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Abstract

Let M+
n be the set of entrywise nonnegative n × n matrices. Denote by r(A) the spectral radius (Perron

root) of A ∈ M+
n . Characterization is obtained for maps f : M+

n → M+
n such that r(f (A) + f (B)) =

r(A + B) for all A, B ∈ M+
n . In particular, it is shown that such a map has the form

A �→ S−1AS or A �→ S−1AtrS

for some S ∈ M+
n with exactly one positive entry in each row and each column. Moreover, the same

conclusion holds if the spectral radius is replaced by the spectrum or the peripheral spectrum. Similar
results are obtained for maps on the set of n × n nonnegative symmetric matrices. Furthermore, the proofs
are extended to obtain analogous results when spectral radius is replaced by the numerical range, or the
spectral norm. In the case of the numerical radius, a full description of preservers of the sum is also obtained,
but in this case it turns out that the standard forms do not describe all such preservers.
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1. Introduction

Preserver problems concern the characterization of maps on matrices or operators leaving
invariant a certain function, a certain subset of a certain relation. Earlier studies focused on linear
maps with these properties. The literature on this subject is extensive; see, for example, [12,23]
and monographs [19,20,21]. Recently, researchers have studied preserver problems under mild
assumptions. In particular, for a given function ν on a matrix set M with a binary operator A ◦ B,
maps f : M → M have been studied, that satisfy

ν(f (A) ◦ f (B)) = ν(A ◦ B) ∀A, B ∈ M (1.1)

but not a priori assumed linear or continuous; [5,6,13,14,26] is a small selection of recent works
on the topic. There has been interest in studying such problems when ν(A) is the spectrum, the
peripheral spectrum, the numerical radius, the spectral norm, etc. (see the definitions below).
See for example the papers [7,15,22], where preserver problems have been studied for ν the
peripheral spectrum in the context of uniform algebras; in fact, these works served as motivation
for the present study of preservers on nonnegative matrices, as for nonnegative matrices the
peripheral spectrum always contains the spectral radius. Moreover, the problems have also been
considered for in more general contexts such as function or operator algebras [19]. It is worth
noting that even without the linearity assumption, the preservers often end up to be linear and
have certain “standard” or “expected” form. Although the statements of results in many cases look
similar to those of linear preservers, researchers often have to develop new techniques to solve
the preserver problems under mild assumptions; sometimes these assumptions involve nothing
more than validity of (1.1). In some cases, one may get unexpected forms for preservers, which
lead to deeper understanding and insight to the structures under consideration.

The purpose of this paper is to characterize preservers of the spectral radius, numerical radius,
or spectral norm of the sum of nonnegative matrices. There are not many works in the literature on
preservers in the context of real entrywise nonnegative matrices: we mention [18], where spectrum
preservers are described, [1,10,24,25] that deal with column rank preservers; [2] is concerned
with primitivity preservers, and in [4] preserver problems that have to do with irreducibility are
considered. In all these works, the linearity of the map f is assumed. In contrast, in the present
work we do not assume a priori any additional hypotheses on f except for (1.1) for A ◦ B = A + B

and a suitable choice of ν.
Let M+

n be the set of real entrywise nonnegative matrices, and let r(A) be the spectral radius
of a square matrix A. In Section 2, we characterize maps f : M+

n → M+
n such that

r(f (A) + f (B)) = r(A + B) ∀A, B ∈ M+
n .

In particular, it is shown that such a map has the form

A �→ S−1AS or A �→ S−1AtrS, (1.2)

for some S ∈ M+
n with exactly one positive entry in each row and each column. Moreover, as

byproducts, we show that the same conclusion holds if the spectral radius is replaced by the
spectrum or the peripheral spectrum. Similar results are obtained for maps on the set of n × n

nonnegative symmetric matrices in Section 3. Furthermore, the proofs are extended to obtain
analogous results when spectral radius is replaced by the numerical range, radius, or the spectral
norm in Sections 4 and 5. In the case of the numerical radius, a characterization of preservers of
the sum is also obtained, but in this case it turns out that the standard forms (1.2) do not describe
all such preservers.

The following notation will be used throughout the paper:
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Mn the set of all n × n real matrices.
Kn the set of all n × n real skew-symmetric matrices.
M+

n the set of n × n real matrices with nonnegative entries.
S+

n the set of symmetric matrices in M+
n .

To avoid trivialities, we assume n � 2 throughout our discussion.
i = √−1 complex unit.
C and R stand for the complex field and the real field, respectively.
‖x‖ Euclidean length of a vector x.
ei is the ith coordinate vector: 1 in the ith position and zeros elsewhere.
Eij ∈ M+

n the matrix unit: 1 in the (i, j)th position and zeros everywhere else.
r(A) the spectral radius of a matrix A.
σ(A) the spectrum (the set of eigenvalues) of a matrix A.
σp(A) = σ(A) ∩ {λ ∈ C : |λ| = r(A)} the peripheral spectrum of A.
Atr the transpose of A.
A∗ the conjugate transpose of A.
W(A) = {x∗Ax : x ∈ Cn, x∗x = 1} the numerical range of A.
w(A) = max{|μ| : μ ∈ W(A)} the numerical radius of A.
‖A‖ = max{|x∗Ay| : x, y ∈ Cn, x∗x = y∗y = 1} the spectral norm of A.

X ⊕ Y :=
[

X 0
0 Y

]
.

0p×q the p × q zero matrix.
P ⊂ M+

n the group of permutation matrices.
D ⊂ M+

n the group of diagonal matrices with positive entries on the diagonal.
PD ⊂ M+

n the group of matrices of the form PD where P ∈ P and D ∈ D.
The role of PD is exemplified by the following well-known fact:

Fact. A matrix A ∈ M+
n has the property that A is invertible and A−1 ∈ M+

n if and only if
A ∈ PD.

To see the fact, suppose A has columns x1, . . . , xn and A−1 has rows ytr
1 , . . . , ytr

n . Suppose
x1 has k positive entries. Then for j = 2, . . . , n, yj will have zero entries in the corresponding
nonzero positions of x1 because yj is nonnegative and ytr

j x1 = 0. So, all the nonzero entries of the
linearly independent vectors y2, . . . , yn will lie in fewer than n − k positions. As a result, k � 1
so that x1 has only one positive entry. Similar arguments apply to the other columns. Clearly, the
nonzero entries of A must lie in different rows because A is invertible.

2. Spectral radius preservers on M+
n

Here is our main theorem of this section.

Theorem 2.1. The following statements (1)–(4) are equivalent for a function f : M+
n → M+

n .

(i) r(A + B) = r(f (A) + f (B)) ∀A, B ∈ M+
n . (2.1)

(ii) σp(A + B) = σp(f (A) + f (B)) ∀A, B ∈ M+
n . (2.2)

(iii) σ(A + B) = σ(f (A) + f (B)) ∀A, B ∈ M+
n . (2.3)
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(iv) There exists a matrix Q ∈ PD such that either

f (A) = Q−1AQ ∀A ∈ M+
n ,

or

f (A) = Q−1AtrQ ∀A ∈ M+
n . (2.4)

Since for A ∈ M+
n we always have r(A) ∈ σp(A), the implications (3) ⇒ (2) ⇒ (1) are clear.

Also, (4) ⇒ (3) is not difficult to see. It remains to prove (1) ⇒ (4).
First, we present some general results and easy observations that will be often used, sometimes

without explicit reference, throughout the paper. We will use the directed graph �(A) associated
with A ∈ M+

n . Recall that {1, 2, . . . , n} is the set of vertices of �(A), and (i, j) is a directed edge
in �(A) if and only if the (i, j)th entry of A is positive.

A matrix A ∈ M+
n is said to be irreducible if there is no permutation matrix P such that

PAP tr =
[

A11 A12
0 A22

]
such that A11 and A22 are non-trivial square matrices. A useful well-known

criterion for irreducibility is given in terms �(A):

Lemma 2.2. A ∈ M+
n is irreducible if and only if �(A) is strongly connected.

Next, we list several well-known properties of nonnegative matrices and their spectral radii
(see, for example [8, Theorem 8.4.5] or [3]).

Lemma 2.3. Let A ∈ M+
n . Then:

(a) r(A) � r(A′) for any principal submatrix A′ of A. In particular,

r(A) � max{d : d is a diagonal entry of A}.
(b) If A ∈ M+

n is nilpotent, i.e., r(A) = 0, then all diagonal entries of A are zeros.
(c) If A ∈ M+

n is irreducible and B ∈ M+
n is nonzero, then r(A + B) > r(A).

(d) If A ∈ M+
n is reducible, then there is a permutation matrix P such that PAP tr is upper

triangular block form [Aij ]1�i,j�k such that A11, . . . , Akk are irreducible square matrices
and r(A) = max{r(Ajj ) : 1 � j � k}.

(e) If A, B ∈ M+
n and A � B entrywise, then r(A) � r(B).

Notice that (b) is an immediate consequence of (a).

Lemma 2.4. Let A1, A2 ∈ M+
n have irreducible principal submatrices B1 and B2, respectively,

such that r(A1) = r(B1), r(A2) = r(B2). If the row and column indices of B1 and B2 have
non-empty intersection, then

r(A1 + A2) > max{r(A1), r(A2)}. (2.5)

Proof. For t1, t2 ∈ (0, 1] consider t1A1 + t2A2 and its irreducible principal submatrix B(t1, t2)

whose set of row and column indices is the union of the set of row and column indices of B1 and
that of B2. Since row and column indices of B1 and B2 have non-empty intersection, the matrix
B(t1, t2) is irreducible in view of Lemma 2.2, for all t1, t2 ∈ (0, 1]. Now
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r(A1 + A2) �r(B(1, 1)) > max{r(B(1, 1/2)), r(B(1/2, 1))}
�max{r(B1), r(B2)} = max{r(A1), r(A2)},

where the strict inequality holds by Lemma 2.3 (c), and the non-strict inequalities hold in view
of Lemma 2.3 (e). �

Proof of Theorem 2.1. We focus on the implication (1) ⇒ (4). Assume that the function f

satisfies the condition (1) of Theorem 2.1. We divide the proof into several assertions.

Assertion 2.5. (a) For any A ∈ M+
n we have r(A) = r(f (A)).

(b) A ∈ M+
n is nilpotent if and only if f (A) is nilpotent.

(c) If A is nonzero, then f (A) is nonzero.

Proof. Condition (a) follows from setting A = B in (2.1).
Condition (b) follows readily from (a).
Suppose A in nonzero and the (i, j) entry of A is nonzero. If i = j then A is not nilpo-

tent and neither is f (A). Thus, f (A) is nonzero. If i /= j , then for B = Eji , the submatrix
of A + B with row and column indices {i, j} has positive spectral radius. If f (A) = 0 then
r(f (A) + f (B)) = r(f (B)) = r(B) = 0, which is a contradiction. �

Assertion 2.6. There is a permutation P such that for any μ > 0 the diagonal of the matrix
Pf (μEii)P

tr is the same as that of μEii for i = 1, . . . , n.

Proof. In what follows we let Fij = f (Eij ). First, consider μ = 1. For each j = 1, . . . , n, let
Gjj be an irreducible principal submatrix of Fjj such that

r(Gjj ) = r(Fjj ) = 1

(The existence of principal submatrices Gjj is guaranteed by Lemma 2.3 (d).) We will show that
Gjj = [1]. Note that the row (column) indices of G11, . . . , Gnn cannot overlap. If it is not true
and the row indices of Gii and Gjj overlap, then by Lemma 2.4,

r(Fii + Fjj ) > r(Fii) = 1 = r(Eii + Ejj ),

which is a contradiction. Thus, G11, . . . , Gnn are one-by-one with non-overlapping row (column)
indices. Since r(Gjj ) = 1, we see that Gjj = [1] for all j = 1, . . . , n. Thus, there exists P ∈ P
such that PFjjP

tr has one in the (j, j) position. Suppose i /= j . the (i, i) entry PFjjP
tr is zero.

Otherwise, the (i, i) entry of P(Fii + Fjj )P
tr is larger than 1 so that by Lemma 2.3(a),

r(Fii + Fjj ) = r(P (Fii + Fjj )P
tr) > 1 = r(Eii + Ejj ).

For any μ > 0, we can apply the preceding proof to show that there is a permutation matrix Pμ

such that Pμf (μEii)P
tr
μ has μ at the (i, i) position and all other diagonal entries equal to zero. If

Pμ /= P , then there will be indices i /= j and k so that f (μEii) has μ in the (k, k) position, and
f (Ejj ) has one in the (k, k) position. But then by Lemma 2.3 (a),

r(f (μEii) + f (Ejj )) � 1 + μ > r(μEii + Ejj ),

which is a contradiction. �
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Assertion 2.7. Let P be the permutation satisfying the conclusion of Assertion 2.6. Then for any
i /= j , the 2 × 2 submatrix of P(Eij + Eji)P

tr lying at rows and columns with indices {i, j} has

the form
[

0 g12
g21 0

]
with g12g21 = 1.

Proof. For simplicity, we assume that P is the identity matrix. Otherwise, consider the map
X �→ Pf (X)P tr .

For each i /= j , let X = Eij + Eji and let Gij be an irreducible principal submatrix of f (X)

such that

r(Gij ) = r(f (X)) = r(X) = 1. (2.6)

We claim that Gij must lie in a submatrix of f (X) with row and column indices in the set {i, j}.
Indeed, suppose this is not true, and let k be a row and column index of Gij different from i and
from j . Denote by [f (Ekk)] the principal submatrix of f (Ekk) having the same row and column
indices as Gij does. Then:

r(f (X) + f (Ekk)) �r(Gij + [f (Ekk)]) > r(Gij )

= 1 = r(X + Ekk) = r(f (X) + f (Ekk)),

where the strict inequality follows from Lemma 2.3(c). A contradiction is obtained.

Suppose Gij =
[

g11 g12
g21 g22

]
. If at least one of g12 and g21 is zero, then, in view of (2.6) we must

have g11 = 1 or g22 = 1. But then for Y = Eii or Ejj , f (X) + f (Y ) a diagonal entry larger than
or equal to 2. By Lemma 2.3 (a), we have

r(f (X) + f (Y )) � 2 >
1 + √

5

2
= r(X + Y ),

which is a contradiction. Thus, g12g21 /= 0.
Next, we claim that g11 = 0. If it is not true, then for sufficiently large μ > 0, the matrix

f (μEii) + f (X) has μ + g11 at the (i, i) position so that

r(f (μEii) + f (X)) � μ + g11 >

[
μ +

√
μ2 + 4

]
/2 = r(μEii + X),

which is a contradiction. Similarly, we can show that g22 = 0. Since r(Gij ) = 1, we see that
g12g21 = 1. �

In the rest of the proof, we assume that Assertions 2.6 and 2.7 hold with P = I for simplicity.

Assertion 2.8. For every μ > 0 and every pair of indices i /= j , f (μEij ) is a nonzero multiple
of Eij or of Eji .

Proof. By Assertion 2.7, for any i /= j , the matrix f (Eij + Eji) has a submatrix Gij =
[

0 gij

gij 0

]
with row and column indices in {i, j} such that gij gij = 1.

Now, suppose μ > 0, i /= j , and let f (μEij ) = [zrs]nr,s=1. Then zkk = 0 for all k. Otherwise,
the (k, k) entry of f (Ekk) + f (μEij ) is larger than 1 so that

r(f (Ekk) + f (μEij )) > 1 = r(Ekk + μEij ),

which is a contradiction. We also have zpq = 0 if at least one of the indices p and q (p /= q) does
not belong to the two-element set {i, j}. Otherwise, the submatrix of f (Epq + Eqp) + f (μEij )

with row and column indices in {p, q} has the form
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C =
[

0 gpq + zpq

gqp + zqp 0

]
with gqpgpq = 1, so that

r(f (Epq + Eqp) + f (μEij )) � r(C) > 1 = r(Epq + Eqp + μEij ),

which is a contradiction.
Since 0 = r(μEij ) = r(f (μEij )), we see that zij zji = 0. Hence f (μEij ) is a multiple of Eij

or Eji . Similarly, f (μEji) is a multiple of Eij or of Eji . �

Assertion 2.9. Let X = X0 ⊕ 0n−3, where X0 ∈ M+
3 is nilpotent. Then f (X) = Z0 ⊕ 0n−3 such

that Z0 ∈ M+
3 is nilpotent with at most 3 nonzero entries. Moreover, let

S = {Eij : 1 � i, j � 3, i /= j} (2.7)

and

f (S) = {μijEij : 1 � i, j � 3, i /= j} for some μij > 0

(The form of f (S) follows from Assertion 2.8.) One of the following is true:

(1) If f (X) has only one nonzero entry, then r(f (X) + Z) > 0 for only one matrix Z in f (S).
(2) If f (X) has exactly two nonzero entries, and they lie in the same row or the same column,

then r(f (X) + Z) > 0 for exactly two matrices Z in f (S).
(3) If f (X) has two or three nonzero entries such that two of them are not in the same row or

column, then r(f (X) + Z) > 0 for at least three matrices Z in f (S).

Proof. Let f (X) = [ypq ]np,q=1. Then f (X) is nilpotent so that yjj = 0 for all j = 1, . . . , n. Also,
if i /= j and at least one of i and j is larger than 3, then yij = 0. Otherwise,

r(f (X) + f (Eij )) > 0 = r(X + Eij ) or r(f (X) + f (Eji)) > 0 = r(X + Eji)

by the fact that f (Eij ) or f (Eji) is a multiple of Eij . So, if yij /= 0, then i /= j and 1 � i, j � 3.
Moreover, since 0 = r(X) = r(f (X)), we see that yij yji = 0 for i /= j (otherwise, the 2 × 2
principal submatrix of f (X) with row and column indices {i, j} would have a positive spectral
radius, a contradiction with Lemma 2.3(a)). Thus, there are at most three nonzero entries in
f (X), and they all lie in the leading 3 × 3 principal submatrix of f (X). Using the condition that
f (X) = [yij ]ni,j=1 with yij yji = 0, we see that one of the condition (1)–(3) is true. �

Assertion 2.10. There is D ∈ D such that either

(1) f (μEij ) = μDEijD
−1 for all μ > 0 and all pairs (i, j), or

(2) f (μEij ) = μDEjiD
−1 for all μ > 0 and all pairs (i, j).

Proof. First consider the case when μ = 1, for all pairs of indices (i, j) such that i /= j .
By Assertion 2.8, f (E12) = μ2E12 or f (E12) = μ2E21 for some μ2 > 0. Assume f (E12) =

μ2E12. Otherwise, replace f by the map X �→ f (X)tr . Since

1 = r(E12 + E21) = r(f (E12) + f (E21)) = r(μ2E12 + f (E21)),

using the result of Assertion 2.8 again, we see that f (E21) = E21/μ2. We get the desired con-
clusion for f (Eij ) with i /= j if n = 2.
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Assume n � 3. For any j � 2, we claim thatf (E1j ) = μjE1j for some μj > 0. For simplicity,
suppose that j = 3. Let X = E12 + E13 and let f (X) = [zij ]ni,j=1. By Assertion 2.9, zij can be
nonzero only if i /= j and 1 ≤ i, j ≤ 3; also, zij zji = 0 for all i, j . Since r(X + Y ) > 0 for
exactly two matrices Y ∈ S (the set S is defined in (2.7)), we conclude that r(f (X) + Z) > 0 for
exactly two matrices Z in f (S), and therefore condition (2) of Assertion 2.9 holds. Note that

1 = r(X + E21) = r(f (X) + f (E21)) = r(f (X) + E21/μ2). (2.8)

As a result, z12 must be one of the two nonzero entries of f (X) in the same row or same column.
Thus, either

(a) z12z13 /= 0, or (b) z12z32 /= 0.

If (a) holds, then

1 = r(X + E31) = r(f (X) + f (E31)).

Applying Assertion 2.8 for f (E31) we see that f (E31) is a multiple of E31, and f (E13) = μ3E13
as asserted. Suppose (b) holds. Then

f (E23 + E32) − (kE23 + k−1E32)

is nonnegative for some k > 0 by Assertion 2.7. It follows that

r(X + E23 + E32) = 1 < r(f (X) + kE23 + k−1E32) � r(f (X) + f (E23 + E32))

(the inequality � holds by Lemma 2.3 (e)), which is a contradiction.
Now, we have f (E1j ) = μjE1j with μj > 0 for j = 2, . . . , n. Let

D = diag(1, μ2, . . . , μn).

We may replace f by the map X �→ Df (X)D−1 so that f (E1j ) = E1j for j = 2, . . . , n. Since

1 = r(E1j + Ej1) = r(f (E1j ) + f (Ej1)) = r(E1j + f (Ej1))

and since by Assertion 2.8 f (Ej1) is a multiple of either E1j or Ej1, we have in fact f (Ej1) = Ej1
for all j = 2, . . . , n.

Next, we show that f (Eij ) = Eij if i /= j and i, j � 2. Assume that (i, j) = (2, 3) for sim-
plicity. Let X = E12 + E31 and f (X) = [zij ]ni,j=1. We claim that f (X) = X. Note that X =
X0 ⊕ 0n−3 with X0 ∈ M+

3 is nilpotent. Since r(X + Y ) > 0 for at least three matrices Y in S,
it follows that r(f (X) + Ŷ ) > 0 for at least three matrices Ŷ in f (S). Hence, f (X) satisfies
condition (3) of Assertion 2.9. Since

0 = r(X + Y ) = r(f (X) + f (Y ))

for Y = E12, E31 and E32, we see that z21 = 0, z13 = 0 and z23 = 0, i.e.,

f (X) =
⎡⎣ 0 z12 0

0 0 0
z31 z32 0

⎤⎦ .

Since

1 = r(X + E21) = r(f (X) + E21),

we see that z12 = 1; since

1 = r(X + E13) = r(f (X) + E13),



C.-K. Li, L. Rodman / Linear Algebra and its Applications 430 (2009) 1739–1761 1747

we see that z31 = 1. If Y = E23 + E32, then by Assertion 2.7 there is ν > 0 such that

f (Y ) − νE23 − E32/ν (2.9)

is nonnegative. Let

Ẑ = E12 + E31 + z32E32 + νE23 + E32.

Assuming for the moment that ν � 1, we have

r(f (X) + f (Y )) � r(Ẑ) � r(X + Y ) = r(f (X) + f (Y )), (2.10)

where the second inequality follows by comparison between the largest roots of the characteristic
polynomials −λ3 + λ + 1 and −λ3 + (νz32 + 1)λ + ν of X + Y and of Ẑ, respectively. Since
the second inequality in (2.10) is an equality, we see that in fact

ν = 1 and z32 = 0. (2.11)

Hence f (X) = X. Now, by Assertion 2.8, f (E23) is a multiple of E23 or E32. Since

1 = r(X + E23) = r(X + f (E23)),

we see that f (E23) = E23 as asserted.
If ν of (2.9) is smaller than 1, we apply the arguments in the preceding paragraph to X̂ :=

E21 + E13 rather than to X, replacing ν by ν−1 and interchanging everywhere the subscripts.
Then a contradiction with (2.11) will be obtained, thus ν < 1 is not possible.

At this point, we may assume that f (Eij ) = Eij if i /= j . Now consider f (μEij ) = [zpq ]np,q=1
for μ � 0 and i /= j . Then zpp = 0 for all p ∈ {1, . . . , n}. Otherwise, we obtain a contradiction
(in the next formula W stands for a matrix with zero diagonal):

r(f (μEij ) + f (Epp)) = r(f (μEij ) + Epp + W) � r((1 + zpp)Epp) > 1

= r(μEij + Epp),

where the first equality follows from Assertion 2.6, and the non-strict inequality follows from
Lemma 2.3 (e). Also, zpq = 0 for p /= q if (p, q) /= (i, j). Otherwise, a contradiction again:

r(f (μEij ) + f (Eqp)) � r(zpqEpq + f (Eqp)) = r(zpqEpq + Eqp) > 0

= r(μEij + Eqp).

Finally,
√

μ = r(μEij + Eji) = r(f (μEij ) + f (Eji)) = r(f (μEij ) + Eji)

implies that

f (μEij ) = μEij . (2.12)

Next, consider f (μEii) = [zrs]nr,s=1 for fixed μ > 0 and fixed i ∈ {1, . . . , n}. Then zii = μ

and zjj = 0 for j /= i by Assertion 2.6. Also, zpq = 0 for any p /= q. Otherwise,

r(f (μEii) + f (νEqp)) � r(zpqEpq + f (νEqp))

= r(zpqEpq + νEqp) (using (2.12))

> μ = r(μEii + νEpq)

for a sufficiently large ν. Hence f (μEii) = μEii . �
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Assertion 2.11. The function f has the form as in (4) of Theorem 2.1.

Proof. Let D ∈ D satisfy the conclusion of Assertion 2.10. We may replace f by the map X �→
D−1f (X)D and assume that D = I . We may further assume that f (μEij ) = μEij for all μ > 0
and (i, j) pairs. Otherwise, replace f by the map X �→ f (X)tr .
Suppose A = [aij ]ni,j=1 ∈ M+

n and f (A) = [zij ]ni,j=1. First, we show that zjj = ajj for each j .
For simplicity, we consider z11. Let

A =
[
a11 A12
A21 A22

]
and f (A) =

[
z11 Z12
Z21 Z22

]
.

Suppose t > r(A) = r(f (A)) � max{r(A22), r(Z22)},
Bt := A12(tIn−1 − A22)

−1A21 and B̂t := Z12(tIn−1 − Z22)
−1Z21.

Since det(tIn − (A + μE11)) is equal (as a function of μ) to

−μ(det(tIn−1 − A22)) + det(tIn − A),

it follows that there is (unique) μt > 0 such that

det(tIn − (A + μtE11)) = 0.

Using Schur complements, we see that

det(tIn − (A + μtE11)) = (t − a11 − μt − Bt) det(tIn−1 − A22) = 0,

i.e.,

t − a11 − μt −
∞∑

k=0

t−k−1A12A
k
22A21 = 0.

Obviously,

s − a11 − μt −
∞∑

k=0

s−k−1A12A
k
22A21 > 0

for every s > t ; thus

t = r(A + μtE11) = r(f (A) + μtE11).

Now

0 = det(tIn − (f (A) + μtE11)) = (t − z11 − μt − B̂t ) det(tIn−1 − Z22),

i.e.,

0 = t − z11 − μt −
∞∑

k=0

t−k−1Z12Z
k
22Z21.

As a result,

a11 +
∞∑

k=0

t−k−1A12A
k
22A21 = μt − t = z11 +

∞∑
k=0

t−k−1Z12Z
k
22Z21

for all sufficiently large t , and hence a11 = z11 as asserted.
Next, we show that aij = zij for i /= j . For simplicity, we consider z12. First, suppose n = 2.

Since
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r(A + tE21) =
[
(a11 + a22) +

√
(a11 − a22)2 + 4a12(a21 + t)

]/
2

and

r(f (A) + tE21) =
[
(z11 + z22) +

√
(z11 − z22)2 + 4z12(z21 + t)

]/
2

are equal for all t > 0, and using a11 = z11, a22 = z22, we see that a12 = b12.
Next, suppose n > 2. Let

A =
[
A11 A12
A21 A22

]
and f (A) =

[
Z11 Z12
Z21 Z22

]
,

with A11, Z11 ∈ M+
2 . Arguing by contradiction, assume that

ε := a12 − z12 > 0 (2.13)

[If the opposite inequality holds, interchange the roles of A and f (A) in the following argument.]
Suppose t > r(A) = r(f (A)) and

Bt := A12(tI − A22)
−1A21 =

∞∑
k=0

t−1A12(t
−1A22)

kA21.

There is T > 0 such that each entry of Bt lies in [0, ε/3) whenever t � T . If

Bt =
[
b11 b12
b21 b22

]
and Ct,μ = A11 + μE21 + Bt (μ > 0),

then Ct,μ has eigenvalues[
(a11 + a22 + b11 + b22)

±
√

(a11 + b11 − a22 − b22)2 + 4(a12 + b12)(a21 + b21 + μ)
]/

2.

(2.14)

Note that

det(tIn − (A + μE21)) = det(tI2 − Ct,μ) det(tIn−2 − A22) (2.15)

so that det(tI2 − Ct,μ) > 0 if μ = 0. Inequality (2.13) implies that a12 > 0, which, together with
formula (2.14), shows that there is (unique) νt > 0 such that the larger eigenvalue of Ct,νt equals
t . Moreover, for any λ > t , we have

det(λI − A − νtE21) /= 0 = det(tI − A − νtE21).

Hence,

t = r(A + νtE21) = r(f (A) + νtE21)).

Similarly, if

B̃t := Z12(tIn−2 − Z22)
−1Z21 = [b̃ij ]2

i,j=1 ∈ M+
2 and C̃t := Z11 + νtE21 + B̃t ,

then

det(tIn − f (A) − νtE21) = det(tI2 − C̃t ) det(tIn−2 − Z22),

and there exists T̃ > 0 such that every entry of B̃t is smaller than ε/3 whenever t > T̃ . Observe
that C̃t has eigenvalues
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(z11 + z22 + b̃11 + b̃22)

±
√

(z11 + b̃11 − z22 − b̃22)2 + 4(z12 + b̃12)(z21 + b̃21 + νt )
]/

2.

So, 2r(A + νtE21) and 2r(f (A) + νtE21) are equal to the following quantities, respectively:

a11 + a22 + b11 + b22 +
√

(a11 + b11 − a22 − b22)2 + 4(a12 + b12)(a21 + b21 + νt )

(2.16)

and

z11 + z22 + b̃11 + b̃22 +
√

(z11 + b̃11 − z22 − b̃22)2 + 4(z12 + b̃12)(z21 + b̃21 + νt ).

(2.17)

Evidently, νt → ∞ as t → ∞. Since

a12 + b12 − (z12 + b̃12) > ε − 2(ε/3) > 0 for t > max{T , T̃ },
we have

r(A + νtE21) > r(f (A) + νtE21)

for sufficiently large t , which is the desired contradiction. �

3. Spectral radius preservers on S+
n

An adaptation of the proof of Theorem 2.1 yields the following preserver result on the set S+
n

of n × n symmetric nonnegative matrices.

Theorem 3.1. The following statements (1)–(4) are equivalent for a function f : S+
n → S+

n .

(1) r(A + B) = r(f (A) + f (B)) ∀A, B ∈ S+
n . (3.1)

(2) σp(A + B) = σp(f (A) + f (B)) ∀A, B ∈ S+
n . (3.2)

(3) σ(A + B) = σ(f (A) + f (B)) ∀A, B ∈ S+
n . (3.3)

(4) There exists a matrix Q ∈ P such that f (A) = Q−1AQ ∀A ∈ S+
n .

Proof. We only need to deal with the non-trivial implication (1) ⇒ (4). So assume that f satisfies
(3.1). Then r(A) = r(f (A)) for every A ∈ S+

n , and in particular f (A) = 0 if and only if A = 0.
We divide the rest of the proof into several steps.
Step 1. Assertion 2.6, together with its proof, remains valid. Thus, there exists a permutation

Q such that for any μ > 0 the diagonal of the matrix Qf (μEii)Q
tr is the same as that of μEii

for i = 1, . . . , n.
Step 2. Let Q be the matrix in Step 1. We show, by following the proof of Assertion 2.7 that

for i /= j , the 2 × 2 submatrix in Qf (Eij + Eji)Q
−1 with row and column indices i, j has the

form
[

0 1
1 0

]
.
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Step 3. Assuming the matrix Q in Step 1 equal In, we prove that f (X) is a nonzero multiple
of X, for X = μ(Eij + Eji) with μ > 0 and i /= j .

Proof of Step 3. By Step 2, for any i /= j , the matrix f (Eij + Eji) has a submatrix
[

0 1
1 0

]
with

row and column indices in {i, j}. Let f (X) = [zrs]nr,s=1. As in the proof of Assertion 2.8 (but
using Eij + Eji in place of Eij ) we show that zkk = 0 for all k, and that zpq = 0 for all pairs
{p, q}, p /= q such that at least one of p and q does not belong to {i, j}. Since f (X) is symmetric
and f (X) /= 0, the result of Step 3 follows. �

Step 4. Again assuming Q = I , we prove the symmetric analog of Assertion 2.10: The equality

f (μ(Eij + Eji)) = μ(Eij + Eji) (3.4)

holds for all μ > 0 and all pairs (i, j).
Proof of Step 4. For i /= j , the result follows easily from Step 3: f (μ(Eij + Eji)) = μ′(Eij +
Eji) for some μ′ > 0, but the equality

r(f (μ(Eij + Eji))) = r(μ(Eij + Eji))

yields μ′ = μ, as claimed.
Next, consider f (μEii) = [zrs]nr,s=1 ∈ S+

n for fixed μ > 0 and fixed i ∈ {1, . . . , n}. Then
zii = μ and zjj = 0 for j /= i by Step 1. Also, zpq = 0 for any p /= q. Suppose it is not true
and zpq = zqp /= 0 for some p /= q. Then using the already proved part of (3.4), we can choose
ν > μ so that

r(f (μEii) + f (ν(Eqp + Epq)))

� r(μEii + zpq(Epq + Eqp) + f (ν(Eqp + Epq)))

= r(μEii + zpq(Epq + Eqp) + ν(Eqp + Epq))

=
{

zpq + ν if p /= i, q /= i,

1
2

(
μ +

√
μ2 + 4(zpq + ν)2

)
if p = i or q = i

(3.5)

and

r(μEii + ν(Epq + Eqp)) =
{

ν if p /= i, q /= i,
1
2

(
μ + √

μ2 + 4ν2
)

if p = i or q = i.
(3.6)

But then the right hand side of (3.6) is smaller than that of (3.5), a contradiction with (3.1). Hence
f (μEii) = μEii . �

Step 5. Conclusion of the proof that (assuming Q = I ) f (A) = A for all A ∈ S+
n .

Proof of Step 5. Suppose A = [aij ]ni,j=1 ∈ S+
n and f (A) = [zij ]ni,j=1. As in the proof of Assertion

2.11, we show that zjj = ajj for each j .
Next, we will prove the equalities aij = zij for i /= j , following the (suitably modified) argu-

ments of the proof of Assertion 2.11. We use the notation introduced in the proof of Assertion
2.11, with obvious additional properties that follow from symmetry; thus Atr

12 = A21, Atr
22 = A22,

etc. For simplicity, consider z12. First, suppose n = 2. Since

r(A + t (E21 + E12)) =
[
(a11 + a22) +

√
(a11 − a22)2 + 4(a12 + t)(a21 + t)

] /
2

and

r(f (A) + t (E21 + E12)) =
[
(z11 + z22) +

√
(z11 − z22)2 + 4(z12 + t)(z21 + t)

] /
2

are equal for all t > 0, and using a11 = z11, a22 = z22, a12 = a21, z12 = z21, we see that a12 = z12.
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Now suppose n > 2. We argue as in the proof of Assertion 2.11, replacing everywhere E21
with E21 + E12, and using the partitions

A =
[
A11 A12
A21 A22

]
, f (A) =

[
Z11 Z12
Z21 Z22

]
,

where A21 = Atr
12, Z21 = Ztr

12, and Ajj , Zjj are symmetric for j = 1, 2,

Bt := A12(tIn−2 − A22)
−1A21 = [bij ]2

i,j=1 ∈ S+
2 ,

B̃t := Z12(tIn−2 − Z22)
−1Z21 = [b̃ij ]2

i,j=1 ∈ S+
2 .

Then

r(A + νt (E21 + E12)) = r(f (A) + νt (E21 + E12)), (3.7)

on the other hand, r(A + νt (E21 + E12)) and r(f (A) + νt (E21 + E12)) are equal to the quantities
(2.16) and (2.17), respectively, with b12 replaced by b12 + νt , and with b̃12 replaced by b̃12 + νt .
Let ε = a12 − z12 = a21 − z21 > 0. Then

a12 + b12 + a21 + b21 − (z12 + b̃12 + z21 + b̃21) >
1

3
ε > 0

for large t , a contradiction with (3.7). �

4. Numerical radius and numerical range preservers

It turns out that preservers of the numerical radius of the sum of nonnegative matrices have
more complicated form than the “standard” maps as in other results of this paper.

To state and prove the result, we need to work with the set Kn of n × n real skew-symmetric
matrices.

Theorem 4.1. Let f : M+
n → M+

n . Then

w(A + B) = w(f (A) + f (B)) ∀A, B ∈ M+
n (4.1)

if and only if there is a permutation matrix P and a function g : M+
n → Kn satisfying A + Atr −

g(A) ∈ M+
n for each A such that

f (A) = P(A + Atr + g(A))P tr/2 for all A ∈ M+
n . (4.2)

Proof. Observe that we have

w(A) = r(A + Atr)/2, A ∈ Mn, (4.3)

because for any unit length vector x we can let |x| be obtained from x by replacing all its entries
by their absolute values so that

|x∗Ax| � |x|trA|x| = |x|tr(A + Atr)|x|/2 � r(A + Atr)/2 (4.4)

and for x a nonnegative eigenvector corresponding to the largest eigenvalue of the symmetric
matrix A + Atr the equality prevails in (4.4). Thus, (4.1) reads

r(A + Atr + B + B tr) = r(f (A) + f (A)tr + f (B) + f (B)tr) ∀A, B ∈ M+
n . (4.5)

With this observation, the “if” part of Theorem 4.1 is clear.
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We focus on the “only if” part. First, note that w(f (A) + f (A)) = w(A + A) implies that
w(A) = w(f (A)) for all A ∈ M+

n . Also, w(A) = r(A) for all A ∈ S+
n . �

Assertion 4.2. There is a permutation matrix P such that for any A ∈ S+
n we have

f (A) = P(A + AK)P tr

with AK ∈ Kn such that A + AK ∈ M+
n .

Proof. Consider the map f0 : S+
n → S+

n defined by f0(A) = [f (A) + f (A)tr]/2. Then

r(f0(A) + f0(B)) = w(f (A) + f (B)) = w(A + B) = r(A + B) ∀A, B ∈ S+
n .

By Theorem 3.1, we see that f0 has the form A �→ PAP tr for some permutation matrix P , and
Assertion 4.2 follows. �

Assertion 4.3. Let P be as in Assertion 4.2. For any A ∈ M+
n , we have f (A) = P(A + Atr +

AK)P tr/2 with AK ∈ Kn such that A + Atr + AK ∈ M+
n .

Proof. For simplicity, we may assume that P = I . Suppose A = A1 + A2 and f (A) = Z1 + Z2
with (A1, A2), (Z1, Z2) ∈ S+

n × Kn. Then for any B ∈ S+
n , we have

r(A1 + B) = w(A + B) = w(f (A) + f (B)) = r

(
Z1 + 1

2
(f (B) + f (B)tr)

)
= r(Z1 + B), (4.6)

where the last but one equality follows from (4.3), and the last equality holds by Assertion 4.2.
We now prove that

A1 = [aij ]ni,j=1 = [zij ]ni,j=1 = Z1.

First we prove aii = zii , and for simplicity assume i = 1. Then we argue as in the proof of
Assertion 2.11, using the partitions

A1 = A =
[
a11 A12
A21 A22

]
and Z1 =

[
z11 Z12
Z21 Z22

]
and the property (which follows from (4.6)) that

r(A1 + μE11) = r(Z1 + μE11) ∀μ > 0.

For the proof that aij = zij , i /= j , and assume for simplicity (i, j) = (1, 2), proceed in the same
way as in Step 5 of the proof of Theorem 3.1; here, we use the partitions

A1 =
[
A11 A12
A21 A22

]
, Z1 =

[
Z11 Z12
Z21 Z22

]
, A11, Z11 ∈ S+

2

and the property that

r(A1 + ν(E12 + E21)) = r(Z1 + ν(E12 + E21)) ∀ν > 0.

Now, define g : M+
n → Kn by g(A) = 2f (A) − P(A + Atr)P tr . In view of Assertion 4.3 we

see that f has the desired form (4.2). �
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Theorem 4.4. Let f : M+
n → M+

n . Then

W(A + B) = W(f (A) + f (B)) ∀A, B ∈ M+
n (4.7)

if and only if there is a permutation matrix Q such that either

f (A) = Q−1AQ ∀A ∈ M+
n ,

or

f (A) = Q−1AtrQ ∀A ∈ M+
n .

In the proof the following well-known facts will be used. See, for example, Theorem 1.3.6 and
Theorem 1.5.2 in [9].

Lemma 4.5. (a) For n × n complex matrices X and Y, the equality W(X) = W(Y) holds if and
only if the largest eigenvalues of the two matrices eitX + e−itX∗ and eit Y + e−it Y ∗ are always
the same for every t ∈ [0, 2π).

(b) For a complex 2 × 2 matrix X, W(X) is an elliptical disk with foci at the eigenvalues of X.

Proof of Theorem 4.4. The implication “if” is clear. (Note that W(X) = W(Xtr) for any n ×
n complex matrix X.) We focus on the converse. Thus, suppose f satisfies (4.7). Note that
W(f (A) + f (A)) = W(A + A) implies that W(f (A)) = W(A) for all A ∈ M+

n .
Clearly, since (4.7) holds, then (4.1) holds as well. By Theorem 4.1, f (A) has symmetric part

P(A + Atr)P tr/2 for each A ∈ M+
n . For simplicity, we may assume that P = In. If A ∈ S+

n , then
W(f (A)) = W(A) ⊆ R and hence f (A) = f (A)tr ∈ S+

n . It follows that

f (A) = A ∀A ∈ S+
n . (4.8)

We divide the rest of the proof into two steps.
Step 1. One of the following holds:

(a) f (μEij ) = μEij for all i /= j and μ > 0, or
(b) f (μEij ) = μEji for all i /= j and μ > 0.

Proof of Step 1. Let f (E12) = X + Y with (X, Y ) ∈ S+
n × Kn. Then X = (E12 + E21)/2 and

X + Y ∈ M+
n , only the (1, 2) and (2, 1) entries of Y can be nonzero. Since W(E12) = W(X + Y ),

by Lemma 4.5(b) we see that X + Y is nilpotent. Thus, Y = (E12 − E21)/2 or (E21 − E12)/2.
Hence f (E12) = E12 or E21. We may assume that the former case holds. Otherwise, replace f

by the map X �→ f (X)tr .
Now, we will show that (a) holds. First, we can use the argument in the preceding paragraph

to show that for μ > 0, either f (μE21) = μE21 or f (μE21) = μE12 holds. Since

W(μE21 + E12) = W(f (μE21) + f (E12)) = W(f (μE21) + E12),

Lemma 4.5(b) yields f (μE21) = μE21. Now, change the roles of E12 and E21 in the above
argument. We see that f (μE12) = μE12 for any μ > 0. We are done if n = 2.

Suppose n � 3. We can show (as in the preceding paragraph) that for μ > 0 and j > 2, either
f (μE1j ) = μE1j or f (μE1j ) = μEj1. For simplicity, assume that j = 3. Suppose f (μE13) =
μE31. Let A = μ(E23 + E32) and B = μ(E12 + E13). Then

f (A) = A, f (B) + f (B)tr = B + B tr.
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Since

B + B tr + f (B) − f (B)tr = f (B) + f (B)tr + f (B) − f (B)tr = 2f (B) ∈ M+
n ,

the skew-symmetric matrix f (B) − f (B)tr can have nonzero entries only in (1,2), (1,3), (2,1),
(3,1) positions, and the absolute value of these entries cannot exceed μ. On the other hand,
W(f (B)) = W(B), which is known to be the circular disk centered at zero with radius μ/

√
2

(see [16] or [11, Theorem 4.1], for example), and therefore ±iμ
√

2 are eigenvalues of the matrix
f (B) − f (B)tr . It follows that the (1,2), (2,1), (1,3), (3,1) entries of f (B) − f (B)tr have absolute
values equal to μ, and f (B) must be one of the following four matrices:

μ(E12 + E13), μ(E21 + E31), μ(E12 + E31), μ(E21 + E13).

Suppose the third or the fourth case holds. Then for X = A + B and Y = f (A) + f (B), the
largest eigenvalues of eiπ/3X + e−iπ/3Xtr and eiπ/3Y + e−iπ/3Y tr are 1.6861μ and 1.6007μ,
respectively, by a Matlab computation. Thus, W(X) /= W(Y), which is a contradiction with
(4.7). Now, if f (B) = μ(E21 + E31), then for X = μE12 + B and Y = μE12 + f (B), the largest
eigenvalues of i(X − Xtr) and i(Y − Y tr) are μ and

√
5μ, respectively. Thus, W(μE12 + B) /=

W(μE12 + f (B)), a contradiction again. So, we must have f (B) = μ(E12 + E13) = B. Now,
consider X = μE13 + B and Y = f (μE13) + B = μE31 + B. But then W(X) /= W(Y) (indeed,
W(X) is a circular disk but W(Y) is not because Y has 3 distinct eigenvalues [11, Corollary 2.5]),
a contradiction. So f (μE13) = μE31 is impossible, and we see that f (μE13) = μE13 holds.
Analogously we show that f (μE1j ) = μE1j and f (μEj1) = μEj1 for all j > 2.

Now, consider i, j � 2 and i /= j . Repeat the arguments of the preceding paragraph with
E12, E21, E13, E31 replaced by Ei1, E1i , Eij , Eji , respectively, thereby proving the equalities
f (μEij ) = μEij , μ > 0. �

Step 2. Assume that condition (a) of Step 1 holds. Then f (A) = A for all A ∈ M+
n .

Proof of Step 2. Suppose f (A) = [zij ]ni,j=1. Since f (A) + f (A)tr = A + Atr , we see that zjj =
ajj for all j = 1, . . . , n. Suppose

A − Atr = [xij ]ni,j=1 and f (A) − f (A)tr = [yij ]ni,j=1.

Suppose there is xij > yij � 0 for some i /= j . (We may interchange the roles of A and f (A) in
the following if 0 � xij < yij .) Say,

x12 > y12 � 0. (4.9)

Then for sufficiently large μ > 0, one can use a similar argument in the proof of Assertion 2.11
to show that

r
(
(A + μE12) − (A + μE12)

tr) /= r
(
f (A) + μE12) − (f (A) + μE12)

tr) . (4.10)

For the reader’s benefit, we provide details.
By Step 1 and (4.8) we know that f (μEij ) = μEij for all pairs (i, j) and all μ > 0. If n = 2,

inequality (4.10) is immediate. So assume n � 3. Partition:

A − Atr =
[
A11 A12
A21 A22

]
and f (A) − f (A)tr =

[
Z11 Z12
Z21 Z22

]
with

A11 = −Atr
11 ∈ M2, Z11 = −Ztr

11 ∈ M2, A21 = −Atr
12, (4.11)

Z21 = −Ztr
12, A22 = −Atr

22 ∈ Mn−2, Z22 = −Ztr
22 ∈ Mn−2. (4.12)

For sufficiently large t ∈ R and for μ > 0, consider
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Bt := A12(itI − A22)
−1A21 =

[
b11 b12
b21 b22

]
and Ct,μ := A11 + (μE12 − μE21) + Bt .

Note that Bt and Ct,μ are complex skew-Hermitian matrices. Then Ct,μ has eigenvalues (note
that x11 = x22 = 0)[

b11 + b22 ±
√

(b11 − b22)2 + 4(x12 + b12 + μ)(x21 + b21 − μ)

] /
2 (4.13)

(Here and in the rest of the proof, for a negative number w, we denote
√

w = i|√−w|.) Also,
since Trace (Bt ) is obviously an analytic function of t in a neighborhood of infinity, we have

Trace (Bt ) = iq(t),

where q(t) ∈ R has a fixed sign for all sufficiently large values of t ; say q(t) � 0. We note also
the formula

Bt =
∞∑

k=0

(it)−1A12((it)−1A22)
kA21. (4.14)

Formula (4.13) shows that there is (unique) νt > 0 such that the eigenvalue of Ct,νt with the
larger absolute value equals it ; here we use the inequality q(t) � 0. Moreover, for any |λ| > t ,
λ ∈ C, we have

det(λI − (A − Atr) − νt (E12 − E21)) /= 0 = det(itI − (A − Atr) − νt (E12 − E21))

(this follows from a Schur complement equality analogous to (2.15)). Hence,

t = r((A − Atr) + νt (E12 − E21))

and

−i2r(A − Atr + νt (E12 − E21))

= b11 + b22 +
√

(b11 − b22)2 + 4(x12 + b12 + νt )(x21 + b21 − νt ). (4.15)

Similarly, if

B̃t := Z12(itIn−2 − Z22)
−1Z21 = [b̃ij ]2

i,j=1 ∈ M2 and

C̃t := Z11 + νt (E12 − E21) + B̃t ,

then C̃t has eigenvalues[
(b̃11 + b̃22) ±

√
(b̃11 − b̃22)2 + 4(y12 + b̃12 + νt )(y21 + b̃21 − νt )

] /
2.

So, for sufficiently large t , and hence for sufficiently large νt , we have

−i2r(f (A) − f (A)tr + νt (E12 − E21))

= b̃11 + b̃22 ±
√

(b̃11 − b̃22)2 + 4(y12 + b̃12 + νt )(y21 + b̃21 − νt ). (4.16)

Since x12 > y12, x21 = −x12, y21 = −y12, and since the absolute values of bij and b̃ij , i, j = 1, 2,
are small in view of (4.14) and an analogous formula for B̃t , we see that the right hand sides of
(4.15) and (4.16) are not equal for sufficiently large νt . This proves (4.10).
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Now, in view of (4.10), we have

W(A + μE12) /= W(f (A) + μE12) = W(f (A) + f (μE12)),

where the equality follows from Step 1. This is a contradiction with (4.7). So, A − Atr = f (A) −
f (A)tr , and we conclude that f (A) = A. �

5. Spectral norm preservers

In this section, we consider spectral norm preservers on nonnegative matrices. In contrast with
other sections in the paper, here it is natural to prove the result in the framework of the set M+

m,n

of m × n entrywise nonnegative matrices.

Theorem 5.1. Let f : M+
m,n → M+

m,n. Then

‖A + B‖ = ‖f (A) + f (B)‖ ∀A, B ∈ M+
m,n (5.1)

if and only if there exist permutation matrices P ∈ M+
m and Q ∈ M+

n such that one of the following
holds.

(a) f (A) = PAQ for all A ∈ M+
m,n.

(b) m = n and f (A) = PAtrQ for all A ∈ M+
m,n.

Proof. We focus on the non-trivial “only if” part. Thus, assume (5.1) holds. We may assume that
m � n and n � 2 (The case m > n can treated similarly, and the case m = n = 1 is trivial.) The
following easy observation will be used repeatedly:

Observation 5.2. (a) For μ > 0, we have 1 + μ = ‖Eij + μEpq‖ if and only if (i, j) = (p, q).

(b) The equality
√

2 = ‖Eij + Epq‖ holds if and only if either i = p, j /= q, or i /= p, j = q.

We divide the proof into several steps.
Step 1. For every μ > 0, there exist permutation matrices P ∈ M+

m and Q ∈ M+
n (which a

priori may depend on μ) such that

(a) Pf (μEii)Q = μEii for i = 1, . . . , m, and
(b) for j = 1, . . . , n − m, the equalities Pf (μE1,m+j )Q = μE1,m+j hold, in case n > m.

Proof of Step 1. Fix μ > 0, and let f (μEii) = Fii for 1 � i � m. The condition (5.1) implies
that ‖f (A)‖ = ‖A‖ for every A ∈ M+

m,n; in particular,

‖Fii‖ = μ. (5.2)

Since Fii is entrywise nonnegative, there exist entrywise nonnegative vectors of unit length xi ∈
Rm such that

‖xtr
i Fii‖ = μ, i = 1, . . . , m.

For any i /= j , since

μ2 = ‖μEii + μEjj‖2 = ‖Fii + Fjj‖2
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�xtr
i (Fii + Fjj )(Fii + Fjj )

trxi

�xtrFiiF
tr
ii xi = μ2,

we see that xtr
i (FjjF

tr
jj )xi = 0. So, xi is an eigenvector of FjjF

tr
jj corresponding to the (smallest)

eigenvalue 0. Recall that xj is the eigenvector of FjjF
tr
jj corresponding to the (largest) eigenvalue

μ2. So, xi and xj are orthogonal. As a result, {x1, . . . , xm} is an orthonormal basis of Rm. Since
x1, . . . , xm are nonnegative, we can conclude that x1, . . . , xm is a permutation of e1, . . . ., em.
We may replace f by a map of the form A �→ P(f (A)) for a suitable permutation matrix P and
assume that xj = ej . Then etr

i FjjF
tr
jj ei = 0 (i /= j ). It follows that the (i, i) entry of FjjF

tr
jj is zero

for all i /= j . Since FjjF
tr
jj is positive semidefinite of norm μ2, we see that FjjF

tr
jj = μ2Ejj . As

a result, Fjj = μejv
tr
j for some nonnegative vector vj ∈ Rn of unit length, for j = 1, 2, . . . , m.

Moreover, the equation ‖Fii + Fjj‖ = μ for i /= j implies that vtr
i vj = 0 for i /= j , i.e., the

vectors v1, . . . , vm have positive entries at different positions.
If m = n, then the vectors v1, . . . , vm are a permutation of e1, . . . , em, and the proof of Step

1 is complete. Suppose n > m. Consider F(μE1j ) = F1j for j > m. Applying the preceding
argument to F1j , F22, . . . , Fmm, we see that F1j = μe1w

tr
j for some nonnegative unit length vector

wj ∈ Rn such that wj and vk has positive entries at different positions for any k = 2, . . . , m. Note
that (for j > m)

2μ2 =‖μE11 + μE1j‖2 = ‖F11 + F1j‖2 = ‖e1(μvtr
1 + μwtr

j )‖2

=‖μvtr
1 + μwtr

j ‖2 = (μv1 + μwj)
tr(μv1 + μwj) = 2μ2 + 2wtr

j v1,

hence wj and v1 also have positive entries at different positions. Applying the same reasoning to
μE1,j1 and μE1,j2 , (j1, j2 > m), we see that also wj1 and wj2 have positive entries at different
positions. Now it follows that each of the vectors

v1, . . . , vm, w1, . . . , wn−m (5.3)

has exactly one positive entry and the positions of these positive entries are different for different
vectors in the set (5.3). Thus, the set (5.3) is a permutation of e1, . . . , en, and the results of Step
1 follows. �

Step 2. There exist permutation matrices P ∈ M+
m and Q ∈ M+

n such that

(a) Pf (μEii)Q = μEii for i = 1, . . . , m and all μ > 0, and
(b) for j = 1, . . . , n − m, the equalities Pf (μE1,m+j )Q = μE1,m+j hold for all μ > 0, in

case n > m.

Proof of Step 2. By Step 1, there exist permutations P(μ) and Q(μ) such that

P(μ)f (μEii)Q(μ) = μEii, i = 1, . . . , m,

and

P(μ)f (μE1,m+j )Q(μ) = μE1,m+j , j = 1, . . . , n − m

(if m < n).
We may assume that P(1) = Im and Q(1) = In. Otherwise, replace f by the map of the form

X �→ P(1)−1f (X)Q(1)−1. Hence, if

S = {Ejj : 1 � j � n} ∪ {E1j : m < j � n},
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thenf (X) = X for anyX ∈ S. Moreover, for anyμ > 0 andX ∈ S,f (μX) = P(μ)μXQ(μ) =
μEpq for some (p, q) pair. Since

1 + μ = ‖X + μX‖ = ‖f (X) + f (μX)‖ = ‖X + f (μX)‖,
we see (using Observation 5.2) that f (μX) = μX. �

Step 3. Assume that P = I and Q = I in Step 2. Then one of the two following possibilities
holds:

(a) f (μEij ) = μEij for all μ > 0 and (i, j) pairs,
(b) m = n and f (μEij ) = μEji for all μ > 0 and (i, j) pairs.

Proof of Step 3. We may suppose i /= j (the cases when i = j are taken care of in Step 2). Here
1 � i � m; 1 � j � n.

First, we prove Step 3 for the case m = 1. By Step 2, we have f (μE11) = μE11 for all μ > 0.
If f ([x1, x2, . . . , xn]) = [z1, . . . , zn], then

(μ + x1)
2 +

n∑
j=2

x2
i = ‖μE11 + [x1, x2, . . . , xn]‖2 = ‖μE11 + [z1, . . . , zn]‖2

= (μ + z1)
2 +

n∑
j=2

z2
i

for all μ > 0 which implies x1 = z1. In particular, f maps the set {[a1, . . . , an] ∈ M+
1,n : a1 = 0}

to itself, and using the induction on n, we obtain the equalities f (μE1j ) = μE1j for all μ > 0
and j = 2, 3, . . . , n. From now on in the proof of Step 3 we assume m � 2.

Next, for any pair (i, j), 1 � i � m, 1 � j � n, we can find permutation matrices R (of size
m × m) and S (of size n × n) such that Eij = RE11S. Then, applying the result of Step 2 to
the map f̂ (X) = f (RXS), X ∈ M+

m,n, we see that f (μEij ) = μEpq for some index pair (p, q)

which is independent of μ. It remains to show that

(a) (p, q) always equals (i, j), or
(b) m = n and (p, q) always equals (j, i).

To this end, consider f (Eij ) with i /= j . By Step 1,

‖f (Eij ) + Ekk‖ = ‖f (Eij ) + f (Ekk)‖ = ‖Eij + Ekk‖ = √
2

for k ∈ {i, j}, j � m. By Observation 5.2 (b), we see that

f (Eij ) = Eij or f (Eij ) = Eji. (5.4)

Consider f (E12). If n > m, then
√

2 = ‖E12 + E1,m+1‖ = ‖f (E12) + E1,m+1‖.
Thus, f (E12) = E12. Suppose m = n and f (E12) = E21. We may replace f by the map A �→
f (A)tr and assume that f (E12) = E12.
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Assuming that f (E12) = E12, we can easily shows that f (E1j ) = E1j for all j = 3, . . . , m,
because√

2 = ‖E12 + E1j‖ = ‖f (E12) + f (E1j )‖ = ‖E12 + f (E1j )‖,
where (5.4) was used. Note that f (E1j ) = E1j for j > m by Step 1. Recall that for i = 3, . . . , m,
we have f (Ei1) = Ei1 or f (Ei1) = E1i . Since

1 = ‖E1i + Ei1‖ = ‖f (E1i ) + f (Ei1)‖ = ‖E1i + f (Ei1)‖,
we see that f (Ei1) = Ei1 for i = 2, . . . , m.

Now, for any Eij for 2 � i, j � m, since
√

2 = ‖E1j + Eij‖ = ‖f (E1j ) + f (Eij )‖ = ‖E1j + f (Eij )‖,
and using Observation 5.2, we see that f (Eij ) = Eij . For Eij with i � 2 and j > m, we have

√
2 = ‖E1j + Eij‖ = ‖f (E1j ) + f (Eij )‖ = ‖E1j + Epq‖,

where the pair (p, q) is such that f (Eij ) = Epq , and
√

2 = ‖Eir + Eij‖ = ‖Eir + Epq‖, r = 1, 2, . . . m,

so by Observation 5.2 we must have (p, q) = (i, j). So, for any (r, s) pair, we have f (Ers) =
Ers . �

Step 4. Assume that (a) in Step 3 holds, and assume also P = I , Q = I . Then f (A) = A for
all A ∈ M+

m,n.
Proof of Step 4. Let A = [aij ] and f (A) = [zij ] in M+

m,n. We show that aij = zij for each
(i, j) pair. Arguing by contradiction, assume aij /= zij for some pair (i, j). Say, (i, j) = (1, 1)

(for other pairs (i, j) the proof is exactly the same). Suppose a11 > z11 (if the opposite inequality
holds, interchange the roles of A and f (A) in the subsequent argument). Then for μ > 0,

(A + μE11)
∗(A + μE11) = μ2E11 + μ(A∗E11 + E11A) + A∗A.

Note that the largest eigenvalue of Ã = μ2E11 + μ(A∗E11 + E11A) equals[
μ(μ + 2a11) +

√
μ2(μ + 2a11)2 + μ2α

] /
2 with α = 4

n∑
j=2

a2
1j .

Similarly, we have

(f (A) + μE11)
∗(f (A) + μE11) = μ2E11 + μ(f (A)∗E11 + E11f (A)) + f (A)∗f (A)

and the largest eigenvalue of Z̃ = μ2E11 + μ(f (A)∗E11 + E11f (A)) equals[
μ(μ + 2z11) +

√
μ2(μ + 2z11)2 + μ2β

] /
2 with β = 4

n∑
j=2

z2
1j .

Denote by λ1(X) the largest eigenvalue of X ∈ S+
n . Since a11 > z11, there is a sufficiently large

μ > 0 such that

μ(μ + 2a11) > μ(μ + 2z11) + 2λ1(f (A)∗f (A))

and

(μ + 2a11)
2 + α � (μ + 2z11)

2 + β.
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Consequently,

λ1((μE11 + A)∗(μE11 + A)) � λ1(Ã) > λ1(Z̃) + λ1(f (A)∗f (A))

� λ1((μE11 + f (A))∗(μE11 + f (A))).

It follows that ‖A + μE11‖ > ‖f (A) + μE11‖, which is the desired contradiction, because by
Step 3 we have f (μE11) = μE11. �
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