calibration chamber to approximately 100 mg/L. Unfortunately, 

error occurred in the processing of the pump samples collected during Run 3, so the 

TSS concentration in the chamber was not ground-truthed by filtering.
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Mud calibration (Run 4):

An incremental ABS calibration for one SonTek and one Nortek ADV was performed 

using multiple additions o f the 2013 stock solution to the mixing tank. Aliquots of the 

stock solution were chosen to sequentially bring the sediment mass concentration of the 

tank as a whole to approximately 25, 50, 75, 100, 150, 200, 250, 300, 400, 600 and 700 

mg/L (“added concentration” in Table 4.2 Run 4). A 5-minute data burst was collected 

with each sensor after each aliquot had been given time to equilibrate. For each 

concentration, a water sample was collected from the interior o f  the chamber at the 

height of the ADV sampling volume and filtered for TSS (“measured concentration” in 

Table 4.2 Run 4). The average ratio o f “measured conc.”/“added conc.” (equal to 0.945) 

was then used to scale the “added concentration” to produce a “calculated 

concentration” (see Table 4.2 Run 4). By accounting for imperfect tank mixing, the 

calculated concentration reflected the theoretically expected concentration better than 

the added concentration did.

Sand calibration (Run 5):

An incremental ABS calibration was similarly performed using multiple additions of 

the 150-to-180-pm sieved quartz sand. Aliquots o f sand were added to the chamber to 

bring the mass concentration for the tank as a whole to approximately 25, 50, 100, 150,
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200, 300, 400, 600, 800, 1000, 1200 and 1600 mg/L (“added concentration” in Table 

4.2 Run 5). Before addition of the next sand aliquot, a 5-minute data burst was collected 

with one SonTek and one Nortek sensor, and a water sample was collected at the height 

of the ADV sampling volume and filtered for TSS. After completing the ADV data 

collection, systematic problems with initial filtering analysis were discovered for the 

lower concentration water samples, and the experiment was repeated for the 25 to 400 

mg/L cases. Final “measured” and “calculated” sand concentrations, determined by the 

method described above for Run 4, are displayed in Table 4.2 Run 5. For sand, the 

average ratio o f “measured conc.”/“added cone.” was 0.579, reflecting the less efficient 

mixing of suspended sand concentration in the mixing tank relative to that for mud.

Mixed sand-mud calibration (Run 6):

Finally, a progressive amount o f 150-to-180-pm sand was added to each o f two mud 

suspensions. On separate days, samples o f  the 2013 mud stock solution were diluted to 

produce mixing tank concentrations o f approximately 100 mg/L and 200 mg/L and 

pump samples were collected for TSS ground-truthing. In each case, aliquots o f sand 

were then added to the mixing tank to bring the percentage o f sand in the tank as a 

whole to ~25% sand via steps o f 1 to 3% at a time (a table o f more precise values is 

presented in Section 4.4). Before addition o f each subsequent sand aliquot, a 5-minute 

data burst was collected with both a SonTek and a Nortek ADV. Because of difficulties
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in accurately pumping of sand at low concentrations, pump samples were not collected 

at each sand percent. Instead, total TSS at each step at was calculated based on the mass 

of sand added to the tank, adjusted by the factor o f 0.579 for “measured conc.”/“added 

conc.” as determined during Run 5.
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Figure 4.4. Comparison of acoustic backscatter burst response from Nortek Vector 
ADV and SonTek ADVOcean sensor pairs during lab calibrations for silty-clay (red 
squares), sand (blue circles), and mixed sandy mud (black x ’s) as well as an in situ 
calibration with muddy floes (green stars). Brackets provide an indication of the mass 
concentration ranges relative to the ADV responses in counts. The “error” bars are ± 
one standard deviation about each burst mean. With thousands of observations per 
burst, each standard error (i.e., the uncertainty in each mean) is much smaller than the 
symbols themselves.
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4.4 Results and Discussion

4.4.1. General Trends in ABS Response — Sediment vs. ADV Properties

The laboratory and field calibration runs demonstrate that the response o f ADV 

backscatter to suspended sediment is a function o f both sediment properties and the 

physical properties of the ADVs themselves. Figure 4.4 and Table 4.1 display ABS

responses for a pair of SonTek and Nortek ADVs for the three lab calibration series 

(Runs 4 through 6) plus the York River estuary in situ calibration. Runs 4 and 6 used 

the same pair of instruments. Despite shifts associated with specific ADV serial 

numbers, it is clear that the sediment type systematically impacts the ABS response for 

both the SonTeks and the Norteks. For both vendors, the ABS response to overlapping 

concentrations is strongest for sand, then mixed sand and mud, then silty clay, and 

finally weakest for in situ muddy floes. Although the overall trend in response to 

changing sediment type is similar, the ABS response is also instrument dependent. If 

the response of all the instruments were identical, all o f  the ABS data would lay along a 

single 1:1 line in terms of ABS response. The four SonTek vs. Nortek calibrations 

plainly do not lie along a 1:1 line or even along a single line of any kind.

Independent of sediment type, differences in ABS response in Figure 4.4 between the 

various SonTek and Nortek ADVs can be further divided into inter- and intra-vendor
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variability. Two trends are suggested by Figure R1 regarding systematic differences 

between SonTeks and Norteks (i.e., inter-vendor variability). First, the ABS range in 

counts registered by the SonTeks is greater in all three cases: 1.1:1 for the in situ floes, 

1.4:1 for silty clay and sandy mud, and 1.7:1 for sand. Second, the greater ABS range 

registered by the SonTeks becomes more pronounced as ABS magnitude increases. 

However, inter-vendor variability cannot explain all the trends seen in Figure 4.4. If the 

SonTeks systematically differed from the Norteks, but ABS response was still 

consistent within a single vendor, all the ABS data still would lay along a single curve 

other than a 1:1 line. This is not the case, however, so some o f the variability must be 

due to intra-vendor variability, i.e., differences among individual SonTeks and/or 

individual Norteks. The lab experiments whose results are described in the next section 

were specifically designed to help explore this inter- vs. intra-vendor variability.

4.4.2. Inter-vendor, intra-vendor Response o f  ABS to Single Sediment Concentrations

Results from systematic inter-comparisons o f multiple ADVs provide an assessment of 

the general variability in ABS response for cases with fixed sediment concentration, 

both between vendor models, i.e., Nortek versus SonTek, and also among multiple 

examples of individual Nortek or SonTek models (Figure 4.5, Table 4.2A). For 

example, for the four unpainted Norteks plus four unpainted SonTeks compared during 

Run 1 at 130 ± 7 mg/L, the largest difference in mean ABS response was 8 counts 

among Nortek units and 33 counts among SonTek units. For the three Norteks and three
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Table 4.2. A) Burst average acoustic backscatter for mud, sand and in situ calibrations

RUN 4: Mud (siltv-dav) Calibation (January 24.2013)

Added Measured Calculated

NORTEK VCH4921 

Burst Record

SONTEK 6336 

Burst Record
cone cone cone Mean Std Dev Std Dev Mean Std Dev Std Dev

(mg/L) (mg/L) (mg/L) (counts] (counts) (counts) (counts) (counts) (counts)

25 21.0 23.62 139.97 2.71 2.19 151.85 3.94 3.38
SO 40.8 47.24 145.79 2.31 2.23 159.56 3.00 3.23
75 67.9 70.87 149.77 1.93 2.09 164.58 2.55 3.18
100 94.2 94.49 151.85 1.55 1.97 166.38 2.02 3.11
150 123.5 141.73 154.58 1.14 1.93 172.24 2.06 2.79
200 206.5 188.98 156.28 1.08 1.94 175.37 1.83 2.65
250 252.5 236.22 157.95 0.94 1.84 177.81 1.67 2.56
300 331.1 283.47 159.19 0.90 1.81 179.75 1.65 2.48
400 408.4 377.96 162.08 0.90 1.53 181.31 1.58 2.39
600 543.8 566.94 165.39 0.74 1.38 186.61 1.54 2.41
700 695.5 661.43 166.58 0.71 1.35 188.52 1.54 2.48

Run S: Sand Calibration (July 11 and 20.2012)

Added Measured Calculated

NORTEK VCH4854 

lurst Record

SONTEK B336 

Burst Record
cone cone cone Mean Std Dev Std Dev Mean Std Dev Std Dev

(mg/L) (mg/L) (mg/L) (counts] (counts) (counts) (counts) (counts) (counts)

25 13 14.47 164.41 7.52 4.79 172.55 8.04 4.83
50 24 28.95 171.18 5.29 3.91 182.89 5.82 4.17
100 67 57.90 178.36 2.52 3.15 193.2 4.51 3.94
150 75 86.85 180.76 2.13 3.12 197.68 4.31 3.98
200 85 115.79 182.15 2.06 3.06 200.81 4.1 3.85
300 170 173.69 185.26 1.87 3.3 207.08 3.58 3.94
400 209 231.59 187.44 1.77 3.6 211.87 3.16 3.8
600 467 347.38 190.23 1.45 3.76 216.83 2.71 3.64
800 480 463.18 192.1 1.48 3.89 219.32 2.49 3.4
1000 587 578.97 193.04 1.4 4.02 221.17 2.47 3.27
1200 834 694.76 193.59 1.31 4.3 222.16 2.26 3.15
1600 965 926.35 192.97 1.17 4.17 223.14 2.19 3.03

In-sftu Muddy Floes Calibration Duly 24. 2012)

NORTEK VCH4854 SONTEK 83084

Burst Record Burst Record
TSS Mean Std Dev Std Dev Mean Std Dev Std Dev

(mg/l) (counts) (counts) (counts) (counts) (counts) (counts)

57.10 144.10 3.81 2.57 125.00 4.16 3.28
44.10 153.72 3.22 2.01 136.97 4.15 3.37
94.80 147.90 3.45 2.22 130.23 4.05 3.12
24.50 125.85 1.87 2.02 107.88 2.06 2.38
27.60 124.72 1.48 1.99 106.34 1.76 2.46

228.40 162.76 2.36 1.54 151.34 3.82 3.08
88.20 152.24 3.20 1.80 136.38 4.50 2.99
26.40 121.85 1.63 1.67 103.80 2.13 2.26

146.80 163.00 2.28 1.51 151.44 3.72 3.04
116.80 158.83 3.29 1.61 145.52 4.78 3.07
37.10 129.49 1.70 1.69 111.47 1.98 2.19

156.20 163.98 2.46 1.43 152.04 3.91 3.07
86.60 145.67 5.45 1.84 126.90 6.09 2.85
59.00 145.06 4.39 1.94 126.33 4.94 2.82
114.00 156.85 3.43 1.87 142.55 4.70 3.27
40.30 139.96 5.08 2.14 122.17 5.48 2.92
47.60 134.23 4.79 2.13 116.45 4.84 2.67
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Table 4.2. B) Burst average acoustic backscatter for mixed sediment calibrations

Run 6: Mixed (Sandy Mud) Calibrations

95 mg/l Mud (Jan 28. 2013)

NORTEK VCH4921 SONTEK B336

Sand Backscatter Backscatter
Added Calculated Burst Record Burst Record
Cone cone Mean Std Dev Std Dev Mean Std Dev Std Dev

(mg/L) (mg/L) (counts) (counts) (counts) (counts) (counts) (counts)

0 0.0 152.86 1.96 2.00 169.28 2.45 3.42
2.1 1.3 No Data 169.20 3.61 4.17
3.1 2.0 No Data 168.96 3.78 4.56
4.1 2.6 154.54 3.01 2.24 No Data
5.1 3.2 154.54 3.00 2.24 No Data
6.2 3.9 153.71 3.29 2.30 171.29 4.23 3.67
7.3 4.6 154.47 3.24 2.26 170.99 4.59 4.10
8.3 5.2 154.48 3.43 2.28 170.57 4.57 4.44
9.3 5.9 154.54 3.58 2.31 170.80 5.08 5.20
10.5 6.6 154.28 3.53 2.40 169.94 4.95 5.72
15.5 9.8 156.61 3.87 2.39 173.53 5.12 6.13
20.5 12.9 No Data 176.94 5.21 5.46
25.7 16.2 158.87 4.05 2.41 179.03 5.03 5.32
30.7 19.3 159.64 3.98 2.37 180.58 5.34 5.54

190 mg/l Mud (Feb 1. 2013)

NORTEK VCH4921 SONTEK B336

Sand Backscatter Backscatter
Added Calculated Burst Record Burst Record
Cone cone Mean Std Dev Std Dev Mean Std Dev Std Dev

(mg/L) (mg/L) (counts) (counts) (counts) (counts) (counts) (counts)

0.0 0.0 159.11 1.28 1.66 179.28 1.78 3.06
2.2 1.4 158.47 1.73 1.70 179.71 2.62 3.23
4.3 2.7 158.90 2.01 1.76 179.51 2.85 3.32
8.3 5.2 160.01 2.24 1.85 181.22 3.23 3.48
12.4 7.8 160.76 2.34 1.84 182.86 3.48 3.44
16.6 10.5 161.75 2.55 1.79 183.96 3.64 3.55
20.8 13.1 162.26 2.55 1.83 185.16 3.74 3.50
24.8 15.6 162.75 2.57 1.81 186.30 4.10 3.58
30.9 19.5 No Data 187.52 3.97 3.54
41.4 26.1 165.63 2.58 1.72 190.49 3.87 3.56
51.9 32.7 166.58 2.51 1.68 192.30 3.77 3.54
62.4 39.3 167.69 2.33 1.62 194.36 4.03 3.68

For Tables 4.2 A and B:
AverageABS = mean of acoustic backscatter (ABS) for three beams for each record
Record Std Dev= mean of all the records of standard deviation about the AverageABS for each record.
Burst mean = mean AverageABS in the burst
Burst Std Dev=standard deviation about the Burst mean.
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Figure 4.5. Inter-comparison of acoustic backscatter burst response for multiple Nortek 
Vector ADVs and SonTek ADVOceans. Blue circles and green squares indicate non­
painted sensors from Runs 1 and 2, respectively. Red stars are sensors from Run 1 
coated with Trilux 33 anti-fouling paint. The serial numbers for the individual Nortek 
and SonTek ADVs appear along the x-axis. “Error” bars are ±  one standard deviation 
about each burst mean.

SonTeks compared in Run 2 at 80 ± 4 mg/L, the largest difference in mean response 

was 5 counts and 23 counts, respectively. The history o f the SonTek ADVOcean- 

Hydras and Nortek ADV Vectors used in this study are relatively similar, in that they 

each include units purchased and/or repaired over a 5 to 6 year time frame. Thus these
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results suggest that in general, Nortek ADV Vectors may have a more consistent ABS 

response among units of the same model than is the case for SonTek ADVOcean- 

Hydras.

The manufacturing production run and repair history for ADVs may also play a role in 

determining differences in intra-vendor ABS response. For both the SonTek and Nortek 

units, the smallest mean ABS differences were for pairs o f instruments that were part of 

the same production run. During Run 1, the unpainted SonTek B337 and B339 (bought 

together in 2006) differed by only 1.2 counts, and the unpainted Nortek VCH4854 and 

VCH4856 (bought together in 2011) differed by only 0.8 counts. In contrast, the largest 

difference in mean ABS for a given unit relative to the others from its vendor was for 

SonTek B336, which was bought in 2006 but had several o f  its components replaced in 

2011. The consistency in response o f SonTek B337 and B339, which are each 7 years 

old and have been in a field deployment rotation ever since, suggests, that in the 

absence of repair, the ABS response o f ADVs can be remarkably stable. Although a 

repair may alter an ADV’s ABS response, it is likely that the ADV’s altered ABS 

response would then remain stable at its new level following the repair.
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4.4.3. Inter-vendor, Intra-vendor Response o f  ABS to Anti-fouline Paint

The inter-/intra-vendor mixing tank experiments also provided an opportunity to test for 

possible biases associated with application of anti-fouling paint onto the transducers of 

the ADVs. A thin coating of anti-fouling paint is helpful in extending the duration for 

field deployments such as those associated with maintain the long-term MUDBED 

observation station in the York River estuary (Cartwright et al., 2009). However, anti- 

fouling paint is not typically used in short-term ADV deployments, such as tidal 

profiling at anchor utilizing ROSE. Thus it is important to quantify any acoustic effect 

of a thin coat o f Trilux 33 (the thinnest possible coat which hides the color o f the 

underlying transducer). As seen in Table 4.2A and Figure 4.5, the effect o f anti-fouling 

paint is small but detectable. On average, a thin coating o f Trilux 33 reduced the 

backscatter recorded by the Nortek ADV Vectors and SonTek ADVOcean-Hydras 

tested by 2.4 ± 0.6 and 3.8 ± 2.0 counts, respectively. In contrast, there was no 

systematic effect of anti-fouling paint on the standard deviation o f the ABS time-series.

4.4.4. Method repeatability limit for each vendor

The Nortek ADV Vector and SonTek ADVOcean-Hydra both demonstrated a 

consistent ABS response as determined by testing the repeatability o f the ADV 

sampling procedure in the sediment mixing tank (Figure 4.6, Table 4.3). This was not 

surprising, given the remarkably consistent ABS response up to six years after delivery 

to VIMS for pairs of ADVs from the same factory production run. The burst means for
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Figure 4.6. Acoustic backscatter burst response o f Nortek Vector sensor VCH4854 
(blue circles) and SonTek ADVOcean sensor B3084 (red stars) for 10 bursts in a single 
mud concentration as a measure o f method reproducibility. “Error” bars are ± one 
standard deviation about each burst mean.

the 10 repetitions for the Nortek and SonTek ranged from 143.1 to 146.1 counts and 

123.6 to 126.0 counts, respectively. In each case the standard deviation for the time- 

series o f these 10 burst means was less than 1 count. It should be kept in mind that the 

method repeatability test is for the entire method, not just the ability of the ADV to 

register repeatedly similar ABS values. Sediment mixing in the tank is not perfect, and 

it is possible that concentration field evolved and/or oscillated slightly in time. So the
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Table 4.3. Method repeatability burst averaged acoustic backscatter

Burst No.

1
2
3

4

5

6
7

8
9

10

NORTEK VCH4854

B ackscatter

Burst
Std Devm ean

(coun ts)

146.06

145.30

144.56

144.24

144.32

144.13 

143.76 

143.43 

143.34

143.13

1.91

1.88
1.96 

1.90

1.96 

2.05 

1.94 

2.07 

2.03 

2.00

Record 

Std Dev

(coun ts) (co u n ts)

4.55

4.57 

4.66 

4.61

4.60

4.58 

4.57

4.55

4.61 

4.54

Burst No.

1
2
3

4

5

6
7

8
9

10

SONTEK B3084

B ack sca tte r 

Burst 

m ean Std Dev

(c o u n ts )  (co u n ts)

123.61

125.96

125.30

124.42 

124.14 

124.11

124.43

124.44 

124.37 

123.78

3.99

5.37

4.50

4.12

4.28

4.08

5.22

4.53

4.48

4.19

Record 

Std Dev 

(coun ts)

3.08

3.43

3.46

3.53 

3.48 

3.35

3.45

3.54 

3.61

3.45

F o r T ab le  4.3:
AverageABS = mean of acoustic backscatter (ABS) for three beams for each record
Record Std Dev= mean of all the records of standard deviation about the AverageABS for each record.
Burst mean = mean AverageABS in the burst
Burst Std Dev=standard deviation about the Burst mean

variability o f the ABS burst averages in Figure 4.6 and Table 4.33 may somewhat 

overestimate the contribution o f the ADVs themselves to the limit o f  repeatability.
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4.4.5. Assignment o f  Offset Correction to Match ABS o f  Reference ADVs

The mean responses for multiple ADV units determined in Runs 1 through 3, all using 

muds derived from the 2012 stock solution, and all using concentrations on the order of 

-100 mg/L, provide an opportunity to define reasonable correction values in units of 

counts to help compensate for intra-vendor variability in ABS response. Experience 

with the SonTek ADVOcean-Hydra (Cartwright et al., 2009) has shown that variability 

among ADV calibrations (plotted as log(C) vs. ADV counts) tends to exhibit itself more 

strongly

in terms of shifts in calibration curve offsets as opposed to changes in calibration curve 

slope (see Figure 4.1). Recall that ADV counts are proportional to loglO(P/Po), where P 

is the received power relative to an instrument-specific reference power, Po. Thus 

changing the calibration offset for a given instrument is equivalent to redefining its 

reference power, Po. Once a change in Po is log-transformed, what was a division by Po 

in power “space” becomes a subtraction (or addition) in count “space” (depending 

on whether Po is made larger or smaller). In other words, one o f the SonTek 

and one Nortek units in Table 4.2 can each be assigned to be a reference unit (with a 

fixed Po), and the ABS values recorded by each o f the other units can be each be shifted 

by a constant offset in counts relative to the reference unit. Each reference unit must be 

a serial number present during multiple runs, and it also makes sense for each to be one 

o f the units that has a production run “sibling” also at VIMS. By default, then, the 

Nortek reference unit is VCH4856, and the SonTek reference unit is B339.
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For those units that were used multiple times over the course o f Runs 1 through 3, their 

relative behavior from one run to the next provides a double check on data quality. For 

example, three of the four units used in both Run 1 (130 ± 7 mg/L) and Run 2 (80 ± 4 

mg/L) show a sensible decrease in backscatter between these two runs. However, mean 

backscatter from unit B3084 inexplicably increased between Runs 1 and 2; and it is not 

clear which (or both) of these measurements may be in error. Fortunately, B3084 was 

also used as part of the method repeatability test (Run 3, Figure 4.6, Table 4.3), where it 

provided ten consistent ABS measurements at a constant sediment concentration. Thus 

the repeatedly stable difference between B3084 and VCH4856 counts during Run 3, 

along with the average (and stable) difference in between VCH4856 and B339 counts 

found in Runs 1 and 2, were used to set the offset for B3084 relative to B339. In 

summary, the bottom row in Table 4.1 then contains the number o f counts that should 

be added to each other ADV to make their (unpainted) means consistent with the counts 

recorded by the reference unit.

4.4.6. Results o f SonTek-Nortek ABS comparisons incorporatine adjusted offsets

The adjusted ABS counts for all the ADVs now largely lay along a single curve in 

Figure 4.7, which highlights some consistent aspects o f their acoustic responses. For 

example, counts from the SonTek ADVOcean-Hydra and the Nortek ADV Vector are 

consistently and monotonically related across multiple particle types for the full range
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of backscatter considered in Figure 4.7. In other words, if  various (progressively 

increasing) concentrations of sand, sandy mud, silty clay, and flocculated mud each 

produced a response of about 160 counts from a reference-adjusted SonTek 

ADVOcean-Hydra, then those same concentrations o f sand, sandy mud, silty clay, and 

flocculated mud would each consistently produce about 140 counts from a reference 

adjusted Nortek ADV Vector. It is reassuring to note that the individual instrument 

offset corrections were derived entirely using the 2012 mud stock solution, yet the 

chosen offset corrections do reasonably well for the separately acquired and diverse 

group of sediments displayed in Figure 4.7.

There are also systematic differences between the response o f  the two ADV models 

which are clarified by Figure 4.7. Most notably, the best-fit curve in Figure 4.7 is 

quadratic, such that at least one o f the ADVs must not have a purely log-linear response 

to sediment concentration across the range o f concentrations and sediment types 

considered in this study. At low backscatter, the ABS response by the SonTek and 

Nortek initially grow together at a roughly equal rate (parallel to the 1:1 line), 

suggesting that both instruments initially respond similarly to the log o f concentration. 

But as ABS strength continues to increase, SonTek counts start to grow more quickly. 

Fluctuations in ABS within individual bursts (i.e., the +/- one standard deviation “error” 

bars in Figure 4.7) also systematically vary between the SonTeks vs. the Norteks. 

Figure 4.8 compares the ratio o f  ABS standard deviation for the SonTeks vs. the
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Norteks as a function of burst-averaged ABS. In close analogy with the quadratic curve 

in Figure 4.7, the ratio o f standard deviations displayed in Figure 4.8 is about 1:1 at 

lower ABS values, but increases towards 2:1 at higher ABS values.
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Figure 4.7. Comparison of acoustic backscatter burst response adjusted to a reference 
sensor (see table 4.1) from Nortek Vector ADV and SonTek ADVOcean sensor pairs 
during lab calibrations for silty-clay (red squares), sand (blue circles), and mixed sandy 
mud (black x ’s) as well as an in situ calibration with muddy floes (green stars). Dotted 
line represents the 1:1 ratio between the two. The solid black line is the least-squares 
quadratic fit for all the data.
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All else being equal, one would expect the Nortek’s higher frequency (6 MHz vs. 5 

MHz) to cause the backscattering to decrease more rapidly due to a higher attenuation at 

6 MHz vs 5 MHz at higher sediment concentrations. Both the quadratic relationship in

2.2

O Run 4: Silty Clay
O Run 5: Sand
x Run 6: Mixed
* In-situ Floes
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"O
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1.6

x x

1.4
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Mean of Sontek and Nortek reference-corrected backscatter (counts)

Figure 4.8. Ratio o f SonTek/Nortek standard deviations o f acoustic backscatter for each 
burst as a function of the mean of the SonTek and Nortek reference corrected response 
for silty-clay (red squares), sand (blue circles), mixed sandy mud (black x ’s), and 
muddy floes (green stars). The solid line is the best-fit linear regression.
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Figure 4.7 and the trend in standard deviations in Figure 4.8 are consistent with this 

explanation. At sufficiently low levels o f ABS, neither instrument’s counts are expected 

to be notably affected by attenuation, since the backscattered acoustic energy would be 

expected travel back to both instruments with little energy loss. The similar response of 

the two instruments would then result in a 1:1 relationship. But as concentration 

increased, loss o f backscattered energy through attenuation would eventually become 

more apparent in the higher frequency Nortek. Counts would then grow more quickly 

for the SonTek relative to the Nortek, and the slope o f the SonTek vs. Nortek ABS 

curve would increase along with their ratio o f standard deviations.

4.4.7. Acoustic response to well-sorted sand — clear evidence o f  attenuation

A closer examination of the acoustic response o f the Nortek ADV Vector versus the 

SonTek ADVOcean-Hydra to varying suspended sand concentrations further clarifies 

patterns of backscatter and attenuation associated with these two instruments. The 

attenuation associated with the highest two sand concentrations in Table 4.2 Run 5 

became particularly clear for both instruments once sand concentration was plotted as a 

function of backscatter (Figure 4.9). In each case, these highest two concentrations 

deviated from the trend for the other 10 sand concentrations, and for the Nortek the 

count level associated with -950 mg/l was actually lower than that associated with -750 

mg/l. Included on Figure 4.9 are quadratic and linear fits to the log-base-10 of sand
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concentration versus AES counts for the lower 10 concentrations for both instruments 

using equations of the form

y = A2 x2 + Ai x + Ao and y = Bi x + Bo .

Table 4.4 contains coefficients for these least-squares regressions plus the associated 

standard errors. For a single grain size in the absence o f attenuation, one would expect a 

linear relationship between log 10 TSS and ABS counts. In contrast, attenuation would 

tend to cause the readings to be above the linear fit, with increasingly more sediment 

(beyond even that predicted by the log 10 of TSS) needed to further increase backscatter.

Table 4.4. Results o f least squares fits to the calibration curves plotted in Figures 4.9 to 
4 .11. The fitted equations are o f the form: y = A2 x2 + Ai x + Ao and y = Bi x + Bo . 
The coefficients listed are best-fits ± one standard error.

a 2 Ai A, B, B.

Sand
Nortek

Sontek

7.12±0.93e-4

1.15±0.37e-4

-1.98±0.33e-l

-4.48±0.33e-3

1.44±0.30e+l

-4.74±0.37e-5

5.80±0.22e-2

3.35±0.07e-2

-8.50±0.41e+0

-3.59±0,14e+0

Silty-Clay
Nortek

Sontek

-0.14±1.66e-4

1.66±7.04e-5

6.18±0.53e-2

3.63±1.95e-2

-7.33±4.18e0

-3.21±1.34e0

5.73±0.l4e-2

4.08±0.08e-2

-6.97±0.26e+0

-3.53±0.11e+0

In-situ floes
Nortek

Sontek

0.93±l.lle-4

-4.50±8.37e-5

-0.65±3.20e-3

2.81±2.01e-2

0.81±2.28e0

-0.87±1.19

2.02±0.13e-2

1.74±0.16e-2

-1.09±0.20e+0

-2.38±1.40e-l
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Figure 4.9. Laboratory quartz sand (150-180 pm) calibration regressions for log 10 
suspended sediment concentration versus reference corrected ABS response for Nortek 
Vector sensor VCH4854 (blue circles) and SonTek ADVOcean sensor B336 (red stars). 
The dashed and solid lines are least-squares quadratic and linear fits, respectively. The 
highest two concentrations are not included in the regressions. The values plotted are 
the average o f the measured and calculated concentrations in Table 4.2 Rim 5. Error 
bars are ± the average percent difference between measured and calculated 
concentrations in Table 4.2 Run 5.

For a single grain size in the absence of attenuation, ADV backscatter is expected to 

increase by ~ 7 counts for each doubling o f suspended sediment concentration (see
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derivation in Section 4.2), which corresponds to a slope o f ~ 0.04 on a plot o f log 10 

TSS versus counts (Figure 4.9). For the linear fits in Table 4.4, the least-squares 

coefficients for the slope, Bi, were relatively close to the expected value of ~ 0.04 for 

both instruments, with a best-fit value of 0.034 for the SonTek ADVOcean-Hydra and a 

best- fit value of 0.058 for the Nortek ADV Vector. Despite the sensible slopes for the 

linear fits, however, the best-fit quadratic curves visually fit the data better, even after 

removing the two concentrations that were most obviously beyond the instruments’ 

range of linear response. Statistically, the best-fit quadratic coefficient A2 was 

significantly greater than zero for sand for both instruments (Table 4.4), supporting the 

inference that attenuation is systematically affecting the response o f both instruments. 

The quadratic tendency (i.e., the evidence of attenuation) was stronger and more 

significant for the Nortek unit, which is sensible given the Nortek’s higher frequency.

4.4.8. Acoustic response to mud — less attenuation. but size-effects can be correlated 

to concentration

For the silty-clay laboratory case and the muddy-floc in situ case, the evidence for 

notable attenuation of acoustic energy was somewhat less clear. On the one hand, there 

was no significant indication of a non-linear relationship between backscatter and the 

log of concentration for either individual sediment type over the range of concentrations 

tested (Figures 4.10 and 4.11). For both the Nortek and SonTek units, the best-fit
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Figure 4.10. Laboratory mud (containing 21.1% silt, 88.9% clay) calibration 
regressions for log 10 suspended sediment concentration versus reference corrected ABS 
response for Nortek Vector sensor VCH4921 (blue circles) and SonTek ADVOcean 
sensor B336 (red stars) (see Table 4.2A Run 4). The dashed and solid lines are least- 
squares quadratic and linear fits, respectively. Error bars are ± the average percent 
difference between measured and calculated concentrations in Table 4.2 Run 4.

quadratic coefficient Az was never significantly different from zero for silty clay or for 

in situ floes (Table 4.4). Nonetheless, there was still some evidence that differing 

degrees o f attenuation may have been affecting the slopes o f  the Nortek regressions 

relative to the slopes o f the SonTek regressions as represented by Bi Nortek/Bi sonTek for

153



* Sontek 
O Nortek

2.4
COoo

U -
>»■o
I  2.2

t  r T r0 .04:1
Co
+-»cQ>
8 1.8oocoS
</)
■§ 16 ■o c 
©
Q.
CO3
CO
o 1.4

T '

90 100 110 120 130 140 150 160 170
Reference corrected ABS (counts)

Figure 4.11. In situ muddy floe calibration regressions, collected 24 July 2012, for 
log 10 suspended sediment concentration versus reference corrected ABS response for 
Nortek Vector sensor VCH4854 (blue circles) and SonTek ADVOcean sensor B3084 
(red stars) (see Table 4.2A -  In situ). The dashed and solid lines are least-squares 
quadratic and linear fits, respectively. Error bars are based on the standard deviation of 
each ADV burst in counts, translated into TSS using the overall linear fits.

each sediment type (with these Bi slope values taken from Table 4.4). For in situ floes, 

Bi N o r te k /B i  so n T e k  = 1.16*0.18, while for silty clay and sand floes, Bi Nortek/Bi s o n T e k  = 

1.40*0.06 and 1.73*0.10, respectively. This overall trend of the Nortek/SonTek slope
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ratio increasing away from 1:1 as the general level of backscatter increases is consistent 

with the conclusion that at low count values (e.g., relatively low concentrations o f floe- 

like sediment) neither model is significantly affected by attenuation. But at moderate 

count values, the higher frequency Nortek may be more susceptible to attenuation than 

the SonTek, even at (reference corrected) Nortek ABS count levels as low as -160 

(corresponding to -  100 mg/L of silty clay).

A comparison of the linear-fit slopes (i.e., Bi) for silty-clay versus muddy floes 

provides insight into possible variations suspended particle properties during the silty- 

clay versus muddy floe calibrations. For the silty-clay, laboratory-based calibration, the 

coefficients for the linear-fit slope, Bi, were still relatively close to the expected value 

of 0.04, with a

best-fit value of 0.057 for the Nortek Vector ADV and 0.041 for the SonTek 

ADVOcean Hydra (Table 4.4). This suggests that the size distribution o f the silty-clay 

suspension

remained relatively constant over the course o f the entire silty-clay lab calibration. In 

contrast, for the muddy floe in situ calibration, the best-fit values for the slope, Bi 

(namely 0.020 for Nortek and 0.017 for SonTek), were only about half that o f the value 

expected for a constant grain size. These anomalous slopes suggest that the in situ, floc- 

like sediment is likely a variable mixture o f individual particle sizes and types that 

change properties and/or proportions in time as the total concentration changes.
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Furthermore, the fact that Bi is so much less than 0.04 suggests that particles associated 

with the higher end of the in situ concentration range (~ 150 mg/L) are acoustically 

more responsive (e.g., larger and/or denser) relative to those associated with the lower 

end of the in situ concentration range (~ 30 mg/L).

4.4.9. Uncertainties associated with lab and field-based estimates ofTSS

Error bars associated with the lab-based estimates o f total suspended sediment 

concentration (TSS) (Figures 4.9 and 4.10) are much smaller than those associated with 

the in situ field estimates ofTSS (Figure 4.11). In the lab, there were two independent 

measures ofTSS corresponding to each ADV burst (see Methods, Runs 4 and 5): (i) the 

amount o f sediment added to the mixing tank for each burst (corrected for incomplete 

mixing) and (ii) the corresponding pump sample taken from the tank at the ADV’s 

sampling height. The average absolute percent difference between these two 

independent estimates o f TSS, which was relatively small, was then used to set the size 

o f the error bars in Figures 4.9 and 4.10 (separately for the sand case and for the silty- 

clay case).

In the field there was only one independent estimate o f TSS for each burst, which was 

the pump sample collected at the height o f the ADV sampling volume. Although the 

filtering process is expected to be about as accurate with field samples as it was with lab 

samples, the temporal variability o f the concentration field itself is much greater for the
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in situ case. This is because the physical scale o f the dominant turbulent eddies is much 

larger in the field, and the suspended sediment concentration varies significantly as 

individual eddies pass the ROSE profiling system. Each ADV burst in the field lasted 

five minutes (each including thousands o f individual count samples), so the standard 

error on the mean ABS value for each burst is smaller than the symbols on Figure 4.11. 

However, the corresponding 0.5 liter pump sample lasted only a few seconds. So it 

represented only a small fraction of the time associated with each ADV burst. The 

“error” associated with the temporal variability unresolved by pumping is then 

approximately equal to the relatively large standard deviation of the ADV burst 

(translated into TSS units via use o f the overall regression).

4.4.10. ABS response to mixed sediments — summing sand plus mud

The regressions for the backscatter response to sand and mud individually (Figures 4.9 

and 4.10) cannot simply be summed to produce a calibration for the mixed population, 

because the individual count vs. concentration calibrations are in logspace, not linear 

space. When adding multiple acoustic sources registered in decibels or ADV counts, the 

units must first be transformed back to units o f acoustic power, added together in (non- 

logarithmic power units), and then the sum of the acoustic powers must be transformed 

back to dB or counts. Building from the definition of dB provided in standard acoustic 

texts (e.g., Hodges, 2010), and utilizing the relation that 1 count = N dB, where N is 

expected to be about 0.43 (Lohrmann, 2001; SonTek, 2001), it follows that (in the
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absence of attenuation) the backscatter in counts due to a mixture o f sand plus mud is 

given by

Counts sand+mud = (10/N) logio {io [̂ /10)Counts-S!“d] + 10[(N/1O)Coun,s-mudl } .

In the above equation, Counts sand and Counts_mUd are the expected backscatter values in 

counts for the component concentrations of sand and mud based on their individual 

calibrations.

The above relation for predicting the total counts expected in backscatter registered 

from AD Vs for varying proportions o f sand and mud in mixed sediment is relatively 

sensitive to the count-to-dB conversion parameter N. The literature value of N ~ 0.43 

for ADVs is only an approximate value; for example, Lorhmann (2001) suggests that N 

can vary from 0.40 to 0.47. Fortunately, the available low attenuation calibration plots 

of logio TSS versus counts for constant grain size (i.e., the laboratory silty-clay case in 

Figure 4.10) can be used to derive N directly. Since Counts ~ (10/N) logio P, and the 

linear regressions in Table 4.4 are fits to logio TSS ~ Bi Counts, it follows that for 

constant grain size, relatively low attenuation cases (for which P is proportional to 

TSS), N = 10 Bi. The laboratory silty-clay case in Table 4.4 then indicates that N ~ 0.57 

and N ~ 0.41 for the Nortek and SonTek models, respectively.
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Figure 4.12 displays an application of the above equation and N values to the mixed 

sediment calibration data (Run 6). The horizontal dashed lines are the count values 

expected from the mud alone and were set equal to the count values recorded before any 

sand was added to the tank. The sloping dashed lines indicate the calibration curves 

used in each case for sand component, initially defined by the lowest two “sand only” 

concentrations in Figure 4.9 (Run 5). (The other sand concentrations in Figure 4.9 were 

far higher than the sand concentrations used in the mixed calibration.) This initial 

choice of sand calibration (based on data from Run 5) worked well for the SonTek unit 

in Run 6, but not for the Nortek unit in Run 6. This is likely because the same SonTek 

ADV serial number was used in both Runs 5 and 6 (see Table 4.1), but different Nortek 

serial numbers were used. It appears that the original offset chosen for reference unit 

correction (based only on mud from Rims 1 through 3) was not accurate enough to 

“correct” the sand calibration from Run 5 for use in Run 6. The limitation in the 

reference adjustment for application to sand can be seen in Figure 4.7, where the two 

lowest sand calibration points fall an average of 5.1 counts to the right o f the best-fit 

line. An additional offset correction o f -5.1 counts was then defined to further correct 

the Nortek sand calibration for use in above equation for Counts sand+mud- This further 

adjusted calibration worked reasonably well, and the ultimate prediction of ABS for 

mixed sediment was consistently good to within about 3 counts or less (Figure 4.12).
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Figure 4.12. Addition of quartz sand (150-180 pm) to two silty clay background 
concentrations of 95 and 190 mg/l, respectively. Dashed lines represent expected response 
from mud and sand concentrations alone. Data points represent measured ABS responses to 
a series of sand concentrations added to mud (see Table 4.2B). Solid lines represent a 
logarithmic summation of the separate expected mud and sand responses (see text for 
details). A) Nortek Vector sensor VCH4921 (blue circles). B) SonTek ADVOcean sensor 
B336 (red stars). In each case, error bars on sand concentration are set equal to the percent 
uncertainty determined for sand in Figure 4.9.
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4.5 Summary and conclusions

The acoustic backscatter (ABS) signal registered by acoustic Doppler velocimeters 

(ADVs) is often empirically calibrated to represent suspended sediment concentration. 

However, little work has been done to date to quantify how well a given calibration 

works if determined for one ADV and applied to another relatively similar ADV. This 

study compared ABS responses to sand, mud, and mixed sediment in the lab and in situ 

among ten relatively similar ADV units: five 6-MHz Nortek Vector ADVs and five 5- 

MHz SonTek ADVOcean-Hydras. This approach allowed for an examination of the 

relative roles played by inter-vendor, intra-vendor, and sediment variability in 

determining the ABS response of these ADVs.

ABS measurements in counts (a unit proportional to decibels) as registered by the 

Nortek and SonTek instruments were compared, and sediment type was found to 

systematically affect ABS response for all o f the ADVs tested. ABS response to ~ 100 

mg/L of sediment was strongest for sand, then for mixed sand and mud, then for silty 

clay, and weakest for in situ muddy floes. If the ABS response in count units had been 

consistent across all of the instruments (i.e., if  there had been no intra-vendor 

variability), then all of the SonTek vs. Nortek ABS data would have fallen on a single 

1:1 line. If all the SonTeks and all the Norteks had been separately consistent (i.e., if 

there had been no intra-vendor variability), then all the ABS data would still have all
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followed a single (albeit non-l:l) line. However, the initial count values did not lie 

along a single line of any kind. Rather, clear offsets were apparent among the various 

instruments within both vendors. These clear offsets suggested that intra-vendor 

inconsistency might be significantly reduced by defining a reference unit for each 

vendor, and then subtracting or adding a constant number of counts to the output of 

each of the other units to increase consistency with that reference unit.

Before correcting for intra-vendor effects, the Nortek ADV Vectors tended to have a 

slightly more consistent ABS response among units o f the same model than was the 

case for the SonTek ADVOcean-Hydras. Among either the Nortek or the SonTek units, 

the pre-correction response was more similar for units that had been purchased together 

with consecutive manufacturer’s serial numbers. In the absence o f subsequent incidents 

requiring significant repair or modification, units manufactured together maintained 

remarkably consistent offsets (identical to within ~ 1 count) even seven years or longer 

after purchase. One of the instruments that had been repaired, however, had the most 

anomalous ABS offset of all, suggesting that different parts manufactured separately 

can significantly change a single unit’s reference power. Anti-fouling paint made a 

small but notable effect on the count offset for both manufacturers, reducing response 

on average by about 3 counts. This would cause a 1 to 4% negative bias in the total 

counts measured, depending on the suspended sediment size distribution and 

concentration, leading to an underestimation of the SPM concentration.
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A stock solution of mud derived from bed samples collected in the York River estuary 

was used to inter-compare the response o f all ten ADVs to similar -100 mg/L sediment 

suspensions. One of the ADVs from each vendor was defined as a reference unit, and 

the offsets in counts o f the other four ADVs from each vendor were adjusted (by +5 to -  

33 counts) so that the backscatter registered for the stock solution was made consistent. 

The offset corrections derived from the 2012 mud stock solution were then applied to a 

separately acquired and diverse group of muddy and sandy sediments, and the offset 

corrections did reasonably well. The adjusted ABS counts for all the SonTek vs. Nortek 

ADVs then largely lay along a single curve, within a spread o f about ±  5 counts. The 

common ABS curve did not have a constant 1:1 slope, however. Although the SonTek 

vs. Nortek ABS curve began with a slope o f -1:1 at low backscatter, at higher ABS, the 

response of the 5-MHz SonTek ADVs increased more rapidly than that of the 6-MHz 

Norteks, suggesting that the backscatter registered by the higher frequency Norteks was 

likely decreased more than the SonTeks due to a higher attenuation at 6 MHz.

Plots of the logio of concentration (logio C) vs. ABS clarified overall trends in 

attenuation and acoustic response to grain size. For both the SonTeks and Norteks, the 

backscatter registered in response to the two highest concentrations of sand (~ 0.8 to 1 

gram/L), clearly deviated from the trend associated with the lower sand concentrations. 

Even after removing these two highest, obviously attenuated readings, the remaining
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sand calibration for both instruments (for concentrations from -1 0  to 600 mg/L) was 

still significantly quadratic with values for high concentration mixture registering low 

relative to trend line obtained for low concentrations. In contrast, mud calibrations 

between ABS and logio C (from -20  to 700 mg/L) were not quadratic, providing less 

clear evidence of ABS attenuation. For silty mud, the slope of the lab calibration of 

logio C vs. ABS was close to the theoretical value o f -0 .4  as expected for a single, 

constant grain-size suspension, suggesting that the effective grain-size in the lab did not 

change with concentration. In the field, however, the calibration slope of logio C vs. 

ABS for in situ measurements of muddy floes was only about -0 .2 , which suggested a 

significant change in particle properties (such as grain size) with increasing C, and that 

more acoustically responsive particles were suspended at higher concentrations.

When calculating predicted ABS in counts in response to varying proportions of 

different grain sizes, the counts must first be transformed back to units o f acoustic 

power and added together in non-logarithmic units. Then the sum of the acoustic 

powers must be transformed back to logarithmic counts. This transformation procedure 

for combining predicted counts for multiple grain sizes was found to be sensitive to the 

ADV count-to-dB conversion parameter and also to instrument-specific calibrations for 

the component grain sizes. Nonetheless, with knowledge of the count-to-dB conversion 

parameter and access to grain-size specific ABS calibrations, it is indeed possible to use
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component calibrations to predict the expected acoustic response of both SonTek and 

Nortek ADVs to a mixed grain-size population.
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CHAPTER 5

In  Situ  Characterization of Estuarine Suspended in the Presence of M uddy FIocs
and Pellets.*

By Grace M. Cartwright, Carl T. Friedrichs, and Lawrence P. Sanford

*Published as: Cartwright, G.M., C.T. Friedrichs, and L.P. Sanford, 2011. In situ 
characterization of estuarine suspended sediment in the presence of muddy floes and 
pellets. In: P. Wang, J.D. Rosati, and T.M. Roberts (eds.), Coastal Sediments 2011, 
World Scientific, ISBN 978-981-4355-52-0, p. 642-655.
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5.1 Abstract

Observations are presented from a benthic observatory in the middle reaches of the 
York River estuary, VA, USA, that show evidence for both muddy floes and pellets in 
the lower 1 m of the water column. This study combines in situ time series estimates of 
(i) volume concentration and particle size distribution from a Laser In Situ Scattering 
Transmisometer (LISST) (for 2.5-500 pm) and a high-definition particle camera (for 20 
pm to 20 mm), and (ii) water velocity, turbulent stress, mass concentration and settling 
velocity derived from an Acoustic Doppler Velocimeter (ADV). Mass concentration, 
mass settling velocity and the abundant 88 pm size class are in phase with velocity and 
stress, consistent with suspension of relatively dense, rapidly settling and resilient ~90 
pm pellets. Volume concentration o f the abundant 280 pm class peaks well after stress 
and velocity begin to decrease, consistent with the formation o f lower density, slowly 
settling and fragile -300 pm floes.

5.2 Introduction

At moderate sediment concentrations (i.e., neglecting sediment-induced convection or 

hindered settling), the settling velocity o f a mud particle o f known diameter (D ) and 

density (p) can be reasonably predicted based on well-established relationships between 

the force of gravity acting on the particle and the opposing fluid resistance, such that the 

fall velocity, ws -  D p  (e.g., Dyer, 1984). The much greater challenge is in predicting D 

and p. If natural mud settled based on the D  and p  o f its component mineral grains 

(typical median mineral grain -5-10 pm in muddy coastal environments), then we 

would expect < to «  0.1 mm/s. In fact, ws for estuarine/coastal mud in relatively 

turbid (c -  0(100) mg/liter) but biologically active settings is usually observed to be 

much higher, on the order of 0.1 to 10 mm/s or more (Andersen, 2001; Sanford et al.,
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2005). This is a result of the packaging of individual grains into much larger particles, 

namely floes and pellets.

(a) Floe dominated conditions (b) Pellet dominated conditions
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Figure 5.1. As turbulence decreases (i.e., as A increases) (a) D  increases under floc- 
dominated conditions, but (b) D  decreases under pellet-dominated conditions. LISST 
observations from the York River Estuary and Chesapeake Bay, modified from Fugate 
& Friedrichs (2003).

Muddy floes have open structures and form when moderate turbulent shear and/or 

differential settling brings smaller mud particles close enough together for molecular 

attraction and/or polymeric binding to create physical adhesion. Significant progress has 

been made in the last decade in advancing theoretical and conceptual arguments 

regarding the controls on floe D  and p, the two quantities which together determine floe 

settling velocity (e.g., Hill et al., 2001; Fugate & Friedrichs, 2002; Winterwerp, 2002; 

Son and Hsu, 2008; Pejrup & Mikkelsen, 2010).
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For estuarine and coastal environments, recent parameterizations (e.g., Winterwerp et 

al., 2006) suggest that the median D  o f muddy floes should change with time, 

concentration and velocity shear, adjusting towards an equilibrium size constrained by 

the smallest turbulence length scale, A, with A (the Kolmogorov microscale) inversely 

related to turbulent intensity (Fig. 5.1a). When turbulence is weak and A large, floe size 

may respond instead to self-induced local shear generated by particle settling (Hill et 

al., 2001). Winterwerp et al. (2006) suggest floes will tend to be near their equilibrium 

size o f D ~ O(A) only if the floe adjustment time scale, 7/, is less than the amount of 

time the floe is exposed to a given A. Otherwise, the median floe D  will lag behind 

changes in A. Winterwerp et al. (2006) further suggest that Tf is likely to increase (i.e., 

the sensitivity of D  to turbulence decreases) with greater organic content and/or mineral 

cohesion, and 7/ will decrease with greater suspended sediment concentration C  and/or 

turbulence, assuming c isn’t large enough to affect A. Once D  is known, p  as a function 

of D  can be estimated for floes using fractal theory tuned by observations (Winterwerp 

et al., 2006). Parameterizations suggest that more porous floes tend to occur as organic 

content increases, floe size increases, and/or primary component particle size decreases. 

As floes grow, increasing D  usually overwhelms decreasing p  in determining ws. Thus, 

(in the absence of very high organic content) ws for muddy floes generally increases 

with floe size, but with a much weaker than quadratic dependence on size.
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Muddy pellets, in contrast, are significantly denser than floes and are formed by 

mechanical compaction. This compaction commonly occurs during processing by 

deposit- and suspension-feeding benthic organisms (Taghon et al., 1984; Wheatcroft et 

al., 2007). Pellets are also formed by zooplankton, though often with higher organic 

content (and lower density) than benthic pellets. The sediment surface in moderately 

turbid (C ~ 0(100) mg/liter) temperate estuaries and shelves with high organic loadings 

is commonly 10 to 50% or more biogenetic pellets (Zabawa, 1978; Andersen, 2001; 

Drake et al., 2002). Biogenic pellets can have D  ranging from 10s to 1000s of pm.

Pellet-like muddy aggregates may also be formed abioticly, for example through 

compaction of the sediment bed during consolidation, followed by exposure and 

remobilization during energetic events or dredging (Smith & Friedrichs, 2010). 

Interestingly, recent laboratory experiments (Schieber & Yawar, 2009) and field erosion 

tests (Debnath et al., 2007) have shown significant bedload transport o f cohesive 

sediments. Such transport is possible only if  the settling speed of the transported 

particles is high and their structure is robust, i.e., if they are relatively tightly packed 

aggregates. At higher stresses, the fraction transported as bedload in the observations of 

Debnath et al. (2007) decreased, presumably as the aggregates were suspended. For 

simplicity, in this paper we combine biogenic pellets and bed aggregates into a single 

particle class distinguished by its behavior rather than its origin, and refer to them all as 

pellets.
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Although the size distribution of the constituent mineral grains within floes and pellets 

may be nearly identical (Andersen, 2001), ws for muddy pellets is typically much higher 

than that for similar diameter floes because o f pellets’ higher p  (Edelveng & Austen, 

1997). Thus the effective settling velocity o f the total suspended mud population can be 

notably increased by the presence o f pellets, even if  floes form the majority o f the 

particle volume in suspension (Wheatcroft & Butman, 1997). Furthermore, the expected 

relationship between ws and energetic turbulence may be opposite to that associated 

with floes (Fig. 5.1b), since greater bed stress may suspend increasingly larger, robust 

pellets that readily resist turbulent disruption (Andersen, 2001; Fugate & Friedrichs, 

2003).

In this paper, we present observations from a site in the middle reaches o f the York 

River, VA, USA, that has been inferred to seasonally alternate between dominance by 

muddy floes or pellets depending on system-scale circulation (Dickhut et al., 2009). In 

the data presented here, we present evidence for the simultaneous presence of both 

particle types in the lower 1 m o f the water column at this site. Combining time series 

estimates of volume concentration and particle size distribution from a LISST (2.5-500 

pm) and a particle camera (20-20,000 pm), and ADV-derived turbulent stress, mass 

concentration, and settling velocity, we demonstrate changes in particle properties and 

behavior that are consistent with the alternating influence o f floes and pellets within 

individual tidal cycles.
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Figure 5.2. Location of MUDBED benthic tripods (indicated by “B”) within the 
VIMS/CBNERR Observing system. X-radiograph images from cores collected along 
the York River estuaiy are courtesy o f L. Schaffner. The “physical site”, in the Clay 
Bank area, is the study site for this paper.

5.3 Study Area

The study site (Fig. 5.2) is one of two National Science Foundation Multi-Disciplinary 

Benthic Exchange Dynamics (MUDBED) array locations (Friedrichs et al., 2008) 

nested within the much larger VIMS/CBNERR observing system. It is located in the 

Clay Bank region of the York River estuary, a tidal tributary o f the Chesapeake Bay.
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The tripod was located in the 5-m deep secondary channel of the York where the tidal 

velocity a meter above the bed is 0(50  cm/s), suspended sediment concentration is 

0(100 mg/L), and the seabed is >75% mud. The intensity of sediment transport in the 

central York favors abundant pellet-producing deposit feeders and extensive sediment 

flocculation (Schaffner et al., 2001). Rodriguez-Calderon (2010) documented 

widespread occurrence of resilient muddy pellets in the study area, seasonally 

accounting for up to 30% of the upper seabed.

Figure 5.3. The tripod in the foreground shows bio-fouling after having been deployed for 3 
months. A cleaned and fully equipped tripod on the R/V Elis Olsson (background) is ready for 
deployment.
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5.4 Methods

ADV. LISSTand CTD Benthic Tripod

A 1-m tall tripod equipped with an ADV, a LISST, a Conductivity-Temperature-Depth 

sensor (CTD) and a Serial to Ethernet convertor (S2E) (Fig. 5.3) was deployed on July 

22, 2009 and retrieved on October 21, 2009. The ADV and LISST data were passed 

through the S2E and transmitted back to VIMS real-time (Cartwright et al., 2009). 

Communication problems prevented ADV data from being recorded before July 27. A 

25-hour period starting July 28, was chosen in an effort to avoid interference by bio- 

fouling on the LISST (see Fig. 5.3) and to coincide with the deployment of the benthic 

camera. The ADV (a SonTek 5 MHz Ocean probe) was mounted in a downward 

looking position such that its sampling volume (18 cm below the sensor) was 35 cm 

above the seabed (cmab). Two minute bursts o f 10 Hz data were collected every 15 

min. A Sequoia LISST-100X (2.5 to 500 pm particle size distribution range) was 

mounted horizontally, 85 cmab. A LISST burst, collected over 100 seconds once every 

15 min, consists o f 100 records that are each 10 measurement averages (i.e., 1000 total 

measurements contribute to each burst average).

"Calibration cruises" consisting of 6 hourly profiles (bracketing flood or ebb tide) were 

conducted along the same isobath, within ~100 m, o f almost every tripod deployed over 

the duration of the MUDBED experiment. The profiler was equipped with an identical 

model ADV, LISST and CTD along with a high capacity submersible pump. A
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regression curve derived from the hundreds o f pump samples o f  total suspended solids 

(TSS) collected during these calibration cruises was used to convert ADV backscatter to 

suspended sediment mass concentration (Cartwright et al., 2009).

Settling velocity was estimated from the ADV tripod data by assuming an approximate 

local balance between downward settling by gravity and upward turbulent transport by 

Reynolds flux, i.e., < O w s -  < C w ’>, where C is suspended mass concentration, ws is 

settling velocity, w is vertical water velocity, primes indicate within burst fluctuations, 

and < > indicates a burst average (Fugate & Friedrichs, 2002). Data were fit to this 

relation in two ways, one utilizing the slope o f a regression between < 0  and <C'w’> 

over 12 or more bursts, and the other by calculating < C V ’> divided by ( < 0  - Cbkgd) 

for each burst, where Cbkgd is an estimate o f the non-settling background concentration 

present throughout the entire time series.

RIPS Cam Underwater Particle Camera System

A Remote In situ Particle Settling Camera (RIPSCam), developed specifically for the 

MUDBED project (Fig. 5.4), was deployed on a bottom frame -100 m from the ADV 

tripod site in June 2009. A surface buoy was anchored nearby to supply solar power to 

the RIPSCam batteries and to transmit data to and from a land-based ftp server via cell 

modem. The buoy and camera were connected by an electro-optical underwater 

Ethernet cable. The on-bottom package contained a Canon EOS XSi 12 MP digital SLR 

camera with a pair of red LED line lights connected to a strobe controller to provide a
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focused, controllably flashed light sheet. The light sheet illuminated the center of a clear 

acrylic 7-cm ID vertical tube, approximately 50 cm below the tube opening at the top of 

the bottom frame, which was approximately 0.9 mab. A pneumatic knife valve opened 

and closed across the top o f the tube to admit external particles. The camera, the 

strobes, and the knife valve were controlled by an internal micro-computer running 

Windows XP. The computer also collected and stored the particle images, 

communicated with the surface buoy, and controlled sampling and remote 

communications. Sampling was initiated at approximately the top o f each hour.

During the first 7 weeks of the deployment, the knife valve was opened several minutes 

before sampling and then closed just prior to sampling to limit internal motion in the 

tube. During sampling, a 2-sec time exposure image was first collected with the strobes 

flashed at 0.35-sec intervals. This was followed by a sequence o f 5 flash exposures at 1- 

sec intervals. Each image frame was 21 mm high, 31.5 mm wide, and the depth of focus 

was approximately 1 mm. Calcium hypochlorite hydrated pellets in a mesh bag were 

added to the bottom of the settling tube (approximately 0.25 m below the sample 

section) to limit biofouling. During instrument servicing on July 28, the knife valve was 

found to be damaged and was left in the open position for the remaining 4 weeks o f the 

deployment.
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Data presented here are from the first 3 days of the final RIPSCam deployment during 

MUDBED, immediately following the July 28 servicing. Analysis to date has been 

limited to particle size distribution and volume concentration estimates using Matlab 

software shared by O. Mikkelsen and described in Mikkelsen et al. (2004). Settling 

velocity estimates will require further development o f software to remove background 

fluid motion.

5.5 Results and Discussion

Figure 5.5a displays suspended sediment mass concentration as determined from ADV 

backscatter, while Fig. 5.5b displays volume concentration as provided by the LISST 

and as determined from image analysis. The volume concentration as measured by the 

LISST is a relative value because our unit’s factory settings have not been lab tested 

by our group. The volume concentration measured by the RIPScam is also somewhat 

uncertain because the exact focal depth o f the images is unknown (1 mm was used). In 

Fig. 6b the RIPScam output for volume concentration was divided by a factor of 10 in 

order to be easily seen on the same plot with the LISST results. It should also be kept in 

mind that the LISST misses the larger end o f the particle spectrum, while the RIPScam 

misses the smaller end. Our future work will include lab calibration o f our LISST and 

cross-calibration of the two instruments based on matching o f the overlapping portion 

of
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the size spectrum. A composite size distribution of the entire range of particle sizes can 

then be derived.

The time series observed for suspended volume concentration is markedly different 

from that observed for suspended mass concentration. The suspended mass 

concentration determined from the ADV is generally in phase with the observed current 

speed and Reynold’s stress displayed in Fig. 5.5c,d. This suggests that the total mass in 

suspension is responding directly to bottom stress. (It should be kept in mind that the 

stress measurements from the ADV are relatively noisy because the individual 10 Hz 

ADV bursts were limited to 2 minutes in duration in order to allow transmission back to 

VIMS between bursts.) During three o f the four periods o f peak currents, however, the 

peak volume concentration from the LISST lagged the peak mass concentration in time. 

These distinct patterns for mass and volume concentration can be explained by the 

presence of both higher density pellets and lower density floes.

During each tidal cycle, as stress first began to decrease following peak current speed, 

the growth of large low-density floes likely “captured” additional particle volume (i.e., 

water) more quickly than the smaller, higher density particles settled out. The results of 

the formation of floes in concert with the settling o f smaller but heavier particles as
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stress decreased is especially clear in the time series o f particle size distribution as 

recorded by both the LISST and the RIPScam (Fig. 5.6b,c). At each time that the ADV 

indicates a drop in mass concentration, the peak particle size measured by both the 

LISST and the RIPscam increases dramatically, rapidly shifting from a peak size 

corresponding to about D50 to a peak size corresponding to about Dm (where Dx 

indicates the diameter with X% o f total volume contained in particles smaller than Dx). 

The combined trend of evolving volume concentration and size distribution is nicely 

seen in the color shaded time series from the LISST (Fig. 5.6a). The hotter colored (red 

and yellow), high volume concentration region of the color-contour plot shifts rapidly 

toward larger particles during each tidal cycle as stress decreases.

Slack tide (lowest stress, lowest concentrations) are when the largest floes form. Since 

particle volume goes like D3, a single very large floe (>1000 pm) accounts for as much 

volume as > 1 0 0 0  1 0 0 -pm particles and a single very large floe can account for a large 

portion o f the total volume concentration measured by the camera (Fig. 5.7a). If one 

examines the lower “peak” in Fig. 5.7b, one sees that the shape better agrees with what 

the LISST measures (LISST Dm, LISST peak, and the RIPScam D\e all measure around 

300±15 pm. During each slack tide the RIPScam Die agrees best with what the LISST 

Peak and Dm found, suggesting that the majority o f floes in suspension are around this 

size with occasional larger ones present. During high stress periods when C increases, 

the LISST distribution broadens (Fig. 5.7b). The RIPScam peak (201 pm) tends to 

agree with the LISST Dm (218 pm), but the LISST peak is now closer to the LISST D 50
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(104 and 85 pm respectively). This could possibly indicate that the floes present at slack 

tide (-300 pm) have reduced in size to -200 pm and a second population of more 

resilient, denser particles (-95 pm) are now present. The tidally-varying pattern of ws on 

the ADV is consistent with the presence of relatively dense pellets in addition to floes.
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Although the best-fit overall settling velocity for the entire observation period is about 

0.9 mm/s (Fig. 5.8a), estimates of time-varying instantaneous settling velocity (Fig. 

5.8b) tend to show best-fit ws based on mass concentration increasing more or less in 

phase with peak tidal flow. In calculating instantaneous ws, we have assumed that Cbkgd 

-  36 mg/L, which is the x-intercept in Fig. 5.8. To avoid extreme sensitivity o f ws to 

small values of (<C> -  Cbkgd), only bursts with < 0  > 50 mg/L were included in the 

instantaneous ws calculations. Although the signal is somewhat noisy, settling velocity 

estimated for individual bursts is positively correlated at 95% confidence with both 

current speed and Reynolds stress. This pattern is even clearer if one uses a running 

best-fit slope to estimate time variations in settling velocity (Fig. 5.8b). Having total 

effective increase with bed stress is consistent with resuspension of relatively dense, 

resilient pellets with individual settling velocities greater than the floes. As more and/or 

heavier pellets are suspended with greater bed stress, the total effective settling velocity 

of floes plus pellets will increase. If the suspended sediment population were only 

composed of floes, one would expect settling velocity to decrease with sufficiently high 

bed stress, because higher stress would tend to tear floes apart.

A closer examination of the volume concentration time series from the LISST for 

specific size classes further supports the conclusion that both floes and pellets are 

present. Fig. 5.8c displays a time series of volume concentration for the LISST bins
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centered at 88 and 280 pm, the size classes hypothesized from Fig. 5.7 to represent 

resilient, denser pellets and fragile, less dense floes, respectively. The volume 

concentration of the 88 pm bin is in phase with velocity, stress, mass concentration, and 

effective settling velocity, consistent with the resuspension and rapid settling of pellets. 

In contrast, the volume of the 280 pm size class becomes largest as velocity and stress 

first begin to rapidly decrease, consistent with the growth of larger floes. The volume 

concentration at 280 pm drops once more around slack because these larger floes 

eventually settle out (albeit slowly) as stress drops to zero. The floe concentration does 

not rise again as stress and velocity first increase because they are ripped apart more 

quickly than they are resuspended.
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CHAPTER 6

Sediment settling velocities from Acoustic Doppler Velocimeters and settling 

tubes: agreement over a range of particle types and hydrodynamic conditions*

By Grace M. Cartwright, Carl T. Friedrichs, and S. Jarrell Smith

* Submitted to Geo-Marine Letters
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6.1 Abstract

Acoustic Doppler Velocimeters (ADVs) can be used to measure (i) relatively large (~cm/s) 
sediment settling velocities (ws) by direct Doppler measurement of sediment motion and (ii) 
relatively small ws (~mm/s) by assuming a Rouse balance between upward Reynolds flux and 
downward settling. Advantages of using an ADV to estimate ws include that the ADV does not 
impact turbulence in the sampling volume, it isresilient to high energy and biofouling. For the 
two methods examined here, they are relatively insensitive to precise calibration o f acoustic 
backscatter for sediment concentration. In the past, however, these ADV-based estimates o f ws 
had not been confirmed by independent measurements o f ws using other instruments observing 
the same particle populations. Here, independent observations o f ws utilizing gravimetric and 
video settling tubes are shown to be consistent with these two types of ADV-based ws 
measurements for large and for small ws, respectively. Direct Doppler-based ADV estimates of 
ws were collected for sand in a laboratory mixing tank and confirmed by a Rapid Sediment 
Analyzer gravimetric settling column. Rouse-balance ADV estimates were collected in the York 
River estuary for muddy floes and confirmed in situ  by a particle tracking/particle image 
velocimetry settling column. These lab and field-based observations both demonstrate that, in 
the absence of significant particle aggregation/disaggregation, (i) measurement o f ws and (ii) ws 
itself are both relatively insensitive to the local magnitude of fluid turbulence for ws up to 
several cm/s.

6.2 Introduction

Particle settling velocity, ws, is defined as the gravity-induced vertical settling speed 

(treated here as a magnitude such that ws > 0) o f a sediment particle relative to the water 

parcel immediately around it. The nature o f suspended sediment transport is extremely 

sensitive to ws. Sediment particles with small ws tend to be well mixed and occur higher 

in the water column than heavier particles. Along rivers and in coastal environments, 

sediment is commonly sorted according to ws (McCave and Hall, 2006), and convergent 

transport mechanisms, such as estuarine circulation, tend to favor the localized trapping 

of particles with specific ranges of ws (Jay et al., 2007). Numerical models of suspended 

sediment transport are exceedingly sensitive to the specification of ws, and ws is often 

the dominant parameter determining the distance sediment travels in such simulations 

(Harris et al., 2008).

A key question in the observational and theoretical application of particle settling 

velocity is whether and to what degree ws is sensitive to turbulence in the surrounding
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fluid. When a sediment population remains in suspension, it is generally because non­

zero correlations between turbulent velocity and turbulent fluctuations in concentration 

compensate for the continual downward movement of individual particles relative to 

local fluid. But the classical method for measuring ws, namely use o f a particle settling 

column, relies on relatively still water (Mantovanelli and Ridd, 2006). So if  ws itself 

depends strongly on the intensity o f surrounding turbulence, this sensitivity may 

undermine the assumptions behind its very measurement. Note that here we define ws as 

particle settling velocity within a reference frame moving with the local turbulent 

velocity. So “vortex trapping” and “fast tracking” of individual particles by eddies, 

considered major affects on ws by some authors (Kawanisi and Shiozaki 2008), do not 

necessarily impact ws by our definition.

The Acoustic Doppler Velocimeter (ADV) provides an attractive tool for estimating ws 

in situ while fully accounting for the possible effect of turbulent eddies. Unlike 

sediment settling columns, an ADV makes measurement at the the ambient turbulence 

of the in situ water parcel it measures. Besides providing an opportunity to estimate ws, 

AD Vs by design provide direct measurements o f turbulent velocity (Voulgaris and 

Trowbridge 1998), and their acoustic backscatter can be calibrated for suspended mass 

concentration (Voulgaris and Meyers 2004). Unlike some other non-intrusive methods 

for documenting turbulent conditions, such as Laser Doppler Velocimetry or Particle 

Imaging Velocimetry, ADVs are highly resistant to biofouling, and can easily be 

deployed in highly energetic conditions for up to months at a time (Friedrichs et al. 

2008).

Although ADV-based methods for determining ws are theoretically sensible and appear 

to provide reasonable values, they have not previously been confirmed by independent 

observations of ws using other instruments observing the same particle populations. In 

the present study, independent observations o f ws utilizing settling tubes are compared 

to estimates of ws from ADVs based on (i) direct Doppler observations of sediment

195



velocity (c.f. Kawanisi and Shiozaki 2008) and (ii) assumption o f  a Rouse balance (c.f. 

Fugate and Friedrichs 2002). Consistency between the settling column and ADV-based 

estimates o f ws in our study ultimately suggest that, in the absence o f significant particle 

aggregation/disaggregation, measurement o f ws by both methods are relatively 

insensitive to the local intensity of fluid turbulence, at least for w s up to several cm/s.

6 3  Methods

Settling Columns

The classic method for measuring ws is through use o f various types o f settling tubes. 

Settling tubes used in the past for documenting ws for non-cohesive, disaggregated 

and/or flocculated sediment particles include simple graduated cylinders used for 

laboratory pipette analys, Owen tubes on ship decks, to in situ settling columns

Figure 6.1 Rapid Sand Analyzer housed at the U.S. Army Coips o f Engineers Field 
Research Facility in Duck, NC, USA.
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monitored by video, laser diffraction or holography, and columns which directly 

incorporate a balance for weighing deposited sediment (Mantovanelli and Ridd 2006). 

Two types of settling columns were employed in this study: for sand, a Rapid Sediment 

Analyzer incorporating an underwater balance tray, and for mud, a video-based particle 

tracking/particle imaging velocimetry (PIV) system.

Rapid Sediment Analyzer

The Rapid Sediment Analyzer (RSA) used for this project (Figure 6.1) is housed at the 

U.S. Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, USA, and is 

based on the design of Halka et al. (1980). The RSA is a 12-cm inside-diameter acrylic 

column filled with tap water. When the pan is released, a computer records a time series 

of the change in weight o f sediment collected on the weight dish suspended from the 

balance by a wire 50 cm below the drop pan. The time-series along with the known 

distance between the drop pan and the weight dish then provides a distribution of 

settling velocities for the sample. The median (50th percentile) settling velocity (wsso) 

within that distribution is then taken to be the characteristic ws for that sample.

The sediment placed in the RSA for this experiment was derived from commercial 

quartz sand which was then sorted into 6 size classes using standard laboratory sieves 

ranging from 4 phi (63pm) to 2.5 phi (150 pm) using 0.25 phi graduations. A Ro-Tap 

shaker was first applied to the complete stack of sieves for 30 minutes. Next, the sand 

from each size class was individually shaken through all the sieves a second time for an 

additional 45 minutes in an effort to make sure what was captured on each sieve was 

only sand from that sieve size to a quarter phi size larger.

Each sand size class prepared as described above was passed though the FRF RSA in 

duplicate or triplicate. For each sample, approximately 0.3 g o f sand was placed on the 

drop pan. Using less than a 0.5 g sample permits grains to settle at distances in excess of
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two grain diameters from each other so they settle without acceleration or deceleration 

associated with grain-to-grain interactions (Sanford and Swift, 1971). The balance was 

tared just prior to each release o f sand from the drop pan. For the FRF RSA, the timing 

software was started at the same time a button was pushed to mechanically release the 

drop pan to disperse the sand.

Particle Tracking/PIV Video Camera

The particle tracking/PIV settling column utilized here (Figure 6.2), known as the 

Particle Imaging Camera System (PICS), was developed by Smith (2010) and Smith 

and Friedrichs (2011, 2013). PICS includes a 5-cm inside-diameter chamber that can be 

rotated horizontally (Figure 6.2b) so that the ambient current flows through until a 

sample is captured by closing ball valves at each end. After a sample is collected, the 

chamber is mechanically turned to a vertical position to become a settling column.

Figure 6.2 A) VIMS profiler indicating the position o f the PICS video settling column 
and the Sontek ADV; B) PICS schematic indicating sample collection and image 
analysis positions; C) schematic o f camera, settling column cross section, and laser 
lighting.

Laser source

settling column

mm light sheet

Top View
Laser source
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During periods of weak currents (< ~ 15 cm/s), the sample is collected by keeping the 

open column in a vertical position as it is lowered to the desired depth and then closing 

the ball valves. Once the chamber is closed, a laser diode light passes across the settling 

column, providing a 1-mm thick sheet o f light three-quarters o f  the way down the 1-m 

long column (Figure 6.2c). Turbulence within the column is allowed to dissipate for 

approximately 20 sec, and a 30-sec image sequence is collected at 10 frames per 

second. The digital video camera within the PICS is a Prosilica/AVT GC1380 with 

1024x1380 pixels which images a region 14-mm wide by 10-mm high by 1-mm thick, 

such that each pixel is 10 pm across. A new water sample can be imaged as often as 

every two minutes.

Particles large enough to be accurately characterized in terms o f  both settling velocity 

and size (diameter, d > 30 pm) are tracked by particle tracking velocimetry (PTV) 

methods described by Smith and Friedrichs (2013). The automated process o f tracking 

the particles allows ws to be determined for thousands of particles during each 30-sec 

image sequence. The smallest detected particles (d < 30 pm) are used as PIV tracers to

Particle
Fluid
Net

-3 t------------------------------------------------------------------------------- :--------- ;-------:
0 1 2  3 4 5 6 7  8 9

Time (sec)
Figure 6.3 Example in situ time-series velocities derived from tracking of a 200 pm 
particle within the video settling column. Vectors indicate particle velocity (red 
lines), fluid velocity derived from PIV applied to surrounding ~  20 pm particles (blue 
lines), and net particle settling velocity (black lines) (modified from Smith, 2010).
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estimate the local fluid velocity within the settling tube (Figure 6.3). The local fluid 

velocity is then subtracted from the PTV motion each larger tracked particle to 

determine the net ws of each larger particle (Figure 6.3). The ws50 for all the particles 

with d > 30 pm is then taken to be the characteristic ws for that sample. Note that wS5o 

determined by the PICS thus characterizes an operationally defined “settling 

component” of the total particle population and neglects the contribution of what here is 

operationally defined as the non-settling “wash load”.

Figure 6.4 A) VIMS sediment mixing tank, with suspended sediment sampling tubes 
highlighted; B) example placement o f ADV in chamber, with pump circulation 
outlets highlighted.

200



Acoustic Doppler Velocimeter

The type of ADV used for all the measurements presented here was the 5 MHz SonTek 

ADVOcean-Hydra model (Figures 6.2A and 6.4). Like ADVs in general (Kraus et al. 

1994), it utilizes a bistatic design, i.e., separate acoustic transducers to transmit and 

receive sound waves. The geometry of the central transmitter and three angled receivers 

results in the sample volume for the ADVOcean-Hydra being 18 cm below the 

transmitter. The sampling volume is a cylinder with a diameter roughly equal to that of 

the 15-mm wide transmit ceramic. The cylinder’s height is controlled by the SonTek 

software to be 18±1 mm, giving an overall sample volume o f ~ 2 cm3 (SonTek 2001).

Under typical operating conditions, the noise associated with individual horizontal 

velocity estimates at a 25 Hz sampling rate is 1% o f the horizontal velocity range 

setting, i.e., ±1 cm/s when using the ±100 cm/s setting (SonTek 2001). Assuming the 

noise to be random, the standard error on a mean velocity averaged over 1 sec drops to 

only 2 mm/s. Comparison to independently calibrated currents indicates that errors in 

longer duration ADV mean velocity drops to less than 0.5 mm/s, and ADV-derived 

mean Reynolds stress measured in a laboratory flume is accurate to within 1% 

(Voulgaris and Trowbridge 1998).

Because of the geometry of the ADV, individual vertical velocity measurements 

(defined as perpendicular to the face o f the transmit ceramic), are expected to have 30 

times less noise than individual horizontal velocity measurements (Voulgaris and 

Trowbridge 1998). The especially high accuracy in ADV measurements o f vertical 

velocity is well suited to estimating ws as described below. O f course, one must 

remember that it is the velocity of the acoustic scatterers that is actually being measured 

by the ADV, not simply the water velocity. So for the case o f scatterers dominated by 

negatively buoyant sediment, the vertical velocity recorded by the ADV is actually w -  

ws, where w is the vertical component o f the fluid velocity, and ws is the settling
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velocity o f the scatterers. (There is a minus sign in front o f ws here because ws is 

defined as being positive downward.)

Direct Doppler Method and Mixing Tank Set-up

If the vertical velocity of the fluid, w, can be independently constrained to within an 

error smaller than ws, then the total observation o f w -  ws provided by the ADV can be 

used to estimate ws. It has long been recognized that where zooplankton are abundant, 

and the time-averaged value of w is sufficiently small, the vertical component of 

acoustic Doppler velocity can be used to measure the 0(cm /s) vertical migration speed 

of the zooplankton (Buchholz et al., 1995; Smyth, 2006). More recently, Kawanisi and 

Shiozaki (2008) used neutrally-buoyant tracer particles to measure w such that ADV 

response to the occasional passage of clouds o f negatively buoyant, settling particles 

could be accurately determined from the measurement o f total w -  ws. In this paper we 

demonstrate a direct Doppler method for measuring sand settling velocity that infers ws 

by (i) spatially mapping w -  ws over a horizontal cross-section o f a mixing tank and (ii) 

applying conservation of water mass to subtract out w.

The VIMS sediment mixing tank (Figure 6.4A) is 1.5-m tall, square in cross-section, 

with an inside width of 31.6 cm, and tapers at its base to facilitate the return o f sediment 

to be pumped back to its upper section. The design of the tank is based on a similar 

chamber developed at the University o f East Anglia, UK (Rehman and Vincent 1990). 

A 44 liter/minute Cal Pump MS900, which is kept cool in a separate water bath, powers 

the circulation o f water in the tank. After passing through the pump, tank water is re­

circulated through a four-way splitter to four jet outlets (Figure 6.4B), one centered on 

each tank wall, 25 cm below the top o f the tank. The water jets meet forcefully in the 

center o f the tank, level with the outlets. Once the jets converge, the dominant flow is 

downward toward the bottom of the tank, but some o f the sediment is carried above the 

level o f the outlet tubes by a component o f upward flow also produced at the jet
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convergence point. Sliding sampling tubes situated along one side o f the tank can be 

pushed in to the center of the chamber to allow the collection o f water samples (Figure 

6.4A).

For the laboratory-based, direct Doppler measurements o f w -  ws, a SonTek 

ADVOcean-Hydra was mounted in a downward looking position at the top of the VIMS 

sediment mixing tank (Figure 6.4). The ADV was clamped to a plate that was, in turn, 

clamped to a second plate such that adjustment of the plates could position the ADV 

step-by-step through a horizontal grid o f measurement positions. A grid was created 

across the top of the chamber, with six locations (3 cm apart) along the x-axis and six 

location (3 cm apart) along the y-axis, for a total o f 36 positions. Once sand of a given 

size class had been added to the tank, a 10-minute burst with a sampling rate o f 10 Hz 

was collected at each of these grid points.

This procedure was repeated (with the tank drained and refilled in between) for each of 

the six sand size classes described above in the RSA section. For all but one size class, 

enough sand was added to the 118-liter tank in order to bring the tank sand 

concentration to approximately 200 mg/L. The exception was the 75-mm class, for 

which there was only enough sand available to bring the concentration to -120 mg/L. 

Finally, the spatial pattern of vertical flow observed by the ADV was interpolated over 

the entire horizontal “slice” o f the tank, and conservation of water mass was used to 

remove w from the measurements o f w -  ws (see Results section).

Reynolds Flux Method and Field Experiment

For ws < ~ 1 mm/s, direct Doppler resolution o f ws is problematic, but a representative 

ws may still be inferred by assuming a balance between downward settling and upward 

Reynolds flux, i.e., a Rouse balance. Assuming steady, horizontally homogeneous flow,
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with zero mean vertical velocity and a single particle type (size, shape, and density) in 

suspension, it follows that

ws <C> = <w’C ’> , (6.1)

where C is suspended sediment mass concentration, primes indicate turbulent 

fluctuations, and < > indicates a time average (e.g., McLean 1992). Thanks to it’s rapid 

sampling rate and measurement o f both velocity (via Doppler Shift) and concentration 

(via backscatter intensity), the ADV provides resolution o f turbulent fluctuations in both 

velocity and concentration (Fugate and Friedrichs 2002), so ws in (6.1) can ideally be 

solved for immediately. But natural muddy suspensions, even when reasonably steady 

and homogenous, usually contain a spectrum o f particle types, including a significant, 

non-settling “wash load” that is still caught on filters when using water samples to 

calibrate acoustic backscatter for in situ C.

Assuming that C in (6.1) can be usefully described as being composed of a washload 

component ( C w a s h )  with (effectively) zero settling velocity plus a settling component 

(Csett) with a characteristic mean settling velocity, ws, the balance in Eq. (6.1) becomes 

ws Csett = <w ’Csett’>- However, ADV backscatter measures C = Csett + Cwash, not just 

C s e t t -  By definition, C w as h ’ «  C se t t ’ ,  since C w a s h  is much better mixed vertically in the 

water column than is C set t .  It follows then that ws C s e t t  = <w ’Csett’> can be re-expressed 

as:

Two approaches have been developed to use Reynolds Flux ADV observations to solve 

for ws in Eq. (6.2): (i) a low-pass, slope-intercept method (Fugate and Friedrichs 2002), 

and (ii) an instantaneous, prescribed washload method (Cartwright et al. 2011). Method 

(i) plots <w’C’> versus <C> for a series o f consecutive ADV bursts. The resulting best-

Ws ( < C >  -  C w a s h )  =  < W ’C ’>  , (6.2)
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fit slope provides an estimate o f ws, and the x-intercept approximates Cwash- Changes in 

ws as a function of concentration can be accommodated by calculating the slope as a 

function of <C> from a best-fit curve rather than a best-fit straight line (Maa and Kwon 

2007). This is a low-pass estimate because several bursts are needed for a single ws 

estimate. Method (ii) first defines a value for CwaSh based on the intercept from method 

(i) or from a value of C observed near slack water (Cartwright et al. 2011, Fall 2012). 

The characteristic settling velocity ws in Eq. (6.2) can then be determined for each 

individual burst providing an “instantaneous” estimate.

The SonTek ADVOcean-Hydra used here for applying the Reynolds flux method is 

shown in Figure 6.2, mounted on the VIMS profiler (along with the PICS). 

Observations were collected on 6 October 2012 off the 9-m VIMS R/V Eliss Ollson 

which was anchored in 6 m o f water within a few 100 m o f the Clay Bank long-term 

MUDBED benthic tripod site in the secondary channel of the York River estuary, USA 

(Friedrichs et al. 2008). All samples were collected within an anchor line radius of 

37°20.53’ N, 76°37.54’ W. The ADV sampling volume and the intake to a high-volume 

submersible pump were both located 37 cm above the feet o f the profiler. ADV 

measurements were collected at 10 Hz in 2 min duration bursts. Most ADV bursts 

coincided in time with corresponding PICS bursts and collection o f 1-liter pump 

samples (which were then passed through 0.8-mm pore-size glass fiber filters).

Due to logistical constraints, sampling was limited to a single slack-to-slack bracketing 

of flood tide (~ 6 hrs), two days before neap tide The goals were to both (i) collect 

samples with the profiler sitting on the bed where ADV measurements would not be 

contaminated by rocking motion, and (ii) also collect samples throughout the water 

column in order sample a large variety o f particles. This, along with some initial 

problems with operating the PICS, resulted in irregular time intervals between sample 

collections at any one depth.
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Figure 6.5 A) Vertical velocity o f scatters (w -  ws) as recorded by the ADV for the 125 pm 
sieve case, measured over a cross-section of the VIMS sediment mixing tank 18 cm from 
the top o f the tank (measurement locations indicated by *); B) w -  ws as recorded by the
ADV versus radial distance from the center o f the tank for 63,125 and 150 pm cases, along 
with best-fit linear regressions; C) spatial distribution o f vertical water velocity, w, over a 
quadrant of the tank based on averaging the regression slope for all 6 size classes, with the 
offset chosen to conserve water mass; D) averaged ws calculated from the ADV determined
by removing interpolated values o f w from observations o f w -  ws, plotted versus ws 
measured by the RSA. Error bars are +/- one standard error about each mean. Both axis in 
cm/s.

206



6.4 Results

Direct Doppler Method

Figure 6.5A displays an example map o f the burst-averaged vertical velocity of 

scatterers (w -  ws) as output by the ADV for a horizontal plane 18 cm below the top of 

the mixing tank, in this case for 125 mm sand. The jets from the four pump circulation 

outlets (see Figure 6.4) meet in the center o f the chamber, 7 cm below the level of the 

plane sampled by the ADV, and cause a mean flow up the center o f tank that exceeds 5 

cm/sec. This upward flux is balanced by a downward flowalong the edges o f the 

chamber. Because of the size and shape of the SonTek ADVOcean, it was not possible 

to directly measure velocities all the way to the far edges o f the tank (as seen in figure 

6.5A). Nonetheless, when the ADV burst-averaged values for w -  ws were plotted
*y \ t0)

versus radial distance, r = (x + y ) , relative to the center o f the tank (Figure 6.5B), 

linear relations o f the form

w -  ws = A r + B(ws) (6.3)

were obtained which were extrapolated farther out toward the walls o f the chamber.

The slopes of the best-fit regressions o f w -  ws versus r (i.e., A in Eq. 6.3) did not vary 

much between sand sizes (Figure 6.5B), presumably because the axially-symmetric 

pattern of water circulation did not itself depend on ws. However, each sand size was 

associated with a different offset o f the best-fit regression. Assuming ws to be 

independent of the local hydrodynamics and, thus, constant for a given sand size, the 

shift in offset provided a measure of the change in ws between sand samples.
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A global best-fit slope for w = A r + Bo (i.e., for the spatial distribution of vertical 

velocity without sand) was assigned by averaging the slopes found individually for the 

six cases with sand present. Conservation of mass for water was then used to set the 

constant offset, Bo, needed to predict w over the entire horizontal plane. In other words, 

the final function for w was defined such that the integration o f (A r + Bo) over the 

entire horizontal plane equalled zero. The resulting flow pattern for predicted w over a 

quadrant o f the mixing tank is shown in Figure 6.5C.

Subtracting the observed, burst-averaged vertical velocities o f the scatterers (w -  ws) 

from the predicted values of vertical water velocity (w) gave 36 realizations of ws for 

each of the six sand sizes. The best estimate for ws for each sand size was then the 

average o f those 36 observations with an uncertainty provided by the standard error on 

that mean. Figure 6.5D compares the final values o f ws determined by this “direct 

Doppler method” against those for the same sand samples determined by the RSA 

settling column. Overall, the values for ws determined by these two independent 

methods were highly consistent, despite the varying hydrodynamic conditions across 

the width of the mixing tank and the lack of turbulence in the RSA settling column.

Reynolds Flux Method

Pump samples collected by the VIMS profiler throughout the water column on 6 

October 2012 at the same height and within a minute o f each ADV burst were utilized 

to calibrate ADV backscatter for mass concentration (Figure 6.6). Although there was 

significant scatter in the regression of log(TSS) versus burst-averaged ADV backscatter 

among individual pump samples, the best-fit line for 6 October 2012 was remarkably 

similar to overall best-fit found for the same model SonTek ADVOcean by Cartwright 

et al. (2009) (see dashed line in Figure 6.6), that also utilized in situ York River pump 

samples.
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Figure 6.6 ADV backscatter measured by the VIMS profiler and corresponding total 
suspended solids concentrations determined from pump samples collected throughout the 
water column at the MUDBED site in the York River Estuary over the course of a flood 
tide on 6 October 2012. The solid line is the best-fit semilog regression for these samples, 
while the dotted line is the best-fit line for 100s o f York River Estuary TSS vs. ADV 
backscatter samples analyzed in 2007 and 2008 by Cartwright et al. 2009.

The stability o f the best-fit line combined with such large scatter suggests that much of 

the “noise” in Figure 6.6 is due to significant, but short-term (i.e., < 10s o f sec), 

turbulent variations in concentration. This degree o f short-term variability was also 

resolved by the ADV: the range in ADV backscatter incorporated into each burst- 

average value displayed in Fig. 6, based on +/- 2 standard deviations, averaged 15 

counts. But given the short-term duration of the pump samples (~ 5 sec to fill a liter
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bottle) and the horizontal separation of the pump intake and the ADV on the profiler, it 

was not possible to exactly co-locate the ADV and TSS samples in space and time.

Results for burst-averaged current speed and sediment concentration 37 cm above the 

bed, as determined by the ADV for times that the profiler rested on the bottom, are 

displayed in Figures 6.7A and 6.7B. Observations were collected through “slack” after 

flood, although lateral circulation at the end of flood created near-bed current speed of 

at least about 10 cm/s. The lowest value inferred near the bed for burst-averaged 

sediment concentration was 33 mg/L. Thus this value was taken to approximate Cwash- 

Fig. 6.7C displays the resulting “instantaneous” ADV-based estimates of settling 

velocity determined by solving for ws in Eq. (6.2) along with observations o f ws 

collected by the PICS video settling column. Note that several PICS observations are 

missing from early in the field experiment due to technical glitches.

The ADV Reynolds method for ws is most consistent with the PICS setting column 

results for samples collected around peak tidal flow. This makes sense because this is 

the part o f the tidal cycle when the steady-state Rouse balance assumed by Eqs. (6.1)- 

(6.2) is most justified. Based on several months of ADV tripod data from the York 

River, Fall (2012) found that noise in ADV-based estimates o f  ws began to increase 

substantially for currents speeds less than about 20 cm/s. Thus ADV-based estimates of 

ws for U > 20 cm/s are highlighted in Figure 6.7C as being relatively more reliable. The 

average of the estimates o f ws based on the ADV (0.48+/-0.04 mm/s) and based on the 

PICS (0.45+/-0.02 mm/s) are then highly consistent (Figure 6.7C). It is worth noting 

that for the period around peak tidal flow in Figure 6.7, the “slope-intercept” method, of 

Fugate and Friedrichs (2002), for estimating ws failed, in that there was not enough 

systematic co-variation in <w’C ’> and <C> to resolve a stable estimate o f ws.

The sensitivity of the “prescribed washload” method to the overall ADV calibration was 

tested by reducing all of the TSS values by 50% in Figure 6.6 and repeating the full
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analysis. The resulting ADV-based estimates o f ws in Figure 6.7C changed by less than 

1%. This follows because the calibration for C appears proportionately in all three terms 

in Eq. (6.2)., so that the effect of the “absolute” calibration effectively cancels out. In 

contrast, the “prescribed washload” method (as its name suggests) is indeed sensitive to 

the choice of C w a s h .  If one reduces CwaSh by 50%, but otherwise keeps the ADV 

calibration the same, the average value of ADV-based ws is reduced in this case by 

24%. From (6.2) it is easily seen that the closer Cwash is to <C>, the more sensitive w* is 

to changes in the choice o f  Cwash.

6.5 Discussion and Conclusions

Two distinct ADV-based approaches for estimating ws have been verified, one which 

utilizes direct Doppler measurements of sediment motion, and the second which 

balances upward Reynolds flux and downward settling assuming a Rouse balance. The 

former can be useful when ws is relatively large (~ cm/s) and has potential for future 

approaches for measuring ws in the laboratory under a variety o f flow conditions. The 

latter is particularly useful when ws is relatively small (~ mm/s) and is especially useful 

for non-obstrusive, in situ field measurements.

ADV-based estimates of sediment settling velocity (ws) have been confirmed here by 

independent measurements of the same particle populations within settling columns. 

Advantages of the ADV include its relatively simple operation and robustness under 

high-energy conditions, its resilience to biofouling, and, especially, the fact that its 

ability for in situ observation does not affect local flow conditions within its remote 

sampling volume.
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Both ADV-based methods presented here are relatively insensitive to the calibration of 

acoustic backscatter to mass concentration (C). In the first case, ws is determined 

directly by Doppler shift and thus is, by definition, independent o f the acoustic 

backscatter calibration. In the latter case, calibrated concentration appears within each 

term of the relevant equation such that sensitivities to the calibration o f the acoustic 

signal tend to cancel.

Two approaches to Reynolds flux approach for estimating ADV-based ws have been 

outlined, one that regresses < C >  vs. <C’w ’> to derive ws, and the second which divides 

<C’w ’> by ( < C >  - C Wa s h ) ,  where Cwash is a non-settling washload component of 

sediment concentration. The former is approach limited by its low-pass nature and by 

the likelihood that bursts might be included that do not individually satisfy a Rouse 

balance. The second method is limited by the need to specify Cwash and by its overall 

sensitivity to the choice o f C Wa sh -  However, an operational definition of C w a s h ,  as the 

lowest concentration observed at a given height over a tidal cycle, is relatively simple to 

objectively implement and produced reasonable estimates o f ws.

An important corollary of this study’s agreement between ADV-based in situ 

measurements of ws under turbulent flow, and ws measured in settling columns under 

nearly quiescent conditions is that, for conditions under which the particles themselves 

do not evolve, relatively diverse hydrodynamic conditions do not appear to 

fundamentally affect w*. Other investigators have previously suggested that ws can be 

highly dependent on turbulence, even for resilient, non-cohesive particles (Kawanisi 

and Shiozaki, 2008).

It is possible that in the past, some confusion may have arisen over the definition o f ws 

being applied in various situations. Here we define ws as the particle settling velocity 

within a reference frame moving within local turbulent eddies. So local slowing or 

speeding of overall settlement flux by eddies does not necessarily impact ws by our
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definition. In fact, it is the very correlations between eddy motion and fluctuations in 

the concentration field that create the Reynolds flux that ultimately balances settling by

ws<C>.

The successful comparison of ws inferred from ADVs with ws inferred from settling 

columns supports the use of both of these methods. For non-cohesive sediment in the 

lab, it appears that gravimetric settling columns such as the Rapid Sediment Analyzer 

produce values for ws equivalent to those observed under turbulent conditions, at least 

for ws up to several cm/s and turbulenc and concentration levels typical in the York 

River. For in situ video settling columns such as the PICS, we conclude that floes can 

potentially be sampled quickly enough to avoid significant flow-induced changes in 

particle properties with in the camera chamber.
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7. Recommendations for Future Work

This last chapter, which addresses recommendations for future work, serves two 

purposes. First, it suggests logical next steps in the line of investigation associated with 

this dissertation, namely productive avenues for the continued application of acoustic 

and optics for characterizing estuarine suspended particulate matter. Second, it provides 

an opportunity to add additional commentary addressing the “fixed” content o f Chapters 

2, 3 and 5. Because these three chapters of the dissertation have already been published 

in their “final” form, it would not be productive to further edit them. Some of the most 

likely future work to follow on soon after this dissertation is completed includes:

7.1. MUDBED Data Report

An electronic data report (CHSD2013-01) will be created summarizing all the tripod 

and calibration cruise data which were collected between 2006-2012 for the MUDBED 

project on the York River. Before doing so the burst concentrations and bulk settling 

velocities will need to be recalculated using the procedures developed in Chapters 4 and 

6 .

7.2. Corrected Concentrations

The concentrations in Chapter 2 of this dissertation were calculated based on a 

“universal” regression to convert the burst averaged acoustic backscatter to
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concentration. This universal regression was generated using all the acoustic bursts 

which correspond to pumped water samples collected during calibration cruises in 2007 

and 2008. The backscatter collected for each of the calibration cruises can be 

“normalized” by adjusting the acoustic response measured by the ADV to a reference 

ADV as described in Chapter 4. Once this is done, the regressions generated for each of 

the 30+ cruises can be compared to either: 1) generate a new “universal” regression or 

2) see if  the suspended population is changing enough to warrant a “seasonal” 

regression. It would be interesting to see how much “bias” in the original 

concentrations was introduced by using the single 2007-2008 “universal” regression. 

The scatter in the data (Figure 2.10) around this universal regression curve was large. 

While some of the scatter is due to the natural variation particle properties and the 

limited ability of a pump sample to fully represent the ADV sample volume, 

normalizing the ADV backscatter to a reference ADV is still expected to reduce that 

scatter significantly.

7.3 Corrected Bulk Settling Velocities

Once the best concentration regressions are determined and generated, the tripod 

concentrations can be recalculated. These concentrations can then be used to determine 

how the “background” concentration described in Chapter 6 changes over time. I would 

expect a tidal, seasonal and yearly change in this concentration. As well as possibly a 

change due to episodic events. As shown in Chapter 6, it is critical to determine the
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most realistic background concentration before calculating settling velocity for the non­

washload component of the concentration field. Once the settling velocities for the 

actively settling component are more properly and carefully calculated, they can more 

effectively be used to compare the suspended sediment population changes in the 

bottom meter over tidal, seasonal, and yearly times-scales, and in response to consistent 

weather changes and episodic events.

7.4 ADV response to suspended sediment population changes

More laboratory work needs to be done in order to better understand how the ADV 

responds to mixed sediment concentrations. A logical next step is to see how the ADV 

responds to different percentages o f silt and/or sand size in the suspended mud fraction. 

With the success of being able to generate a model for the response of the ADV to 

changing sand in a mud concentration in Chapter 4, it would be interesting to see how 

that model changes with 1) changing concentrations of silt in the mud fraction, and 2) 

changes in the sand grain-size.

More work also needs to be done to understand the acoustic response to flocculation/de- 

flocculation of the “natural” fine sediment in suspension. One possibility could be to 

increase the salinity of the mud solution in the laboratory. Tap water was used for the 

laboratory calibration experiments done for this dissertation to discourage the
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flocculation of the fine sediment. Increasing the salinity would enhance the flocculation 

tendencies. A series of calibrations o f sediment with different silt/clay ratios could be 

run in various salinities to create different floe populations. It might be possible to 

verify the floe size distributions with the PICS camera settling column.
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Appendix 1. 2006-2012 Tripod Schedule and Metadata

Appendix 1 (Table A l) contains information (metadata) such as o f when the tripods 

were deployed, retrieved, including what instruments were used between 2006-2012. 

Data are available in Data Report CHSD2013-01.

The columns in Table A l are as follows:

Column 1: General location Tripod deployed in the York River, Virginia (Gloucester 

Point or Clay Bank)

Column 2: Date tripod deployed

Column 3: Date tripod retrieved

Column 4: minutes of latitude of tripod deployment site (37° N + minutes)

Column 5: minutes of longitude of tripod deployment site (-76° W + minutes)

Columns 6-9: Serial number of each instrument deployed on the tripod
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Table A1. 2006-2012 Tripod Schedule and Metadata

Location Deploy date Retrival date Lattitude
(York River)_____________________________________37° N

G lo u c e s te r  Point 12/4/06 1/30/07 14 .875

C lay B ank 2 /27 /07 6 /8 /07 2 0 .4 0 3

C lay B ank 6 /12 /07 8 /31/07 2 0 .4 1 8

G lo u c e s te r  Point 7 /31 /07 8 /30/07 14.681

G lo u c e s te r  P oint 8 /31 /07 11/12/07 14 .687

C lay B ank 8 /31 /07 11/12/07 2 0 .3 9 0

C lay B ank 12/5/07 2/4 /07 2 0 .3 9 7

G lo u c e s te r  P oint 12/5/07 4 /2 /08 14 .692

C lay B ank 2 /8 /08 6 /23 /08 20.411

G lo u c e s te r  P oint 4 /2 /08 7/11/08 14 .695

C lay B ank 6 /23 /08 9 /22 /08 2 0 .448

G lo u c e s te r  P oint 7/11/08 12/9/08 14 .692

C lay B ank 9 /30 /08 2/11/09 2 0 .4 4 6
G lo u c e s te r  P oint 12/8/08 3 /19 /09 14 .692

C lay B ank 2 /25 /09 4 /29 /09 2 0 .463

C lay B ank 5 /12 /09 8 /25 /09 2 0 .499

C lay B ank 7 /22 /09 10/20/09 20 .446

C lay B ank 11/5/09 2 /24 /10 2 0 .446
C lay B ank 12/22 /09 2 /19 /10 2 0 .449

C lay B ank 2 /24 /10 9 /8 /10 2 0 .449

C lay B ank 9/27/11 3/13/11 2 0 .449

Vendor Sensor Serial Number
.ongitude 

-76° W
Sontek ADV 
(downward)

Sontek ADV 
(upward)

LISST 100X YSI CTD

2 9 .918 B 337 03H 1988

37.461 B 337 0 0 0 1 3 4 1 A

3 7 .458 B 337

2 9 .939 B 337 1232 03K 0492

2 9 .970 B 337 1232 03K 0492

3 7 .430 B336 1239 07B 1391

3 7 .434 B 337 1185 03K 0492

29.961 B338 1239 07B 1391

37.341 B336 1232 03H 1988

29.941 B 337 1185 03K 0492

3 7 .4 4 8 B338 1239 07B 1391

2 9 .940 B336 1232 03H 1988

3 7 .476 B 337 1185 03K 0492

2 9 .940 B338 1239 07B1391

3 7 .476 B337 1232 03H 1988

3 7 .484 B337 1185 03H 1988

3 7 .476 B338 1232 07B 1391

3 7 .476 B 336 1185 03K 0492

3 7 .4 6 7 B 338

37 .476 B 337 1239 03H 1988

3 7 .476 B338 03K 0492
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Table A1. 2006-2012 Tripod Schedule and Metadata

Location Deploy date Retrival date Latitude
(York River) 37° N

C lay B ank 5/6/11 7/5/11 20 .482

C lay B ank 7/19/11 12/1/11 20 .490

C lay B ank 12/9/11 2/29/12 20 .490

C lay B ank 3/19/12 6/7/12 20 .492

C lay B ank 6/27/12 9/24/12 20.490

C lay B ank 9/24/12 2/12/13 20 .485

(cont)
Vendor Sensor Serial Number

Longitude Sontek ADV Sontek ADV LISST 100X YSI CTD 
-76° W (downward) (upward)__________________________

37.513 B337 B336 03H 1988

37.520 B338 B337 07B1391

37.520 B338 B337 07B1391

37.497 B338 04K17251AB

37.500 B336 B337 03K 0492

37.510 B 3084 B338 03H 1988



Appendix 2. 2006-2012 Calibration Cruise Schedule and Metadata

Appendix 2 contains information (metadata) such as o f when the calibration cruises 

occurred, instruments used, number o f “bursts” from which instruments, and number of 

pump samples collected. Table A2.1 is a list o f all the calibration cruises conducted that 

correspond to tripods deployed as listed in table. Tables A2.2-A2.34 contain information 

for each cruise. Data are available in Data Report CHSD2013-01.

The columns in Table A2.1 are as follows:

Column 1: The unique cmise identification number 

Column 2: Date calibration cmise conducted

Column 3: General location of the calibration cmise (either Clay Bank or Gloucester 

Point)

Column 4: Unique station numbers collected during the cmise that correspond to 

individual file names collected by each of the instmments

Column 5: Stage of the tide the cmise was conducted over. Usually a 6 hour time period 

from slack to slack bracketing either an ebb or flood tide.

Columns 6-8: Serial number of each instmment deployed on the profiler. Additionally, a 

downward looking RDI 1200 kHz ADCP was mounted to the bow of the vessel. 

The same one was used from 2006-2012.

227



228

Table A2.1 C alibration  C ru ise s  a s so c ia te d  with Tripod D eploym ents

V endor Sensor Serial N um ber

Cruise Date Location Station N um bers Stage of tide YSI Sequia Sontek

CTD SN LISST SN ADV SN

YR070129 1 /29 /07 G loucester Pt 4254-4269 03K0492 1075 B338

YR070329 3 /29 /07 Clay Bank 4270-4314 Ebb 01J0035 1075 B338

YR070718 7 /1 8 /0 7 Clay Bank 4315-4356 Flood 07B1391 1075 B336

YR070724 7 /24 /07 Clay Bank 4357-4389 Ebb-Flood 07B1391 1075 B336

YR070821 8 /2 1 /0 7 G loucester Pt 4390-4407 Flood 07B1391 1239 B336

YR071217 12/17/07 G loucester Pt 4408-4420 Flood 03H1988 1232 B336

YR071218 12/18/07 Clay Bank 4421-2257 Flood 03H1988 1232 B336

YR080415 4 /1 5 /0 8 Clay Bank 4461-4488 Ebb 07B1391 1239 B338

YR080416 4 /1 6 /0 8 G loucester Pt 4489-4497 Ebb 07B1391 1239 B338

YR080418 4 /1 8 /0 8 Clay Bank 4498-4514 Slack-Ebb 07B1391 1239 B338

YR080505 5 /5 /0 8 Clay Bank 4515-4525 Slack-Ebb 07B1391 1239 B338

YR080507 5 /7 /0 8 Clay Bank 4526-4540 Slack-Flood 07B1391 1239 B338

YR080514 5 /14 /08 Clay Bank 4541-4564 Slack-Ebb 07B1391 1239 B338

YR080515 5 /15 /08 Clay Bank 4565-4591 Slack-Ebb 07B1391 1239 B338

YR080603 6 /3 /0 8 Clay Bank 4582-4601 Slack-Ebb 07B1391 1239 B338

YR080606 6 /6 /08 Clay Bank 4602-4620 Slack-Flood 07B1391 1239 B338

YR080609 6 /9 /0 8 Clay Bank 4621-4635 Slack-Flood 07B1391 1239 B338

YR080610 6 /1 0 /0 8 Clay Bank 4636-4650 Slack-Flood 07B1391 1239 B338

YR080729 7 /29 /08 Clay Bank 4651-4676 Ebb 03K0492 1185 B337

YR080731 7 /31 /08 G loucester Pt 4677-4700 Ebb 03K0492 1185 B337
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Table A2.1 C alib ra tion  C ru ise s  a s s o c ia te d  w ith Tripod D ep loym en ts (cont)

Cruise Date Location S tation  N um bers Stage of tide

V endor Sensor Serial N um ber 

YSI Sequia Sontek 

CTD SN LISST SN ADV SN

YR081016 1 0 /1 6 /0 8 Clay Bank 4701-4729 Flood 07B1391 1239 B338

YR090108 1 /8 /0 9 G loucester Pt 4730-4757 Ebb 03 H1988 1232 B336

YR090226 2 /2 6 /0 9 Clay Bank 4758-4781 Flood 03K0492 1185 B339

YR090514 5 /1 4 /0 9 Clay Bank 4802-4819 Flood 07B1391 1232 B339

YR090811 8 /1 1 /0 9 Clay Bank 4820-4846 Flood 04K17251 1185 B336

YR091125 1 1 /2 5 /0 9 Clay Bank 4847-4872 Ebb 04K17251 1232 B338

YR110816 8 /1 6 /1 1 Clay Bank 4941-4946 Flood 04K17251 1185 B339

YR110818 8 /1 8 /1 1 Clay Bank 4949-4967 Flood 04K17251 1185 B339

YR110901 9 /1 /1 1 Clay Bank 4976-4995 Flood 04K17251 1185 B339

YR111220 12 /2 0 /1 1 Clay Bank 4989-5004 Ebb 11H100740 1239 B339

YR120430 4 /3 0 /1 2 Clay Bank 4998-5014 Ebb 11H100740 1239 B339

YR120724 7 /2 4 /1 2 Clay Bank 5026-5040 Flood 11H100740 1239 B308H

YR121006 10 /6 /1 2 Clay Bank 5038-5077 Flood 11H100740 1239 B336



The columns in Table2 A2.2-A2.34 are as follows:

Column 1: Unique station numbers collected during the cruise that correspond to 

individual file names collected by each of the instruments

Column 2: A description of what is collected. “Profile” usually consists of a full 

downward profile of the instruments and then “sample bursts” at distinct heights 

on the way up. Each “sample burst” is when the instruments are held at one height 

for a period of 2-5 minutes”.

Column 3: Date of calibration cruise

Column 4: Time of the start o f each station using the CTD data. It is always collected in 

EST. All computers and instruments are synced to time provided by a GPS or cell 

phone (to the nearest second).

Column 5: Minutes of latitude o f tripod deployment site (37° N + minutes) at the 

beginning of the station

Column 6: Minutes of longitude of tripod deployment site (-76° W + minutes) at the 

beginning of the station

Column 7: Total water depth as recorded by the bottom tracking feature o f the ADCP at 

the beginning of the station.

Columns 8: A “1” indicates a “real-time” data file was collected by the CTD. If  the 

station number is 4254 the filename collected by the CTD is C4254.

Column 9: The number indicates the water samples collected during the station. This is 

also number o f “bursts” collected if  the station is a profile.

Column 10: A “ 1” indicates a “real-time” data file was collected by the LISST. If the 

station number is 4254 the filename collected by the LISST is L4254.
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Column 11: A “ 1” indicates a “real-time” data file was collected by the ADCP during a 

profile station. The ADCP filename is in column 15.

Column 12: A “ 1” indicates a “real-time” data file was collected by the ADV during a 

profile. If the station number is 4254 the filename collected by the ADV is 

A4254.

Column 13: A “ 1” indicates a “real-time” data file was collected by the ADV while the 

profiler is sitting on the bottom. If the station number is 4254 the filename 

collected by the ADV is A4254.

Column 14: A “ 1” indicates that a transect was collected using the ADCP. Information in 

columns 4-7 correspond to the beginning of the transect. A linked GPS and 

bottom tracking can be used to identify location along the transect. The ADCP 

filename is in column 15.
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Table A2.2. YR070129 (G loucester Point - Jan  29, 2007) Calibration C ruise

Station Description Date Time
(EST)

Lat 
37° N

Long 
76° W

depth CTD 
(m)

TSS LISST ADCP 
profile

ADV
profile

ADV ADCP 
bottom transect

ADCP
filename

4254 Proflile 1/29/07 847 14.678 29.923 7.26 1 3 1 1 1 YR0701000

4255 Bottom 854 14.676 29.924 7.31 1 1 1 1 1 YR0701001

4256 Proflile 1040 14.678 29.222 6.96 1 0 1 1 1 YR0701002

4257 Proflile 1113 14.676 29.920 6.99 1 3 1 1 1 YR0701003

4258 Bottom 1126 14.677 29.920 6.89 1 1 1 1 1 YR0701004

4259 Proflile 1201 14.678 29.920 6.82 1 3 1 1 1 YR0701005

4260 Bottom 1215 14.676 29.920 6.87 1 1 1 1 1 YR0701006

4261 Proflile 1252 14.678 29.920 6.89 1 3 1 1 1 YR0701007

4262 Bottom 1301 14.679 29.920 6.86 1 0 1 1 1 YR0701008

4263 Proflile 1339 14.678 29.921 6.94 1 3 1 1 1 YR0701009

4264 Bottom 1350 14.680 29.922 6.94 1 0 1 1 1 YR0701010

4265 Proflile 1426 14.675 29.924 6.97 1 3 1 1 1 YR0701011

4266 Bottom 1437 14.677 29.921 6.96 1 1 1 1 1 YR0701012

4267 Proflile 1514 14.676 29.923 7.07 1 3 1 1 1 YR0701013

4268 Bottom 1524 14.684 29.924 6.93 1 1 1 1 1 YR0701014

4269 Proflile 1600 14.677 29.935 7.16 1 3 1 1 1 YR0701015
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Table A2.3. YR070329 (Clay Bank, March 29, 2007) Calibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth CTD 

(m)

TSS LISST ADCP 

profile

ADV

profile

ADV ADCP 

bottom transect

ADCP

filename

4270 Full T ransect i 3/29/07 805 20.796 36.656 1 YR0702000

4271 A- SE  shoal profile 829 20.110 38.046 1.67 1 1 1 1 1 YR0702002

4272 T ransect A-B 844 20.246 37.851 1 YR0702004

4273 B- S econd  C hannel 849 20.405 37.511 5.69 1 1 1 1 1 YR0702005

4274 T ransect B-C 902 20.408 37.504 1 YR0702006

4275 C- Interfluv profile 910 20.496 37.228 4.62 1 1 1 1 1 YR0702007

4276 T ransect C-D 915 20.498 37.217 1 YR0702008

4277 D- Main C hannel 920 20.743 36.762 13.3 1 3 1 1 1 YR0702009

4278 T ransect D-E 930 20.741 36.74 1 YR0702010

4279 E- NW shoal profile 932 20.786 36.657 1.49 1 1 1 1 1 YR0702011

4280 Full T ransect (NW-SE) 940 20.784 36.67 1 YR0702012

4281 A- SE shoal profile 1003 20.181 38.056 2.61 1 1 1 1 1 YR0702013

4282 T ransect A-B 1011 20.221 37.964 1 YR0702014

4283 B- Secondary  C hannel 1016 20.403 37.478 5.9 1 2 1 1 1 Y R0702015

4284 T ransect B-C 1024 20.493 37.333 1 Y R0702016

4285 C- Interfluv profile 1027 20.478 37.228 4.47 1 1 1 1 1 YR0702017

4286 T ransect C-D 1037 20.487 37.212 1 Y R0702018

4287 D- Main C hannel 1042 20.741 36.742 12.83 1 3 1 1 1 Y R0702019

4288 T ransect D-E 1054 20.739 36.695 1 YR0702020

4289 E- NW shoal 1100 20.784 36.666 1.6 1 1 1 1 1 Y R0702022

4290 Full T ransect (NW-SE) 1107 20.787 36.676 1 Y R0702023
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Table A2.3. YR070329 (Clay Bank, M arch 29, 2007) C alibration C ruise (Cont)

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

CTD TSS LISST ADCP

profile

ADV

profile

ADV ADCP 

bottom tran sec t

ADCP

filenam e

4291 T ransect A-B 1122 20,184 38.109 1 YR0702024

4292 B- Secondary  C hannel 1128 20.392 37.47 5.58 1 2 1 1 1 YR0702025

4293 T ransect B-C 1140 20.398 37.459 1 YR0702026

4294 C- Interfluv profile 1142 20.492 37.217 4.18 1 1 1 1 1 YR0702027

4295 T ransect C-D 1148 20.500 37.211 1 YR0702028

4296 D- Main C hannel 1152 20.713 36.741 12.15 1 3 1 1 1 YR0702029

4297 T ransect D-E 1203 20.721 36.695 1 YR0702030

4298 Full T ransect (NW-SE) 1205 20.786 36.666 1 YR0702031

4299 T ransect A-B 1219 20.193 38.101 1 YR0702032

4300 B- S econdary  C hannel 1226 20.388 37.475 5.23 1 2 1 1 1 YR0702033

4301 T ransect B-C 1235 20.373 37.462 1 YR0702034

4302 C- Interfluv profile 1239 20.488 37.21 3.99 1 1 1 1 1 YR0702035

4303 T ransect C-D 1245 20.437 37.153 1 YR0702036

4304 D- Main C hannel 1250 20.725 36.74 12.51 1 3 1 1 1 Y R0702037

4305 T ransect D-E 1302 20.731 36.744 1 YR0702038

4306 Full T ransect (NW-SE) 1304 20.784 36.673 1 YR0702039

4307 T ransect A-B 1318 20.192 38.104 1 YR0702040

4308 B- Secondary  C hannel 1323 20.396 37.472 1 2 1 1 1 YR0702041

4309 T ransect B-C 1331 20.407 37.464 1 YR0702042

4310 C- Interfluv profile 1334 20.500 37.215 1 1 1 1 1 YR0702043

4311 T ransect C-D 1339 20.501 37.209 1 YR0702044



Table A2.23 YR070329 (Clay Bank, March 29, 2007) C alibration C ruise (Cont)

Station Description Date Time Lat Long depth CTD T S S  LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m) profile profile bottom transect filename

4312 D- Main C hannel 1344 20.723 36.727 12.4 1 3 1 1 1 YR0702045

4313 T ransect D-E 1354 20.719 36.696 1 YR0702046

4314 Full T ransect (NW-SE) 1355 20.783 36.675 1 YR0702047
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Table A2.4. YR070718 (Clay Bank, July  18, 2007) Calibration C ruise

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m) profile profile bottom transect filename

4315 Full T ransect ( 7/18/07 801 20.793 36.667 1 YR0707000

4316 A- SE shoal profile 818 20.285 37.865 2.6 1 1 1 1 1 YR0707001

4317 T ransect A-B 829 20.302 37.844 1 YR0707002

4318 B- Secondary  Channel 833 20.414 37.486 5.46 1 3 1 1 1 YR0707003

4319 T ransect B-C 846 20.429 37.469 1 YR0707004

4320 C- Interfluv profile 849 20.497 37.248 4.34 1 2 1 1 1 YR0707005

4321 T ransect C-D 858 20.400 37.200 1 YR0707006

4322 D- Main C hannel 903 20.734 36.755 12.62 1 3 1 1 1 Y R0707007

4323 Full T ransect (NW-SE) 920 20.797 36.678 1 YR0707008

4324 A- SE  shoal profile 936 20.276 37.852 2.81 1 1 1 1 1 YR0707009

4325 T ransect A-B 944 20.298 37.820 1 YR0707010

4326 B- Secondary  Channel 948 20.436 37.485 5.84 1 3 1 1 1 YR0707011

4327 T ransect B-C 959 20.428 37.495 1 YR0707012

4328 C- Interfluv 1003 20.499 37.226 4.51 1 2 1 1 1 YR0707013

4329 T ransect C-D 1012 20.500 37.229 1 YR0707014

4330 D- Main C hannel 1016 20.732 36.765 12.41 1 3 1 1 1 YR0707015

4331 Full T ransect (NW-SE) 1028 20.799 36.679 1 YR0707016

4332 A- SE  shoal profile 1044 20.268 37.835 2.96 1 1 1 1 1 YR0707017

4333 T ransect A-B 1052 20.266 37.837 1 YR0707018

4334 B- Secondary  Channel 1055 20.427 37.491 5.93 1 3 1 1 1 YR0707019

4335 T ransect B-C 1107 20.420 37.489 1 YR0707020
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Table A2.4. YR070718 (Clay Bank, Ju ly  18, 2007) Calibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

CTD TSS LISST ADCP

profile

ADV

profile

ADV ADCP 

bottom transect

ADCP

filename

4341 Transect A-B 1218 20.292 37.743 1 YR0707026

4342 B- Secondary  Channel 1221 20.434 37.481 6.32 1 3 1 1 1 YR0707027

4343 T ransect B-C 1236 20.420 37.449 1 YR0707028

4344 C- Interfluv profile 1238 20.506 37.211 4.95 1 2 1 1 1 YR0707029

4345 T ransect C-D 1246 20.503 37.214 1 YR0707030

4346 D- Main Channel 1251 20.735 36.753 13.14 1 3 1 1 1 YR0707031

4347 Transect D-end 1303 20.727 36.760 1 YR0707032

4348 Full T ransect (NW-SE) 1306 20.793 36.670 1 YR0707033

4349 A- SE shoal profile 1322 20.268 37.844 3.21 1 3 1 1 1 YR0707034

4350 Transect A-B 1331 20.322 37.685 1 YR0707035

4351 B- Secondary  Channel 1338 20.426 37.484 6.12 1 3 1 1 1 YR0707037

4352 Transect B-C 1350 20.437 37.480 1 YR0707038

4353 C- Interfluv profile 1352 20.509 37.244 4.85 1 2 1 1 1 YR0707039

4354 T ransect C-D 1405 1 YR0707040

4355 D- Main Channel 1408 20.748 36.738 13.79 1 3 1 1 1 YR0707041

4356 Full T ransect (NW-SE) 1422 20.789 36.665 1 YR0707042
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Table A2.5. YR070724 (Clay Bank, Ju ly  24, 2007) Calibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth CTD 
(m)

TSS LISST ADCP 
profile

ADV

profile

ADV ADCP 

bottom transect

ADCP

filenam e

4357 Full Transect (NV 7/24/07 802 20.791 36.679 1 YR070702001

4358 A- SE shoal profile 821 20.275 37.836 2.69 1 1 1 1 YR070702002

4359 Transect A-B 835 1 YR070702003

4360 B- Secondary Channel 839 20.412 37.478 5.54 1 3 1 1 YR070702004

4361 Transect B-C 851 20.442 37.451 1 YR070702005

4362 C- Interfluv profile 854 20.500 37.222 4.24 1 2 1 1 YR070702006

4363 Transect C-D 912 20.575 37.103 1 YR070702007

4364 D- Main Channel 917 20.737 36.738 12.75 1 3 1 1 YR070702008

4365 Full Transect (NW-SE) 933 20.791 36.672 1 YR070702009

4366 A- SE shoal profile 1025 20.280 37.829 2.59 1 1 1 1 YR070702010

4367 Transect A-B 1034 20.314 37.739 1 YR070702011

4368 B- Secondary Channel 1038 20.415 37.484 5.45 1 3 1 1 YR070702012

4369 Transect B-C 20.500 37.200 1 YR070702013/4

4370 C- Interfluv profile 1058 20.500 37.200 4.24 1 2 1 1 YR070702015

4371 Transect C-D 1109 20.500 37.200 1 YR070702016

4372 D- Main Channel 1114 20.700 36.800 13.1 1 3 1 1 YR070702017

4373 Full Transect (NW-SE) 1128 20.787 36.686 1 YR070702018

4374 A- SE shoal profile 1145 20.274 37.855 2.65 1 1 1 1 YR070702019

4375 Transect A-B 1152 20.285 37.832 1 YR070702020

4376 B- Secondary Channel 1158 20.423 37.500 5.32 1 3 1 1 YR070702021

4377 Transect B-C 1209 20.415 37.484 1 YR070702022
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Table A2.5. YR070724 (Clay Bank, Ju ly  24, 2007) Calibration C ruise (cont)

station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

CTD TSS LISST ADCP 

profile

ADV

profile

ADV ADCP 

bottom transect

ADCP

filename

4378 C- Interfluv profile 1215 20.504 37.240 4.31 1 2 1 1 YR070702023

4379 Transect C-D 1223 20.500 37.209 1 YR070702024

4380 D- Main Channel 1231 20.742 36.749 12.81 1 3 1 1 YR070702025

4381 Full Transect (NW-SE) 1248 20.794 36.686 1 YR070702026

4382 A- SE shoal profile 1302 20.280 37.857 2.75 1 1 1 1 YR070702027

4383 Transect A-B 1312 20.285 37.811 1 YR07070202B

4384 B- Secondary Channel 1318 20.426 37.500 5.5 1 3 1 1 YR070702029

4385 Transect B-C 1330 20.425 37.468 1 YR070702030

4386 C- Interfluv profile 1333 20.497 37.227 4.46 1 2 1 1 YR070702031

4387 Transect C-D 1342 20.501 37.206 1 YR070702032

4388 D- Main Channel 1347 20.759 36.758 13.4 1 3 1 1 YR070702033

4389 Full Transect (NW-SE) 1402 20.793 36.690 1 YR070702034
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Table A2.6. YR070821 (G loucester Point.A ugust 21, 2007) Calibration C ruise

Station Description Date Time

(EST)

Lat 

37° N

Long 

76° W

depth CTD 

(m)

TSS LISST ADCP 

profile

ADV

profile

ADV ADCP 

bottom transect

ADCP

filename

4390 1 - profile 1/29/06 1032 14.675 29.914 7.62 1 3 1 1 1 YR0708000

4391 2- profile 1103 14.678 29.915 7.6 1 3 1 1 1 YR0708001

4392 3- profile 1126 14.678 29.916 7.63 1 3 1 1 1 YR0708002

4393 4- profile 1158 14.680 29.915 7.71 1 3 1 1 1 YR0708003

4394 5- profile 1230 14.681 29.917 7.7 1 3 1 1 1 YR0708004

4395 6- profile 1245 14.678 29.916 7.8 1 3 1 1 1 YR0708005

4396 7- profile 1300 14.678 29.916 7.79 1 3 1 1 1 YR0708006

4397 8- profile 1315 14.679 29.916 7.97 1 3 1 1 1 YR0708007

4398 9- profile 1330 14.681 29.914 7.93 1 3 1 1 1 YR0708008

4399 10- profile 1345 14.679 29.916 8 1 3 1 1 1 YR0708009

4400 11- profile 1400 14.679 29.916 8 1 3 1 1 1 YR0708010

4401 12- profile 1417 14.679 29.915 8.02 1 3 1 1 1 YR0708011

4402 13- profile 1430 14.679 29.916 8.03 1 3 1 1 1 YR0708012

4403 14- profile 1500 14.679 29.915 8.02 1 3 1 1 1 YR0708013

4404 15- profile 1530 14.680 29.917 8 1 3 1 1 1 YR0708014

4405 16- profile 1559 14.683 29.917 7.9 1 3 1 1 1 YR0708015

4406 17- profile 1630 14.675 29.913 8.08 1 3 1 1 1 YR0708016

4407 18- profile 1701 14.677 29.915 8.04 1 3 1 1 1 YR0708017

YR0708018



Table A2.7. YR071217 (G loucester Point, D ecem ber 17, 2007) C alibration C ruise

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP
________________________________ (EST) 37° N 76° W (m)_________________________ profile profile bottom transect filename

4408 1 - profile 12/17/07 1101 14.641 29.929 8.24

4409 2- profile 1131 14.640 29.927 8.21

4410 3- profile 1202 14.648 29.924 7.88

4411 4- profile 1234 14.642 29.928 8.21

4412 5- profile 1301 14.644 29.925 8.3

4413 6- profile 1331 14.641 29.926 8.45

4414 7- profile 1402 14.638 29.942 8.65

4415 8- profile 1433 14.640 29.931 8.53

4416 9- profile 1502 14.641 29.928 8.51

4417 10- profile 1531 14.645 29.927 8.27

4418 11- profile 1602 14.647 29.925 8.33

4419 12- profile 1640 14.649 29.924 8.11

4420 13- profile 1715 14.651 29.924 7.96

3 1 2  1 YR0712000&1

3 1 1 1  YR0712002

3 1 1 1  YR0712003

3 1 1 1  Y R 0712004

3 1 1 1  Y R0712005

3 1 1 1  Y R0712006

3 1 1 1  YR0712007

3 1 1 1  Y R0712008

3 1 1 1  YR0712009

3 1 1 1  YR0712010

3 1 1 1  YR0712011

3 1 1 1  YR0712012

3 1 1 1  YR0712013
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Table A2.8. YR071218 (Clay Bank, D ecem ber 18, 2007) Calibration Cruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

CTD TS!

4421 1- Full T ranset 12/18/07 1104 20.789 36.670

4422 Transect End-A 1120 20.214 38.072

4423 A- SE shoal 1128 20.289 37.845 2.14 1 2

4424 Transect A-B 1138 20.299 37.829

4425 B- Secondary Channel 1143 20.417 37.454 5.53 1 3

4426 Transect B-C 1159 20.424 37.456

4427 C- Interfluv 1202 20.488 37.282 4.22 1 2

4428 Transect C-D 1213 20.497 37.280

4429 D- Main Channel 1224 20.724 36.724 11.53 1 3

4430 Transect D-end 1238 20.750 36.745

4431 2- Full T ransect (NW-SE 1239 20.789 36.670

4432 Transect end-B 1300 20.199 38.075

4433 B- Secondary Channel 1307 20.426 37.461 1 3

4434 Transect B-C 1326 20.419 37.457

4435 C- Interfluv 1331 20.503 37.281 4.36 1 2

4436 Transect C-D 1344 20.505 37.285

4437 D- Main Channel 1354 20.740 36.785 12.02 1 3

4438 Transect D-end 1410 20.729 36.778

4439 3- Full T ransect (NW-SE 1413 20.784 36.685

4440 Transect end-B 1427 20.202 38.073

4441 B- Secondary Channel 1436 20.423 37.464 1 3

ADCP ADV ADV ADCP ADCP

profile profile bottom transect filename

1 1 

1 1 

1 1 

1 1

1 1 

1 1 

1 1

1 1

Y R071218000

YR071218001

YR071218002

YR071218003

Y R071218004

Y R071218005

YR071218006

YR071218007

YR071218008

YR071218009

YR071218010

YR071218011

YR071218012

YR071218013

YR071218014

YR071218015

YR071218017

YR071218018

YR071218019

YR071218020

YR071218021

1

1

1

1

1

1
1

1

1

2

1

1

1
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Table A2.8. YR071218 (Clay Bank, D ecem ber 18, 2007) Calibration C ruise

Station Description Date Time Lat Long depth CTD TSi

(EST) 37° N 76° W (m)

4442 Transect B-C 1452 20.420 37.457

4443 C- Interfluv 1455 20.507 37.271 1 2

4444 Transect C-D 1508 20.509 37.275

4445 D- Main Channel 1516 20.737 36.783 1 3

4446 T ransect D-end 1536 20.736 36.772

4447 4- Full T ransect (NW-SE 1539 20.784 36.677

4448 T ransect End-A 1555 20.202 38.073

4449 A- SE shoal 1559 20.277 37.848 1 1

4450 Transect A - B 1610 20.277 37.848

4451 B- Secondary  Channel 1615 20.425 37.458 6.02 1 3

4452 Transect B-C 1632 20.431 37.452

4453 C- Interfluv 1635 20.513 37.269 1 3

4454 Transect C-D 1653 20.513 37.267

4455 D- Main Channel 1701 20.733 36.782 12.09 1 3

4456 T ransect D-end 1719 20.730 36.760

4457 5- Full T ransect (NW-SE 1720 20.778 36.695

(cont)

ST ADCP ADV ADV ADCP ADCP

profile profile bottom transect filename

1 YR071218022

1 1 YR071218023

YR071218024

1 1 YR071218025

1 YR071218026

1 YR071218027

1 Y R071218028

1 1 Y R071218029

1 YR071218030

1 1 YR071218031

1 YR071218032

1 1 YR071218033

1 YR071218034

1 1 YR071218035

1 YR071218036

1 YR071218037

YR071218038
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Table A2.9. YR080415 (Clay Bank, April 15, 2008) C alibration C ruise

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m) profile profile bottom transect filenam e

4461 Full T ransect ( 4/15/08 822 20.780 36.695 1 Y R00804000

4462 T ransect End-B 834 20.178 37.977 1 YR00804001

4463 B- Secondary  C hannel 840 20.406 37.459 6.4 1 3 1 1 Y R 00804002

4464 C- Interfluv profile 911 20.547 37.103 4.7 1 3 1 1 Y R 00804003

4465 T ransect C-D 928 20.547 37.103 1 Y R 00804004

4466 D- Main C hannel 934 20.736 36.771 12.81 1 3 1 1 Y R 00804005

4467 T ransect D-end 946 20.740 36.746 1 Y R 00804006

4468 Full T ransect (NW-SE) 947 20.789 36.677 1 Y R 00804007

4469 T ransect end-B 958 20.277 37.875 1 Y R 00804008

4470 B- S econdary  C hannel 1003 20.402 37.444 6.13 1 3 1 1 Y R 00804009

4471 T ransect B-C 1015 20.402 37.444 1 Y R00804010

4472 C- Interfluv profile 1021 20.575 37.104 4.5 1 3 1 1 YR00804011

4473 T ransect C-D 1030 20.518 37.063 2 Y R00804012

4474 D- Main C hannel 1035 20.761 36.771 13.2 1 3 1 1 Y R00804013

4475 Full T ransect (NW-SE) 1048 20.769 36.697 1 Y R 00804014

4476 T ransect end-B 1101 20.227 37.904 1 Y R00804015

4477 B- S econdary  C hannel 1107 20.402 37.437 5.94 1 3 1 1 Y R00804016

4478 T ransect B-C 1119 20.461 37.360 1 Y R00804017

4479 C- Interfluv profile 1123 20.572 37.118 4.3 1 3 1 1 Y R00804018

4480 D- Main C hannel 1146 20.724 36.744 12.6 1 3 1 1 Y R 00804019

4481 Full T ransect (NW-SE) 1203 20.783 36.681 1 Y R00804020
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Table A2.9. YR080415 (Clay Bank, April 15, 2008) C alibration C ruise (cone)

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

CTD T SS LISST ADCP 

profile

ADV

profile

ADV ADCP 

bottom tran sec t

ADCP

filenam e

4482 T ransect en d  - B 1216 20.226 37.913 1 YR00804021

4483 B- S econdary  C hannel 1223 20.404 37.446 5.93 1 3 1 1 Y R 00804022

4484 T ransect B-C 1233 20.422 37.416 1 Y R 00804023

4485 C- Interfluv profile 1238 20.577 37.093 4.36 1 3 1 1 Y R 00804024

4486 T ransect C-D 1250 20.630 37.005 1 YR 00804025

4487 D- Main C hannel 1254 20.743 36.759 12.88 1 3 1 1 Y R 00804026

4488 Full T ransect (NW-SE) 1306 20.772 36.711 1 Y R 00804027

Y R 00804028
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Table A2.10. YR080416 (G loucester Point, April 16, 2008) Calibration C ruise

Station Description Date Time
(EST)

Lat 
37° N

Long 
76° W

depth CTD 
(m)

TSS LISST ADCP 
profile

ADV

profile
ADV ADCP ADCP 

bottom transect filename

4489 1 - profile 4/16/08 813 14.686 29.911 7.25 1 3 1 2 1 Y R080415000

4490 2- profile 830 14.688 29.909 7.15 1 3 1 1 1 YR080415001

4491 3- profile 900 14.690 29.909 7.05 1 3 1 1 1 YR080415002

4492 4- profile 930 14.691 29.910 6.83 1 3 1 1 1 Y R080415003

4493 5- profile 1000 14.690 29.909 6.89 1 3 1 1 1 Y R080415004

4494 6- profile 1032 14.693 29.909 6.67 1 3 1 1 1 YR080415005

4495 7- profile 1100 14.687 29.910 6.66 1 3 1 1 1 Y R080415006

4496 8- profile 1130 14.689 29.911 6.62 1 3 1 1 1 YR080415007

4497 9- profile 1200 14.695 29.930 6.57 1 3 1 1 1 Y R 080415008
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Table A2.11. YR080418 (G loucester Point, April 18, 2008) C alibration C ruise

TSS LISST ADCP ADV ADV ADCP ADCP
_profile profile bottom tran sec t filenam e

YR080418001 

Y R 080418002 

Y R 080418003 

Y R 080418004 

Y R 080418005 

Y R 080418006 

Y R 080418007 

Y R080418008 

Y R 080418009 

YR080418010 

Y R 080418011 

Y R080418012 

Y R080418013 

Y R080418014 

Y R080418015 

YR080418016

Station Description Date Time
(EST)

Lat 
37° N

Long 
76° W

depth
(m)

4498 bottom 4/18/08 933 20.825 36.947 12.19

4499 bottom 953 20.823 36.947 12.03

4500 bottom 1015 20.823 36.947 11.85

4501 bottom 1136 20.815 36.939 11.82

4502 bottom 1145 20.814 36.938 11.74

4503 bottom 1059 20.812 36.934 11.79

4504 bottom 1115 20.812 36,933 11.8

4505 bottom 1129 20.811 36.933 11.71

4507 bottom 1150 20.812 36.931 11.71

4508 bottom 1200 20.813 36.927 11.73

4509 bottom 1216 20.811 36.929 11.76

4510 bottom 1230 20.812 36.928 11.7

4511 bottom 1245 20.812 36.928 11.64

4512 bottom 1300 20.811 36.929 11.6

4513 bottom 1315 20.811 36.929 11.61

4514 bottom 1330 20.812 36.930 11.56
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Table A2.12. YR0080505 (Claybank Erosion S tudy A nchor sta tion  May 5, 2008) Calibration C ruise

TSS LISST ADCP ADV ADV ADCP ADCP

_profile profile bottom transect filename

YR080505001

Y R080505002

YR080505003

YR080505004

YR080505005

YR080505006

YR080505007

YR080505008

YR080505009

YR080505010

YR080505011

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

4515 bottom 5/5/08 1015 20.827 36.827 10.19

4516 bottom 1030 20.827 36.991 10.11

4517 bottom 1039 20.825 36.990 10.12

4518 bottom 1048 20.823 36.987 10.07

4519 bottom 1102 20.816 36.981 9.97

4520 bottom 1116 20.821 36.974 10.41

4521 bottom 1133 20.818 36.973 10.15

4522 bottom 1146 20.819 36.972 10.13

4523 bottom 1201 20.818 36.973 9.9

4524 bottom 1216 20.820 36.970 10.07

4525 bottom 1233 20.823 36.965 10.39
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Table A2.13. YR080507 (Claybank Erosion S tudy A nchor sta tion  May 7, 2008) Calibration C ruise

TSS LISST ADCP ADV ADV ADCP ADCP

_profile profile bottom transect filename

YR080507000

YR080507001

Y R080507002

Y R080507003

Y R080507004

YR080507005

YR080507006

YR080507007

YR080507008

Y R080507009

YR080507010

YR080507011

YR080507012

YR080507013

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

4526 profile 5/7/08

4527 bottom 622 20.588 36.672 9.22

4528 bottom 636 20.589 36.673 9.23

4529 bottom 645 20.589 36.673 9.27

4530 bottom 701 20.589 36.672 9.32

4531 bottom 715 20.589 36.673 9.38

4532 bottom 732 20.590 36.672 9.42

4533 bottom 747 20.590 36.674 9.45

4534 bottom 8 20.594 36.677 9.47

4535 bottom 815 20.592 36.678 9.52

4536 bottom 838 20.631 36.696 10.34

4537 bottom 9 20.628 36.700 10.39

4538 bottom 930 20.629 36.700 10.45

4539 bottom 946 20.631 36.699 10.64
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Table A2.14. YR080514 (C laybank Erosion S tudy  A nchor s ta tio n  May 14, 2008) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth  CTD 

(m)

T SS  LISST ADCP 

profile

ADV

profile

ADV ADCP ADCP 

bottom tran sec t filenam e

4541 bottom 5/14/08 706 20.804 36.918 11.68 1 1 1 1 1 Y R 080514000

4542 bottom 721 20.803 36.919 11.58 1 1 1 1 1 Y R 080514001

4543 bottom 730 20.802 36.919 11.51 1 1 1 1 1 Y R080514002

4544 1 - profile 745 20.801 36.920 11.61 1 1 1 1 Y R080514003

4545 bottom 746 20.801 36.919 11.66 1 1 1 1 1 Y R080514004

4546 bottom 801 20.801 36.918 11.64 1 1 1 1 1 Y R080514005

4547 bottom 819 20.803 36.910 12.16 1 1 1 1 1 Y R 080514006

4548 bottom 848 20.804 36.912 11.9 1 1 1 1 1 Y R080514007

4549 bottom 901 20.801 36.913 11.77 1 1 1 1 1 Y R 080514008

4550 bottom 921 20.804 36.912 11.96 1 1 1 1 1 Y R080514009

4551 bottom 936 20.803 36.913 11.75 1 1 1 1 1 YR080514011

4552 bottom 947 20.802 36.914 11.73 1 1 1 1 1 Y R080514012

4553 bottom 1000 20.801 36.915 11.5 1 1 1 1 1 Y R080514013

4554 bottom 1017 20.800 36.916 11.5 1 1 1 1 1 Y R080514014

4555 bottom 1031 20.801 36.915 11.48 1 1 1 1 1 Y R080514015

4556 bottom 1100 20.736 36.790 12.3 1 1 1 1 1 Y R 080514018

4557 bottom 1122 20.736 36.789 12.27 1 1 1 1 1 Y R080514019

4558 bottom 1134 20.738 36.789 12.29 1 1 1 1 1 Y R080514020

4559 bottom 1148 20.737 36.791 12.25 1 1 1 1 1 Y R 080514021

4560 bottom 1200 20.737 36.791 12.25 1 1 1 1 1 Y R 080514022

4561 bottom 1216 20.739 36.789 12.39 1 1 1 1 1 Y R080514023



Table A2.14. YR080514 (Claybank Erosion S tudy A nchor sta tion  May 14, 2008) Calibration C ruise (cont)

Station Description Date Time 

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

CTD TSS LISST ADCP

profile

ADV

profile

ADV

bottom

4562 2- profile 1232 20.740 36.789 12.45 1 1 1 1

4563 bottom 1235 20.738 36.790 12.36 1 1 1 1 1

4564 bottom 1247 20.738 36.790 12.42 1 1 1 1 1

ADCP

filename

YR080514024

YR080514025

Y R080514026
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Table A2.15. YR080515 (Claybank E rosion S tudy A nchor sta tion  May 15, 2008) Calibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth CTD 

(m)

TSS LISST ADCP 

profile

ADV

profile

4565 1- profile 5/15/08 804 20.834 36.943 12.19 1 1 1 1

4566 bottom 806 20.833 36.943 12.16 1 1 1 1

4567 bottom 821 20.830 36.942 11.22 1 1 1 1

4568 bottom 831 20.830 36.942 12.07 1 1 1 1

4569 bottom 844 20.829 36.941 12.07 1 1 1 1

4570 2- profile 900 20.824 36.936 12.04 1 1 1 1

4571 bottom 901 20.824 36.937 12.02 1 1 1 1

4572 bottom 915 20.822 36.938 11.81 1 1 1 1

4573 3- profile 930 20.819 36.939 11.58 1 1 1 1

4574 bottom 931 20.819 36.940 11.57 1 1 1 1

4575 bottom 946 20.819 36.941 11.5 1 1 1 1

4576 4- profile 1002 20.818 36.940 11.36 1 1 1 1

4577 bottom 1003 20.810 36.940 11.31 1 1 1 1

4578 bottom 1018 20.817 36.942 11.22 1 1 1 1

4579 5- profile 1033 20.818 36.942 11.39 1 1 1 1

4580 bottom 1034 20.818 36.940 11.39 1 1 1 1

4581 bottom 1046 20.817 36.941 11.16 1 1 1 1

4582 6- profile 1102 20.817 36.940 11.94 1 1 1 1

4583 bottom 1103 20.818 36.940 11.17 1 1 1 1

4584 bottom 1116 20.817 36.939 11.34 1 1 1 1

4585 7- profile 1134 20.818 36.939 11.32 1 1 1 1

ADV ADCP ADCP

filename

YR080515000 

Y R080515001 

Y R080515002 

Y R 080515003 

YR080515004 

YR080515005 

Y R080515006 

YR080515007 

Y R080515008 

Y R080515009 

YR080515010 

YR080515011 

YR080515012 

YR080515013 

YR080515014 

YR080515015 

YR080515016 

YR080515017 

YR080515018 

YR080515019 

YR080515020
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Table A2.15. YR080515 (Claybank Erosion S tudy A nchor station  May 15, 2008) Calibration C ruise

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m) profile profile bottom transect filename

4586 bottom 1135 20.819 36.939 11.33 1 1 1 1 1 YR080515021

4587 bottom 1146 20.818 36.938 11.2 1 1 1 1 1 Y R080515022

4588 8- profile 1201 20.819 36.938 11.32 1 1 1 1 Y R080515023

4589 bottom 1202 20.819 36.937 11.32 1 1 1 1 1 Y R080515024

4590 bottom 1218 20.818 36.939 11.28 1 1 1 1 1 Y R080515025

4591 bottom 1230 20.818 36.940 11.23 1 1 1 1 1 Y R080515026
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Table A2.16. YR080603 (C laybank E rosion S tudy  A nchor sta tio n  J u n e  3, 2008) Calibration C ruise

Station Description D ate Time Lat Long depth  CTD T SS LISST ADCP ADV

(EST) 37° N 76° W (m) profile profile

4582 1- profile 6/3/08 916 20.861 36.978 12.38 1 1 1 1

4583 bottom 920 20.863 36.975 12.44 1 1 1 1

4584 bottom 933 20.863 36.973 12.55 1 1 1 1

4585 2- profile 952 20.861 36.974 12.36 1 1 1 1 1

4586 bottom 955 20.861 36.974 12.43 1 1 1 1

4587 3- profile 926 20.861 36.972 12.47 1 1 1 1

4588 bottom 1030 20.860 36.970 12.42 1 1 1

4589 bottom 1046 20.860 36.974 12.17 1 1 1 1

4590 4- profile 1105 20.862 36.970 12.28 1 1 1 1

4591 bottom 1108 20.862 36.969 12.34 1 1 1 1

4592 bottom 1127 20.862 36.971 12.24 1 1 1 1

4593 5- profile 1143 20.864 36.963 12.31 1 1 1 1

4594 bottom 1145 20.865 36.963 12.36 1 1 1 1

4595 bottom 1157 20.857 36.957 12.24 1 1 1 1

4596 6- profile 1204 20.851 36.957 11.94 1 1 1 1

4597 bottom 1206 20.848 36.957 11.76 1 1 1 1

4598 7- profile 1225 20.847 36.955 11.87 1 1 1 1

4599 bottom 1227 20.847 36.955 11.79 1 1 1 1

4600 bottom 1238 20.848 36.953 12 1 1 1 1

4601 bottom 1253 20.846 36.954 11.74 1 1 1 1

ADV ADCP ADCP

filenam e

Y R 080603000

YR080603001

YR080603002

YR08603003

YR080603004

YR080603005

YR080603006

Y R080603007

Y R080603008

Y R 080603009

Y R 080603010

YR080603011

Y R 080603012

Y R 080603013

Y R 080603014

Y R 080603015

Y R 080603016

Y R080603017

Y R080603018

Y R 080603019
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Table A2.17. YR080606 (Claybank E rosion S tudy A nchor S tation Ju n e  6, 2008) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

4602 ADCP only 6/6/08 629 20.812 36.972 11.42

4603 ADCP only 653 20.813 36.927 11.47

4604 1- profile 659 20.813 36.925 11.66

4605 bottom 704 20.813 36.926 11.7

4606 bottom 720 20.815 36.927 11.63

4607 bottom 736 20.814 36.927 11.46

4608 2- profile and  bottom 802 20.816 36.928 11.65

4609 bottom 816 20.820 36.931 11.93

4610 bottom 831 20.818 36.933 11.58

4611 3- profile 855 20.839 36.957 11.62

4612 bottom 859 20.838 36.959 11.65

4613 bottom 916 20.840 36.956 11.82

4614 bottom 933 20.841 36.957 11.94

4615 bottom 946 20.840 36.957 12.02

4616 4- profile 1001 20.839 36.959 11.88

4617 bottom 1003 20.841 36.958 11.94

4618 bottom 1017 20.840 36.958 12

4619 bottom 1032 20.839 36.959 11.88

4620 bottom 10.46 20.839 36.960 12.02

CTD TSS LISST ADCP ADV ADV ADCP ADCP

_profile profile bottom tran sec t filename

1 Y R080606000

1 YR080606001

1 1 1 Y R080606002

2 1 1  1 YR080606003

2 1 1  1 YR080606004

2 1 1  1 YR080606005

2 1 1 1 1  YR080606006

2 1 1  1 Y R080606007

2 1 1  1 YR080606008

1 1 1 Y R080606009

2  1 1

2 1 1  1 YR080606010

2 1 1  1 YR080606011

2 1 1  1 Y R080606012

1 1 1 YR080606013

2 1 1  1 Y R080606014

2 1 1  1 Y R080606015

2 1 1  1 Y R080606016

2 1 1  1 YR080606017
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Table A2.18. YR080696 (C laybank Erosion S tudy A nchor S tation Ju n e  9, 2008) C alibration C ruise

Station Description Date Time Lat Long depth CTD T SS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m) profile profile bottom transect filename

4621 1- profile 6/9/08 941 20.751 36.824 11.83 1 1 1 1 Y R080606018

4622 bottom 944 20.750 36.824 11.77 1 2 1 1 1 Y R080609000

4623 bottom 1004 20.752 36.824 11.87 1 2 1 1 1 YR080609001

4624 bottom 1017 20.749 36.828 11.57 1 2 1 1 1 Y R080609002

4625 2- profile 1038 20.751 36.824 11.94 1 1 1 1 Y R080609003

4626 bottom 1039 20.752 36.826 11.94 1 2 1 1 1 YR080609004

4627 bottom 1117 20.763 36.828 12.24 1 2 1 1 1 Y R080609005

4628 bottom 1134 20.762 36.833 12.24 1 2 1 1 1 YR080609006

4629 3- profile 1144 20.762 36.839 12.31 1 1 1 1 YR080609007

4630 bottom 1147 20.764 36.841 12.07 1 2 1 1 1 Y R080609008

4631 bottom 1205 20.765 30.842 12.23 1 2 1 1 1 Y R080609009

4632 bottom 1222 20.766 36.843 12.33 1 2 1 1 1 YR080609010

4633 bottom 1240 20.767 36.846 12.34 1 2 1 1 1 YR080609011

4634 bottom 1303 20.769 36.855 12.88 1 2 1 1 1 YR080609012

4635 bottom 1308 20.771 36.859 12.35 1 2 1 1 1 Y R080609013
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Table A2.19. YR080610 (C laybank Erosion S tudy A nchor S tation  J u n e  10, 2008) C alibration C ruise

Station Description Date Time Lat Long depth CTD

________ (EST) 37° N 76° W (m)________
TSS LISST ADCP ADV ADV ADCP ADCP

_profile profile bottom tran sec t filename

4636 1 - profile 6/10/08 1019 20.742 36.846 10.77 1 1 1 1

4637 bottom 1021 20.741 36.848 10.7 1 2 1 1 1

4638 bottom 1036 20.742 36.849 10.72 1 2 1 1 1

4639 bottom 1049 20.741 36.850 10.6 1 2 1 1 1

4640 bottom 1106 20.741 36.852 10.46 1 2 1 1 1

4641 2- profile 1126 20.741 36.850 10.77 1 1 1 1

4642 bottom 1136 20.742 36.855 10.47 1 2 1 1 1

4643 3- profile 1205 20.755 36.857 11.07 1 1 1 1

4644 bottom 1207 20.756 36.855 11.17 1 2 1 1 1

4645 bottom 1231 20.761 36.855 11.33 1 2 1 1 1

4646 bottom 1256 20.760 36.860 11.3 1 2 1 1 1

4647 bottom 1315 20.762 36.870 11.2 1 2 1 1 1

4648 bottom 1343 20.762 36.869 11.34 1 2 1 1 1

4649 4- profile 1407 20.767 36.885 11.16 1 2 1 1 1

4650 bottom 1410 20.767 36.885 11.14 1 1 1 1

YR080610000 

Y R080610001 

YR080610002 

YR080610003 

Y R080610004 

Y R080610005 

YR080610006 

YR080610007 

Y R 080610008 

Y R 080610009 

Y R080610010 

YR080610011 

YR080610012 

YR080610013 

YR080610014
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Table A2.20. YR080729 (Clay Bank A nchor S tation , Ju ly  29, 2008) Calibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 

76° W

depth  CTD 

(m)

T SS LISST ADCP 

profile

ADV

profile

ADV ADCP ADCP 

bottom transect filenam e

4651 7/29/08 748 20.437 37.484 6.35 1 1 1 1 YR080729000

4652 1- profile 801 20.438 37.483 6.26 1 3 1 1 1 YR080729001

4653 2- profile 812 20.437 37.485 6.29 1 1 1 1 YR080729002

4654 bottom 813 20.437 37.485 6.27 1 2 1 1 1 YR080729003

4655 bottom 836 20.437 37.484 6.13 1 2 1 1 1 YR080729004

4656 3- profile 902 20.431 37.476 6.18 1 3 1 1 1 Y R080729005

4657 4- profile 911 20.430 37.476 6.16 1 1 1 1 Y R080729006

4658 bottom 913 20.430 37.477 6.07 1 2 1 1 1 Y R080729007

4659 bottom 935 20.429 37.477 6.04 1 2 1 1 1 YR080729008

4660 5- profile 946 20.420 37.471 6.02 1 3 1 1 1 YR080729009

4661 6- profile 953 200.420 37.472 6 1 1 1 1 YR080729010

4662 bottom 956 20.419 37.473 5.94 1 2 1 1 1 YR080729011

4663 bottom 1020 20.419 37.473 5.88 1 2 1 1 1 YR080729012

4664 bottom 1041 20.418 37.474 5.76 1 2 1 1 1 YR080729013

4665 7- profile 1107 20.418 37.470 5.85 1 3 1 1 1 Y R080729014

4666 8- profile 1115 20.418 37.471 5.76 1 1 1 1 Y R080729015

4667 bottom 1116 20.418 37.473 5.74 1 2 1 1 1 YR080729016

4668 bottom 1141 20.417 37.472 5.67 1 2 1 1 1 YR080729017

4669 9- profile 1205 20.419 37.470 5.78 1 3 1 1 1 YR080729018

4670 10- profile 1212 20.419 37.470 5.76 1 1 1 1 YR080729019

4671 bottom 1214 20.417 37.471 5.72 1 2 1 1 1 YR080729020



Table A2.20. YR080729 (Clay Bank A nchor S tation, Ju ly  29, 2008) C alibration C ruise (cont)

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP

________________________________(EST) 37° N 76° W (m)_________________________ profile profile bottom transect filename

4672 bottom 1231 20.417 37.473 5.63 1 2 1 1 1

4673 11- profile 1302 20.420 37.472 5.83 1 3 1 1 1

4674 12- profile 1310 20.422 37.475 5.77 1 1 1 1

4675 bottom 1312 20.421 37.473 1 2 1 1 1

4676 13- profile 1350 20.434 37.490 5.79 1 1 1 1

YR080729021

YR080729022

Y R080729023

YR080729024

Y R080729026
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Table A2.21. YR080731 (G loucester Point A nchor S tation, Ju ly  31, 2008) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth CTD 

(m)

TS

4677 ADCP only 7/31/08 826 14.656 29.979 9.04

4678 1- profile 906 14.655 29.966 8.90 1 3

4679 2- profile 918 14.684 29.965 9.06 1

4680 bottom 920 14.653 26.966 9.02 1 2

4681 bottom 942 14.654 29.966 8.92 1 2

4682 3- profile 1002 14.660 29.955 8.59 1 3

4683 4- profile 1011 14.662 29.956 8.37 1

4684 bottom 1014 14.660 29.955 8.40 1 2

4685 bottom 1035 14.660 29.954 8.31 1 2

4686 5- profile 1105 14.661 29.954 8.24 1 3

4687 6- profile 1112 14.658 29.949 8.24 1

4688 bottom 1114 14.656 29.946 8.22 1 2

4689 bottom 1142 14.657 29.943 7.97 1 2

4690 7- profile 1204 14.659 29.943 7.93 1 3

4691 8- profile 1212 14.658 29.944 7.94 1

4692 bottom 1215 14.657 29.945 8.04 1 2

4693 bottom 1238 14.658 29.945 7.91 1 2

4694 9- profile 1300 14.656 29.945 7.66 1 3

4695 10- profile 1312 14.657 29.952 7.69 1

4696 bottom 1313 14.656 29.954 7.95 1 2

4697 bottom 1338 14.659 29.956 7.68 1 2

ADCP ADV ADV ADCP ADCP

profile profile bottom transect filenam e

Y R080801000

YR080801001

YR080801002

YR080801003

Y R080801004

Y R080801005

YR080801006

YR080801007

YR080801008

YR080801009

YR080801010

YR080801011

YR080801012

YR080801013

YR080801014

Y R080801015

YR080801016

YR080801017

YR080801018

YR080801019

YR080801020



Table A2.21. YR080731 (G loucester Point A nchor S tation, Ju ly  31, 2008) C alibration C ruise (Cont)

Station

4698

4699

4700

Description Date Time Lat Long depth CTD
______________________ (EST) 37° N 76° W (m)

11- profile 1407 14.659 29.972 8.35 1

12- profile 1415 14.660 29.943 8.00 1

bottom 1416 14.655 29.974 8.47 1

TSS LISST ADCP ADV ADV ADCP ADCP

_profile profile bottom transect filename

3 1 1 1  YR080801021

1 1 1 YR080801022

2 1 1  1 YR080801023
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Table A2.22. YR0801016 (Clay Bank A nchor S tation, Oct 16, 2008) C alibration C ruise

Station Description Date Time Lat Long depth CTD T SS LISST ADCP ADV ADV ADCP ADCP 

_______________________ (EST) 37° N 76° W (m)______________________ profile profile bottom tran sec t filename

4701 Profile 10/16/08 4:53:00 20.405 37.494 5.25 1 1 1

4702 Bottom 4:59:00 20.408 37.493 5.28 1 2 1 1

4703 Profile 5:30:00 20.408 37.495 5.46 1 3 1

4704 Profile 5:55:00 20.418 37.500 5.47 1 1 1

4705 B ottom 5:58:00 20.418 37.500 5.47 1 2 1 1

4706 Profile 6:03:00 20.423 37.508 5.63 1 3 1

4707 Profile 6:37:00 20.422 37.509 5.66 1 1 1

4708 B ottom 6:40:00 20.422 37.508 5.6 1 2 1 1

4709 B ottom 7:12:00 20.424 37.509 5.77 1 2 1 1

4710 Profile 7:40:00 20.436 37.518 5.93 1 3 1

4711 Profile 7:58:00 20.427 37.495 6.22 1 1 1

4712 B ottom 8:00:00 20.427 37.496 6.19 1 2 1 1

4713 B ottom 8:21:00 20.427 37.495 6.27 1 2 1 1

4714 Profile 8:42:00 20.427 37.496 6.36 1 3 1

4715 Profile 8:49:00 20.427 37.496 6.36 1 1 1

4716 B ottom 8:50:00 20.427 37.496 6.38 1 2 1 1

4717 B ottom 9:10:00 20.428 37.495 6.39 1 2 1 1

4718 Profile 9:37:00 20.428 37.494 6.5 1 3 1

4719 Profile 9:40:00 20.427 37.494 6.52 1 1 1

4720 B ottom 9:45:00 20.428 37.493 6.5 1 2 1 1

4721 B ottom 10:11:00 20.429 37.491 6.58 1 2 1 1

YR081016000

YR081016001

YR081016002

YR081016003

YR081016004

YR081016005

YR081016006

YR081016007

Y R081016008

YR081016009

YR081016010

YR081016011

YR081016012

YR081016013

YR081016014

YR081016015

Y R081016016

YR081016017

Y R081016018

YR081016019

YR081016020
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Table A2.22. YR0801016 (Clay Bank A nchor S tation, Oct 16, 2008) C alibration C ruise (cont)

Station Description Date Time 

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

CTD TSS LISST ADCP 

profile

ADV

profile

4727 B ottom 11:32:00 20.426 37.480 6.55 1 2 1

4728 B ottom 11:54:00 20.427 37.479 6.52 1 2 1

4729 Profile 12:21:00 20.423 37.475 6.5 1 3 1 1

ADV ADCP ADCP

filename

YR081016026 

YR081016027 

Y R 081016028
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Table A2.23. YR090108 (G loucester Point A nchor S tation, Jan u a ry  08, 2009) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 

76° W

depth  CTD 

(m)

TSS

4730 profile 1/8/09 7:56:00 14.6769 29.9436 7.4 1 3

4731 profile 8:03:20 14.6772 29.9351 7.45 1

4732 bottom 8:08:10 14.6775 29.9354 7.37 1 2

4733 bottom 8:26:45 14.6504 29.9389 7.31 1 2

4734 profile 8:43:00 14.6800 29.9369 7.31 1 3

4735 profile 8:55:30 14.6800 29.9370 7.24 1

4736 bottom 9:00:40 14.6810 29.9384 7.25 1 2

4737 bottom 9:32:20 14.6801 29.9356 7.19 1 2

4738 profile 9:47:20 14.6779 29.9349 7.14 1 3

4739 profile 9:57:30 14.6766 29.9341 7.17 1

4740 bottom 10:01:20 14.676 29.9339 7.11 1 2

4741 bottom 10:22:20 14.6776 29.935 7.09 1 2

4742 profile 10:56:20 14.6759 29.9338 7.07 1 3

4743 profile 11:05:50 14.6767 29.9337 7.01 1

4744 bottom 11:09:30 14.6700 29.9343 6.94 1 2

4745 bottom 11:36:00 14.6752 29.9324 7.04 1 2

4746 profile 11:53:40 14.6745 29.9319 7.05 1 3

4747 profile 12:01:20 14.6706 29.9309 7.06 1

4748 bottom 12:05:00 14.6737 29.932 7.01 1

4749 bottom 12:29:20 14.6717 29.9304 7.2 1

4750 bottom 12:32:45 14.6690 29.9930 7.11 2

ADCP ADV ADV ADCP ADCP

profile profile bottom tran sec t filename

Y R 090108001 

Y R090108002 

Y R090108003 

Y R090108004 

Y R 090108005 

YR090108006 

YR090108007 

Y R 090108008 

Y R 090108009 

Y R 090108010 

Y R090108011 

Y R090108012 

Y R090108013 

Y R090108014 

YR090108015 

Y R090108016 

YR090108017 

YR090108018 

YR090108019 

Y R 090108020 

YR090108021
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Table A2.23. YR090108 (G loucester Point A nchor S tation, Jan u a ry  08, 2009) C alibration C ruise (cont)

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP 

________________________________(EST) 37° N 76° W (m)______________________ profile profile bottom tran sec t filename

4751 profile 12:55:00 14.6733 29.9319 7.01 1 3 1 1 1

4752 profile 13:03:30 14.6734 29.9318 7.01 1 1 1 1

4753 bottom 13:06:30 14.6746 29.9319 6.95 1 2 1 1 1

4754 bottom 13:17:20 14.6694 29.9305 6.94 1 2 1 1 1

4755 profile 13:37:00 14.6651 29.9312 7.27 1 1 1 1

4756 bottom 13:39:50 14.6671 29.9305 7.18 1 1 1 1

4757 profile 14:06:20 14.6710 29.9306 7.11 1 2 1 1 1

Y R 090108022 

Y R090108023 

Y R 090108024 

Y R 090108025 

YR090108026 

YR090108027 

Y R090108028



Table A2.24. YR090226 (Clay Bank A nchor S tation, February 26, 2009) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth CTD 

(m)

TSS

4759 Profile 2/26/09 7:50:00 20.499 37.506 6.28 1

4760 B ottom 7:54:00 20.499 37.507 6.34 1 2

4761 B ottom 8:18:00 20.499 37.507 6.19 1 2

4762 Profile 8:38:00 20.499 37.507 6.28 1 3

4763 Profile 8:48:00 20.500 37.507 6.32 1

4764 B ottom 8:51:00 20.499 37.507 6.27 1 2

4765 B ottom 9:09:00 20.500 37.509 6.34 1 2

4766 Profile 9:38:00 20.499 37.509 6.43 1 3

4767 Profile 9:47:00 20.500 37.508 6.44 1

4768 B ottom 9:51:00 20.499 37.508 6.39 1 2

4769 B ottom 10:17:00 20.499 37.508 6.46 1 2

4770 Profile 10:41:00 20.500 37.503 6.54 1 3

4771 Profile 10:49:00 20.550 37.502 6.56 1

4772 B ottom 10:52:00 20.500 37.503 6.5 1 2

4773 B ottom 11:13:00 20.501 37.498 6.52 1 2

4774 Profile 11:40:00 20.500 37.495 6.45 1 3

4775 Profile 11:48:00 20.500 37.497 6.5 1

4776 B ottom 11:52:00 20.501 37.500 6.45 1 2

4777 B ottom 12:09:00 20.501 37.498 6.37 1 2

4778 Profile 12:39:00 20.500 37.494 6.35 1 3

4779 Profile 12:48:00 20.501 37.497 6.35 1

ADCP ADV ADV ADCP ADCP

profile profile bottom transect filename

1

YR090226000

YR090226001

YR090226002

YR090226003

Y R090226004

YR090226005

Y R090226006

YR090226007

Y R090226008

YR090226009

Y R090226010

YR090226011

YR090226012

YR090226014

YR090226015

YR090226016

YR090226017

Y R090226018

YR090226019

YR090226020



Table A2.24. YR090226 (Clay Bank A nchor S tation, February 26, 2009) Calibration C ruise (cont)

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m) profile profile bottom tran sec t filename

4780 B ottom  12:51:00 20.501 37.494 6.28 1 2 1 1 1 YR090226021

4781 B ottom  13:19:00 20.494 37.485 6.24 1 2 1 1 1 YR090226022
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Table A2.25. YR090514 (Clay Bank A nchor S tation, May 14, 2009) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth  CTD 

(m)

TSS LISST ADCP 

profile

ADV

profile

ADV ADCP ADCP 

bottom transect filename

4802 Profile 5/14/09 4:51:00 20.523 37.510 6.16 1 3 1 1 1 YR090514001

4803 Profile 5:03:00 20.523 37.510 6.06 1 1 1 1 Y R090514002

4804 B ottom 5:09:00 20.523 37.510 6.00 1 2 1 1 1 YR090514003

4805 B ottom 5:31:00 20.522 37.509 5.95 1 2 1 1 1 Y R090514004

4806 Profile 5:46:00 20.523 37.508 6.00 1 3 1 1 1 YR090514005

4807 Profile 5:55:00 20.523 37.508 5.95 1 1 1 1 YR090514006

4808 B ottom 5:59:00 20.524 37.508 6.94 1 2 1 1 1 YR090514007

4809 B ottom 6:19:00 20.522 37.510 6.93 1 2 1 1 1 Y R090514008

4810 Profile 6:45:00 20.521 37.502 9.95 1 3 1 1 1 Y R090514009

4811 Profile 6:55:00 20.522 37.510 5.93 1 1 1 1 YR090514010

4812 B ottom 6:58:00 20.523 37.510 5.88 1 2 1 1 1 YR090514011

4813 B ottom 7:23:00 20.525 37.508 5.87 1 1 1 1 Y R090514012

4814 B ottom 7:34:00 20.525 37.511 6.10 1 2 1 1 1 YR090514013

4815 Profile 7:59:00 20.541 37.512 5.89 1 3 1 1 1 YR090514014

4816 Profile 8:28:00 20.553 37.527 5.91 1 1 1 1 YR090514015

4817 B ottom 8:31:00 20.552 37.531 5.90 1 1 1 1 YR090514016

4818 Profile 9:03:00 20.553 37.528 6.00 1 3 1 1 1 YR090514017

4819 Profile 9:24:00 20.556 37.529 6.73 1 3 1 1 1 YR090514018

Too ro u g h  to  c o n tin u e



269

Table A2.26. YR090811 (Clay Bank A nchor S tation, A ugust 11, 2009) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth CTD 

(m)

TSS LISST ADCP 

profile

ADV

profile

ADV ADCP 

bottom transect

ADCP

filename

4820 Profile 8/11/09 8:34:00 20.508 37.505 5.88 1 3 1 1 No ADCP

4821 Profile 8:41:00 20.508 37.505 5.82 1 1 1 N oADCP

4822 B ottom 8:43:00 20.509 37.506 5.85 1 1 1 1 N oADCP

4823 B ottom 9:02:00 20.509 37.504 5.94 1 1 1 N oADCP

4824 Profile 9:33:00 20.508 37.503 6 1 3 1 1 N oADCP

4825 Profile 9:39:00 20.510 37.501 6 1 1 1 N oADCP

4826 B ottom 9:40:00 20.509 37.502 6 1 1 1 1 N oADCP

4827 Profile 10:13:00 20.516 37.517 6.12 1 3 1 1 N oADCP

4828 B ottom 10:23:00 20.518 37.518 6.19 1 1 1 1 No ADCP

4829 B ottom 10:45:00 20.519 37.518 6.19 1 1 1 1 No ADCP

4830 Profile 11:01:00 20.521 37.520 6.25 1 1 1 N oADCP

4831 Profile 11:08:00 20.526 37.524 6.31 1 1 1 N oADCP

4832 B ottom 11:11:00 20.525 37.524 6.34 1 1 1 1 NoADCP

4833 B ottom 11:33:00 20.527 37.527 6.52 1 1 1 1 No ADCP

4834 Profile 12:01:00 20.527 37.524 6.4 1 1 1 NoADCP

4835 Profile 12:08:00 20.529 37.526 6.44 1 1 1 NoADCP

4836 B ottom 12:10:00 20.529 37.526 6.43 1 1 1 1 NoADCP

4837 B ottom 12:32:00 20.529 37.524 6.49 1 1 1 1 NoADCP

4838 Profile 13:09:00 20.530 37.524 6.49 1 3 1 1 NoADCP

4839 Profile 13:15:00 20.530 37.524 6.43 1 1 1 N oADCP

4840 B ottom 13:17:00 20.529 37.523 6.46 1 1 1 1 N oA D CP
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Table A2.26. YR090811 (Clay Bank A nchor S tation, A ugust 11, 2009) C alibration C ruise

Station Description Date Time 

(EST)

Lat 
37° N

Long 
76° W

depth  CTD 

(m)

TSS LISST ADCP 

profile

ADV

profile

ADV ADCP 

bottom transect

ADCP

filename

4841 B ottom 13:39:00 20.530 37.523 6.52 1 1 1 1 No ADCP

4842 Profile 14:03:00 20.530 37.524 6.4 1 3 1 1 No ADCP

4843 Profile 14:09:00 20.530 37.524 6.4 1 1 1 No ADCP

4844 B ottom 14:11:00 20.530 37.523 6.43 1 1 1 1 N oADCP

4845 B ottom 14:33:00 20.529 37.522 6.4 1 1 1 1 N oADCP

4846 Profile 15:08:00 20.529 37.521 6.28 1 3 1 1 N oADCP
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Table A2.27. YR091125 (Clay Bank A nchor S tation, N ovem ber 25, 2009) C alibration C ruise

Station Description D ate Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m)

4847 Profile 11/25/09 7:32:00 20.399 37.423 6.41

4848 Profile 7:48:00 20.399 37.422 6.39

4849 B ottom 7:50:00 20.400 37.422 6.39

4850 B ottom 8:09:00 20.400 37.423 6.35

4851 Profile 8:40:00 20.401 37.422 6.38

4852 Profile 8:48:00 20.401 37.421 6.34

4853 B ottom 8:50:00 20.401 37.421 6.31

4854 B ottom 9:16:00 20.401 37.422 6.29

4855 Profile 9:32:00 20.400 37.422 6.3

4856 Profile 9:40:00 20.400 37.423 6.3

4857 B ottom 9:41:00 20.400 37.423 6.3

4858 B ottom 9:51:00 20.399 37.423 6.27

4859 B ottom 10:04:00 20.399 37.425 6.3

4860 Profile 10:32:00 20.400 37.425 6.32

4861 Profile 10:42:00 20.400 37.422 6.31

4862 B ottom 10:43:00 20.400 37.422 6.31

4863 B ottom 11:10:00 20.401 37.442 6.35

4864 Profile 11:38:00 20.402 37.419 6.41

4865 Profile 11:46:00 20.402 37.419 6.43

4866 B ottom 11:48:00 20.402 37.420 6.4

4867 B ottom 12:16:00 20.405 37.419 6.46

profile profile bottom transect filename

3 1 1  1 YR091125000

1 1 1 YR091125001

2 1 1  1 YR091125002

2 1 1  1 YR091125003

3 1 1  1 YR091125004

1 1 1 YR091125005

2 1 1  1 YR091125006

2 1 1  1 YR091125007

3 1 1  1 Y R 091125008

1 1 1 Y R 091125009

2 1 1  1 Y R091125009

2 1 1  1 YR091125010

2 1 1  1 YR091125011

3 1 1  1 YR091125012

1 1 1 YR091125013

2 1 1  1 YR091125014

2 1 1  1 YR091125015

3 1 1  1 YR091125016

1 1 1 YR091125017

2 1 1  1 YR091125018

2 1 1  1 YR091125019
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Table A2.27. YR091125 (Clay Bank A nchor S tation, N ovem ber 25, 2009) C alibration C ruise

Station Description Date Time Lat Long depth CTD T SS LISST ADCP ADV ADV ADCP ADCP 

(EST) 37° N 76° W (m)______________________ profile profile bottom transect filename

4868 Profile 12:38:00 20.406 37.419 6.55 1 3 1 1 1

4869 Profile 12:47:00 20.408 37.419 6.55 1 1 1 1

4870 B ottom 13:04:00 20.410 37.419 6.58 1 2 1 1 1

4871 B ottom 13:25:00 20.410 37.420 6.58 1 2 1 1 1

4872 Profile 14:12:00 20.414 37.423 6.74 1 3 1 1 1

YR091125020 

YR091125021 

Y R091125022 

Y R091125023 

Y R091125024

split 4856 and 4857 both a s  4856
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Table A2.28. YR110816 (Clay Bank A nchor S tation, A ugust 16, 2011) C alibration C ruise

Station Description D ate Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP 

________________________________(EST) 37° N 76° W (m)______________________ profile profile bottom transect filename

4941 Profile 8/16/11 7:13:00 20.571 37.584 6.1

4942 B ottom 7:25:00 20.573 37.583 6.2

4943 B ottom 7:40:00 20.575 37.583 6.31

4944 Profile 8:03:00 20.583 37.596 6.36

4945 B ottom 8:16:00 20.588 37.512 6.38

4946 B ottom 8:43:00 20.583 37.593 6.47

3 1 1  2 YR081116000

2 1 1  2 YR081116001

2 1 1  2 YR081116002

3 1 1  2 YR081116003

2 1 1  2 YR081116004

2 1 1  2 YR081116005

G ot to o  ro u g h ... h a d  to  a b o rt
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Table A2.29. YR110818 (Clay Bank A nchor S tation, A ugust 18, 2011) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth CTD 

(m)

TSS LISST ADCP 

profile

ADV

profile

ADV ADCP ADCP 

bottom transect filenam e

4949 Profile 8/18/11 805 20.582 37.604 5.92 1 3 1 1 1 YR110818000&1

4950 Bottom 828 20.583 37.605 5.94 1 1 1 1 1 YR110818002

4951 Bottom 841 20.583 37.608 5.97 1 1 1 1 1 YR110818003

4952 Profile 906 20.587 37.613 6.04 1 3 1 1 1 YR110818004

4953 Bottom 918 20.586 37.615 6.04 1 1 1 1 1 YR110818005

4954 Bottom 941 20.586 37.615 6.12 1 1 1 1 1 YR110818006

4955 Profile 1007 20.590 37.618 6.27 1 3 1 1 1 YR110818008

4956 Bottom 1022 20.588 37.620 6.28 1 2 1 1 1 YR110818009

4957 Bottom 1041 20.590 37.618 6.34 1 2 1 1 1 YR110818010

4958 Profile 1107 20.589 37.620 6.43 1 3 1 1 1 YR110818011

4959 Bottom 1117 20.589 37.619 6.44 1 2 1 1 1 YR110818012

4960 Bottom 1140 20.588 37.620 6.45 1 2 1 1 1 YR110818013

4961 Profile 1205 20.589 37.620 6.55 1 3 1 1 1 YR110818014

4962 Bottom 1218 20.589 37.621 6.51 1 2 1 1 1 YR110818015

4963 Bottom 1244 20.592 37.613 6.62 1 2 1 1 1 YR110818016

4964 Profile 1308 20.590 37.616 6.59 1 3 1 1 1 YR110818017

4965 Bottom 1317 20.491 37.614 6.54 1 2 1 1 1 YR110818018

4966 Bottom 1341 20.590 37.615 6.5 1 1 1 1 1 YR110818019

4967 Profile 1410 20.590 37.615 6.48 1 3 1 1 1 YR110818020
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Table A2.30. YR110901 (Clay Bank A nchor S tation, S ep t 1, 2011) Calibration C ruise

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV

(EST) 37° N 76° W (m) profile profile

4976 Profile 9/1/11 725 20.562 37.593 5.77 1 3 1 1 1

4977 ADCP only 749 20.563 37.594 5.87 1

4978 Profile 755 20.564 37.593 5.89 1 3 1 1 1

4979 Bottom 805 20.566 37.596 5.9 1 2 1 1

4980 Bottom 836 20.574 37.602 5.97 1 2 1 1

4981 Profile 904 20.579 37.610 6.07 1 3 1 1 1

4982 Bottom 916 20.504 37.614 6.1 1 2 1 1

4983 Bottom 942 20.584 37.614 6.26 1 2 1 1

4984 Profile 1007 20.586 37.616 6.43 1 3 1 1 1

4985 Bottom 1019 20.587 37.616 6.43 1 2 1 1

4986 Bottom 1042 20.588 37.614 6.5 1 2 1 1

4987 Profile 1105 20.589 37.614 6.59 1 3 1 1 1

4988 Bottom 1117 20.589 37.614 6.63 1 2 1 1

4989 Bottom 1143 20.589 37.613 6.63 1 2 1 1

4990 Profile 1207 20.588 37.635 6.66 1 3 1 1 1

4991 Bottom 1216 20.587 37.616 6.65 1 1 1 1

4992 Bottom 1244 20.586 37.616 6.6 1

4993 Profile 1305 20.586 37.662 6.6 1 3 1 1 1

4994 Bottom 1320 20.586 37.616 6.54 1 2 1 1

4995 Profile 1349 20.585 37.616 6.5 1 3 1 1 1

ADV ADCP ADCP

filenam e

YR110901000 

YR110901001 

YR110901002 

YR110901003 

YR110901004 

YR110901005 

YR110901006 

YR110901007 

YR110901008 

YR110901009 

YR110901010 

YR110901011 

YR110901012 

YR110901013 

YR110901014 

YR110901015 

YR110901016 

YR110901017 

YR110901018 

YR110901019



Table A2.31. YR111220 (Clay Bank A nchor S tation, D ecem ber 20, 2011) C alibration C ruise

Station Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

4989 Profile 12/20/11 752 20.433 37.506 5.72

4990 Bottom 819 20.432 37.506 5.62

4991 Bottom 832 20.433 37.506 5.61

4992 Profile 859 20.430 37.510 5.53

4993 Bottom 916 20.431 37.509 5.45

4994 Bottom 943 20.431 37.508 5.35

4995 Profile 959 20.431 37.508 5.35

4996 Bottom 1017 20.431 37.508 5.27

4997 Bottom 1045 20.431 37.507 5.21

4998 Profile 1101 20.432 37.506 5.26

4999 Bottom 1116 20.431 37.507 5.14

5000 Bottom 1146 20.431 37.507 5.12

5001 Profile 1206 20.432 37.406 5.17

5002 Bottom 1221 20.431 37.507 5.13

5003 Bottom 1247 20.431 37.507 5.14

5004 Profile 1305 20.432 37.508 5.26

CTD T SS LISST ADCP ADV ADV ADCP ADCP

_profile profile bottom tran sec t filename

3 1 1  1 YR111220000

2 1 1  1 YR111220001

2 1 1  1 YR111220002

3 1 1  1 YR111220003

2 1 1  1 YR111220004

2 1 1  1 YR111220005

3 1 1  1 YR111220006

2 1 1  1 YR111220007

2 1 1  1 YR111220008

3 1 1  1 YR111220009

2 1 1  1 YR111220010

2 1 1  1 YR111220011

3 1 1  1 YR111220012

2 1 1  1 YR111220013

2 1 1  1 YR111220014

3 1 1  1 YR111220015
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Table A2.32. YR120430 (Clay Bank A nchor S tation, April 30, 2012) C alibration C ruise

tation Description Date Time

(EST)

Lat 
37° N

Long 
76° W

depth

(m)

4998 Profile 4/30/12 542 20.741 37.484 6.3

4999 Bottom 556 20.470 37.482 6.27

5000 Bottom 617 20.463 37.480 6.24

5001 Profile 647 20.462 37.482 6.15

5002 Bottom 700 20.462 37.482 6.01

5003 Bottom 728 20.452 37.484 5.88

5004 Profile 751 20.452 37.482 5.9

5005 Bottom 804 20.543 37.480 5.9

5006 Bottom 828 20.453 37.481 5.8

5007 Profile 908 20.454 37.478 5.85

5008 Bottom 922 20.455 37.477 5.79

5009 Bottom 938 20.455 37.478 5.74

5010 Profile 950 20.455 37.479 5.79

5011 Bottom 1002 20.455 37.480 5.75

5012 Bottom 1022 20.455 37.472 5.74

5013 Profile 1048 20.457 37.477 5.76

5014 Profile 1250 20.476 37.499 5.98

CTD TSS LISST ADCP ADV ADV ADCP ADCP

_profile profile bottom transect filenam e

3 1 1 1  YR120430000

2 1 1  1 YR120430001

2 1 1  1 YR120430002

3 1 1 1  YR120430003

2 1 1  1 YR120430004

2 1 1  1 YR120430005

3 1 1 1  YR120430006

2 1 1  1 YR120430007

2 1 1  1 YR120430008

3 1 1 1  YR120430009

2 1 1  1 YR120430010

2 1 1  1 YR120430011

3 1 1 1  YR120430012

2 1 1  1 YR120430013

2 1 1  1 YR120430014

3 1 1 1  YR120430016

3 1 1 1  YR120430017
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Table A2.33. YR120724 (Clay Bank A nchor S tation, Ju ly  24, 2012) Calibration C ruise

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m) profile profile bottom transect filename

P5026 profile 1 7/24/12 900 20.5160 37.5090 5.92 1 3 1 1 1 YR120724000

P5027 bottom 934 20.5192 37.5111 6.02 1 2 1 1 1 Y R 120724001

P5028 profile 2 1000 20.5206 37.5148 6.05 1 3 1 1 1 YR120724002

P5029 bottom 1019 20.5206 37.5756 6.06 1 2 1 1 1 YR120724003

P5030 bottom 1044 20.5229 37.5193 6.18 1 2 1 1 1 YR120724004

P5031 profile 3 1107 20.5272 37.5250 6.28 1 3 1 1 1 YR120724005

P5032 bottom 1125 20.5268 37.5264 6.38 1 2 1 1 1 Y R 120724006

P5033 bottom 1148 20.5271 37.5253 6.42 1 2 1 1 1 YR120724007

P5034 profile 4 1202 20.5268 37.5279 6.48 1 3 1 1 1 YR120724008

P5035 bottom 1220 20.5274 37.5245 6.54 1 2 1 1 1 YR120724009

P5036 bottom 139 20.5279 37.5230 6.55 1 2 1 1 1 YR120724010

P5037 profile 5 1304 20.5284 37.5206 6.63 1 3 1 1 1 YR120724011

P5038 bottom 1322 20.5279 37.5195 6.65 1 2 1 1 1 YR120724012

P5039 bottom 1341 20.5275 37.5176 6.65 1 2 1 1 1 YR120724013

P5040 profile 6 1351 20.5275 37.5185 6.65 1 3 1 1 1 YR120724014
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Table A2.34. YR121006 (Clay Bank A nchor S tation, O ctober 6, 2012) C alibration C ruise

Station Description Date Time Lat Long depth CTD T SS LISST ADCP ADV ADV ADCP ADCP

(EST) 37° N 76° W (m)

5038 bottom 10/6/12 818 20.5300 37.5400 5.87

5039 profile 1 838 20.5302 37.5405 5.92

5040 bottom 841 20.5309 37.5440 5.88

5041 sam ple  depths 853 20.5390 37.5433 5.89

5042 profile 2 909 20.5326 37.5440 5.92

5043 bottom 910 20.5867 37.5408 5.97

5044 bottom 917 20.5317 37.5419 5.97

5045 bottom 927 20.5303 37.5388 6.02

5046 bottom 939 20.5309 37.5406 6.02

5047 sam ple  depths 952 20.5328 37.5443 6.02

5048 Sedim ent Grab 1016 20.5328 37.5443 6.02

5049 profile 3 1031 20.5033 37.5045 6.09

5050 bottom 1035 20.5337 37.5479 6.1

5051 bottom 1042 20.5333 37.5514 6.11

5052 bottom 1045 20.5332 37.5505 6.07

5053 sam ple dep ths 1051 20.5334 37.5519 6.15

5054 profile 4 1106 20.5342 37.5493 6.27

5055 bottom 1108 20.5336 37.5492 6.22

5056 bottom 1115 20.5333 37.5337 6.22

5057 bottom 1125 20.5338 37.5518 6.22

5058 bottom 1133 20.5373 37.5500 6.3

profile profile bottom transect filenam e 

1 1 none

1 1 1 YR121006000

2 1 1  1 YR121006001

5 1 1  1 YR121006002

1 1 1 YR121006003

2 1 1  1 YR121006004

2 1 1  1 YR121006005

3 1 1  1 YR121006006

1 1 1  1 YR121006007

5 1 1  1 YR121006008

1 1 1 YR121006009

3 1 1  1 YR121006010

3 1 1  1 YR121006011

3 1 1  1 YR121006012

5 1 1  1 YR121006013

1 1 1 YR121006014

3 1 1  1 YR121006015

3 1 1  1 Y R121006016

3 1 1  1 Y R121006017

3 1 1  1 Y R121006018
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Table A2.34. YR121006 (Clay Bank A nchor S tation, O ctober 6, 2012) C alibration C ruise

Station Description Date Time Lat Long depth CTD TSS LISST ADCP ADV ADV ADCP ADCP 
________________________________(EST) 37° N 76° W (m)______________________ profile profile bottom tran sec t filename

5059 profile 5 1144 20.5345 37.5500 6.3

5060 sam ple dep ths 1146 20.5342 37.5501 6.34

5061 bottom 1206 20.5345 37.5501 6.35

5062 bottom 1214 20.5341 37.5506 6.4

5063 bottom 1216 20.5344 37.5491 6.42

5064 bottom 1226 20.5344 37.5490 6.39

5065 bottom 1238 20.5348 37.5509 6.4

5066 sam ple depths 1249 20.5345 37.5466 6.42

5067 profile 6 1310 20.5330 37.5437 6.47

5068 bottom 1311 20.5335 37.5464 6.44

5069 bottom 1320 20.5335 37.5441 6.51

5070 bottom 1336 20.5309 37.5407 6.5

5071 sam ple depths 1345 20.5315 37.5405 6.5

5072 profile 7 1409 20.5278 37.5375 6.4

5073 bottom 1413 20.5291 37.5390 6.48

5074 bottom 1421 20.5262 37.5369 6.47

5075 bottom 1433 20.5312 37.5410 6.5

5076 sam ple depths 1446 20.524 37.536 6.46

5077 Sedim ent Grab 1446 20.524 37.536 6.46

1 1 1 YR121006019

5 1 1  1 YR121006020

3 1 1  1 YR121006021

1 1 1 YR121006022

3 1 1  1 YR121006023

3 1 1  1 YR121006024

3 1 1  1 YR121006025

5 1 1  1 YR121006026

1 1 1 YR121006027

3 1 1  1 YR121006028

3 1 1  1 YR121006029

2 1 1  1 YR121006030

6 1 1  1 YR121006031

1 1 1 YR121006032

2 1 1  1 YR121006033

2 1 1  1 YR121006034

2 1 1  1 YR121006035

5 1 1  1 YR121006036
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