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ABSTRACT 

The barotropic and baroclinic responses of the Chesapeake Bay to forcings from 
two hurricanes were investigated by using unstructured-grid three-dimensional 
hydrodynamic models. The model domain includes Chesapeake Bay proper, the 
tributaries, and its extended continental shelf in the mid-Atlantic Bight. Two hurricanes 
were studied: Hurricane Floyd of September, 1999 and Hurricane Isabel of September, 
2003, both of which made landfall within 100 km of the Chesapeake Bay mouth. 
Hurricane Floyd in 1999 passed through the entrance of the Bay from southwest to 
northeast along the coastlines of Virginia as a Category 1 storm, whereas Hurricane 
Isabel in 2003 made landfall on the east coast of North Carolina and moved inland 
toward the northwest as a Category 2 storm. 

For the barotropic simulation of the Bay responding to the hurricanes, the model 
results were compared with Bay-wide water level observations and the model showed 
reasonable prediction skill. It was found that the storm surge has two phases: a primary 
surge induced by the remote winds and a secondary surge induced by the local winds. For 
both hurricanes, the primary surge induced by remote winds propagated into the Bay 
initially, but the subsequent phase, influenced by the local wind, was notably different. 
Hurricane Floyd was followed by northerly (down-Bay) winds, that reduced the primary 
surge effect and caused a localized set-down; Hurricane Isabel was followed by southerly 
(up-Bay) winds, which superimposed on the primary surge effect and caused a localized 
set-up. The volume and salt fluxes were estimated at selected cross-sectional transects 
throughout the Bay, and it was found consistently for each transect that the net influx 
dominated during Hurricane Isabel while the net outflux dominated during Hurricane 
Floyd. For the Bay's tributaries, the large inland river discharge at the headwater can 
couple with the storm surge event to increase sea surface elevation on the second phase 
of sea surface elevation rise, which has a significant impact on inundation in the local 
low-lying areas. 

For the baroclinic response of the Bay to the hurricanes, the model results agreed 
reasonably well with additional observed data: sea surface elevation, velocity, and 
salinity profiles. From the perspective of salt flux, oceanic saltwater influx was evidently 
pushed into the Bay from the continental shelf at the initial phase of Hurricanes Floyd 
and Isabel associated with storm surge and salt intrusion. In the second phase, follow up 
with, down-bay local winds of eastern-type storms tend to enhance the stratification 
whereas up-Bay local winds of western-type storms tend to reduce the stratification. The 
hurricane surface wind stress is the primary agent for destratifying water column by 
transferring generated turbulent kinetic energy to the lower layer. The wind-induced 
straining during Hurricane Floyd was verified using non-dimensional parameters that 
incorporated the wind direction and the horizontal salinity gradient. Direct precipitation 
of hurricane rainfall acted more like a point source onto the Bay surface water, which 
created a layer of low surface salinity on the sea surface. It has an implication 
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dynamically on generating a sea surface horizontal pressure gradient and re-distributing 
salinity field after the storm. 

Extra efforts have been made to conduct idealized experiments for comparing 
long-term recovery of the Bay to the disturbance created by the two hurricanes. Realistic 
hurricane wind forcing was applied in a 4-day window with the same initial condition 
applied in the beginning, and the quasi-steady state condition achieved in the end. 
Through this exercise, it was found that it took Bay 5-7 days to return to normal 
condition from the sea surface elevation disturbances for both Hurricanes Floyd and 
Isabel. For the salinity fields, it took within a range of20-30 days to recover to the pre­
storm condition for the middle and southern portions of the Bay. For the northern portion 
of the Bay, however, due to the landward barotropic pressure gradient generated a strong 
salinity rebound and the associated oscillation subsequently after Hurricane Floyd passed, 
it required twice as long to recover. Sensitivity testing ofthe effect of river discharge 
(immediately after the storm) on the recovery time has also been performed. 

Lastly, the influences of continental shelf dynamics on the Bay's response to the 
hurricane were examined. It was found that the along shelf wind contributed to the inflow 
and ouflow at the Bay mouth in the form of Ekman transport, which complemented the 
contribution generated by the Bay's local wind. The onshore and offshore shelf wind also 
played a significant role. Because the cyclonic pattern of the hurricane wind field, when 
the hurricane made the landfall in the US East coast, an along-the-shelf pressure gradient 
from the north to the south was generated. This pressure gradient, coupled with the 
Coriolis and friction forces, can generate a quasi-geostrophic balance flow serving to 
prevent or enhance the inflow across the Bay mouth. The effect is particularly noticeable 
in the relaxation period during the hurricane passage. 

xxi 



A NUMERICAL MODELING STUDY ON BAROTROPIC AND BAROCLINIC 

RESPONSES OF THE CHESAPEAKE BAY TO HURRICANE EVENTS 



Chapter I 

INTRODUCTION 

1.1 Backgrounds 

Study area: Chesapeake Bay 

The Chesapeake Bay (CB), located in the mid-Atlantic Bight along the U.S. East 

Coast, is a partially mixed estuary and the largest in the United States. The Bay is 

approximately 320 km long from its entrance at Capes Henry and Charles, Virginia to the 

mouth of the Susquehanna River at Havre de Grace, Maryland. Its widest point is just 

south of the Potomac River mouth, which is 50 km wide, and it has more than 7,000 km 

of shoreline (Figure 1-1 ). The entire CB system as a whole has a surface area of 11.5 x 

103 km2
, a mean low water volume of 7 4 km3

, and a mean depth of 6.46 m; for the bay 

proper only, the surface area is 6.5 x 103 km2
, the mean low water volume is 50 km3 and 

the mean depth is 8.42 m (Schubel and Pritchard, 1986). 

The CB is formed by complicated estuary and sub-estuaries that allow discharge 

from fifty major tributaries. The freshwater to the Bay is predominantly coming from the 

northern and western sides, and only a small portion is from the eastern side of the Bay. 

The total freshwater input to the CB system averages 2,570 m3 s-1
, derived from various 

tributaries. Approximately 45 % of the total is supplied by the Susquehanna River, which 

has a long-term average discharge of 1,144 m3 s"1 (Goodrich, 1988). The other four 
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Fig. 1-1 A map of the Chesapeake Bay and the Mid-Atlantic Bight along the East Coast 

ofthe United States. 
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tributaries: Patuxent, Potomac, Rappahannock, and James combined contribute as much 

as the Susquehanna River. Nearly an equal amount of saltwater enters the Bay through 

the Bay entrance from the Mid Atlantic Bight shelf waters (Boicourt, 1973; Wang and 

Elliott, 1978; Beardsley and Boicourt, 1981; Valle-Levinson and Wilson, 1994; Vaile­

Levinson, 1995; Kourafalou et al., 1996a; 1996b; Vaile-Levinson et al., 2001; Wong and 

Valle-Levinson, 2002; Vaile-Levinson et al., 2003). These exchange processes are 

complicated since the hydrodynamics at the entrance are influenced by a combination of 

tides, atmospheric forcing, buoyancy forcing, and geometric effects. Oceanic saltwater 

tends to enter the Bay in the northern portion of the entrance and through the bottom 

layer of the main channel, whereas estuarine water leaves through the southern portion 

(Valle-Levinson and Lwiza, 1997). The mean ocean-bay exchange rate is approximately 

8 x 103 m3 s-1
, corresponding to a time scale of90 days (Austin, 2002). 

Subtidal circulation in the CB 

The subtidal circulation pattern in the Chesapeake Bay shows a gravitational 

circulation driven by the longitudinal salinity gradient (Pritchard, 1952; 1956) and wind 

forcing (Weisberg, 1976; Wang, 1979b). Longitudinal salinity gradients are typically 

induced by freshwaters flowing from a river and salty waters entering from the Bay 

mouth. Most of the current variability in the region is in the subtidal or low-frequency 

band (2 to 10 days) that is directly forced by strong winds from synoptic storms 

(Beardsley and Boicourt, 1981). Wang and Elliott (1978) examined the subtidal 

variability in the Chesapeake Bay and Potomac River and its relationship to atmospheric 

wind forcing. They found that the dominant sea level fluctuation resulting from the up­

Bay propagation of coastal sea level fluctuations was generated by the alongshore winds. 
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They concluded that water was driven out of the Bay by the northward wind and driven 

into the Bay by the southward wind, through the coastal Ekman flux. Their study 

suggested that the effects of interaction with the adjacent larger estuary should be 

included into an adequate model for the subtidal estuarine circulation. Klinck et al. 

(1981a) investigated and concluded that the free surface slope is responsible for the low­

frequency, quasi-geostrophic coastal circulation induced by a moving wind stress. 

Additionally, Klinck et al. (1981 b) examined the dynamical interaction of a narrow fjord 

with a wind-driven coastal regime using a linear, two-layer numerical model. For a 

variety of wind conditions, they showed that the wind-forced coastal circulation with its 

geostrophic alongshore currents has a strong effect on the circulation within the fjord. 

Olson (1984) revealed direct and indirect responses of the Bay to variations in wind stress, 

freshwater inflow, and coastal sea level by analyzing time series records related to 

circulation in the Chesapeake Bay. He found that the observed volume transport 

spectrum at the mouth of the Bay could be explained quantitatively as the combined 

response to independent wind stress and sea level fluctuations. According to his research, 

under normal weather conditions, a maximum in the volume transport spectrum (0.4 

cycles per day ( cpd)) in the upper Bay was caused by a local maximum in the wind 

spectrum, whereas 90% of the volume transport variance (below 0.375 cpd) at the Bay 

mouth was induced by sea level fluctuations. However, the volume transport (as well as 

momentum flux) in the Bay under extreme wind conditions(> 10 m/s) has not been well 

understood. 

Water volume and salt transport exchanges 

The mechanism of wind-induced exchange at the entrance to Chesapeake Bay 
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was studied under relatively weak(< 10 m/s) wind forcing conditions (Vaile-Levinson et 

al., 2001) and under hurricane events (Vaile-Levinson et al., 2002). They identified three 

scenarios of wind-induced exchange corresponding to different wind patterns: 

northeasterly (NE), southwesterly (SW), and northwesterly (NW) winds. The first drove 

water from the coast toward the lower Bay as well as from the upper Bay to the lower 

Bay, which was indicated by the surface elevation slopes across the Bay. SW winds 

caused opposite sea level gradients, which translated into near-surface outflows 

throughout the entrance and near-bottom inflows restricted to the channels. NW winds 

produced the same exchange pattern as northeasterly winds. In the tributaries, Sanford 

(1988) reported that intrusion of lower-layer water from the Bay into the Choptank River 

occurred as an episodic, wind-driven internal surge rather than as a slow, steady flow 

when strong wind was blowing from the northeast. Furthermore, Sanford and Boicourt 

(1990) noted that wind and tide forced internal oscillations of the pycnocline that 

advected saline/hypoxic water from below the pycnocline onto the flanks of the 

Chesapeake Bay and into the lower reaches of the Choptank River. They attributed the 

occurrence of saline/hypoxic water in their study to either internal waves or internal 

mixing. Kuo and Park (1992) contributed to the understanding of two mechanisms of 

wind-induced mass exchange at the Rappahannock River mouth, which result from 1) 

tilting of the pycnocline in the Bay and 2) shoreline and bathymetric configurations 

around the estuary- sub-estuary junction. They found that wind is the dominant factor 

influencing the properties of imported waters in the Chesapeake Bay - Rappahannock 

estuary system. They also suggested that mass exchange at the bottom of the river mouth 

could depend not only on the relationship between density-driven gravitational 
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circulation and wind-driven current, but also on the lateral variability of the pycnocline in 

the Bay in response to wind intensity and direction. 

Wind-induced mixing and destratification 

Wind-induced vertical mixing tends to destratify the water column in a stratified 

estuary (Miller et al., 2005). Wind-induced destratification has been studied in the 

Chesapeake Bay. The destratification was frequently observed to occur from early 

autumn through mid-spring (Goodrich et al., 1987). It was verified numerically to result 

from storms in early autumn indicating that internal shear is a more effective mechanism 

for destratification than direct propagation of turbulence from the surface (Blumberg and 

Goodrich, 1990). However, hurricane-forced winds tend to cause intense turbulent 

mixing in the water column, temporarily transforming a partially mixed estuary to a 

vertically homogeneous estuary (Li et al., 2007). It was suggested that the combined 

remote and local wind forcing could have different effects on turbulent mixing. 

Alternatively, wind stress increases estuarine stratification by reducing the 

longitudinal density gradient (Geyer, 1997; North et al., 2004; Scully et al., 2005; Chen 

and Sanford, 2009). Geyer (1997) showed that down-estuary winds enhanced surface 

outflow, significantly reducing the along-estuary salinity gradient. North et al. (2004) 

demonstrated that increased stratification was associated with down-estuary wind events, 

but did not address the role that the increased stratification may play in reducing vertical 

mixing and enhancing the baroclinically driven estuarine circulation. In the York River 

Estuary, VA, Scully et al. (2005) observed wind-induced straining, noting that down­

estuary winds enhance vertical stratification whereas up-estuary winds tend to reduce 

vertical stratification. In an idealized, partially mixed estuary, Chen and Sanford (2009) 

7 



confirmed that wind straining of the along-channel salinity gradient exerts an important 

control on stratification, which promotes increases/decreases in stratification during 

down/up-estuary winds. When down-estuary wind stress increases, stratification shows 

an increase-then-decrease transition that indicates the competition between wind straining 

and direct wind mixing. In the Chesapeake Bay, a storm moving from south to north can 

generate different wind fields, which are dominated by northerly (down-estuary) winds or 

southerly (up-estuary) winds due to the Bay's orientation (Figure 1-1). It may cause a 

different destratification process during a storm. 

Restratification and estuarine recovery following a storm 

Restratification in an idealized one-dimensional mixed layer can occur only by an 

increase in buoyancy (Niiler and Kraus, 1977; Price et al., 1987). In a fluid containing a 

horizontal density gradient, restratification is led by gravitational adjustment (Simpson 

and Linden, 1989). In a real partially mixed estuary, horizontal density gradients found 

in mixed layers generated by impulsive mixing by a storm can also lead to restratification 

(Tandon and Garrett, 1994). Subtidal adjustment of estuarine circulation is influenced by 

gravity. For density (or salinity), the gravitational adjustment of a two-layer system, 

initially separately by a vertical wall (Wang, 1984 ), can be applied to the estuaries. A 

strong wind stress during a hurricane disturbed the water column and made a well-mixed 

estuary but the horizontal salinity gradient still exists in the estuary. When the wind 

forcing terminates, the water column adjusts at the internal gravity wave phase speed to 

form a stably stratified (partially mixed) estuary. During and after the adjustment, sharp 

density fronts divide the two layers both horizontally and vertically. Density fronts of 

this type are often observed in estuaries (Geyer and Farmer, 1989). In the absence of 
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rotation, the adjustment process continues until the light water has spread evenly over the 

entire domain and the system has come to rest. However, when rotational effects are 

important, the geostrophic adjustment tends to lead to new stratification (Tandon and 

Garrett, 1995). Under the influence of the Coriolis force, the forward acceleration 

induced by the initial movement of the lighter water on the denser water creates a current 

that veers (to the right in the Northern Hemisphere) and can come into geostrophic 

equilibrium with the horizontal density gradient (Cushman-Roisin, 1994). Given the 

horizontal density gradient, Li et al. (2007) verified that both the gravitational and 

geostrophic adjustment theories provide predictions for the growth of stratification in the 

water column after a hurricane. 

Estuarine recovery from a storm was initiated by the influence of the huge amount 

of freshwater on the estuarine circulation. A sudden, large injection of freshwater may 

involve several stages of the transient response of salinity distribution in lower 

Chesapeake Bay (Kuo et al., 1976). The rebound of salinity structure tends to start 

immediately after the passage of the flood water and manifests differently in the bottom 

and surface layers. Gong et al. (2007) reported that the timescale of estuarine recovery in 

the York River estuary from a hurricane is approximately in the range of 10 to 120 days, 

depending on the storm surge energy and the amount of river discharge. The fresh waters 

flowing out of the Bay generate a plume that could affect the interaction between the 

inner shelf and the Bay estuary. Barotropically, the lower Chesapeake Bay responds to 

local winds and coastal Ekman flux (Wang and Elliott, 1978; Wang 1979a; b) producing 

inflows/outflows larger than those produced by the estuarine circulation and river 

discharge. Wiseman (1986) posed the question of whether estuary plumes are modified 
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by momentum transfer from the wind or to large-scale forcing by the ambient coastal 

current. Vaile-Levinson et al. ( 1996) examined the effects of seaward barotropic 

discharge at the estuary upstream boundary, suppressed coastal ambient flow, and salinity 

gradient variations on the volume inflows and outflows at the entrance to a wide estuary 

where rotational influences are important. 

Seiche motion 

It also has been suggested that lateral variability plays an important role on 

controlling transport processes in other systems. Rotational effects on lateral variability 

were incorporated for the study oflarger lakes like the Great Lakes of North America 

where Csanady (1968; 1972) observed a current regime and thermocline tilt associated 

with Ekman setup driven by steady, shore-parallel winds. Boicourt (1992) suggested that 

wind-driven circulation on the order of hours could aid and/or destroy vertical density 

stratification and be the cause oflateral variability in the system. Recently, wind-driven 

lateral variability in a partially mixed estuary was studied by Reynolds-Fleming and 

Luettich (2004). They concluded that the lateral response of the upper Neuse River 

Estuary (NRE) system was driven predominantly by across channel wind forcings and 

not by Ekman setup associated with along channel winds. This means that wind driven 

circulation is in the direction of the wind forcing (rather than at an angle to the right of 

the wind) when the water depth ( < 4 m in the upper NRE) is much less than the Ekman 

layer thickness (Csanady, 1967). They also suggested that additional variability at near 

diurnal periods might have been due to baroclinic seiches, and identified a lateral, 

barotropic seiche with a period of approximately 30 minutes. These variabilities have not 

yet been examined thoroughly in the Chesapeake Bay. 
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Seiche motion is one of the responses of an estuary to wind forcing. Elliott 

(1976) indicated that the local surface slopes induced by a winter storm provided 

evidence for the presence in the Patuxent River of a surface oscillation with a period of 

approximately 88 hours that may have arisen in response to internal seiching of the 

halocline. Chuang and Boicourt (1989) reported that seiche motions in the Chesapeake 

Bay are generally driven by the longitudinal (N-S) wind at 2- to 3-day time scales and are 

characterized by a node at the mouth and an antinode at the head of the Bay. They found 

that a 1.6-day period of seiche activity was related to the lateral (E-W) wind and 

concluded that both longitudinal and lateral winds are capable of causing seiche motion 

in the Bay and, hence, contribute to estuary-coastal ocean exchange. 

1.2 The barotropic and baroclinic responses of the Bay to the hurricane forcing 

A hurricane, originally derived from the word Huracan from the Caribbean Taino 

Ameridian language, commonly denotes a tropical cyclone which occurs in the North 

Atlantic Ocean, the Northeast Pacific Ocean east of the dateline, or the South Pacific 

Ocean east of 160° E. It is characterized by low pressure at the eye center, a hurricane 

wall with extremely high wind around it, and a several-hundred-kilometer radius band of 

clouds associated with heavy rain. A hurricane is classified into five categories by its 

strength, which is characterized with maximum sustained winds of at least 33m s-1 (or 74 

mi h"1
) and storm surge of at least 1.0 m (or 3ft) (Saffir-Simpson Hurricane Scale, Table 

1-1). According to the glossary ofNational Hurricane Center (NHC) terms 

(http:/ /www.nhc.noaa.gov/aboutgloss.shtml), storm surge is an abnormal rise in sea level 

accompanying a hurricane or other intense storm, and whose height is the difference 

11 

http://www.nhc.noaa.gov/aboutgloss.shtml


between the observed level of the sea surface and the level that would have occurred in 

the absence of the cyclone. Storm surge is usually estimated by subtracting the normal or 

astronomical tide from the observed storm tide which is the actual level of sea water 

resulting from the astronomic tide combined with the storm surge. While hurricanes can 

produce extremely strong winds and torrential precipitation, they are also able to generate 

high waves and damaging storm surge on the sea surface. Storm surges can produce 

coastal flooding, and heavy rains accompanying a hurricane can produce significant 

flooding inland. Typically, a hurricane moving from the open ocean to coastal seas 

brings salt water with storm surge into estuaries. Heavy rainfall also increases freshwater 

discharges from upstream portions of estuaries. These two aspects increase horizontal 

density and pressure gradients in estuaries and affect the estuarine circulation. 

Hurricane-induced freshwater or saltwater influx in a partially mixed estuary have 

significant effects on not only physical properties, but also biogeochemical dynamics 

including submersed aquatic vegetation (SA V) (Valle-Levinson et al., 2002; Roman et 

al.,2005; Boicourt, 2005; Frazer et al., 2006; Miller et al., 2005; Reay and Moore, 2005; 

Tango et al., 2006; Trice et al., 2005). Saltwater flooding can also be caused by storm 

surges that significantly alter forest communities (Conner, 1993; Gresham, 1993; 

Williams, 1993; Conner and Inabinette, 2005). 

Two distinct types of hurricanes were classified by their tracks through the 

Chesapeake Bay (Pore, 1960; 1965): eastern-type hurricanes that travel east of the Bay, 

and western-type hurricanes that pass west of the Bay. Eastern-type storms generated 

maximum surge in the southern portion of the Bay whereas western-type storms created 

highest surge in the northern part of the Bay. Recently, the Chesapeake Bay was hit by 
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Table 1-1 Saffir-Simpson Hurricane Scale (SSHS). 

Maximum Sustained 
Minimum Surface Storm Surge Height 

Categorization Wind Speed 
Pressure (mb) ft (m) 

mph (m s-1
} 

Category 1 74-95 (33-42) > 980 3-5 (1.0-1.7) 

Category 2 96-110 (43-49) 979-965 6-8 (1.8-2.6) 

Category 3 111-130 (50-58) 964-945 9-12 (2.7-3.8) 

Category 4 131-155 (59-69) 944-920 13-18 (3.9-5.6) 

Category 5 > 155 (> 70) < 920 >19(>5.7) 

Table 1-2 Some comparative aspects of Hurricanes Floyd and Isabel. 

~ Hurricane Floyd Hurricane Isabel 
s 

Date September 7-17, 1999 September 6-19, 2003 

Landfalling location North Carolina North Carolina 

Landfalling category 
Category 2 (4) Category 2 (5) 

(maximum) 
Maximum wind speed 

154 mph, 921 mb 161 mph, 920mb 
and pressure 

Pore's classification Eastern Western 

Maximum storm 1. 559 m 2.487 m 
surge in CB (Money Point, VA) (Chesapeake City, MD) 
Total rainfall 

10-15 inches 1-2 inches 
onto CB (max) 

Total river flows 
291 billion gallons 1 , 190 billion gallons 

(September 16-22; USGS) (September 19-25; USGS) 

Damage Estimates 
$4.5 billion $3.6 billion 

(particularly NC) ($ 2.67 billion both VA and MD) 
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two tropical cyclones, Hurricane Floyd and Hurricane Isabel (Table 1-2). Both made 

landfall in North Carolina as a Category 2 hurricane and both occurred in mid-September 

(1999 and 2003, respectively). These two hurricanes had different tracks (Figure 1-2): 

Hurricane Floyd's track nearly paralleled with the coastal shoreline that corresponds to 

the eastern-type storm, whereas Hurricane Isabel's track was perpendicular to the coastal 

shoreline that corresponds to the western-type storm. The barotropic response of the 

Chesapeake Bay to the hurricanes was studied by Shen et al.(2005), Wang et al., (2005), 

Shen et al., (2006a), and Shen et al. (2006b), and the baroclinic response of the Bay to 

Hurricane Isabel in the York River tributary and Bay proper by Gong et al. (2007) and Li 

et al. (2007), respectively. However, in all the above studies, the continental shelf 

dynamics was not explicitly considered. As a result, the ocean influx and outflux 

estimated during the event was questionable because one does not know how much is 

contributed by the local wind versus the remote wind. 

Hydrodynamics in a relatively shallow estuarine system is closely linked with 

fresh water input and the thermally induced stratified condition, which is then mixed by 

external forcings such as tides, winds (atmospheric pressure), and waves. The external 

forcings can incur motion themselves, but at the same time modify the mixing­

stratification pattern, and, in tum, create a baroclinic water motion. In a partially mixed 

estuary such as Chesapeake Bay, tides and river inflows provide mixing and stratification 

to generate a gravitational (estuarine) circulation. It manifests as a basic state of two­

layered circulation that represents a seaward flow at the surface and a landward flow at 

the bottom. Review papers on this subject can be found in Stommel and Farmer (1952); 

Pritchard (1952); Pritchard (1956); Hansen and Rattray (1965); Fischer (1972); Chatwin 
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(1976); Officer (1976); Csanady (1976); Dyer (1997); Geyer et al. (2000); Stacey et al. 

(2001); MacCready (2004). On top of the basic state flow pattern established by the river 

and tides as described, wind-driven motion can significantly modify this flow pattern 

either to intensify or weaken the gravitational circulation. How the hurricane wind 

condition creates a perturbation on the basic flow patterns and the subsequent restoration 

of these patterns is an issue at the core of this study. 

The stratified water responds to wind forcing with many different modes 

superimposed upon one another. In the vertical, the response, in general, can be 

classified into many different modes each with its own eigenvalue (Kundu, 1990; 

Csanady, 1984). In this study, following responses of a partially mixed estuary to forcing 

from extreme wind events will be considered: 1) The barotropic response, that is, the 

response to the sea-surface slope induced by tides or atmospheric forcing. These forcing 

does not depend on the density of the water nor the depth of the water. 2) The baroclinic 

response, on the other hand, is the response that varies with the density of seawater and 

thus depends on the depth of the water. For example, the response induced by the 

buoyancy forcing such as freshwater discharge affects the weight of overlying seawater 

and, hence, the pressure, acting on a horizontal surface at depth. The horizontal variations 

in density cause the waters to follow the sea surface less and less with increasing depth 

and then stratify, that is, to develop baroclinic conditions (TOU, 2001). 

During the past fifty years, many Chesapeake Bay researchers have studied the 

response to external forcing with various approaches. Observational investigations in this 

area include the analysis of long-term meteorological, tidal, and current velocity data in 

the upper Chesapeake Bay (Elliott et al., 1978; Grano, 1982; Hamilton and Boicourt, 
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1983), in the middle part of the Bay (Vieira, 1983), in the Potomac River (Elliott, 1978; 

Wang and Elliott, 1978), and in the lower part of the Bay (Wang, 1979a; 1979b). All 

confirm that variable winds and water levels can induce large fluctuations. The analyses 

of short term period data in the mid-Chesapeake Bay (Pritchard and Vieira, 1984 ), in the 

Choptank River (Sanford and Boicourt, 1990), and in the mouth ofthe Rappahannock 

River (Kuo and Park, 1992) also have examined the vertical variations in residual current 

that respond to wind forcing. Additionally, the modeling studies have been accomplished 

using observations (Wang, 1980; Wang and Kravitz, 1980). Despite the progress made 

that is described above, two challenges remain. First, it is well-known that the wind can 

have local and remote effects. The question is what amount of the Bay's responses to the 

hurricane result from the local wind directly versus from the remote wind. A second 

question is how to specify a boundary condition to reflect the hurricane wind condition in 

a numerical modeling study. 

Recent progress on better understanding of continental shelf dynamics as well as 

development of more sophisticated and efficient models helped to resolve the 

aforementioned issues. For example, a realistic boundary condition can be constructed 

and used successfully for storm surge simulation by incorporating the sea level 

observation measured at the coast during the storm. A considerable progress also has 

been made in developing two- and three-dimensional circulation models for a shallow 

water system. A hydrodynamic-numerical model for the estuarine circulation has been 

suggested to involve the external forcings (Grezechnik, 2000). Numerical hydrodynamic 

models are now able to simulate large-scale and small-scale circulations in the shallow 

water system with reasonable accuracy (Blumberg and Goodrich, 1990; Johnson et al., 

17 



1993; Shen et al., 1999; Wang and Johnson, 2000). With the development of new, more 

sophisticated algorithms, the computational power of new processors allows us to run 

complex hydrodynamic models, providing us with a deeper insight into the physics 

governing motion and mixing in the shallow water systems. The models can therefore be 

used to increase understanding of the physical responses of the system to the external 

forcing. 

As indicated above, very few studies so far have explicitly coupled estuarine 

response to the continental shelf dynamics and thus the ocean influx and outflux 

estimations during wind events were questionable. The aim of the present study is to 

contribute to a better understanding on the barotropic and baroclinic responses of the Bay 

to an extreme meteorological event, emphasizing a comparative study with a large 

domain extended into the continental shelf. 

1.3 Objective and outline 

Objective 

The overall objective of this study is to identify and quantify the barotropic and 

baroclinic responses of the Chesapeake Bay to two different types of hurricanes: 

Hurricane Isabel and Floyd. During the study, a start-of-the-art, unstructured grid semi­

implicit, Eulerian-Lagrangian, finite element model (SELFE) was used with well­

calibrated observational variables, including water level, salinity, and velocities measured 

during the hurricane in the Bay. The specific objectives were: 

1) to examine the temporal and spatial variation of the water level under the 

influence of hurricane wind fields 
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2) to quantify the volume transport induced by barotropic flows, 

3) to identify the influence of river discharge on water level in the tributary, 

4) to quantify the oceanic salt flux, 

5) to characterize mixing induced destratification and restratification using non­

dimensional parameters, 

6) to identify the influence of local and remote wind forcings, and the effects of 

precipitation and continental shelf dynamics, 

7) to identify the estuarine recovery process from hurricane forcing, and 

8) to estimate the time scale of estuarine recovery. 

Outline 

Chapter II summarizes the description and analysis of observations made during 

Hurricanes Floyd and Isabel. The next two chapters, Chapter III and Chapter IV, provide 

the descriptions of numerical methods and their calibrations, respectively. Chapter V 

reports on the barotropic response of Chesapeake Bay to two hurricanes, concentrating on 

the storm surge dynamics, and effects of different external forcing on sea surface 

elevation. Chapter VI focuses instead on the baroclinic responses of the Bay to two 

hurricanes. They included topics of oceanic salt influx, hurricane-induced mixing 

process, effects of local and remote winds and of precipitation. Chapter VII describes the 

estimation of the time scale for estuarine recovery from the forcing of hurricanes and the 

influence of continental shelf dynamics. In Chapter VIII the main results of the thesis are 

summarized with discussion. The implications of the work and potential future research 

are also presented. 
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Chapter II 

DATA DESCRIPTION 

2.1 Introduction 

In this study, five categories of data observed during two hurricane events (Floyd 

in 1999 and Isabel in 2003) are analyzed to verify mechanisms of physical phenomena 

and calibrate numerical model results: 1) historical water level data on the National 

Water Level Observation Network (NWLON) stations verified by the National Oceanic 

Atmospheric Administration (NOAA)'s National Ocean Service (NOS). 2) time series of 

water velocity from NOAA, the Chesapeake Bay Observing System (CBOS), and 

Virginia Institute of Marine Science (VIMS). 3) salinity data in the York River from the 

Centralized Data Management Office (CDMO) supported by the Chesapeake Bay 

National Estuarine Research Reserve (CBNERR) and VIMS. In addition to 2) and 3), 

Valle-Levinson et al. (2002) has collected water velocity and salinity data at the Bay 

mouth during Hurricane Floyd, and Boicourt (2005) has measured water velocity and 

salinity at the mid-Bay station during Hurricane Isabel. 4) wind and atmospheric 

pressure data from NOAA and the National Data Buoy Center (NDBC) for periods of 

both hurricanes. 5) river streamflow data in the tributaries of the Chesapeake Bay 

obtained from the U.S. Geological Survey (USGS) in both years. 

20 



39.5 

39 

z 38 

g> 
"0 -Q) 37.5 
"0 
::I -::::: 
~ 37 

36.5 

36 

35.5 

35 

77.5 

. '. .;. __ ·, 
.... · .. :. .· ... :· .. ..:·· 

.· ... .-.·nC!> 
- ~r·"' 

..•... --···.:".;$:} 
.. -~ .· 

~ ·' 

\~:'i 

.?44014 
:·:~:!(.' 

.... / } ~ 
~~ _ .. ,: 

• Wind and air pressure < ·:~ 
.8. Water velocity (Floyd) · ... ,,,., 

: ::~;~sabel) .- .- •Q. _;~; ,~,f'~jf 
* 4 Riverflow~-~ ~<. ~ · · · '69'.; 41025 

•• - • \ ••. r .-~ •• ;:. ••• 

77 76.5 76 75.5 75 74.5 
Longitude ( deg W) 

./ ... .-. -· ... . · .· .·· 
/ ,I ,.. 

N 

I 
74 

Fig. 2-1 A map of Chesapeake Bay observation station locations with bathymetric 

soundings (meters). Red circles represent water elevation data; green squares represent 

wind data; triangles represent current data (red: Year 1999; blue: Year 2003); cyan 

diamonds represent salinity data; and red stars represent riverflow. Red and green dashed 

lines represent the tracks of Hurricanes Floyd and Isabel, respectively. 
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2.2 Hurricane Floyd in 1999 

Meteorological data 

During Hurricane Floyd, meteorological data were collected from a total of 13 

stations operated by NOAA and NDBC (station locations shown as green squares in 

Figure 2-1). Typically, winds are measured at heights of 15-20 m above mean sea level 

(MSL) and atmospheric pressures are observed at heights of 10-15 m above MSL. 

Hourly wind data at six representative stations, Thomas Point, Lewisetta, CBBT, 

Chesapeake Light, VA Beach, and Duck, were plotted in Figure 2-2 (left panels). Winds 

are showing similar but different patterns throughout the stations. Initially, winds at all 

stations are blowing from the northeast. During the event, (15 to 18 September, 1999), at 

three stations (Chesapeake Light, VA Beach, and Duck), wind vectors were rotating 

clockwise and then blowing to the southeast, while wind vectors at the residual stations 

were showing counter-clockwise motion and then blowing to southeast. Wind speed 

diminished from lower latitude to higher latitude. These can be explained by the track of 

Hurricane Floyd, which is represented by the red dashed line in Figure 2-1. Floyd 

weakened over land after making landfall near Cape Fear, NC as a Category 2 hurricane 

that diminished to a Category 1 hurricane before passing into Virginia (Zervas et al., 

2000). Thereafter, it followed the Atlantic coastline toward the northeast. Hurricane 

Floyd passed directly over the mouth of the Chesapeake Bay, with three stations located 

to the east of its track and another three stations to the west of its track. Therefore, wind 

patterns were determined and distinguished by this track of Hurricane Floyd. 

Barometric pressure data were plotted on the right panels of Figure 2-2 as well. 

The lowest atmospheric pressures recorded were 970.2 millibars (mb) at the Chesapeake 
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Fig. 2-2 Time series plots of wind data (left panels) and atmospheric pressure (right panels) at six selected stations (from top 

to bottom: Thomas Point, MD; Lewisetta, VA; CBBT, VA; Chesapeake Light, VA; VA Beach, VA; Duck, NC) during 

Hurricane Floyd, 11-26 September, 1999, UTC. 
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Light buoy station, 972.1 mb at Duck, and 976.4 mb at CBBT. A drop in atmospheric 

pressure over a body of water can raise water levels due to an inverse barometer effect. 

Simply, a 1-mb drop in atmospheric pressure corresponds to a !-centimeter (em) change 

in water level over open ocean (Harris, 1963). Roughly, the maximum effect could range 

from about 25 em at Thomas Point, MD to about 45 em at Chesapeake Light, VA. 

In the coastal regions, the effect of the wind stress on water levels during a storm 

is often substantially greater than the inverse barometer effect (Zervas et al., 2000). 

There was an interesting feature at three NOAA/NWLON stations in the upper 

Chesapeake Bay, which showed negative storm surges in spite of high winds and low 

pressure. This means that the effect of the wind stress on water levels competes with that 

of the low pressure. There should then be a water level set-down induced by local wind 

stress (Shen et al., 2006a). 

Waterlevel data 

The water level data were collected at the NOAA/NWLON stations in the 

Chesapeake Bay during Hurricane Floyd. These stations are shown in Fig. 2-1 and are 

represented by red circles. Information on the stations is detailed in Table 2-1. Each 

station provides two types of water level data: 1) observed water level (storm tide) and 2) 

predicted water level (astronomical tide). Basically, storm surge is calculated from the 

difference between the observed storm tide and the predicted astronomical tide 

(Bretschneider, 1966). Physically, storm surge consists of two primary components: 1) 

water level elevation due to wind stress produced by a storm and 2) water level elevation 

due to diminished atmospheric pressure within the storm. 
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Table 2-1 Station information and availability of observations during Hurricanes Floyd and 

Isabel in MD, DC, VA, and NC. 

Station ID Station Name 
Coordinates Observations* 

Latitude (N) Longitude 0N) WL WD wv s 
NOAA 

8570283 Ocean City Inlet, MD 38° 19.7' 75° 05.5' X 
8571892 Cambridge, MD 38° 34.4' 76° 04.1' X X 

8573364 Tolchester Beach, MD 39° 12.8' 76° 14.7' X X 

8574680 Baltimore, MD 38° 16.0' 76° 34.7' X 

8575512 Annapolis, MD 38° 59.0' 76° 28.8' X 

8577330 Solomons Island, MD 38° 18.0' 76°27.1' X 

8594900 Washington, DC 38° 52.4' 77° 01.3' X 

8632200 Kiptopeke Beach, VA 37° 10.0' 75° 59.3' X X 

8635150 Colonial Beach, VA 38° 15.1' 76° 57.6' X 

8635750 Lewisetta, VA 37° 59.2' 76° 27.8' X X 

8636580 Windmill Point, VA 37° 36.9' 76° 17.4' X 

8637624 Gloucester Point, VA 37° 14.8' 76° 30.0' X 

8638610 Sewells Point, VA 36° 56.8' 76° 19.8' X X 

8638863 Chesapeake Bay BT, VA 36° 58.0' 76° 06.8' X X 

8639348 Money Point, VA 36° 46.7' 76° 18.1' X X 

8651370 Duck Pier, NC 36° 11.0' 75°44.8' X X 

NDBC 

41025 Diamond Shoals, NC 35° 00.4' 75° 24.1' X 

44009 Delaware Bay 26 NM, NJ 38° 27.8' 74°42.1' X 

44014 Virginia Beach 64 NM, VA 36° 36.7' 74° 50.2' X 

TPLM2 Thomas Point, MD 38° 53.9' 76° 26.2' X 

CHLV2 Chesapeake Light, VA 36° 54.6' 75°42.6' X 

CBOS 

mid-Bay Mid-Bay station, MD 38° 18.0' 76° 12.0' X(l) X(l) 

VIMS 

GP Gloucester Point, VA 37° 14.8' 76° 30.0' X(l) 

ODU 

M3 Chesapeake Bay mouth, VA 36° 57.7' 75° 59.1' X( F) X(F) 

M5 Chesapeake Bay mouth, VA 37° 00.5' 75° 58.2' X(F) X(F) 

CBNERR 

Sweet Hall, VA 37° 34.0' 76° 50.0' X 

Taskinas Creek, VA 37° 24.0' 76°42.0' X 

Claybank, VA 37° 18.0' 76° 33.0' X 

Goodwin Islands, VA 37° 13.0' 76° 23.0' X 

NOAA COP 

Newport News, VA 36° 59.3' 76° 26.4' X( F) 

Craney Island, VA 36° 53.3' 76° 20.3' X(F) 

* WL: water level; WD: wmd; WV: water velocity; S: salm1ty; (I): only for Isabel; (F): only for Floyd 
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Time series of storm surges at eight selected stations in the Bay are shown in Fig. 

2-3 (Zervas et al., 2000). Surge levels reached two peaks in the lower Bay from 

Chesapeake Bay Bridge Tunnel (CBBT) through Windmill Point, VA around 0700 and 

1500 UTC 16 September, but then dropped rapidly after the storm passed. In contrast, 

the stations in the upper Bay from Annapolis through Tolchester Beach, MD showed 

negative values of storm surge throughout the storm period. The peak of storm surge 

seems to propagate from the lower Bay to the upper Bay, but settles down in the upper 

Bay. 

Current data 

During Hurricane Floyd, NOAA Current Observation Program (COP) was 

operating two Acoustic Doppler Current Profiler (ADCP) current meters in the lower 

James River estuary. The first station was located near the mouth ofthe Elizabeth River. 

The second station was located in the main shipping channel at Newport News near the 

mouth of the James River (Figure 2-1). The ADCPs were deployed on the bottom and 

sampled currents in 1-meter layers from a level close to the instrument head to a level 

near the surface (Zervas et al., 2000). The temporal plots of along-channel water velocity 

at two depths of the Newport News station are shown in Figure 2-4 (middle panel). 

Water velocities were observed at 1.7 m (blue) and 12.7 m (red) below MLLW. The 

sequence of local events can be divided into four periods of local wind speeds. During 

the first period between 22:00 UTC on September 15 and 06:00 UTC on September 16, 

current flowed into the James River and reached a maximum speed of about 0.75 m/s 

around 0500 UTC on September 16. This period is characterized by strong northeasterly 
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winds of about 15.1 m/s recorded at Sewells Point on September 16,04:00 UTC and it 

corresponds to the first peak of water level recorded at CBBT at 05:24 UTC on 

September 16. During the second period, between 05:00 and 16:00 UTC on September 

16, relatively weak east-southeasterly winds of about 8~ 10 m/s occurred. There was no 

significant sub-tidal current in the James River. At the same time, water level decreased 

somewhat. During the third period, between 16:00 and 18:00 UTC on September 16, 

current direction changed abruptly to seaward, corresponding to a 90-degree rotation of 

local wind to a northerly direction showing its highest value of20.7 m/s. The fact that 

seaward current rapidly developed in the James River suggests that it is directly caused 

by the wind stress on the James River pushing water toward the main Bay. Lastly, the 

period between 18:00 UTC on September 16 and 09:00 UTC on September 17 is marked 

by northwesterly winds gradually weakening from 20.7 m/s to 6.1 m/s and storm surge 

rapidly dropped due to the quantity of water driven out of the Bay. It is noteworthy that, 

from 03:00 to 09:00 UTC on September 17, surface and bottom currents had opposite 

directions. In other words, the bottom current was directed upstream while the surface 

current flowed downstream, even though they were in phase. It suggests that sustained 

northwesterly winds should affect the vertical structure of water velocity in the 

downstream region of the James River. 

Another dataset was collected from CBOS. The CBOS station, mid-Bay buoy, 

water velocity was measured at 2.4-m and 10.4-m depths (top panel in Figure 2-4). 

Although a 1-day span of data was missed during the event, an interesting feature of 

current direction is shown. Bottom and surface currents had almost the same magnitude 

of velocity in the same direction until 06:00 UTC on September 15, during which time 
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southeasterly winds were dominant. The period between 06:00 UTC on September 15 

and 10:00 UTC on September 16 was dominated by east-northeasterly winds with a 

maximum value of 18.3 m/s recorded at Cambridge, MD. Bottom and surface currents 

began to flow in different directions, i.e., landward at the bottom but seaward at the 

surface. Thereafter, northeasterly winds changed to northerly winds with the value of 

16.7 m/s at 19:00 UTC on September 16. Unfortunately, no reasonable explanation of 

current pattern can be described at the mid-Bay buoy station because of current data 

missing in this period. Lastly, during the period between 19:00 UTC on September 16 

and 21 :00 UTC on September 17, winds changed to northwesterly counter-clockwise and 

wind speed gradually decreased from 16.7 m/s to 3.6 m/s recorded at Solomon Island, 

MD. Also for this period, bottom and surface currents still flowed in opposite directions. 

As described above, sustained northwesterly winds in the mid-Bay seem to affect the 

vertical profiles of water velocity. 

Lastly, in autumn of 1999, water velocity was measured at the entrance of the 

Chesapeake Bay (Vaile-Levinson et al., 2002). A 70-day deployment included the 

Hurricane Floyd event in mid-September 1999. ADCPs and three Inter-Ocean 

electromagnetic current meters (S4s) were deployed during September 7-9, 1999 at the 

entrance to the Bay. Bottom velocity (measured at 5 m depth) and mid-water velocity 

(measured at 3 m depth) at Station M5 were plotted in Figure 2-4 (bottom panel). Until 

0500 UTC on September 16, northeasterly winds were dominant with a value of 17.5 m/s 

recorded at Chesapeake Light, VA. Those winds changed to east-southeasterly winds 

until15:00 UTC on September 16 with the highest value of26.6 m/s. During these two 

periods, bottom and surface currents flowed dominantly into the Bay. Water flows in 
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both depths rapidly changed from landward to seaward at 18:00 UTC on September 16, 

which corresponded to the wind rotating to a northwesterly direction. Both flows reached 

to a maximum value of about 110 cm/s at 22:00 UTC on September 16. Unlike what was 

observed at the previous two stations, currents had almost the same magnitude of velocity 

in phase. The apparent explanation is that the vertical stratification of currents was 

disrupted and water was well mixed due both to the strong wind stress and the shallow 

depth (6.4 m). 

Salinity data 

Vaile-Levinson et al. (2002) contributed salinity data measured from 

conductivity-temperature-depth (CTD) recorders. This measurement was conducted 

during the same period as ADCPs and S4 deployment and is described in Table 2-1. 

Bottom and mid-water depth salinity at Station M5 and surface salinity at Station M3 

were plotted in Figure 2-5 (top panel). Data were filtered using the Lanczos filter and 

fluctuations with frequencies shorter than 34 hours were cut off. Salinity remained 

relatively high at Station M5 since northeasterly winds were blowing prior to Hurricane 

Floyd. No significant vertical stratification was shown during September 13- 17. 

Bottom and surface salinities began to decrease from 23:00 UTC on September 17 and 

dropped by 5 parts per thousand (ppt) within a few hours. This is coincident with the 

period that northeasterly winds rotated counter-clockwise to become northwesterly at 

CBBT. Stratification began to increase immediately after salinity dropped. This suggests 

that Bay water flowed out and then slowly re-entered due to the barotropic pressure 

gradient force between the continental shelf and the Chesapeake Bay. It seems that 
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bottom salinity recovered faster than surface salinity. On September 22, there was 

further decrease of salinity levels at both the surface and the bottom. This decrease can 

be explained by the northwesterly wind event during September 22-24 (Figure 2-3). At 

Station M3, surface salinity slowly increased from 27 ppt prior to the passage of the 

center of Hurricane Floyd, and rapidly increased by 3 ppt during the occurrence of east­

southeasterly winds. Sudden salinity drop by about 7 ppt seems to coincide with 

northwesterly winds. Thereafter, sub-tidal salinity fluctuated in the similar pattern of 

salinities at Station M5. 

As other datasets, CBNERR measured surface salinity at two stations, Taskinas 

Creek and Claybank in the York River estuary, VA (Figure 2-1 ). Time series of low-pass 

filtered salinity data are plotted in Figure 2-5 (bottom panel). Salinity rapidly dropped 

and began to increase after passages of the storm and then slowly recovered to normal 

values over approximately one month. It is noteworthy that it takes the salinity a longer 

time than the returning time of either water levels or current fields to normal, which is 

within one week. Figure 2-6 shows the time history of daily river streamflow obtained 

from USGS at three main rivers, Susquehanna, Potomac, and James Rivers. Year 1999 

had relatively low river discharge. For example, mean river discharge of the Susquehanna 

River in 1999 (value of760 m3 s"1
) is smaller than 37-year (from 1971 to 2007) mean 

value of 1,185 m3 s-1
. During September 17-18, daily streamflow in the Susquehanna 

River increased by 1200 m3 s-1
• 
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Fig. 2-5 Time series plots of low-pass filtered salinity data at two stations near the 
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2.3 Hurricane Isabel in 2003 

Meteorological data 

Winds and atmospheric pressure levels were observed at 13 NOAA and NDBC 

stations around the Chesapeake Bay during Hurricane Isabel as described in the previous 

section (Figure 2-1 ). The time series of meteorological data at the 6 selected stations are 

displayed in Figure 2-7. After Isabel became a major hurricane in the central Atlantic 

Ocean, its trajectory moved northwestward along U.S. east coast areas. Strong 

northeasterly winds sustained for 2 days before Isabel made landfall along the North 

Carolina coast at 18:00 UTC on September 18. A two-day duration of northeasterly 

winds is sufficiently long to generate Ekman transport from offshore to U.S. east coast 

areas (Hovis et al., 2004). During the period between 18:00-19:00 UTC on September 18, 

northeasterly winds changed to easterly winds, with values of about 27.4 m/s at Duck, 

NC. Simultaneously, the lowest atmospheric pressure of 984.4 mb was recorded at the 

same station. Two hours later, winds initially rotated clockwise to southeasterly, with the 

highest value of28.4 m/s, and then to southerly. Southerly winds blew until12:00 UTC 

on September 19 and gradually decreased to about 10 m/s. At Chesapeake Light, VA, the 

wind pattern was very similar to that at Duck, NC. However, the lowest pressure of 

990.6 mb and the highest southeasterly winds of33.0 m/s were recorded during 21:00-

22:00 on September 18. At this time, it could be expected that the maximum surge could 

be caused by highest east-southeasterly winds and lowest atmospheric pressure. At the 

three stations, CBBT, Lewisetta, and Thomas Point, wind intensity was relatively 

reduced due to the distance far from the trajectory of Hurricane Isabel. The time of the 

peak was retarded by 3-4 hours. Interestingly, according to the record at Thomas Point, 
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Hurricane Isabel, 11-26 September, 2003, UTC. 
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MD, southeast-southerly winds remained as strong as 20m/sand there was a relatively 

high pressure of 1001.1 mb from 0300 to 12:00 UTC on September 19. This suggests 

that water level set-up could be induced by southeast-southerly winds in the northern half 

of the Chesapeake Bay until wind die-off at 15:00 UTC on September 20. 

Water level data 

The water level data at the NOAA/ NWLON stations during Hurricane Isabel are 

available. Figure 2-8 shows the time series of storm surge at 8 selected stations from the 

mouth of the Bay through the upper Bay (station locations shown by red circles in Figure 

2-1). This demonstrates that, at the CBBT station, storm surge was increasing until22:00 

UTC on September 18, reaching its maximum value of about 1.5 m, and rapidly dropping 

within a few hours through 05:00 UTC on September 19. The water level returned to 

normal following a 1.5-day fluctuation period at the station. Initially, a two-day duration 

of northeasterly winds could generate Ekman transport to the entrance of the Bay and 

make storm surge rise. On the heels of the initial surge, the easterly-northwesterly winds 

intensified the surge at the entrance of the Bay and it seemed to propagate to the upper 

Bay or its tributaries. The temporal pattern of storm surge at Sewells Point is very 

similar to that at CBBT. As propagating to the mid-Bay (see Windmill Pt. and Lewisetta), 

the surge decreased somewhat and yet it persisted for about 2 days. Estimated surge 

speed was 3.6 m/s from CBBT to Lewisetta. In the northern half of the Bay, the surge 

again increased moving north, showing peaks from 1.58 mat Cambridge (10:18 UTC on 

September 19) to 2.21 mat Tolchester Beach (12:48 UTC on September 19). The surge 

peak propagated with an approximate speed of 7.2 m/s. This speed is 2 times faster than 
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the surge peak speed in the southern half of the Bay. It can be expected that southerly 

winds set up the water level elevation and accelerated the surge speed in the northern half 

of the Bay (Wang et al., 2005; Shen et al., 2005; Shen et al., 2006b). 

Current data 

There are two current datasets available during Hurricane Isabel. One was 

measured at CBOS mid-Bay buoy (blue triangle in Figure 2-1 ). The time plots of along­

channel water velocity at two layers were demonstrated in Figure 2-9 (upper panel). 

Prior to the storm, north-northwesterly winds drove a typical two-layer wind-forced flow, 

with transport into the Bay at the lower layer and transport out of the Bay at the upper 

layer. On the late afternoon of September 18, southeast-southerly winds and an 

associated pressure deficit were sufficiently strong to drive the entire water column up 

the Bay at about 150 cm/s in speed. Boicourt (2005) and Roman et al. (2005) addressed 

the notion that this slab-like response was unusual - not only relatively weak winds 

driving two-layer flows but also because the typically strong stratification decouples the 

upper and lower layers. It is agreeable that the strong up-Bay winds created sufficient 

mixing energy to destroy vertical stratification. Remarkably, vertically mixed flows 

moved out ofthe Bay with 100 cm/s speeds on the afternoon of September 19, even 

though southerly winds still remained at about 10 m!s in speed. This implies that surface 

wind stress acting northward competes against horizontal barotropic pressure gradient 

force acting southward. At that time, the water level at Baltimore, MD was 

approximately 2m higher than that at CBBT, VA. After the storm, relaxed flows in the 
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opposite direction subsequently reverted to a typical structure at midnight on September 

19. 

Regarding the other dataset, VIMS deployed a 600-kHz RDI ADCP at Gloucester 

Point, VA, from 16 to 25 on September 2003. It was providing high-quality data on 

waves, storm surge, currents, and acoustic backscatter throughout the water column 

before, during, and after the storm (Brasseur et al., 2005; Reay and Moore, 2005). Water 

velocity data were collected at 0.5-m depth intervals starting 1.8 m above the bed, while 

one-minute average velocity profiles were recorded every 5 minutes. Temporal 

variations of along-channel flows at two layers, near surface and near bottom, were 

plotted in Figure 2-9 (lower panel). Prior to the storm, northeasterly winds seemed to 

drive the water in the York River dominantly. On the afternoon of September 18, the high 

flow of the entire water column was recorded as being in the direction towards the York 

River, with values of 150 cm/s and 100 cm/s at the upper and lower layers, respectively. 

However, when wind velocities were maximal, the dominant direction compared 

favorably with the alignment ofthe York River just below Gloucester Point and, 

therefore, amplified the upper-layer water velocity in the along-channel direction during 

the peak (Brasseur et al., 2005). Six hours later, the river relaxed with reducing water 

velocity occurring 3-4 hours earlier than that observed at the mid-Bay buoy. The 

horizontal barotropic pressure gradient force appeared to be mainly balanced by wind 

stress and acceleration force. 
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Fig. 2-8 Time series plots of storm surges (in meters) at selected NWLON water level 

stations during Hurricane Isabel, 17-22 September, 2003, UTC. 
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Salinity data 

Salinity and other water quality parameters were measured from YSI -6600 sondes 

operated by CBNERR at fixed stations at Sweet Hall (SH), Taskinas Creek (TC), Clay 

Bank (CB), and Goodwin Island (GI) (Figure 2-1). The time series oflow-pass filtered 

salinity are plotted in Figure 2-10. Additionally, a salinity sensor ofVIMS's ADCP 

positioned at three additional sites (Whitehouse, Walkerton, and Mudpoint, VA) farther 

up the estuary provided information on salt-water excursion up the estuary before and 

after the storm (not shown). Sub-tidal salinities began to decrease from the afternoon of 

September 18 and continuously dropped by 8 ppt until October 5, although the record at 

GI was broken for about two weeks after the storm. It appears that dropped salinity 

gradually recovered from October 5 but still did not reach to normal value through the 

beginning of November. The time for salinity recovery is relatively long compared to 

that for the Hurricane Floyd event as described previously. This suggests that a river 

discharge, in the range of2-10 times higher (Figure 2-11 and Table 2-2) during Hurricane 

Isabel than during Hurricane Floyd, appeared to retard salinity recovery. The huge 

amount of freshwater can sufficiently delay salinity in its recovery to normal conditions 

(Kuo et al., 1976). In the York River estuary, Gong et al. (2007) suggested that the 

recovery time of salinity decreased by storm surge is about 10 days while that of salinity 

decreased by freshwater is about 120 days. As described in the previous section, the 

estimated salinity gradient determined by salinity data appears to be balanced by the 

horizontal barotropic pressure gradient from the water surface slope and the friction to be 

balanced in the along-channel momentum equation. 
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York River during Hurricane Isabel 2003, UTC. 
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Table 2-2 Station Information of USGS daily streamflow data in eight tributaries of the 

Chesapeake Bay recording maximum values during Hurricanes Floyd (1999) and Isabel 

(2003). 

Station ID River Name 
Coordinates Maximum (CMS) 

Latitude(N) Longitude(W) Floyd Isabel 

01491000 Choptank River 38° 59' 50" 75° 47' 09" 158 36 

01578310 Susquehanna River 39° 39' 28" 76° 10' 28" 1,476 3,380 

01594440 Patuxent River 38° 57' 21" 76° 41' 37" 200 139 

01646500 Potomac River 38° 56' 59" no 07' 40" 403 4,225 

01668000 Rappahannock River 38° 18' 30" no 31'46" 49 924 

01673000 Pamunkey River 37° 46' 03" no 19' 57" 168 315 

01674500 Mattaponi River 37° 53' 16" 77° 09' 48" 69 104 

02037500 James River 37° 33' 47" no 32' 50" 352 2,324 

45 



2.4 Summary 

Five types of dataset observed during two hurricane events have been described. 

Observed water elevation, water velocity, and salinity data will be used to verify the 

performance of a hydrodynamic model by comparing with model results in Chapter IV. 

Wind and atmospheric pressure data will be used for the interpolation method in Section 

3.4 to generate the surface boundary forcing in the hydrodynamic models described in 

Sections 3.2 and 3.3. Daily river discharge data will be used for the river boundary 

condition in Section 3.3 to generate the buoyancy forcing in the hydrodynamic models. 

These data suggest that the relationship between winds and storm surges should explain 3 

distinguishing stages of the coastal sea state generated by a hurricane (Ochi, 2003): 

growing (pre-storm) stage, transition (ongoing-storm) stage, and decaying (post-storm) 

stage. In the growing stage, Ekman transport is initialized by northereasterly winds 

driving water into the Chesapeake Bay. The maximum surges occurred by easterly winds 

were dropped quickly by northwesterly winds (Hurricane Floyd) or southerly winds 

(Hurricane Isabel) in the transition and decaying stages, respectively (Figure 2-12). The 

detailed mechanism will be discussed in Chapter V. 
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Fig. 2-12 Relationship between wind speed and storm surge at CBBT, VA obtained from 

NOAA during Hurricane Floyd (a) and Hurricane Isabel (b). Red colors are the day of the 

surge peak, black colors are the day before the peak day, and blue colors are the day after 

the peak day. A black arrow denotes the maximum surge. 
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Chapter III 

METHODOLOGY: 

HYDRODYNAMIC MODELS AND WIND MODEL 

3.1 Introduction 

Two types of numerical models used for understanding hydrodynamics are 

described in this chapter. The Eulerian-Lagrangian CIRCulation (ELCIRC) model has 

been developed and released as an open source code. It was thoroughly validated with a 

number of benchmarks and selected field observations (Zhang et al., 2004; Baptista et al., 

2005) and successfully applied to simulate tides and storm surges in the Chesapeake Bay 

(Wang et al., 2005; Gong et al., 2009). These applications verified that an algorithm of 

the model with unstructured grids is general and flexible for simulating tides and storm 

surges. Therefore, ELCIRC has been chosen for simulating barotropic response of the 

Chesapeake Bay to two hurricane events, Floyd in 1999 and Isabel in 2003. However, 

Zhang and Baptista (2008) indicated that, for baroclinic simulation, ELCIRC has three 

main limitations: 1) low-order accurate shape functions in continuity equation, 2) no 

guarantee of convergence for non-orthogonal grids, and 3) a staircase representation of 

the bottom in a vertical Z-coordinate system. The semi-implicit Eulerian-Lagrangian 

finite element (SELFE) overcomes the first two limitations by using a formal Galerkin 

finite-element framework and partially addresses the third limitation by using a hybrid 
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SZ-coordinate system vertically (Zhang and Baptista, 2008). They applied SELFE to the 

Columbia River estuary, and showed that it outperforms ELCIRC in simulating salinities 

at the observation stations as well as the extent of salinity intrusion. Recently, the 

baroclinic simulations of SELFE were performed and applied to the Danshuei River 

estuarine system and adjacent coastal sea in Taiwan (Liu et al., 2008a; Liu et al., 2008b). 

In addition, to increase the accuracy and stability of vertical turbulence mixing and 

stratification, SELFE adapted the General Ocean Turbulence Model (GOTM), which had 

been designed such that it can easily be coupled to three-dimensional circulation models 

and used as a module for the computation of vertical turbulent mixing (Umlauf and 

Burchard, 2005; Umlauf et al., 2007). Therefore, SELFE has been selected to simulate 

baroclinic response of the Chesapeake Bay to the hurricanes. In the following sessions, 

physical formation of the ELCIRC model (Section 3.2) and the SELFE model (Section 

3.3) will be described. Further details ofELCIRC and SELFE beyond the description 

given above can be found in Zhang et al. (2004) and Zhang and Baptista (2008), 

respectively. 

A parametric wind model is used for generating the meteorological forcing during 

hurricane events. This wind model has been adapted from the SLOSH (Sea, Lake and 

Overland Surges from Hurricanes) model developed by the US National Weather Service 

(Myers and Malkin, 1961; Jelesnianski et al., 1992), and recently successfully applied to 

hurricane events (Shen et al., 2005; Wang et al., 2005; Shen et al., 2006a; Shen et al., 

2006b ). The method of generating meteorological forcing will be briefly described in 

Section 3.4. 
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3.2 ELCIRC model 

3.2.1 Governing equations 

The ELCIRC (Eulerian-Lagrangian CIRCulation) model solves the primitive 

shallow-water equations using a semi-implicit Eulerian-Lagrangian finite-difference/ 

finite-volume method on unstructured horizontal grids and unstretched vertical grids. 

The model is governed by a set of six hydrostatic equations based on the Boussinesq 

approximation with the depth-averaged Navier-Stokes equations, which represent 

conservations of mass and momentum, and conservations of salt and heat. For the 

purpose of barotropic simulation, the computations of salt and heat are neglected. The 

equations are solved for free surface elevation and water velocities in a Cartesian 

coordinate system with an eastward x-axis, a northward y-axis, and an upward z-axis, 

written as follows: 

au ev aw 
-+-+-=0 
Ox EJy az 

Du a { Pa} a ( au) -=fv-- g(11-a<p)+- +- Kmv- +Fmx 
Dt Ox. Po az az 

where the symbols denote the following: 

t: time [s]; 

x, y, z : Cartesian coordinates [ m]; 
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(3.2.2) 

(3.2.3) 

(3.2.4) 



11(x, y, t) : free surface elevation [m], measured relative to MSL in the positive 

z direction; 

u, v, w: Cartesian water velocity components at x, y, and z, respectively 

HR: z-coordinate at reference level (Mean Sea Level, MSL) [m]; 

h (x, y): bathymetric depth [m]; 

f: Coriolis parameter [s-1
]; 

g : acceleration of gravity [m s-2
]; 

<p: tidal potential [m]; 

a : effective Earth elasticity factor (=0.69) (Schwiderski, 1980); 

Pa (x, y, t): atmospheric pressure at the free surface [N m-2
]; 

Kmv : Z-component of the vertical eddy viscosity [m2 s-1
]; 

Fmx, Fmy: Horizontal diffusion term for momentum equations [m s-2
]; 

These terms will be neglected because those are relatively small to 

the vertical viscosity terms (Oey et al., 1985). 

The differential equation system for Equations (3.2.1) to (3.2.4) is closed with the 

hydrostatic approximation, appropriate initial and boundary conditions, and eddy 

viscosity. The water pressure is approximated by the hydrostatic equation: 

(3.2.5) 

where Po is the reference water density. Computed in bars, the pressure is determined by 

the integration over depth from the level z to the surface (HR+ll), which gives: 

(3.2.6) 
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3.2.2 Boundary and initial conditions 

Vertical boundary conditions 

Vertical boundary conditions for horizontal momentum equations are described in 

this section. At the sea surface, the internal Reynolds stress is balanced by the applied 

shear stress. A bulk aerodynamic algorithm developed by Zeng et al. (1998) is used to 

account for ocean surface fluxes under various conditions of stability of the atmosphere. 

The balance between the internal Reynolds stress and the parameterized surface shear 

stress is enforced as follows: 

(3.2.7) 

where Pais the air density [kg m"3
], IWI = (Wx2+W/)112

, Wx and Wy are the horizontal 

components of wind velocity at 10m above the sea surface [m s"1
], and Cos is the wind 

drag coefficient based on the following equation (Smith, 1980; Pond and Pickard, 1998): 

(3.2.8) 

with constant Cos values outside the range. 

At the bottom, the internal Reynolds stress is balanced with the bottom frictional stress 

varying along spatial and temporal scales with matching velocities at the bottom 

boundary layer, i.e. 

(3.2.9) 

where Cob is the bottom drag coefficient. Typically the coefficients are estimated by the 

logarithmic law given as follows: 
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1 ()b ( J
-2 

C0 b = -In­
k z 0 

where, k is the von Karman's constant (0.4), ()b is half the thickness of the bottom 

(3.2.10) 

computational cell, and zo is the local bottom roughness, on the order of 1 em (Blumberg 

and Mellor, 1987). 

Coriolis parameter 

In the momentum equations, the Corio lis acceleration represents the earth rotation, 

and the Coriolis parameter, f, is a sine function of latitude, ~: 

f(~) = 2Qsin~ (3.2.11) 

where n = 7.29 x 10-5 rad s-1 is the angular velocity of the earth rotation. The P-plane 

approximation is used to minimize coordinate inconsistencies because the governing 

equations are written in Cartesian coordinates. Hence: 

f = fc + p(y - Y c) (3.2.12) 

where fc is the Coriolis factor at the mid-latitude (Yc) of the domain and pis the local 

derivative of the Coriolis factor at the same mid-latitude. 

3.2.3 Method for open boundary conditions 

The study area is extended to the 200-m isobath on the continental shelf as an 

alongshore boundary, and Ocean City Inlet, MD and Cape Hatteras, NC as northern and 

sourthern cross-shore boundaries, respectively. Blumberg and Kantha (1985) noticed that 

a principal difficulty in modeling continental shelf and estuarine circulations is that 

associated with the correct specification of open boundary conditions because the 
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observational data are usually insufficient to deduce water elevation, water flow, and 

baroclinicity along the open boundaries on a synoptic basis. Therefore, the most practical 

form of open boundary condition on a continental shelf region should be applied to 

permit the mean sub-tidal and tidal forcings to be prescribed and allow transients 

generated inside the region to be transmitted outwards. 

Although methods used for determining the flow at the open boundary have been 

proposed for different situations (Palma and Matano, 1998; Palma and Matano, 2000; 

Blayo and Debreu, 2005), the key problem of open boundary conditions is the successful 

removal of interior waves without the internal reflection of waves from these boundaries 

(Grzechnik, 2000). Particularly, two types of barotropic boundary conditions for tidal 

and sub-tidal (induced by meteorological forcing) flows are considered in this study. 

Dirichlet-type condition 

In the tide simulation, it is sometimes adequate to use a Dirichlet-type (clamped) 

condition at the open boundary, where the elevation is set to the specific known value as 

follows: 

(3.2.13) 

where fl is elevation specified at the open boundary. In case of a tide simulation in 

shallow waters, initial transients are damped by bottom friction and there are no internal 

flows driven by atmospheric or wind forcing (Bills, 1991). As an open boundary 

condition for tide elevation, the equilibrium tidal potential is expressed as follows (Reid, 

1990): 
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(3.2.14) 

where tis time relative to to (the reference time), Cjn is a constant characterizing the 

amplitude of a tidal constituent n of species j, fjn is the time-dependent nodal factor, Vjn is 

the time-dependent astronomical argument, j = 0,1 ,2 are the tidal species G=O 

declinational;j=l diurnal,j=2 semidiurnal), L 0 = 3sin2 ~. L1 = sin(2~), L 2 = cos 2 ~,and 

Tjn is the period of a constituent n for species j. At the open boundaries, the tidal 

specified. The tidal harmonic constants, which were used to generate the elevation at the 

open boundary cells, are taken from the World Ocean Tide Model database FES95.2 (Le 

Provost et al., 1994). 

Flather-type radiation condition 

In case of a storm tide simulation in shallow waters, the Dirichlet-type condition 

is inadequate as internally generated waves are reflected from the boundary and not 

allowed to exit from the model domain (Grzechnik, 2000). It is required that a boundary 

condition radiates outgoing waves to remove internal transients from the model. The 

extension of a Sommerfeld radiation boundary condition was originally proposed by 

Flather (1976). A passive radiation condition based on the propagation of a quantity 'I' 

through a boundary: 

(3.2.15) 
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where n is the outward normal, and cis a velocity. The Flather-type condition is applied 

to the free surface elevation ( 11), the long wave phase speed ( c = jgH , where g is a 

gravitational acceleration and H is bottom depth), and a one-dimensional approximation 

of the continuity equations (Carter and Merrifield, 2007): 

(3.2.16) 

which gives 

(3.2.17) 

Finally, integrating across the boundary gives: 

(3.2.18) 

where U n and f1 are normal velocity and surface elevation specified at the open 

boundary. This is applied at the cross-shore open boundary as generated waves mainly 

propagate perpendicular to the cross-shore transects. This form was successfully applied 

to a storm surge model during the Cyclone Disaster in April1991 in the Northern Bay of 

Bengal (Flather, 1994) and extensively verified (Nycander and Doos, 2003). The 

Flather-type condition can be thought of as applying an adjustment to the externally 

prescribed normal velocity based on the difference between modeled and externally 

prescribed surface elevation, i.e., a volume error (Carter and Merrifield, 2007). The sign 

of the adjustment velocity depends on the boundary (positive for north and east 

boundaries and negative for south and west boundaries). 
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Subtidal water elevation 

In many coastal ocean models, the effect of the large-scale circulation is 

introduced by specifying the sub-tidal alongshore pressure gradient (Bishop, 1980; 

Csanady, 1976; Stommel and Leetmaa, 1972). This gradient represents external forcing 

from the continental shelf and is presumed to be independent of local forcing and 

dynamics. It has been proven that wind-induced variations dominate the sub-tidal 

frequency fluctuations of coastal sea level along the east coast of the United States (Wang, 

1979a; Chao and Pietrafesa, 1980). Janowitz and Pietrafesa (1996) developed an 

analytical model to determine spatial and temporal variations in coastal sea levels for 

sub-tidal frequency motions. Their solution is based on the balance between the 

production of relative vorticity by bottom Ekman layer pumping and the topographically 

induced vertical velocity. They found that an upwelling/downwelling favorable wind 

stress causes a continual drop/rise in coastal sea level. Their model was successfully 

applied over the Mid Atlantic Bight from Woods Hole, MA to Cape Hatteras, NC and 

then to Charleston, SC. Their original steady-state solution for subtidal water elevation is 

as follows: 

1J(X, y)-- TL~ y 112e_,, -(I+ x)Erfc(t;) + e''·'1Erfc(t; + v'Yl} 
+ lloce(x+y)Erfc(~ + .jY) 

+ r llo (x'){e<x'+x+y)Erfc(x + x' + JY] + _1_(e-<x-x')2 t4y - e-<x+x')2 t4y )l dx' 
2-J"Y 2f'CY J 

(3.2.19) 

where T is a non-dimensional number containing the wind stress response ( = 1 ), 

~=X I 2-J"Y' Erfc(z) = 1 r e-t
2 
dt' llo(x) is the elevations at y=O, and lloc is the 
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elevation at x=O, y=O. Physically, the first term on the right hand side results from the 

fact that the alongshore wind causes cross-shelf flow. The second term is associated with 

the production of coastal pressure gradients due to 11 oc . The third term arises from the 

fact that any vorticity present at the upstream boundary requires a cross-shelf motion, and 

hence an alongshore change in water level, to balance the bottom friction-induced 

vertical velocity (Janowitz and Pietrafesa, 1996). 

In this study, the coordinate in the alongshore direction needs to be transformed 

due to the consideration of surge propagation direction. The third term on the right hand 

side in Eq. (3.2.19) is also neglected by ignoring the vorticity balance. Therefore, since 

the solution for subtidal sea level has been modified by transforming from the southward 

positive coordinate system to the northward positive coordinate system (Figure 3-1 ), new 

steady-state solution can be derived as follows: 

'l(X, y') ~- T { l (L/ L, - y)112 e-<' -(I+ x)Erfc(i;) +e(>,LIL,-o>Erfc(i; + ~LI L, - y)} 

+ 11oce(x+LILy-Y)Erfc(~ +~LILY- y) 

(3.2.20) 

where Ly is along-shelf scale. Then, the form of spatial and temporal variations becomes: 

'* 
11 * (x, y', t*) = 11oc * (t*)A(x, y')- ~11refB(x, y') 

'tyo 

A(x, y') = e<x+LILy-Y)Erfc(~ +~LILY- y), and 

B(x,y')= ~(LILY -y)112 e-~;2 -(l+x)Erfc(~) 

+ e(x,LILy-y)Erfc(~ +~LILY- y). 
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(3.2.22) 

(3.2.23) 



where, 't'* is the alongshore component of observed wind stresses, 'tyo and llref are the 

reference values for wind stress and water elevation at x=O, which will be used for the 

calibration. All variables are non-dimensional except the variables that have a 

superscript(*), and defined well by Janowitz and Pietrafesa (1996). Figure 3-2 shows the 

comparison between observed water elevation and calculated water elevation at two 

stations, Duck, NC and Ocean City Inlet, MD, near the northern and southern open 

boundaries. 
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modified 
y* 

z' 
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x' 

y'=L/LY -y 

Fig. 3-1 A coordinate system for the generation of subtidal sea surface elevation on open 

boundaries. The modified coordinate (x', y', z') are transformed from the original (x, y, z) 

described in Janowitz and Pietrafesa (1996). All variables are non-dimensional except 

the variables that have a superscript (*). 
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Fig. 3-2 A comparison of subtidal sea surface elevation between observed (x) and 

calculated (lines) on the southern boundary (SB, red) and northern boundary (NB, blue) 

during (a) Hurricane Floyd and (b) Hurricane Isabel. The solid lines represent the values 

for the coastline and the dashed lines represent the values for the 200-m isobath. 
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3.2.4 Model configuration 

Horizontal grid and vertical grid 

The ELCIRC model uses an orthogonal unstructured grid horizontally. The use 

of an unstructured grid provides flexibilities for coastal modeling such that the resolution 

of the grid can be increased in areas of interest and decreased over the remaining areas. 

This increases the accuracy and efficiency of the model. Another main advantage of 

using an unstructured grid is to resolve complicated geometries and shorelines so that the 

model calculates mass flux properly. An orthogonal unstructured grid is the most 

preferred application of unstructured grids. It can be shown, for unstructured grids, that 

the segment joining the centers oftwo adjacent elements (or polygons) and the side 

shared by the two elements (or polygons), have a non-empty intersection and are 

orthogonal to each other (Figure 3-3; Casulli and Walters, 2000). The element center 

coincides with the circum-circle center of the element, which is not necessarily the 

geometric center. Dirichlet triangulation with Voronoi tessellation forms a perfect 

unstructured orthogonal grid that the boundaries of elements are perpendicular bisectors 

of the lines joining the neighboring generating points (Weatherill, 1988). The horizontal 

grid of study area is shown in Figure 3-4, generated by JANET (Java net generator) with 

checking orthogonality. The grid has 66,802 elements, 40,591 nodes, and 107,419 side 

faces at the surface. 

In the vertical, primitive equations are discretized over variable topography using 

a z-level grid. A simple finite difference discretization, not necessarily uniform, is 

adopted along the vertical direction. For the barotropic study, a single depth-integrated 

layer was used. 
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Fig. 3-4 A horizontal grid of the Chesapeake Bay for the ELCIRC model. The grid has 

66,802 elements, 40,591 nodes, and 107,419 side faces at the surface. 
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Numerical algorithm 

The numerical formulation of ELCIRC is detailed in Zhang et al. (2004 ). The 

most important features of it are described as follows: 

1) A semi-implicit scheme is used in all equations to ensure both stability and 

computational efficiency (Casulli and Cattani, 1994). 

2) The normal component of horizontal velocity in the momentum equations is 

solved simultaneously with the depth-integrated continuity equation, while the 

tangential component is solved with finite differences. 

3) The vertical velocity is solved from the three-dimensional continuity equation 

using a finite volume approach. 

4) The solution for the total derivative in the momentum equations requires 

backtracking along characteristic lines, which is approximated by the Eulerian­

Lagrangian Method. 

These features follow those implemented by Casulli and Zanolli (1998) closely except for 

the computation of tangential velocity component, which improves the representation of 

Coriolis. The depth-integrated continuity equation and horizontal momentum equations 

are solved using a local coordinate system and these equations are invariant under a 

rotation in the (x, y) plane, and thus they retain their form under these local rotations. 

However, these equations now assure local conservation of normal and tangential 

momentum, respectively. Local and global volume conservations are imposed by using a 

semi-implicit finite-volume approach to integrate the continuity equation. A semi­

implicit finite difference scheme is used to solve the normal momentum equation for a 

side of a grid element to increase stability. In the momentum equations, to avoid normal 
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Courant nwnber constraints by incorporating advection in total derivatives, ELCIRC 

adapts the Eulerian-Lagrangian method as follows: 

(3.2.25) 

where m either represents time step (n) or denotes a linear interpolant between the next 

time step (n+ 1) and the present time step (n). Hence, flow fields are always known 

beforehand. The integral to this method is capable of backtracking characteristic lines 

efficiently and accurately (e.g., see Oliveira and Baptista, 1998). Backtracking for 

momentwn starts always at side centers. As a compromise between accuracy and 

computational efficiency, a simple Euler integration is used for backtracking but with a 

time step smaller than Llt. Also, linear interpolation is chosen at the feet of the 

characteristic lines for the momentwn equations. The advantage of linear interpolation is 

to avoid nwnerical oscillations of the solutions but the disadvantage is to introduce 

nwnerical diffusion (Baptista, 1987). To reduce nwnerical diffusion before interpolating, 

the grid elements are sub-split into four and then used in the solution of the equations. 

The horizontal grid must thus be refined to reduce nwnerical diffusion. 

ELCIRC follows a natural and robust handling of wetting and drying described in 

Casulli and Cheng (1992) and Casulli and Zanolli (1998). After all unknowns have been 

found for time step n+ 1, the free-surface indices are updated with the newly computed 

elevations. Elements become dry if h + 11 <h 0 (a small positive nwnber, ho, typically 

having a value of0.01 m). It is also noteworthy that the formulation for vertical 

discretization automatically reduces to the two-dimensional depth-integrated version 

(Zhang et al., 2004). 
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3.3 SELFE model 

3.3.1 Basic equations 

The SELFE (Semi-implicit Eulerian-Lagrangian Finite Element) model developed 

by Zhang and Baptista (2008) is used to investigate the baroclinic response of the 

Chesapeake Bay to hurricane events. The model is governed by the three-dimensional 

shallow-water equations with the Boussinesq approximation, and transport equations for 

salt and heat. The equations are solved for free surface elevation, water velocities, 

salinity and temperature of the water in a Cartesian coordinate system that has an 

eastward x-axis, a northward y-axis, and an upward z-axis, written as follows (Zhang and 

Baptista, 2008): 

where 

V'·ii+aw=O az 

Ort T1 

-+V'· Judz=O 
at -h 

t: time [s]; 

Dii - 1 - = f - gV11 + agV <p-- Vp A 

Dt Po 

+- v- -~ jVpds+V·(~Vii) a ( au) T1 

az az Po z 

DS = ~ (K as)+ F 
Dt az az s 

x, y, z : Cartesian coordinates [ m]; 
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11(x, y, t): free surface elevation [m]; 

V: horizontal gradient (!, ~) [m-1
]; 

u: Cartesian horizontal water velocity components (u, v) [m s-1
]; 

w: vertical velocity [m s-1
]; 

h (x, y) : bathymetric depth [m]; 

f: Coriolis parameter [s-1
]; 

g : acceleration of gravity [m s-2
]; 

<p: tidal potential [m]; 

a : effective Earth elasticity factor (0.69) (Schwiderski, 1980); 

p(x, y, t): water density [kg m-3
]; 

P (X Y t) · atmospheric pressure at the free surface [N m-2
]·, 

A ' ' • 

S, T : salinity and temperature of the water (psu, °C) 

v, ll: vertical eddy viscosity and horizontal eddy viscosity [m2 s-1
]; 

K: vertical eddy diffusivity, for salt and heat [m2 s-1
]; 

Fs, Fh: horizontal diffusion term for transport equations [ppt s-1
, °C s-1

]; 

These terms will be neglected because those are relatively small to 

the vertical diffusion terms (Oey et al., 1985). 

Q: rate of absorption of solar radiation [W m-1
]; 

Cp: specific heat of water [J kg-1 K 1
]. 

The differential equation system for Equations (3 .3 .1) to (3 .3 .5) is closed with the 

hydrostatic approximation [Eq. (3.2.5)], equation of state, parameterizations for 

horizontal and vertical mixing via turbulence closure equations, and appropriate initial 

and boundary conditions. 
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3.3 .2 Turbulence closure model 

SELFE adapts the Generic Length Scale (GLS) turbulence closure through the 

General Ocean Turbulence Model (GOTM) suggested by Umlauf and Burchard (2003; 

2005), taking the advantages from most ofthe level2.5 closure schemes [k-s (Rodi, 

1984); k---<0 (Wilcox, 1998); Mellor and Yamada, 1982]. Basically, the equations of the 

turbulent kinetic energy (K) and of a generic length-scale variable ('I') for transport, 

production, and dissipation are expressed by: 

DK 8 ( IJI 8K) 2 2 -=- vk- +vM +J..LN -s 
Dt Bz Bz 

(3.3.6) 

(3.3.7) 

where 

V "' v · vertical turbulent diffusivities,· 
k ' IJI • 

c'l'~'c'l'2 ,c'l'3 : model-specific constants (Umlauf and Burchard, 2003; Zhang et al., 

2004); 

Fw: wall proximity function; 

M, N: shear and buoyancy frequencies; 

s : dissipation rate. 

The generic length-scale is defined as 

(3.3.8) 

where c~ = J03, f is the turbulence mixing length, p, m, and n are constants to choose 

the different closure models. Therefore, vertical viscosities and diffusivities can be 

expressed by K, f, and stability functions are defined as follows: v = .J2 sm K 112 f, 
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and stability functions, sm and s h , are given by an Algebraic Stress Model (Kantha and 

Clayson, 1994; Canuto et al., 2001; Galperin et al., 1988). Dirichelt-type boundary 

conditions are used for specifying K and f at the free surface and the bottom as follows: 

1 2/31 12 d . K = -B1 'tb , f = K 0 db at z = -h, an f = K 0 ds at z = 11, where 'tb IS a bottom 
2 

frictional stress, K 0 is the von Karman's constant(= 0.4), B1 is a constant, and db and ds 

are the distances to the bottom and the free surface, respectively. The further description 

of the turbulence closure model in SELFE is detailed in Zhang and Baptista (2008). 

3.3 .3 Boundary and initial conditions 

In SELFE, for vertical boundary conditions in horizontal momentum equations, 

Coriolis parameter, and barotropic boundary conditions, the same conditions are used as 

those described in Sections 3.2.2. However, the conditions for salinity and temperature 

must be specified. 

Salinity 

The Chesapeake Bay Program (CBP) has provided the vertical profiles of 

observed salinity in the Bay proper and its tributaries from 1984 to the present. In the 

Bay mainstem, salinity is monitored at 49 stations and sampled once each month during 

the late fall and winter months and twice each month in the warmer months at 

approximately 1-m to 2-m intervals (CBP, 1993). For outside the Bay, including the 

continental shelf region, salinity data are provided by the CORIO LIS Data Center 

(http://www.coriolis.eu.org). Salinity profiles from Argo profilers or oceanographic 
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vessels (XBT, CTD) are collected and controlled in real time by CORIOLIS. Using the 

salinity profiles from the CORIO LIS data base, real time weekly analysis is performed 

once a week. The fields are objectively analyzed on a grid with one-third-degree 

resolution in latitude and longitude at 57 levels in the vertical to 2000 m in the Atlantic 

Ocean. Salinity fields are performed by using the objective analysis method (Bretherton 

et al., 1976). Thus, using the vertical profiles of salinity at all available stations and grid 

points, initial conditions can be generated at each vertical layer and linearly interpolated 

in space. The Surface-water Modeling System (SMS) software is incorporated with this 

interpolation method. Spatially and temporally linearly-interpolated CORIO LIS 

salinities are imposed as open boundary conditions. 

Temperature 

Temperature is kept constant because it can be shown that salinity in estuaries is a 

more dominant influence on water density than temperature, although vertical 

temperature stratification tends to reinforce density stratification by 9 % in severe 

conditions (Goodrich et al., 1987). As for initial and open boundary conditions, 

temperature is set to a constant value of 15 oc throughout space and time. 

Freshwater inflows 

The Chesapeake Bay receives freshwater inflow from eight major rivers and from 

more than 150 creeks (Krome and Corlett, 1990). Since most of these creeks are ungaged 

and small, we can only account for freshwater measurements from the major rivers 

including the Susquehanna River (at the head of the Bay), the Patuxent, Potomac, 
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Rappahannock, Mattaponi, Pamunkey and James Rivers on the Western Shore, and the 

Choptank River on the Eastern Shore. Freshwater inflow records are provided by USGS 

(http://waterdata.usgs.gov/nwis). For the two years of interest, 1999 and 2003, daily 

mean freshwater inflows of the Susquehanna, Potomac and James Rivers are shown in 

Figures 2-6 and 2-11, respectively. River inflows are considered at 8 tributaries of the 

Chesapeake Bay as described in Table 2-2 with settings ofO ppt of salinity and 15 oc of 

temperature as constants in time. 

3.3 .4 Model configuration 

Horizontal and vertical grids 

Horizontally, unstructured triangular grids are used in SELFE. Unlike what is 

described in ELCIRC, the orthogonality of the horizontal grid is not necessary since 

finite-element discretization is used. The generation of the horizontal grid is made by the 

SMS software. The connectivity of the grid is defined as follows: the three sides of an 

element I are enumerated as js(i,l) (1=1 ,2,3). The surrounding elements of a particular 

node I are enumerated as ine(i,l) (1=1,2, ... ,nne(i)), where nne(i) is the total number of 

elements inside the "ball" of the node. The horizontal grid used is shown in Figure 3-5, 

which has 20,784 elements, 11,582 nodes, and 32,386 sides on the surface. At least 3 

horizontal grid cells resolve the channel of the main Bay. Although a more refined grid 

would sufficiently reduce numerical diffusion, computational efficiency should be 

considered as well because time step must be reduced as the grid becomes more refined. 

In the vertical direction, SELFE uses hybrid-vertical coordinates, which means 

partly terrain-followingS-coordinates and partly Z-coordinates (Figure 3-6a). The 
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terrain-following S layers are placed on top of a series of Z layers. The hybrid vertical 

coordinate system has the benefits of both S- and Z-coordinates: the S layers used in the 

shallow region resolve the bottom efficiently and the Z layers, which are only used in the 

deep region, fend off the hydrostatic inconsistency (Zhang and Baptista, 2008). The 

vertical grid used in the domain is shown in Figure 3-6b, which has 20 layers in S­

coordinates and 10 layers in Z-coordinates. The 20 layers in S-coordinates cover the 

entire shallow region up to 43-m depth and the 10 layers in Z-coordinates cover from 43 

m to 200 m in depth. 

Numerical algorithm 

Numerical algorithm of SELFE is well described in Zhang and Baptista (2008). 

The main features of SELFE are described as follows: 

1) The model solves the differential equation system with finite-element and finite­

volume schemes, with a semi-implicit method. 

2) It uses the Eulerian-Lagrangian method (ELM) to treat the advection in the 

momentum equations. 

3) It treats the advection terms in the transport equations with either the ELM, the 

finite-volume upwind method (FVUM), or the total variation diminishing (TVD) 

scheme. 

SELFE solves the barotropic pressure gradient term in the momentum equation first with 

semi-implicit schemes and the baroclinic pressure gradient term explicitly. Due to the 

hydrostatic approximation, the vertical velocity is solved from Eq. (3.3.1) after the 

horizontal velocity is determined. The continuity equation discretized in finite-element 
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Fig. 3-5 A horizontal grid of the Chesapeake Bay for the SELFE model. The grid has 

20,784 elements, 11,582 nodes, and 32,386 sides at the surface. 
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Fig. 3-6 A vertical grid of hybrid coordinate system used in the SELFE model: (a) a 

schematic view, (b) vertical view ofthe discretized model grid along the transect in Fig. 

3-5, and (c) a unit of computational triangular prism with uneven bottom and top surfaces. 
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framework is solved in the weak form of a Galerkin weighted residual statement. In 

SELFE, linear shape functions are used as weighted functions. Since SELFE uses linear 

shape functions for the elevations, the two components of the horizontal velocity are 

solved from the momentum equation independently from each other after the elevations 

are found. This application is different from that used in ELCIRC. After the elevations 

are found at all nodes, SELFE solves the momentum Eq. (3.3.3) along each vertical 

column at side centers. A semi-implicit Galerkin finite-element method is used, with the 

pressure gradient and the vertical viscosity terms being treated implicitly, and other terms 

treated explicitly. After the velocities at all sides are determined, the velocity at a node is 

computed by a weighted average of all surrounding sides in its ball, evaluated by proper 

interpolation in the vertical. As an averaging procedure, the velocity at a node is 

computed within each element from the three sides using the linear shape function and is 

kept discontinuous between elements. Since this approach leads to parasitic oscillations, 

a Shapiro filter (Shapiro, 1970) can be used to suppress the noise. To solve the vertical 

velocity, finite-volume method is applied to a typical prism, as depicted in Figure 3-6c, 

because it serves as a diagnostic variable for local volume conservation when a steep 

slope is present (Zhang et al., 2004). The vertical velocity is then solved from the bottom 

to the surface, in conjunction with the bottom boundary condition (u,v,w)·n = 0. The 

closure error between the calculated w at the free surface and the surface kinematic 

boundary condition is an indication of the local volume conservation error (Luettich et al., 

2002). Because the primitive form of the continuity equation is solved in the model, this 

closure error is generally negligible. 
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SELFE treats the advection in the transport equations with three selectable 

methods as follows: 1) ELM, 2) FVUM, and 3) TVD. If the ELM is used, the transport 

equations are solved at nodes and side centers along each vertical column using a finite-

element method, with the lumping of the mass matrix to minimize numerical dispersion. 

Since linear interpolation used in ELM leads excessive numerical diffusion, element-

splitting or quadratic interpolation is used in ELM to reduce the numerical diffusion 

(Zhang et al., 2004; Zhang and Baptista, 2008). FVUM and the TVD scheme both 

guarantee mass conservation because the scalar variables (salinity or temperature) are 

defined at the center of a prism, which has five exterior faces (top and bottom, and three 

vertical faces). In FVUM, upwind scheme is used for horizontal advective fluxes. Thus 

the stability condition needs for the upwind scheme, the Courant number restriction, is 

given by: 

(3.3.9) 

where Vi,k is the volume of the prism, qj is all outflow horizontal advective fluxes, i, j, 

and k are indices for elements, sides, and vertical layers, respectively. Despite the fact 

that the discretized transport equations do not conform to the depth-integrated continuity 

equation, the FVUM guarantees mass conservation. A higher-order finite-volume TVD 

scheme is a preferable option in SELFE. TVD is the technique of obtaining high 

resolution, second-order, oscillation free, explicit scalar difference schemes, by the 

addition of a limited anti-diffusive flux to a first-order scheme (Sweby, 1984). Osher 

(1984) defined the flux differences for a general three-pointE-scheme, which is a class of 
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semi-discrete schemes approximating in the scalar conservation law. These flux 

differences are used to define a series of local Courant-Friedrichs-Levy (CFL) numbers. 

3.4 Generation of meteorological forcing 

3.4.1 Analytical wind model for hurricane events 

For the hurricane events, the wind and atmospheric pressure fields were generated 

by a parametric wind model used in SLOSH (Myers and Malkin, 1961; Jelesnianski et al., 

1992). Based on the main hurricane parameters (i.e., hurricane path, atmospheric 

pressure drop, and radius of maximum wind speed), the model calculates wind speed, 

wind direction, and air pressure in the pattern of a circularly symmetric, stationary storm. 

Basically, tangential forces along a surface wind trajectory are balanced by normal forces 

to a surface wind trajectory. The governing equations in the polar coordinate system can 

be described as follows: 

where 

_1 8p = k 8 V
2 

_ V 8V 
Pa 8r sine 8r 

1 ap V 2 
2 ae . 2 

--cos8=fV +-cos8- V -sm8+k V 
Pa 8r r 8r n 

r : distance from the storm center (origin) [ m]; 

e : angle normal to isobars from the 0° ray toward the storm center 

[degree]; 

p(r) : air pressure [N m"2
]; 
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Pa: air density [kg m"3
] ; 

V: wind speed [m s"1
]; 

f: Coriolis parameter [s-1
]; 

ks, kn : friction coefficient for tangential and normal directions, 

respectively[m-1
]; 

VM: maximum wind speed [m s"1
]; 

RM: radius of maximum wind speed [ m]. 

The angle e represents the counterclockwise angle from the 0° ray of the polar axis 

(known as the positive x-axis in the Cartesian coordinate plane). The friction coefficients 

were determined based on historical hurricane simulations conducted by SLOSH. The 

profile of wind speed, V(r), has a stationary, circularly symmetric pattern. Dynamically, 

the moving speed of storm is estimated by hourly hurricane track. Usually, the radius of 

maximum pressure gradient (Rp) does not coincide with the radius of maximum wind 

speed (Holland, 1980). The ratio is defined as follows: 

(3.4.4) 

where B is the scaling parameter determining the shape of the wind profile. Holland 

(1980) suggested that B lies between 1 and 2.5 reasonably for hurricanes. The detailed 

applications of this method can be found in Shen et al. (2006b) and Wang et al. (2005). 

3.4.2 Data interpolation 

The analytical wind model described above requires three parameters such as 

hurricane path, atmospheric pressure drop, and radius of maximum wind speed. This 

model is useful during the hurricane events but not applicable to normal weather 
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conditions. To generate atmospheric forcing with normal weather conditions, an 

interpolation method is applied by using the data measured at 13 stations as described in 

Chapter II (see Figure 2-1). The following section will describe the interpolation method 

used in this study. 

Inverse distance weighted interpolation 

One of the most commonly used techniques for interpolation of scatter points is 

the inverse distance weighted (IDW) interpolation method. The IDW interpolation is 

based on the assumption that the interpolating surface should be influenced more by 

nearby points and less by more distant points. The interpolating surface is a weighted 

average of the scatter points and the weight assigned to each scatter point diminishes as 

the distance from the interpolation point to the scatter point increases. The Shepard's 

Method is the simplest form ofiDW interpolation (Shepard, 1968). The equation used is 

as follows: 

n 

F(x,y)= :LwJi (3.4.4) 
i=l 

where n is the number of scatter points in the dataset, fi are the prescribed function values 

at the scatter points (e.g., the dataset values), and Wi are the weight functions assigned to 

each scatter point. The weight function used in the method is described as follows 

(Franke and Nielson, 1980): 

(3.4.5) 

80 



where 

(3.4.6) 

is the distance from the interpolation point (x, y) to scatter point (Xi,Yi), R is the distance 

from the interpolation point to the most distant scatter point, and n is the total number of 

scatter points. 
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Chapter IV 

MODEL CALBRATIONS 

4.1 Introduction 

Simulations using two hydrodynamic models and an analytical wind model 

described in Chapter III were conducted to examine the responses of the Chesapeake Bay 

to hurricane events. Prior to investigating the Bay's responses, one should address how 

well the models reproduce the observed circulation in the Bay during these events. The 

comparison will involve surface elevation, current, and salinity observations at the 

locations shown in Figure 2-1. The first level of model/data comparison is with the use 

of visual techniques. Plots of the time series of the comparison between the predicted 

values versus the observed values will be provided in support of that purpose (Krome and 

Corlett, 1990). The procedure used to quantitatively evaluate the performance of the 

models is based upon computing the mean absolute root mean square error (RMSE) as 

defined: 

1 N 2 
RMSE= - L(Pi -Oi) 

N i=l 
(4.1) 

and the mean absolute relative error (ARE) defined as follows: 

ARE = __!__ ± ( pi -
0 

i J X 100 (%) 
N i=l oi 

(4.2) 
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where 0 ~ ARE ~ 1 00 (%) , Pi is the model prediction at location (or time) i while 0 i is 

the corresponding observed value at i. Krome and Corlett (1990) and Park et al. (2005) 

have shown that the use ofEqs. (4-1) and (4-2) provide an objective and meaningful 

description of a model's ability to reproduce reliable observations, respectively. Tidal 

and subtidal values will also be subjected to these analysis procedures. The barotropic 

and baroclinic calibrations for two hydrodynamic models, ELCIRC and SELFE, will be 

described in Sections 4.2 and 4.3, respectively. 

4.2 Barotropic simulation 

Using a two-dimensional (2D) barotropic model, ELCIRC, tidal surface elevation 

was calibrated with the bottom drag coefficient described in Section 3.2. Although Spitz 

and Klink (1998) found that the drag coefficient varies between 2.5 X 104 and 3.1 X 10"3 

with time, the drag coefficient for ELCIRC varies not with time but with space since the 

Bay's responses are more focused on subtidal characteristics. Subtidal surface elevation 

was verified with subtidal forcing (e.g., atmospheric forcing, river discharge, and the 

Earth's rotation) during two hurricane events, Hurricane Floyd in 1999 and Hurricane 

Isabel in 2003. 

4.2.1 Astronomical tides 

The ELCIRC model was calibrated with respect to the bottom frictional 

coefficient by simulating mean tide characteristics. The open boundary conditions in 

ELCIRC were specified using the harmonic constants of nine constituents (M2, S2, N2, K1. 

01. Mt, M6, K2, and Q1) as described in Section 3.2.3. In order to calibrate the 
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astronomical tides, model results were selected for the last 30 days of the 60-day model 

run. Table 4-1 lists the comparison of observed and predicted mean tidal ranges at the 

tidal stations along the west and east sides of the Chesapeake Bay mainstem. Modeled 

mean tidal ranges at 21 stations reproduced the tidal ranges from the NOAA Tide Tables 

with great accuracy (Figure 4-1 ). The Chesapeake Bay has the tidal characteristics of a 

reflected, damped Kelvin wave, with a larger tidal range on the Eastern Shore (Hicks, 

1964; Carter and Pritchard, 1988; Zhong and Li, 2006). The mean tidal range decreases 

from 0.9 mat the Bay's entrance to a minimum of 0.27 m from Plum Point to Annapolis, 

MD, and then increases to 0.55 mat Havre de Grace, MD, located near the head of the 

Bay. The model reproduced these characteristics properly. For four major constituents 

(M2, S2, N2, and K1), harmonic analysis was conducted using long-term tidal records at 

eleven NOAA tidal gauge stations described Tables 4-2a and 4-2b, and the correlation 

plots of mean tidal amplitudes and phases are shown in Figure 4-2. The model results 

have a high correlation with observed values and show low errors. Especially, the most 

dominant constituent M2 has an ARE value of 4.1 % and an RMSE value of 1.6 em. A 

round-off error of a small amplitude (e.g., S2, N2, or K1) may cause a relatively high 

value of the ARE. The results show that the ELCIRC model is capable of reproducing 

tidal dynamics not only for the amplitude, but also for the propagation (phase), of tidal 

waves throughout the Chesapeake Bay. 
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Table 4-1 Comparison of observed and predicted mean tidal ranges at 21 tidal stations. 

WestSide East Side 

STATION OBS (m) PRE (m) STATION OBS (m) PRE (m) 

Havre de Grace 0.550 0.620 Havre de Grace 0.550 0.620 

Battery Pt. 0.370 0.440 Queenstown 0.400 0.440 

Baltimore 0.340 0.413 Woolford 0.430 0.394 

Annapolis 0.270 0.320 Chance, MD 0.670 0.652 

Galesville 0.270 0.307 Crisfield, MD 0.610 0.607 

Plum Point 0.270 0.280 Pungoteague 0.520 0.560 

Solomon's Is. 0.370 0.355 Nassawadox 0.550 0.549 

St. Mary's C 0.460 0.450 Old Plantation 0.730 0.695 

Smith Pt. Lt. 0.370 0.390 Fisherman's Is. 0.910 0.931 

Windmill Pt. 0.370 0.332 

Yorktown 0.730 0.620 

Newport News 0.790 0.721 

Cape Henry 0.850 0.833 

ARE(%) 10.5 5.5 

RMSE (m) 0.054 0.036 
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Fig. 4-1 Comparison of observed and predicted mean tidal ranges at 13 tidal stations on 

the West side (upper panel) and at 9 tidal stations on the East side (lower panel) of the 

Chesapeake Bay mainstem. Observations are denoted by 'x' and model predictions are 

denoted by the dashed line. 
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Table 4-2a Comparison of observed and predicted mean tidal amplitudes at 11 selected 

tide gauge stations. (unit: m) 

M2 S2 N2 K1 
STATIONS 

OBS PRE OBS PRE OBS PRE OBS PRE 

CBBT 0.38 0.37 0.07 0.09 0.09 0.09 0.06 0.07 

Kiptopeke 0.38 0.37 0.07 0.08 0.08 0.08 0.06 0.07 

Gloucester Point 0.35 0.31 0.07 0.07 0.07 0.07 0.05 0.05 

Windmill Point 0.17 0.16 0.03 0.04 0.04 0.04 0.03 0.03 

Lewisetta 0.18 0.18 0.03 0.04 0.04 0.04 0.02 0.03 

Solomon's Island 0.16 0.17 0.02 0.03 0.03 0.04 0.03 0.04 

Cambridge 0.23 0.22 0.03 0.04 0.04 0.05 0.05 0.05 

Annapolis 0.13 0.12 0.02 0.02 0.03 0.03 0.06 0.06 

Baltimore 0.16 0.17 0.02 0.02 0.04 0.04 0.07 0.07 

Tolchester Beach 0.17 0.19 0.03 0.04 0.04 0.04 0.07 0.07 

ARE(%) 4.1 22.6 5.8 11.7 

RMSE (m) 0.016 0.010 0.005 0.006 

Table 4-2b Comparison of observed and predicted mean tidal phases at 11 selected tide 

gauge stations. (unit: deg) 

M2 S2 N2 K1 
STATIONS 

OBS PRE OBS PRE OBS PRE OBS PRE 

CBBT 235.3 235.3 255.9 255.9 218.1 218.1 109.1 109.1 

Kiptopeke 247.9 251.7 270.8 271.7 229.2 234.6 119.3 120.5 

Gloucester Point 268.3 267.0 288.7 287.8 250.9 249.2 125.6 125.7 

Windmill Point 317.3 326.6 334.0 344.7 297.2 309.8 148.7 159.4 

Lewisetta 33.8 30.6 54.7 54.3 7.6 11.1 205.0 210.8 

Solomon's Island 54.2 47.9 70.5 74.3 32.4 27.8 243.7 238.4 

Cambridge 114.7 91.6 139.0 120.2 94.0 72.1 269.4 252.2 

Annapolis 147.2 133.1 175.0 157.7 126.0 115.0 283.3 272.2 

Baltimore 193.9 191.2 213.4 216.8 173.4 170.5 296.6 281.5 

Tolchester Beach 202.7 194.4 227.4 222.0 176.0 173.0 287.9 277.5 

ARE(%) 6.1 3.7 10.3 3.2 

RMSE (deg) 9.8 9.1 9.2 9.7 
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Fig. 4-2 Correlations between observed and predicted tidal amplitudes (left panels) and 

between observed and predicted tidal phases (right panels) of four major tidal 

constituents, M2, S2, N2, and K1. 

88 



4.2.2 Subtidal surface elevation: storm surges 

To verify the ELCIRC model under hurricane conditions, model runs were 

conducted for two 15-day periods, from September 10 to 24 in 1999 and from September 

12 to 26 in 2003. The periods include Hurricane Floyd and Hurricane Isabel, respectively. 

Open boundary conditions for surface elevation and boundary conditions for surface 

forcing are described in Section 3.2.3 and Section 3.4, respectively. The scatter plots of 

storm surges at six selected stations during Hurricane Floyd in 1999 are shown in Figure 

4-3. A 5-day period was used to verify the model. The model results have high values of 

R2 (> 0.90) for all the observation stations, except the upper Bay station. The RMSE of 

predicted surges is on the order of 10 em. Figure 4-4 depicts the scatter plots of storm 

surges during Hurricane Isabel in 2003. ELCIRC has a high correlation (R2 > 0.90) 

throughout the entire Bay and relatively low ARE. The predicted surges have the same 

order(~ 10 em) ofRMSE as those during Hurricane Floyd. Subsequently, the two­

dimensional ELCIRC model has an approximately 2-cm error in tidal surface elevations 

and a 1 0-cm error in sub-tidal surface elevations during hurricane events. 
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Fig. 4-3 Scatter plots of observed and predicted storm surge elevations at 6 selected 

observation stations for the 5-day period from September 15-19, 1999. Observations are 

on x-axis and predictions are on y-axis. 
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Fig. 4-4 Scatter plots of observed and predicted storm surge elevations at 6 selected 

observation stations for the 5-day period from September 17-21, 2003. Observations are 

on x-axis and predictions are on y-axis. 
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4.3 Baroclinic simulation 

Using a three-dimensional (3D) baroclinic model, SELFE, water surface elevation, 

water velocity, and salinity were calibrated with external forcings described above. 

Zhong and Li (2006) found that the baroclinic model produces a more accurate prediction 

for water surface elevation and tidal currents than the tidal models which do not consider 

the effects of stratification. First, the model was executed for six months to stabilize the 

flow field and long-term calibrations from January to July were conducted in both years 

(1999 and 2003). For the hurricane events, another two runs were performed from 

August to December in both years. 

4.3.1 Water velocity 

For autumn 1999, predicted along-channel velocities were verified with observed 

velocities at three observation stations: mid-Bay buoy, Newport News (NN), and M5 (see 

Figure 2-1 ). Figure 4-5 shows that the modeled velocity reproduced the observed 

velocity at surface and bottom of three stations. The model run included Hurricane Floyd, 

which occurred during the shaded period. For autumn 2003, the modeled along-channel 

velocities were verified with the observed velocities at two stations: mid-Bay buoy and 

GP (see Figure 2-1). Similar to Figure 4-5, Figure 4-6 shows that the modeled velocity 

reproduced the observed velocity at both the surface and bottom of two stations. The 

model results indicate that the SELFE model is capable of reproducing time series of 

along-channel velocity during both hurricane events and vertical velocity profiles not 

only in the Chesapeake Bay main-channel but in its tributaries, the York and James 

Rivers. 
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Fig. 4-5 Comparison of observed and predicted along-channel velocity: (a) surface and 

(b) mid-depth at the mid-Bay buoy station, (c) surface and (d) bottom at NN (Newport 

News) in James River, and (e) surface and (f) bottom at MS near the Bay mouth, for the 

20-day period in autumn 1999 including Hurricane Floyd, September 16 to 18. 

93 



200 - 150 (a) Mid Bay: 2.4 m 
+:seaward X 

.!!! 
E 100 
s 50 
~ 0 
·g -50 

~ 
-100 
-150 
-200 

200 - 150 (b) Mid Bay: 10.4 m 

~ 100 
0 50 ->- 0 

:!::: 
0 -50 
0 

~ 
-100 
-150 
-200 

200 - 150 (c) GP: surface 
.!!! 100 E 
0 50 ->- 0 

8 -50 

~ 
-100 
-150 
-200 

200 - 150 (d) GP: bottom 

~ 100 
0 50 -
~ 0 
·g -50 
Q5 -100 
> -150 

-200 
14 15 16 17 18 19 20 21 22 23 24 25 26 

Da.ys in September 2003 

Fig. 4-6 Comparison of observed and predicted along-channel velocity: (a) surface and 

(b) mid-depth at the mid-Bay buoy station, and (c) surface and (d) bottom at GP 

(Gloucester Point) in York River, for the 12-day period in autumn 2003 including 

Hurricane Isabel, September 18 to 21. 
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4.3.2 Salinity 

To verify the long-term salinity in SELFE, the modeled salinity was compared 

with monthly salinity data from CBP. River discharges and open boundary conditions for 

salinity were specified with the USGS daily streamflow data and the CORIO LIS salinity 

data, respectively, as described in Section 3.3.3. Since temperature was set to a constant 

value of 15 °C throughout space and time, temporal and spatial density variations induced 

by surface heating/cooling were not included. The comparisons of surface and bottom 

salinities at ten selected stations were plotted in Figures 4-7 and 4-8 for two 150-day 

periods in 1999 and 2003, respectively. SELFE reproduced the temporal salinity 

variation with a good agreement in vertical stratification. The model represented the 

surface salinity decreases induced by high freshwater inflow at the end of January in 

1999 and at the end of March in 2003. Figures 4-9 depicts the comparisons of surface 

and bottom salinities at ten selected stations for two 60-day periods in 1999 and 2003, 

respectively. Overall, the model results indicate that the SELFE model has a capability 

of simulating the baroclinic response of the Chesapeake Bay to a hurricane event. 

4.4 Summary 

The hydrodynamic models have been verified with comparisons of sea surface 

elevation, water velocity, and salinity between the model results and the observed data 

for four periods. Model calibrations show that the models have a sufficient accuracy to 

simulate a hurricane event to examine the barotropic and baroclinic responses of the 

Chesapeake Bay to hurricane events. The Bay's barotropic response and baroclinic 

response to two hurricane events will be detailed in Chapters V and VI, respectively. 
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Fig. 4-7 Comparison of observed and predicted salinity (surface and bottom) at ten 

selected stations for spring 1999. Model results (red: bottom; blue: surface) and observed 

data (black circle: bottom; green circle: surface). 
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ChapterV 

A BAROTROPIC RESPONSE OF THE CHESAPEAKE BAY 

TO HURRICANES FLOYD AND ISABEL 

5.1 Introduction 

A moving storm is known to generate both barotropic and baroclinic motions in 

the stratified ocean. It generates the barotropic wave motion of the coastal ocean and an 

oscillation of the sea surface elevation in a coastal or inland water body during a period 

ranging from a few minutes to a few days that result from the atmospheric forcing (Murty, 

1984). Hurricane-generated storm surge has been studied continuously through the 

twentieth century. Harris (1956) summarized the status of research on hurricane­

generated storm surge up to the early 1950's in the United States. He emphasized the 

systematic studies on the storm surge due to hurricanes along the East Coast of the 

United States. In the Chesapeake Bay, one of the largest partially mixed estuary in the 

world, hurricane-generated storm surge was initially studied by Bretschneider (1959) 

because, until then, only four hurricanes were sufficiently well documented: no name 

(1933), Connie (1955), Diane (1955), and Hazel (1957) (Murty, 1984). Pore (1960) 

addressed that six factors for storm surge generation and modification are considered 

significant in the Chesapeake Bay: wind set-up, transport of water by the short period 

wind waves, the atmospheric pressure effect (the inverted barometer effect), storm speed, 
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the variable depth of the water, and convergence or divergence of the storm surge in 

estuaries of varying width. Pore (1965) made a distinction between eastern-type storms 

(i.e., hurricanes traveling east of the Bay) and western-type storms (i.e., hurricanes 

passing west of the Bay). He indicated that eastern-type storms generate the maximum 

surge in the southern portion of the Bay whereas western-type storms create the highest 

surge in the northern part of the Bay. For storms of the past decade, Hurricane Floyd 

(1999) and Hurricane Isabel (2003) are representatives of eastern-type and western-type 

storms, respectively. Recently, numerical modeling studies have been conducted to 

examine the storm surge dynamics in the Chesapeake Bay during these two hurricanes 

(Shen et al., 2005; Wang et al., 2005; Shen et al., 2006a; Shen et al., 2006b). 

Presently, the barotropic flow motion has been defined as a depth-averaged flow 

and the baroclinic motions are what remain after subtraction of the depth-averaged 

currents and are associated with the ocean stratification (Ginis and Sutyrin, 1995). Ginis 

and Sutyrin (1995) concluded that the sea surface elevation can be decomposed into four 

physically different components caused by geostrophic adjustment to the depth-averaged 

currents, wind stress divergence, inverted barometer effect, and baroclinic effects. They 

found that the maximum depth-averaged current is proportional to the maximum wind 

stress torque and the distance from the maximum current to the storm track is 

proportional to the maximum wind stress radius. Using a two-layer model, they 

demonstrated that nonlinear coupling between the baroclinic and barotropic modes is 

rather weak, and therefore these two modes may be calculated separately. In the deep 

ocean, the barotropic flow is affected by variability of the Coriolis parameter (Geisler, 

1970), and the barotropic current response to hurricane forcing occurs within the near-
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inertial wave band (Shay et al., 1990). On the other hand, storm-induced barotropic flow 

in shallow water is greatly influenced by bottom friction. Accordingly, a couple of 

numerical models were developed with different types of bottom friction 

parameterizations (e.g., Jelesnianski, 1965; Forristall, 1974; Hearn and Holloway, 1990). 

Therefore, the barotropic numerical model that has a capability to simulate the storm­

induced barotropic flow with the appropriate bottom friction scheme should be applied to 

the shallow water systems to study the response of a partially-mixed estuary to a 

hurricane event. 

The purpose of this chapter is to investigate the barotropic response of the 

Chesapeake Bay to hurricane events and it is outlined as follows: Storm surge dynamics, 

including analysis of the barotropic model results, are discussed in Section 5.2. The 

barotropic flow motion, with analysis of depth-integrated water velocity, is described in 

Section 5.3. Subsequently, the effects oflocal/remote winds and river inflows will be 

described in Section 5.4 as the external forcing effect. Lastly, the conclusions and 

summary are presented in Section 5.5. 

5.2 Model analysis of storm surge dynamics 

5.2.1 Hurricane Floyd 

The ELCIRC model was spun up initially for 5 days from a cold start and then run 

for 10 days under real-time conditions during Hurricane Floyd. The forcing functions 

used include pressure and wind forcing obtained from the parametric wind model and 

interpolation method using observed wind data, and 9 astronomical tidal constituents at 

the open boundary as described in Chapter III. To obtain the predicted storm surges, two 
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numerical experiments were conducted: one is exerted by only tidal forcing and the other 

is forced by tidal and atmospheric forcings. Assuming that tides and surges are 

independent, storm surges can be obtained by subtracting the former from the latter. 

Figure 5-1 presents the comparison of surge height above mean sea level (MSL) between 

estimated values based on the observed data and simulated values at eight selected tidal 

stations in the Chesapeake Bay. The left panel starts with the southernmost station at 

CBBT and extends north through Gloucester Point, Windmill Point, and Lewisetta in 

Virginia. The right panel continues the sequence through the Maryland portion of the 

Bay, including Cambridge, Annapolis, Baltimore, and Tolchester Beach. At all stations 

the existing model has sufficient accuracy to analyze the fundamental property of storm 

surge dynamics. 

Temporal variation of the surge 

The simplest way to start the storm surge analysis is to simultaneously examine 

the time series for stations (Wang et al., 2005). Twenty stations, separated by 

approximately equal distance, were selected along the mainstem Bay (Figure 5-2). Time 

series of hourly surge heights at each station from 22:00 UTC on September 15 through 

12:00 UTC on September 18 are shown in Figure 5-3. This figure shows that the first 

peak appeared at the mouth ofthe Bay (st01) around September 16 04:00 UTC and 

slightly increased at st02 a couple of hours later. The first peak corresponds to the 

northeasterly winds that generate not only local convergence but the Ekman transport 

from the continental shelf to the Bay. This peak seems to propagate to the north over 

time. The second peak around 0.8 m above mean sea level (MSL) was generated around 
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Fig. 5-1 Surge height comparison between observed (red crosses) and predicted (blue 

solid lines) at eight selected stations during Hurricane Floyd in September 1999. 
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September 16 16:00 UTC in the lower Bay and the peaks from st01 to st04 occurred 

nearly simultaneously. At this moment, surge height decreased to around 0.5 m below 

MSL in the upper portion of the Bay. This indicates that the second peak in the lower 

Bay was initialized by northeasterly winds and superposed with the set-up induced by 

northerly winds, whereas the surge elevation in the upper Bay was set-down induced by 

local northerly winds. 

Spatial distribution of the surge 

The spatial curves of storm surges were plotted with time intervals of 4 hours 

starting at 20:00 UTC on September 15 (Figure 5-4). The surge height in the lower Bay 

increased until September 16 12:00 UTC, decreased until September 17 08:00 UTC, and 

increased again afterwards. On the other hand, the surge height in the upper Bay 

decreased to below zero until September 16 20:00 UTC, increased until September 17 

08:00 UTC, and increased again afterwards. A distinguishing feature from the spatial 

curves of surge height during Hurricane Floyd is that the nodal point of the oscillation for 

the second surge was generated near Annapolis, MD, 220 km from the Bay mouth. The 

oscillation of surge heights south of the nodal point was opposite that north of the point. 

The combined effect of the primary surge and wind-induced set-up/set-down 

A three-dimensional view and top view of time-distance (t-x) graph with the 

contour of isolines for the surge height were plotted in Figure 5-5. In this t-x diagram, a 

time history of the elevation can be plotted by recording the contour along Xi= constant 

line at any specific location Xi. For two simultaneous records, a characteristic curve (also 
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called a wave ray-the path along which the wave propagates) can be obtained by 

connecting the similar phases (e.g., crest to crest or trough to trough) between the two 

records. The underlying purpose is to determine the path of the wave ray and the 

associated phase speed by using the relationship dx/dt = c(t, x) in the t-x plane, where cis 

the wave speed. As described previously, three ray curves can be identified: the first 

wave starting from September 16 06:00 UTC with approximately 62 km h"1 in speed 

propagated up to the mid-Bay (0.5-m contour line reached to 150 km at September 16 

14:00 UTC). The second ray beginning around September 16 14:00 UTC occurred 

simultaneously in the lower Bay and the upper Bay generating set-up and set-down, 

respectively. Wind-induced set-up in the lower Bay superposed on the second surge but 

wind-induced set-down in the lower Bay cancelled out or overcame the surge. However, 

from September 16 15:00 UTC to 18:00 UTC, surge height quickly dropped in the lower 

Bay. During this 3-hour period, since storm eye passed over the Bay mouth, wind 

direction in the lower Bay suddenly changed from easterly wind to northwesterly wind 

and then northwesterly wind drove water out of the Bay. The third ray of negative surge 

started at the mouth around September 17 02:00 UTC and propagated to the upper Bay 

with approximately 62 km h"1 in speed propagated. The ray of negative surge appears to 

be generated from the continental shelf, since sea surface elevation on the shelf could be 

reduced by offshore winds after the storm moved northeastward. 
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5 .2.2 Hurricane Isabel 

The model for Hurricane Isabel was executed in the same manner as that for 

Hurricane Floyd. The simulated storm surges (solid lines) were plotted in Figure 5-6 

compared with estimated storm surges (crosses). The comparison of model results with 

the observations was quite good for most of the stations. The model results are analyzed 

for storm surge dynamics as described in Section 5.2.1. 

Temporal variation of the surge 

The time series of the surge height at each station were plotted together (Figure 5-

7). The figure indicates that the primary surge appeared from the mouth at about 

September 18 18:00 UTC at CBBT with a predicted height of approximately 1.5 m. The 

amplitude of the primary surge decreased as it propagated northward until it reached the 

fourth station near the mouth of the Rappahannock River. Its amplitude then increased 

monotonically toward the northern Bay until reaching 2.5 m (modeled) near Tolchester 

Beach. In terms of temporal variation, the first three stations in the lower Bay responded 

differently from the remainder of the 17 stations in that the surge for the former stations 

dropped rapidly and fell below MSL. Their high-water duration, using the 75th 

percentile as a measure, lasted only for 12 hours. In contrast, the fourth to twelfth 

stations in the middle portion of the Bay displayed a much longer high-water duration, 

exceeding one full day. 

Spatial distribution of the surge 

A snapshot of the spatial distribution of water elevation spanning the entire Bay 

can also be obtained using the selected 20 stations. Figure 5-8 shows the spatial curves 

plotted with time intervals of 4 hours starting on September 18 12:00 UTC and ending on 
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Fig. 5-6 Surge height comparison between observed (crosses) and predicted (solid lines) 

at eight selected stations during Hurricane Isabel in September, 2003. 
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112 



September 20 00:00 UTC. From spatial curves of the 16:00 and 20:00 UTC on 

September 18, the first-stage surge (primary surge) can be clearly identified in the lower 

Bay. The next three profiles, namely September 19 00:00 UTC, September 19 04:00 

UTC, and September 19 08:00 UTC, revealed that a linear trend of set-up in the upper 

Bay and set-down in the lower Bay was evident with use of a 0.5-m water level as the 

benchmark mean sea level (see The combined effects section below for further 

explanation). The slope of the elevation on September 19 12:00 UTC-a fully developed 

set-up-was verified by a steady-state, analytical formula balanced between the 

hydrostatic pressure gradient and the wind stress (less than the bottom stress). A linear 

slope for a 2.1-m increase over a 250 km horizontal distance was estimated using a wind 

speed of 15 m·sec·1 and a water depth of 6 m, which was comparable to the actual 

observation of 2.4 m at T olchester Beach. Careful examinations of the spatial curves for 

September 19 00:00 UTC, September 19 04:00 UTC, and September 19 12:00 UTC 

revealed a pair of wave crests separated by 50 km moving northward. The advancing 

front in the upstream side toward the upper Bay is the primary wave, which was followed 

by the second-stage surge generated by southerly wind-induced setup. Eight of nine 

spatial elevation curves intersect through the Windmill Point station, where the set-up 

and set-down are separated; the elevation there maintains a small variation at 

approximately 0.5 m above MSL. On September 19 12:00 UTC, approximately 16 hours 

after the first-stage surge appeared at the Bay mouth, the elevation in the upper Bay 

finally reached the highest level at 2.5 m and retreated afterwards. 
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The combined effects of the primary surge and wind-induced set-up/set-down 

Based on the description in the previous section, at least two processes were 

involved in the evolution of the storm surge; namely, the primary surge and the second-

stage surge by the southerly wind-induced set-up/set-down. Figure 5-9 shows a three-

dimensional view and top view of a time-distance (t-x) plot with isoline contours of the 

surge height. Starting at x = 0, t = 18 hours on September 18 in the lower Bay, the first 

wave ray curve was determined by tracing through the crests of the primary surge; the 

phase speed was determined by its slope to be 5.2 m·sec-1
• Similarly, at x = 285 km, t = 

12 hours on September 19 in the upper Bay, the second wave ray curve was determined 

by the crests to have a speed of 6.4 m·sec-1
• In the Hurricane Isabel's case, both primary 

surge and secondary surge are forced by the same major wind system and originated from 

the Bay mouth, it is reasonable to assume that the temporal variation are in synchronized 

with the forcing wind frequency and are periodic stationary everywhere. With this 

assumption, the governing equation of vertical barotropic subtidal current and water 

elevations ofGarvine (1985): 

Ou Ort . 
-+-+Au= W cosO elt 
at ax 

&rt+au=O 
at ax 

(5.1) 

where x = (ro/ c)x*, L = (ro/ c)L*, t =rot*, 11 = 11 *I a, u = h u */(a c), c = (gh)112
, and 

dimensionless wind parameter, W = 't/ (pro c a), dimensionless bottom friction parameter, 

A == Cd Ut I (hro ), and e is the angle of wind stress measured conterclockwise from x *. Eq. 

( 5.1) can be solved by assuming that 

11(x, t) = A(x)eit, u(x, t) = U(x)eit (5.2) 
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subjected to boundary conditions: 

11(0, t) = A(O)eit, u(L, t) = 0 

The solution is 

U(x) = 2 

1 
[A(O)Ksinh {K(L- x)}+ W cos8(coshKL -coshKx)] 

K coshKL 

A(x) = 
1 

[A(O)Kcosh {K(L- x)}+ W cose sinhKx] 
KcoshKL 

(5.3) 

where K is a complex wave number of order unity given by 

K = (-1+iA-)112 = [(r-1)12r2 +i[(r+1)/2r2 

where r = (1 + A-2 
)

112
, a real number. It is noted that the both vertical averaged velocity 

and water level solutions are linear combination of two terms. The first term is a free 

wave solution corresponding to the wave generated by the remote wind and propagated 

into the Bay, whereas the second term is a forced wave corresponding to solution forced 

by the local wind W. The spatial distribution of water level for the free wave and forced 

wave are very different: the water level distribution induced by remote wind is a cosh 

function which nearly approaches to 1 if the argument is close to 0, whereas the water 

level distribution induced by local wind is a sinh function which is linearly proportional 

to the distance from the origin at the Bay mouth. This is qualitatively consistent with the 

water level simulated from the storm surge model. Further discussion can be found in 

Chapter VIII. 
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Fig. 5-8 Spatial distributions of surge height for 20 selected stations from September 18 

13:00 to September 20 01 :00 (UTC) in 2003. 
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5.3 Analysis of barotropic flow motion 

Based on the model accuracy of velocity calibration as described in Chapter IV, 

the barotropic flow motion was analyzed. The best way to examine the barotropic flow 

motion in the Bay during hurricanes is to plot horizontal distributions of depth-integrated 

flow and to calculate the laterally-integrated volumetric transport that is summarized for 

each cell interface along transects dividing adjacent regions (Figure 5-2) (Cerco and Cole, 

1994). 

5.3 .1 Horizontal distribution of depth-integrated flow 

Hurricane Floyd 

Time-sequential depth-integrated flows were demonstrated in the Bay's southern 

portion (Figure 5-1 0) and northern portion (Figure 5-11 ). The intratidal variability in the 

flows was eliminated by a low-pass Lanczos filter. On September 16 03:00 UTC, a 

northeasterly wind of 12.3 m/s began to drive the water from the continental shelf into the 

Bay (Figure 5-10a) and from the mid-Bay to the lower Bay (Figure 5-11a), and 

consequently generated the first peak of storm surge in the lower Bay. As northeasterly/ 

easterly winds in the southern Bay continued to blow with the same magnitude until 

September 16 16:00 UTC (Figure 5-10b,c) and northeasterly/northerly winds in the 

northern Bay drove the water from the upper Bay to the lower Bay (Figure 5-11 b,c ), 

barotropic flow increased and elevated the surge height to generate the primary surge 

(Valle-Levinson et al., 2002). As described in the previous section, this surge was 

combined with wind-induced set-up in the southern Bay whereas strong seaward flow 

driven by northeasterly/northerly winds created a set-down in the northern Bay. This set-
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down restricted the landward flow from the Bay mouth. It appears to generate the 

convergence in the mid-Bay and make the swollen-up surge elevation in the mid-portion 

ofthe Bay (see September 16 16:00 UTC in Figure 5-4). On September 16 17:00 UTC, 

as the eye of the hurricane swept over the Bay mouth, the winds changed to northwesterly 

winds with a maximum speed of23.4 m/s (not shown). From September 16 18:00 UTC, 

the surge height started to decrease (Figure 5-1 Od). The negative surge appears to 

propagate from the Bay mouth to the mid-Bay and the seaward flow was intensified 

(Figure 5-10e). At the same time, in the northern portion, the negative surge induced by 

northerly/northwesterly winds propagated to the lower Bay (Figures 5-11d, e and Figure 

5-5). As a result, the surge heights inside the Bay had negative values and the intensified 

seaward flow became weakened over time (Figures 5-1 Of and 5-11 t). 

There are some distinct barotropic phenomena that occurred during Hurricane 

Floyd: 1) the inflow induced by northeasterly winds corresponded to the first peak of 

storm surge, 2) strong local northeasterly/easterly winds generated the second peak of 

storm surge at the mouth, 3) the intensified seaward flows from the northern Bay 

converged to the second surges in the mid-Bay and restricted the landward flows, and 4) 

northwesterly winds drove the water out of the Bay. The outgoing flows were stronger 

than incoming flows due to the following reasons: 1) water in the lower Bay was driven 

by local northwesterly winds out of the Bay; 2) the negative surge wave propagated from 

the southern continental shelfto the mouth (effect of remote offshore winds); 3) the 

barotropic flow out of the Bay was induced by a seaward horizontal pressure gradient 

force between the Bay and the shelf; and 4) the river discharge augmented the landward 

flows. The combination of these effects appears to cause the seaward current to become 
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Fig. 5-10 Horizontal distributions of depth-integrated flow (thin arrows) at the southern 

portion of the Chesapeake Bay during Hurricane Floyd with time sequence from (a) 

September 16 03:00 UTC to (f) September 17 12:00 UTC. Colored map represents storm 

height and the thick arrow specifies wind speed and direction recorded at CBBT, VA. 
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Fig. 5-11 Horizontal distributions of depth-integrated flow (thin arrows) at the northern 

portion of the Chesapeake Bay during Hurricane Floyd with time sequence from (a) 

September 16 03:00 UTC to (f) September 17 12:00 UTC. Colored map represents storm 

height and the thick arrow specifies wind speed and direction recorded at Lewisetta, VA. 
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stronger than the landward current that was generated during the storm. 

Hurricane Isabel 

The barotropic flow during Hurricane Isabel was analyzed in the same way as that 

described during Hurricane Floyd. Time sequences of the sub-tidal depth-integrated 

flows were plotted in the Bay's southern portion (Figure 5-12) and northern portion 

(Figure 5-13). Initially, the seaward flows were driven by northeasterly winds (Figures 

5-12a and 5-13a). According to the surge height recorded at CBBT (Figure 5-6), the 

surge increased gradually, even though the barotropic flow was seaward. This surge 

increase appears to be caused by the convergence (or set-up) that the southward flow 

from the mid-Bay to the mouth induced by northeasterly winds (effect oflocal winds) is 

stronger than the seaward flow at the mouth. This seaward flow may be weakened by the 

landward Ekman transport induced by northeasterly winds on the continental shelf (the 

effect of remote winds). From September 18 0900 UTC, the seaward flow in the lower 

Bay started to decrease and changed into a landward flow as the winds strengthened 

(Figure 5-12b ). This period coincides with the time when surge increased fast in the 

lower Bay (see the first three stations in Figure 5-7). During the three-hour period of 

1800 to 2100 UTC on September 18, the maximum easterly winds up to 23.0 m/s 

generated the strong landward flows corresponding to the primary storm surge in the 

lower Bay (Figure 5-12c ). Over the same period, the seaward flows induced by local 

northeasterly winds in the upper Bay began to change into northward flows due to 

northward horizontal pressure gradient (Figure 5-13b,c). The southeasterly and southerly 

winds became dominant when Hurricane Isabel was passing west of the Bay. These 
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winds intensified the northward flows and generated wind-induced set-down in the lower 

Bay (Figure 5-12d,f) and wind-induced set-up in the upper Bay (Figure 5-13d,f). During 

this period, the peak of the surge height occurred in the upper Bay. On September 19 

0900 UTC, the landward flows at the mouth began to change to seaward. Although the 

winds blew toward north or northeast, the barotropic flows were directed out of the Bay 

(Figures 5-12f and 5-13±). One of the reasons for this is that the seaward horizontal 

pressure gradient force competing against the northward wind stress began to 

predominate. Another reason is that the flow toward the northeast on the continental 

shelf drove the water out of the Bay (see Figure 5-12e,f). Additionally, freshwater 

discharge added to the landward flows. 

During Hurricane Isabel, the barotropic flow motion can be summarized as 

follows: 1) the southward flow induced by local northeasterly winds and the Ekman 

transport from the shelf corresponded to the gradually increased surge height, 2) strong 

easterly winds at the mouth intensified the storm surge initialized by offshore 

northeasterly winds, 3) the northward flows intensified by the southerly winds gave rise 

to the maximum peak of the surge in the upper Bay, and 4) the seaward horizontal 

pressure gradient force drove the water out of the Bay to recover to a normal status. The 

volumetric transport will be discussed in the next section. 
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Fig. 5-12 Horizontal distributions of depth-integrated flow (thin arrows) at the southern 

portion of the Chesapeake Bay during Hurricane Isabel with time sequence from (a) 

September 18 09:00 UTC to (f) September 19 18:00 UTC. Colored map represents storm 

height and thick arrow specifies wind speed and direction recorded at CBBT, VA. 
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5 .3 .2 Calculation of volumetric transport 

Based on the continuity equation, the volumetric flux across a transect can be 

computed as follows (Gong et al., 2009): 

F= dV 
dt 

(5.1) 

where F is the flux (m3s"1
), Vis the instantaneous volume in the interior area delineated 

by the transect and the surrounding coastline for either the entire Bay or sub-estuaries. 

The instantaneous volume in a delineated area was calculated as the integration of cell 

volumes, which was defined as the cell area multiplied by the cell's total water depth 

(Vieira, 1985; Gong et al., 2009). Another way to calculate the transport is as follows 

(Kuo and Park, 1992): 

F= JudA (5.2) 
A 

where u is the velocity normal to each cell area (A) of a transect. This method can be 

sufficient to estimate not only longitudinal flows along the mainstem, but also lateral 

volumetric exchanges between the Bay mainstem and its tributaries (Cerco and Cole, 

1994). The time series of the volumetric flux across a transect represents only the 

temporal variation of the flux. Thus, in order to examine the spatial distribution of the 

flux, the flux was calculated at nine transects along the Chesapeake Bay mainstem and 

six transects in its tributaries (Figure 5-2) using Eq. (5.2). 

Hurricane Floyd 

The volumetric flux was averaged every half day over one tidal cycle to remove 

the intratidal variability. Half-daily net fluxes are shown in Figure 5-14. During 
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Hurricane Floyd, the net flux in the main Bay is characterized by the following three 

general patterns: 1) the landward fluxes at all transects were dominant through September 

14, 2) the seaward flux became dominant from September 15 to 17, and 3) the landward 

flux again occurred after September 18 (Figure 5-14a). Normally, the flux shows the 

maximum value at the transect of the Bay mouth (tr01) and decreases as transects to the 

north (tr02 to tr09). Interestingly, during the second half of September 15, the net flux at 

trO 1 was smaller than that at tr02. This indicates that influx in the region surrounded by 

tr01, tr02, and Jam, is larger than the outflux. This caused the convergence and increased 

the water volume in the region, and consequently the landward net flux occurred at the 

transect of the James River (Figure 5-15a). During the first half of September 16, the net 

fluxes across trO 1 and tr02 were landward but those across tr03 to tr09 were seaward. 

Heading north to transect tr06, the net flux across each downstream transect was smaller 

than that across the upstream transect. Additionally, all net fluxes across five tributary 

transects (Jam to Pat) showed negative (landward) fluxes. This indicates that the 

landward flux across trOl due to northeasterly winds was inhibited by the seaward flux 

from the upstream and, consequently, the convergence not only caused the landward net 

flux into the tributaries but also increased water volume (Figure 5-15b ). During the 

second half of September 16 and the first half of September 1 7, a huge seaward net flux 

occurred due to strong northwesterly winds. As the net flux across the downstream 

transect was larger than that at the upstream transect, the divergence occurred in the 

lower Bay. It decreased water volume and caused the seaward net flux across transects of 

the tributaries (Figure 5-15c,d). During the second half of September 17, the seaward 

flux decreased noticeably and it was considerably similar to the first half of September 16 
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Fig. 5-14 One tidal-cycle mean volumetric transport at each transect (a) in the 

Chesapeake Bay mainstem and (b) its tributaries during Hurricane Floyd, 1999. 
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Fig. 5-15 Time sequence ofvolumetric net transport (m3 s-1
) averaged over a tidal cycle at transects in the lower Chesapeake 

Bay during Hurricane Floyd, 1999. The positive value denotes seaward flux and red and blue colors represent the increase and 

decrease of water volume, respectively. 
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Fig. 5-15 Continued. 
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indicating water volume increased again (Figure 5-15e). After September 18, the 

landward flux was dominant across each transect and water volume gradually increased 

to recover (Figure 5-15f). 

Hurricane Isabel 

The volumetric transport during Hurricane Isabel was analyzed in the same way 

as that performed during Hurricane Floyd. During Hurricane Isabel, the net flux in the 

Bay mainstem is characterized by three general patterns as follows: 1) the landward 

fluxes across all transects were dominant through September 17, 2) the huge landward 

flux occurred from the second half on September 18 through the first half on September 

19, and 3) the huge return flux again headed seaward from the second half on September 

19 to the first half on September 20 and then decreased (Figure 5-16a). From the second 

half of September 17 to the second half of September 18, the landward flux induced by 

northeasterly and easterly winds across downstream transects was larger than that across 

upstream transects. This caused the generation of a convergence to increase water 

volume in the lower Bay (Figure 5-17a,b). During the first half of September 19, when 

the winds changed to southeasterly and southerly winds, the landward flux across 

downstream transects became smaller than that across upstream transects. As a result, 

divergence occurred and decreased water volume in that region (Figure 5-17c). The net 

fluxes across transects became seaward during the second half of September 19. 

Although southerly winds blew, the seaward flux dominated. Since downstream flux 

exceeded upstream flux in the lower Bay, it increased water volume slightly (Figure 5-

17 d). During the first half of September 20, the seaward flux increased but the flux 
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across downstream transects was smaller than that across upstream transects, so that the 

water volume decreased (Figure 5-17e). One day later, the seaward flux again decreased 

but, still, water volume decreased as well (Figure 5-17f). 
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Fig. 5-16 One tidal-cycle mean volumetric transport at each transect (a) in the 

Chesapeake Bay mainstem and (b) its tributaries during Hurricane Isabel, 2003. 
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Fig. 5-17 Time sequence of volumetric net transport (m3 s-1
) averaged over a tidal cycle at transects in the lower Chesapeake 

Bay during Hurricane Isabel, 2003. The positive value denotes seaward flux and red and blue colors represent the increase and 

decrease of water volume, respectively. 

134 



Fig. 5-1 7 Continued. 
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5.4 Effects of external forcing on sea surface elevation 

The effects of local and remote winds are examined in this section. Since it is 

difficult to define and separate the remote wind, first the local wind was defined as the 

wind blowing inside the Chesapeake Bay model area. In contrast, the wind in the 

remaining model domain was defined as the remote wind (Shen et al., 2006a; Shen et al., 

2006b; Gong et al., 2009). Two additional numerical experiments were performed using 

local and remote winds for each hurricane. These experiments will verify how 

locaVremote winds play significant roles on the water surface elevation in the 

Chesapeake Bay. 

Next, the effect of river inflows on the water surface elevation has been 

investigated. Typically, a hurricane event brings a large quantity of rainfall that causes a 

huge river discharge. During Hurricane Isabel, not only high water surface elevation, but 

also a huge amount of river discharge, was recorded at Washington, DC in the upstream 

portion of the Potomac River. It is noteworthy to investigate the relationship between 

storm surge and river inflows because the combined effect will give us inundation 

damage in the upstream areas of the tributaries, which have a large urban population. 

5.4.1 Effect oflocal and remote winds 

The time series of storm surge height for the experiments was compared at five 

selected stations (Figure 5-18). Three experiments during Hurricane Floyd were plotted 

on the left panels and those during Hurricane were plotted on the right panels. Some 

general features can be found: 1) the surge induced by remote winds propagated from the 

Bay mouth to upper Bay with the same magnitude of the surge, 2) the effect of local 
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Fig. 5-18 Comparison of storm surge height among three cases, local (dash-dotted), 

remote (dashed), and combination (solid), at five selected stations during Hurricane 

Floyd, 1999 (left panels) and Hurricane Isabel, 2003 (right panels). 

137 



winds on water surface elevation dominated in the upper Bay, and 3) in the upper Bay, 

northerly local winds (Hurricane Floyd) dominantly made elevation set-down whereas 

southerly local winds (Hurricane Isabel) dominantly generated the elevation set-up. The 

results indicate that the effects of local and remote winds have nearly linear relationships 

with the sea surface elevation to lowest order. 

5.4.2 Effect of river inflows 

The effect of river inflows during Hurricane Isabel was tested in the Potomac 

River, the second largest tributary of the Chesapeake Bay. The daily mean river 

streamflow obtained from USGS at the Little Falls Pump Station near Washington, DC, 

was applied as a river boundary condition. Two experiments were performed: 1) without 

river discharge and 2) with river discharge. The time series of storm tide in two cases are 

plotted in Figure 5-19. Without river inflow, the model result reproduced the observed 

water surface elevation until September 20 1800 UTC. After that time, the model 

prediction underestimated. However, with river inflow, the model result reproduced the 

two peaks of water elevation. The results indicate that the first peak of water elevation at 

Washington, DC was purely caused by storm surge propagating from downstream, and 

the second peak was induced by river inflows from the upstream portion of the Potomac 

River. The river discharge in Potomac River was increased from September 20 (Figure 

2-11), effectively increasing water surface elevation independently. 
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Fig. 5-19 Comparison of observed and predicted water surface elevations at Washington, 

DC, during Hurricane Isabel on September 2003. 
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5.5 Summary 

The barotropic response of the Chesapeake Bay to the hurricanes has been 

investigated by terms of storm surge, depth-integrated barotropic transport, and external 

forcing. Based on the classification of two types of storms for the Chesapeake Bay, the 

model verified that the eastern-type storm, Hurricane Floyd, generated the maximum 

surge in the southern part of the Bay whereas the western-type storm, Hurricane Isabel, 

created the highest surge in the northern part of the Bay. In the upper Bay, the surge 

propagating from the Bay mouth was set down by northerly local winds during Hurricane 

Floyd whereas it was set up by southerly local winds during Hurricane Isabel. 

Independent of these two types, both hurricanes had three stages in terms of storm surge 

at the mouth of the Bay: 1) growing (pre-storm) stage, 2) transition (ongoing-storm) stage, 

and 3) decaying (post-storm) stage. However, there are two major differences between 

the two hurricanes: 1) On the growing stage, the surge during Hurricane Floyd increased 

due to the seaward flux induced by Bay (local) winds that was restricted by the landward 

flux induced by shelf (remote) winds. In contrast, the surge during Hurricane Isabel 

increased due to the landward flux induced by shelf winds that exceeded the seaward flux 

induced by Bay winds. 2) The seaward flux on the decaying stage during Hurricane 

Floyd dominated and this generated the divergence in the lower Bay to decrease the surge, 

whereas the landward flux dominated during Hurricane Isabel and this generated the 

divergence to decrease the surge in the lower Bay. Therefore, the temporal variation of 

local convergence/divergence in barotropic transport is the key to understanding better 

the propagation and evolution of storm surge. Additionally the barotropic exchange 
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between Bay (estuary) and its tributaries (sub-estuary) will be determined by the local 

convergence and divergence processes. 

The numerical experiments for the effect of local and remote winds lead us to 

understand that both hurricanes has the same magnitude of remote wind effect but the 

opposite local wind effect on storm surge and barotropic transport. The model result 

suggests that river inflows should be the secondary forcing to increase the water surface 

elevation in the upstream of the Bay tributaries, which gives rise to the inundation 

damage. 

The barotropic, the depth-integrated and laterally integrated volumetric transport 

(i.e., Eq. 5-2) across a transect denotes only the quantitative net flux during the hurricane 

events. The vertical structure and lateral variation of volumetric transport become 

important in the partially mixed estuary because it is characterized by the effects of 

stratificationldestratification and Earth's rotation on the estuarine circulation. During a 

hurricane event, the circulation in the estuary should be controlled by the wind-driven 

circulation and the gravitational circulation. The sea surface elevation remaining after 

the storm passage is a combination of a quasi-stationary trough geostrophically adjusted 

with the depth-averaged currents and a sea surface elevation induced by the baroclinic 

effects (Ginis and Sutyrin, 1995). Therefore, the baroclinic effect during hurricane 

events on the circulation in the Chesapeake Bay will be discussed in Chapter VI. 
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Chapter VI 

A BAROCLINIC RESPONSE OF THE CHESAPEAKE BAY 

TO HURRICANES FLOYD AND ISABEL 

6.1 Introduction 

The baroclinic response of the Bay to a moving storm is characterized by volume 

and salt influx from the ocean, wind-induced vertical mixing, the effect of buoyancy 

induced by heavy rains and fresh water inflows, and accompanied by storm-induced 

barotropic/baroclinic flow motions. Vertical mixing has been shown to have a significant 

role in the gravitational circulation of estuaries (Pritchard, 1967). Increased exchange 

between surface and bottom water results in an increase in the potential energy of the 

system. In estuaries, vertical mixing is assumed to be primarily generated by the tide. 

However, wind-induced mixing often exceeds tide-induced mixing. In other words, the 

magnitude of wind-driven circulation frequently exceeds that of the gravitational 

circulation (Goodrich et al., 1987). 

Typically, a tropical storm moving from the open ocean to coastal seas brings salt 

water with storm surge into estuaries. Associated rainfall also increases freshwater 

discharges from the upstream of estuaries. These two aspects increase horizontal density 

and pressure gradients in estuaries and affect the estuarine circulation. Hurricane­

induced saltwater influx in a partially mixed estuary or river has significant effects on not 
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only physical properties but also biogeochemical dynamics (Valle-Levinson et al., 2002; 

Roman et al.,2005; Boicourt, 2005; Frazer et al., 2006; Miller et al., 2005; Reay and 

Moore, 2005; Tango et al., 2006; Trice et al., 2005; Gong et al., 2007; Li et al., 2007). In 

particular, hurricane-induced pulses of high salinity have important consequences for 

submersed aquatic vegetation (SAV) and shifts in distribution and abundance of ocean 

fish (Conner, 1993; Gresham, 1993; Williams, 1993). Saltwater flooding can also be 

caused by storm surges that significantly alter forest communities (Conner and Inabinette, 

2005). Thus, the effects of the exchange of saltwater induced by a hurricane will be 

examined in this study. 

Wind-induced destratification in the Chesapeake Bay was frequently observed to 

occur from early autumn through mid-spring (Goodrich et al., 1987). Blumberg and 

Goodrich (1990) numerically verified that the destratification resulted from storms in 

early autumn. Their numerical experiments indicate that internal shear is a more 

effective mechanism for destratification than direct propagation of turbulence from the 

surface. Recently, however, Li et al. (2007) explored the hurricane-induced 

destratification and post-storm restratification processes in the Chesapeake Bay during 

Hurricane Isabel, 2003. They suggested that the combined remote and local wind forcing 

can cause the different effects on turbulent mixing, and after the hurricane passed, 

turbulent mixing due to tides or subsequent winds works against the gravitational 

adjustment to produce quasi-steady salinity distribution in the Bay. 

Alternatively, wind stress increases estuarine stratification by reducing the 

longitudinal density gradient (Geyer, 1997; North et al., 2004; Scully et al., 2005). Geyer 

(1997) showed that down-estuary winds enhanced surface outflow, significantly reducing 
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the along-estuary salinity gradient. North et al. (2004) demonstrated that increased 

stratification was associated with down-estuary wind events, but did not address the role 

that the increased stratification may play in reducing vertical mixing and enhancing the 

baroclinically driven estuarine circulation. In the York River Estuary, VA, Scully et al. 

(2005) found that down-estuary winds enhance the tidally averaged vertical shear, which 

interacts with the along-channel density gradient to increase vertical stratification, 

whereas up-estuary winds tend to reduce, or even reverse, the vertical shear, reducing 

vertical stratification, called wind-induced straining. Wind stress not only plays a 

predominant role in mixing away estuarine stratification, but also acts on straining the 

along-channel estuarine density gradient. In a partially mixed estuary system, down­

estuary winds tend to enhance tidally averaged vertical shear increasing vertical 

stratification, whereas up-estuary winds tends to reduce or reverse vertical shear 

decreasing vertical stratification. In the Chesapeake Bay, two hurricanes that had 

different post-storm winds- northerly (down-estuary) winds after the passage of 

Hurricane Floyd (1999) but southerly (up-estuary) winds after the passage of Hurricane 

Isabel (2003)- may cause different de-stratificationlre-stratification processes after the 

hurricanes passed. It is questionable how vertical destratification/restratification 

proceeds through the water column during the hurricane events. 

The effect of the precipitation or freshwater input on the baroclinic circulation 

deserves to be verified because the buoyancy forcing from the river discharge tends to 

increase the horizontal density gradient on the surface of the water column and then 

increase the vertical density gradient. The freshwaters flowing out of the Bay generate a 

plume that could affect the interaction between the inner shelf and the Bay estuary. 
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The purpose of this study, therefore, is to examine the baroclinic response of the 

Chesapeake Bay to hurricane events, comparing Hurricanes Floyd and Isabel. Thus, the 

first goal is to investigate the saltwater transport in the Chesapeake Bay during the 

hurricanes, the second goal is to obtain further insights into the physics of storm-induced 

mixing in the Bay, and the last goal is to explore the influences of local and remote winds, 

and precipitation. The outline of this chapter is as follows. In Section 6.2 the saltwater 

transport induced by meteorological forcing in the Chesapeake Bay estuary is described. 

Hurricane-induced mixing process is examined in Section 6.3. The effects of local and 

remote winds and the influences of precipitation are discussed in Section 6.4 and Section 

6.5, respectively. Concluding remarks are summarized in Section 6.6. 

6.2 Meteorologically induced oceanic influx 

6.2.1 Profiles of velocity and salinity during Hurricanes Floyd and Isabel 

Based on three-dimensional, baroclinic SELFE model simulation as described in 

Chapter IV, the velocity and salinity model results responding to the two hurricanes were 

analyzed. 

Longitudinal distribution of velocity and salinity 

Longitudinal distributions of 25-hour averaged velocity and salinity were plotted 

in Figure 6.1 for Hurricane Floyd and in Figure 6.2 for Hurricane Isabel. As general 

remarks, both hurricanes generated vertical mixing and de-stratified the entire water 

column. However, stratification with a ~S around 2 ppt still remained in the mid-Bay 

145 



E' -1o -.c;; 
Ci.-20 
~ 

-30 

-40 .,-, ,--r•-•••r=-• • ,_ r I I I I 

'§:: -10 1i it.Jl::&.:fi~i.-.J-·-····;1'· ··I ....... r:::~~ ... ,, >fu~~ 
.c;; 
1i. -20 ~ 1:-l I.:;-J . .;;..;...t;:::·:. ;· ~~::::: : • ./.:~& \~ 

~ 

30~ ~ ~ Jc} ~e~te ber 17 ~::; . 

§: -10 

.c;; 
Ci.-20 
CD 

0 
-30 

I 

;. ~Is j 

0.5 m/s 
_40 • ,_, r::-r·-···--· -- r . . , , 

100 150 200 250 300 
Distance from the head (km) 

-10 

-20 

-30 

-40 

-10 

-20 

-30 

-40 I (f) $epterijber 22 y y I I ~-~ .. 
1 
.. ~ I 

50 100 150 200 250 300 
Distance from the head (km) 
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during events although the surface mixed layer reached to 20 m in depth. Prior to the 

storm, the observed stratification (~S) in the Bay shows a significant difference between 

September 1999 and September 2003 (Table 6-1 ). At CB4.4, pre-Floyd stratification was 

nearly 4 ppt whereas pre-Isabel stratification was nearly 11.5 ppt. The model results 

showed that stratification in the mid Bay decreased by 2 ppt during Hurricane Floyd but 

decreased by 7 ppt during Hurricane Isabel. In the lower Bay, it is clear that the saltwater 

intrusion occurred during both hurricanes (see Figures 6-1 b, 6-2b and c). In a semi­

enclosed water body such as Chesapeake Bay, hurricane-induced saltwater influx from 

the ocean mainly occurs by the current that is driven by direct wind stress and a hayward 

barotropic pressure gradient. However, it is questionable how much saltwater flux exists 

and how far saltwater intrudes during these two hurricanes. 

Lateral variation of velocity and salinity 

During Hurricane Floyd, the lateral gradients of velocity and salinity were 

changed. Figure 6-3 shows the tidally averaged (25-h averaged) axial velocity and 

salinity transversely across the Bay mouth (trOl in Figure 5-2), which represents a typical 

lateral distribution pattern of axial velocity and salinity during the storm. Prior to the 

passage of the hurricane's eye (Figure 6-3a), the region south of the Bay mouth had a 

two-layer circulation pattern, which shows that fresher water flows out of the Bay on the 

surface, whereas completely mixed saltier water flows into the Bay through the bottom. 

The area north of the Bay mouth (Cape Charles) was dominated by the landward 

saltwater flow. On September 16, an entirely seaward flow was dominant in the area 

south of the mouth (Cape Henry) and the water column became de-stratified showing 
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approximately 1 ppt salinity difference between surface and bottom. Completely well­

mixed, laterally homogeneous net landward flow was characterized across the northern 

section, which is 10 to 25 km north of Cape Henry. After the passage of the eye over the 

mouth (September 1 7), the flow direction changed to seaward along the entire cross­

section. The net surface flow in the deep channel was slightly stronger than that in the 

shallow region, which shows that salinity decreased by approximately 3-4 ppt. On the 

next day, the landward return flow occurred through the entire transect (Figure 6-3d). 

Stratification in the deep channel was slightly enhanced by 3-4 ppt due to relatively 

strong saltier water inflow through the bottom layer. Within a week, the net flow across 

the transect appeared to return to a two-layer circulation pattern and the vertical salinity 

structure appeared to be adjusted by there-stratification process (Figure 6-3e and 6-3f). 

During Hurricane Isabel, prior to the storm, the net flow across the transect 

showed a similar two-layer circulation pattern as that observed during Hurricane Floyd 

(Figure 6-4a). The salinity difference between surface and bottom waters in the deep 

channel was approximately 6-7 ppt, which is 4-5 ppt larger than the pre-Floyd condition. 

On September 18, the storm elicited the landward flows with vertically homogeneous 

saltwater from the ocean (Figure 6-4b ). The surface flow was stronger than the bottom 

flow due to wind-generated vertical shear stress. Lateral salinity gradient was shrunk into 

the side of Cape Henry. The net flow started to change into the seaward flow through the 

entire transect on the next day and stratification in the deep channel started to be 

enhanced as well (Figure 6-4c ). The seaward net flow became intensified on September 

20, and a lateral salinity gradient began to extend to the side of Cape Charles (Figure 6-

4d). Within a week, the net flow appears to return to a two-layer circulation pattern 
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showing a 7-8 ppt salinity difference between surface and bottom waters in the channel 

(Figures 6-4e and 6-4t). Using these cross-sectional distributions of axial velocity and 

salinity, net volume flux and net salt flux can be calculated across selected transects. 

6.2.2 Calculation of volume fluxes along the cross-sections 

The volume flux has been calculated by using Eq. (5-2) across each transect. The 

volume flux at the trOl transect, which is a significant intersection between the Bay and 

the continental shelf, is analyzed to estimate how much oceanic influx occurred during 

both hurricanes. 

Hurricane Floyd 

Figure 6-5(a) shows the time series of total volume flux across trOl. As described 

in Section 5.3.2, the influx across tr01 slightly occurred on September 16. Consequently, 

on next day volume flux was dominated by huge outflux due to northerly winds. Across 

the transect tr01, spatial distribution of net volume flux averaged over one tidal-cycle 

(~12.5 hours) on September 16 are shown in Figure 6-5b. Net volume influx occurred 

dominantly through two portions, main channel and northern portion. The magnitude of 

influxes at mid depths was in ranges of 4 to 6 x 103 m3 s -I. Flows into the Bay tend to be 

influenced by Corio lis force and to veer to the right portion of Bay entrance. Across the 

transect tr06 in the mid-Bay, net volume influx occurred due to tidal fluctuations (Figure 

6-5c ). Cross-sectional distribution of net volume flux shows two-layered pattern due to 

northerly winds, which represents that seaward flux occurred in the surface layer whereas 
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landward flux occurred in the bottom layer (Figure 6-5d). This indicates that baroclinic 

component is dominant in this portion. 

Hurricane Isabel 

During Hurricane Isabel, the time series of net volume flux across tr01 is shown 

in Figure 6-6a. Volume influx across both transects occurred on September 18 to 19, 

2003, followed by outflux afterwards. Spatial distribution of net volume flux averaged 

over two tidal cycles on September 18 to 19 is shown in Figure 6-6b. Similar to the 

influx pattern during Hurricane Floyd, net volume influx occurred dominantly through 

two portions. However, its magnitude during Hurricane Isabel was twice larger than that 

during Hurricane Floyd, showing approximately 8 to 12 x 103 m3 s"1 at mid depths. 

Across tr05, net volume influx occurred on September 18 tO 19 (Figure 6-5c). Cross-

sectional distribution of net volume flux shows uni-direction pattern, which represents 

that landward flux occurred in the whole water column (Figure 6-5d). 

6.2.3 Calculation of salt fluxes along the cross-sections 

The amount of salt transport should be obtained by spatial integration of the 

product of velocity and salinity over the portion of the cross-section A (Kuo and Park, 

1992): 

M= JuS dA (6.1) 
A 

where u is the component of the current velocity normal to the sectional area and S is the 

salinity of the water. Quantitatively, salt fluxes have been analyzed by the same method 

as that described in Section 5.3.2. 
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Hurricane Floyd 

The time series and spatial distributions of net salt flux across trOl and tr06 are 

presented in Figure 6-7. It is evident that oceanic influx occurs a certain period when 

Hurricane Floyd approached. It shows similar patterns to net volume fluxes across two 

transects. Oceanic salt influx across trOl does not seem to reach the mid-Bay portion 

since seaward flux overcame the influx due to northerly winds. Half-daily net salt flux 

across each transect is shown in Figure 6-8. During Hurricane Floyd, the net salt flux in 

the main Bay is characterized by the following three general patterns: 1) landward salt 

fluxes at all transects were dominant through September 14, 2) seaward salt flux became 

dominant from September 15 to 17, and 3) landward salt flux again occurred after 

September 18 (Figure 6-8a ). These patterns follow the patterns of volume flux described 

in Section 5.3.2. In other words, the net salt flux shows the maximum value at the Bay 

mouth transect (tr01) and decreases at transects to the north (tr02 to tr09). Interestingly, 

during the second half of September 15, the net salt flux across trO 1 was smaller than that 

across tr02. This indicates that salt increased in the region surrounded by trO 1, tr02, and 

Jam. This caused a convergence and increased the water volume in the region, and 

consequently landward net salt flux occurred across the James River transect (Figure 6-

9a). Seaward salt fluxes were dominant in mid-Bay and the upper Bay (Figure 6-lOa). 

During the first half of September 16 (Figures 6-9b and 6-1 Ob ), the salt flux in the lower 

Bay began to change landward, but still seaward salt fluxes remained in the mid Bay. 

The signal of salt increase propagated up to the mid-Bay portion near Potomac River in 

spite of seaward salt flux. This indicates that the mid portion of the Bay proper was 

converged upon by landward salt flux from the ocean and seaward salt flux from the 

156 



(i) 1l I I I I I ~ 1.0 

~ 1 5 "' + : Seaward -i 0_ 
:!::!-
(11 Q,. 0 
CJ)Q. 

G)~ -5 

z ~- I (a) I I I I I I 
10

14 15 16 17 18 19 
Days in September, 1999 

+:Seaward 

15 16 17 18 19 20 
Days in September, 1999 

5l I I I I J 
0 ' . ;> 

0~------------~------------==~----

-0.5--\ \ 
/ /'" I \ 

/ q_gl -0.~ 
1-1,,11~ 
' I \ ,,, 

0.. \\I 

-10 +:Seaward 

-15 

-20 

Net salt flux 
:5 -15t ' ' Vl

1 

~ -20~ ' 11 

Net salt flux r5 
-25 ( x 105ppt m3/ s) _30 
-30 (b) I I I I_JJ (d) I I I I I I I I I I J 

0 5 10 15 20 25 0 2 4 6 8 10 

( x 104ppt m3/ s) 

Distance from Cape Henry (km) Distance from western shore (km) 

Fig. 6-7 Estimated net salt flux during Hurricane Floyd; (a) temporal variation and (b) spatial distribution across tr01; (c) 

temporal variation and (d) spatial distribution across tr06. Spatial distributions of net salt flux were averaged over one tidal­

cycle on September 16, 1999. 

157 



-!!. (') 

E 
't5. 
Q, 

~ 
T"' 
)( -)( 
.=! u. 

3 (~) 

2 

1 

0 

-1 

' ' ' ' ' ' ' ' ' ' ' ' ' 
i( +) $ea~artjl 

' ' ' ' : 
: 
! 
: 
! 
' ' ' ' ' ' 

J__ Ja.JA--r! lr ' -r·' ' I I I I 

I l I : : ~ 
I 1 1 1 I I 
I 1 1 1 I I 

! (-) l~d~artl ! i 
I I I I I I i I ! I I 

~ ... 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' : 

5r-~--~----~~--,-~---r--~-T----~--~~--~~ 

(b.) ! T ! ! ! !!!~~ 

--~ : . 1 Pbt 
I ·I I 

=
P~t 
~p 

4 

3 

' ' ' ' I l 
2 

~ ~ 
' ' ' ' 0 I 

1 
K+) baywanil 
I I I I 
I I I I 
I I I I 

: : ! : : 

~JL+ ,f.~ll ,. 
! 11' ! il' ' !I T 

! ! ! ! ! 
0 ~-!.. j_ ~ .J....-f_lr,·.J!. 

I I :--- : !I 
I I I I I 
I I I I I I 

-1 

-2 
13 

I I I 

I I I 
I i i 

I 1 1 1 I I 
I I I I I I 
I I 1 1 I I 
I I I I I I 
I I I I I I 

: l I : l : 

k-) tand~anlt ! 
: I : ~ ~ 

14 15 16 17 18 19 20 21 
Days in September, 1999 

Fig. 6-8 One tidal-cycle averaged net salt flux at each transect (a) in the Chesapeake Bay 

mainstem and (b) its tributaries during Hurricane Floyd, 1999. 

158 



se'l:~&nla Half tr01 
09/16/1999 

Fig. 6-9 Time sequence of net salt flux (x 105 ppt m3 s"1
) averaged over a tidal cycle at 

transects in the lower Chesapeake Bay during Hurricane Floyd, 1999. The positive value 

denotes seaward flux and red and blue colors represent the increase and decrease of salt, 

respectively. 
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Fig. 6-10 Time sequence of net salt flux (x 105 ppt m3 s"1
) averaged over a tidal cycle at 

transects in the mid Chesapeake Bay during Hurricane Floyd, 1999. The positive value 

denotes seaward flux and red and blue colors represent the increase and decrease of salt, 

respectively. 

160 



upper Bay. The signal of salt decrease occurred at the Bay mouth. During the second 

half of September 16 (Figures 6-9c and 6-1 Oc ), the change to seaward salt flux occurred 

at two transects in the lower Bay and decreased the amount of salt. The signal of salt 

decrease appears to propagate to the upstream. The maximum value of seaward salt 

fluxes across transects in the southern portion of the Bay was represented during the first 

half of September 17. However, across transects in the northern portion of the Bay, the 

salt fluxes preferably decreased and rather the negative flux occurred across tr07 (Figures 

6-9d and 6-10d). This means that the down-Bay winds enhanced the divergence in both 

the upper Bay and the mid Bay. During the second half of September 17 (Figures 6-9e 

and 6-1 Oe ), seaward salt flux decreased remarkably across each transect and it generated 

the convergence of salt flux up to the portion of Potomac River. One day later (Figures 

6-9f and 6-1 Of), the change to landward salt flux across each transect with a return flow 

prolonged the convergence of net salt flux throughout the entire Bay. 

Hurricane Isabel 

The time series and spatial distributions of net salt flux across tr01 and tr06 are 

presented in Figure 6-11. The pattern of net salt flux is similar to that of net volume flux. 

The salt influx across tr03 had the same magnitude of the salt flux across trO 1. The salt 

influx across tr06 is supposed to be smaller than the salt influx across trO 1, because mean 

salinity and volume flux across tr06 were smaller than mean salinity and volume flux 

across tr01. This indicates that southerly winds tend to enhance salt influx to the 

upstream of the Bay. Net salt flux across each transect during Hurricane Isabel was 

calculated (Figure 6-12). During Hurricane Isabel, the net salt flux in the Bay proper is 
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characterized by three general patterns as follows: 1) landward salt fluxes across all 

transects were dominant through September 17, 2) a huge landward salt flux occurred 

from the second half on September 18 through the first half on September 19, and 3) a 

huge return salt flux headed seaward from the second half on September 19 to the first 

half on September 20 and then decreased. Similar to the volume flux as described in 

Chapter V, from the second half of September 17 to the second half of September 18, 

landward salt flux induced by northeasterly and easterly winds across downstream 

transects was larger than that across upstream transects. This caused the generation of a 

convergence to increase salt in the Bay (Figures 6-13a,b and 6-14a,b ). During the first 

half of September 19, when the winds changed to southeasterly and southerly winds, 

landward salt flux across transects weakened in the lower Bay but strengthened in the 

mid Bay and upper Bay. As a result, divergence occurred in the lower Bay but 

convergence was prolonged in two upper portions of the Bay (Figures 6-13c and 6-14c). 

The rapid change to seaward salt flux generated the divergence of salt flux throughout the 

entire Bay during the second half of September 19 and seaward salt flux was enhanced 

during the next half day (Figures 6-13d,e and 6-14d,e ). The seaward salt flux across the 

lower Bay transects and the change to landward salt flux across the upper Bay transects 

coincide with the loss of salt flux in the entire portions of the Bay (Figures 6-13fand 6-

14f). 

The oceanic salt influx obviously occurred from the Bay mouth during both 

hurricanes and the signal propagated upstream through the convergence process. 

However, during Hurricane Floyd, strong seaward flow induced by down-Bay winds 

restricted landward salt flux to the upper Bay whereas landward flow enhanced by up-
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Bay winds during Hurricane Isabel strengthened landward salt flux to the upper Bay. 

Supposedly, during both hurricanes, landward salt flux should be balanced by seaward 

salt flux if assuming an equilibrium state. During Hurricane Floyd, across the Bay mouth 

transect (tr01) the sum of net salt flux was nearly(+) 48.2 x 105 ppt m3 s-1
• However, 

during Hurricane Isabel, the sum of net salt flux was nearly (-) 4.3 x 105 ppt m3 s-1
• This 

indicates that landward salt flux is expected to occur after Hurricane Floyd, whereas 

slightly seaward salt flux will occur after Hurricane Isabel. This will affect the time scale 

of estuarine recovery in the Bay. 
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mainstem and (b) its tributaries during Hurricane Isabel, 2003 (same legend as Figure 6-
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Fig. 6-13 Time sequence of net salt flux (x 105 ppt m3 s-1
) averaged over a tidal cycle at 

transects in the lower Chesapeake Bay during Hurricane Isabel, 2003. The positive value 

denotes seaward flux and red and blue colors represent the increase and decrease of salt, 

respectively. 
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Fig. 6-14 Time sequence of net salt flux (x 105 ppt m3 s"1
) averaged over a tidal cycle at 

transects in the mid Chesapeake Bay during Hurricane Isabel, 2003. The positive value 

denotes seaward flux and red and blue colors represent the increase and decrease of salt, 

respectively. 
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6.3 Hurricane-induced mixing process 

6.3.1 Storm event experiments 

In a semi-enclosed water body such as Chesapeake Bay, winds generate turbulent 

mixing either through wind stress to mix the surface water directly or through internal 

velocity shear produced by the wind-generated slope, which drives the bottom water in 

the opposite direction (Wang, 1979a; Vieira, 1986; Li et al., 2007). Li et al. (2007) 

showed that strong hurricane-forced winds caused intense turbulent mixing and complete 

de-stratification in the water column and suggested the effect of the combined local and 

remote wind forcing. A surge wave generated in the Bay mouth propagates to the upper 

Bay (see Chapter V). Simultaneously, saltwater influx from the ocean occurs due to the 

current driven by direct wind stress and the landward horizontal pressure gradient as 

described in Section 6.2. Thus, in this section, two main mechanisms of destratification 

during two hurricanes will be focused: 1) surge-induced mixing and 2) local wind­

induced mixing. However, to compare the mixing and stratification between two types of 

hurricanes, the initial condition for stratification needs to be considered. For example, 

the Chesapeake Bay had a different pre-storm condition of stratification for two 

hurricanes (Table 6-1 ). In order to make a fair comparison of the effects of two different 

types of hurricanes, a series of numerical experiments needs to be conducted. Six 

experiments have been performed to examine the mixing process induced by 

meteorological external forcing (Table 6-2). The base run was specified with only the M2 

tidal constituent, constant ambient current of 10 em s·1
, and constant river discharge of 

550m3 s-1 as an average summer flow in 1985, which was considered as one of the driest 

summers (Krome and Corlett, 1990). The use of a single semi-diurnal tidal constituent 

precludes the effect of spring-neap tides on salinity. A constant value of ambient current 
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Table 6-1 Comparison of observed stratification between pre-storm and post-storm at 

four selected CBP stations during Hurricanes Floyd (1999) and Isabel (2003). 

Salinity Stratification (ppt) 

Station ID 
Floyd (1999) Isabel (2003) 

pre-storm post-storm pre-storm post-storm 

(Aug/17-18) (Sep/21-22) (Sep/15-16) (Sep/22-23) 

CB3.1 2.43 7.80 9.03 2.39 

CB3.2 1.77 6.72 8.37 1.75 

CB4.4 4.10 4.85 11.52 4.97 

CB5.3 3.04 5.45 10.90 8.61 

Table 6-2 Summary of numerical experiments performed. 

Total River Ambient Subtidal 

Experiments Winds Discharge Current Alongshore 

(m3 s·1) (em s"1) PG* 

NW no wind 550 10 

FL-C combined winds (Floyd) 550 10 0 

IS-C combined winds (Isabel) 550 10 0 

FL-L local winds (Floyd) 550 10 

IS-L local winds (Isabel) 550 10 

FL-R remote winds (Floyd) 550 10 0 
IS-R remote winds (Isabel) 550 10 0 

* PG represents the pressure gradient. 
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was used as a non-tidal flux boundary condition on two cross-shore open boundaries. 

The numerical tests to determine the value of 10 em s-1 for the ambient current are 

described in Chapter VIII. To get the initial condition for salinity in the equilibrium state, 

without meteorological forcing, the model was spun up for 180 days from the cold start 

that salinity has a linear variation horizontally from Bay head (0 ppt) to open ocean 

(34~35 ppt) and no stratification in vertical. When the relative gradient of tidally 

averaged salinity difference with respect to time reduces to an insignificantly small value 

(0.1 % ), it is assumed that the salinity reached the equilibrium state. The modeled 

salinity reached the equilibrium state at nearly 150 days from the cold start. 

As depicted in Figures 2-2 and 2-7, relatively strong winds were recorded before 

and after the hurricane events. In order to exclude these wind effects, significant periods 

of four days have been chosen from each hurricane, and winds and atmospheric pressure 

have been extracted from these periods as surface boundary conditions which vary with 

time and space (Figure 6-15). These forcings are turned on at Day 186 and turned off at 

Day 190. In the next sections, the results are presented, followed by four scenarios 

depicting the effects of local and remote winds. 

6.3.2 Temporal variations of vertical structures 

Instantaneous velocity and salinity 

Time series of instantaneous axial velocities at five selected stations are plotted in 

Figure 6-16 for Experiment FL-C (combined remote and local wind forcing of Hurricane 

Floyd) and Experiment IS-C (combined remote and local wind forcing of Hurricane 

Isabel). The top to bottom panels show results for the upper Bay station (CB3.3c) to the 
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lower Bay station (CB7.4). For the FL-C case (Figures 6-16a to 6-16e), in the upper Bay 

the seaward surface velocity dominated whereas the landward bottom velocity dominated. 

From the lower Bay to mid-Bay, the velocities had a similar pattern whereby landward 

flow at both depths initially dominated but then suddenly changed to seaward flow. The 

magnitude of velocity decreased from the lower Bay to mid-Bay. The surface velocity 

was intensified by surface wind stress and the bottom friction influenced on diminishing 

the bottom velocity. The velocities were nearly recovered within a week after wind 

forcing was turned off. In the IS-C case (Figure 6-16f to 6-16j), the velocities at five 

stations had a similar pattern that initially the landward flow increased until it reached a 

peak and changed to seaward flow. The bottom and surface velocities at the stations had 

the identical direction most of time during the event. The velocities were nearly 

recovered within a week after wind forcing was switched off. 

Time series of instantaneous bottom and surface salinities for both experiments 

are shown in Figure 6-17. Results common to both experiments, FL-C and IS-C, are: 

1) the surface salinity at all stations increased during the storm, 

2) the bottom salinity from the Bay mouth up to the mid-Bay station (CB5.3) increased, 

3) stratification decreased during the storm, and 

4) a completely well-mixed condition in the lower Bay persisted longer. 

On the contrary, results differing between the experiments are: 

1) the bottom salinity from the mid-Bay (CB4.4) to the upper Bay decreased during 

Hurricane Floyd, but increased during Hurricane Isabel, 

2) surface and bottom salinities in the lower Bay remained with high values during 

Hurricane Isabel but quickly dropped at Day 188.5 during Hurricane Floyd, 
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3) during Hurricane Floyd, a well-mixed water column in the upper Bay was rapidly re­

stratified even though the wind forcing was not switched off, and 

4) in the lower Bay, the stratification quickly increased when Hurricane Floyd wind 

stopped but the de-stratified water column was still maintained over one day or more. 

Similar to the observation as depicted in Table 6-1, the model results showed that the 

stratification after Hurricane Floyd tends to be larger than the pre-storm condition, 

whereas the stratification after Hurricane Isabel tends to be smaller than the pre-storm 

condition. During these two hurricanes, the salinity stratification appears to be 

influenced by the combination of local and remote winds (Li et al., 2007). This 

combined effect will be discussed in Section 6.4. 

Vertical profiles of tidally averaged velocity 

To examine the temporally varying vertical structure of velocity, tidally averaged 

(over M2 period) along-channel velocities at three stations were plotted in Figure 6-18. A 

station was selected from each of three regimes: CB3.3c in the upper Bay, CB5.3 in the 

mid-Bay, and CB7.4 in the lower Bay. The time sequence was selected as to=186.0, 

t1=187.0, t2=l88.0, t3=l88.S, 4=189.0, ts=189.5, 1{j=l90.0, and t7=192.0 (in days). In 

Figure 6-18, the depths were normalized with total depth at each station and positive 

values of velocity represent seaward flow. For the FL-C case (left panels in Figure 6-18), 

the three regimes show different profiles. At CB3.3c (Figure 6-18a), the initial two­

layered gravitational circulation is shown (t=to). When the down-Bay (northerly) winds 

began to blow, seaward flow in the surface layer started to strengthen (t=t1 to t2). At t=t3, 

the zero-velocity depth became depressed to the bottom and the maximum seaward flow 
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occurred in the surface layer. After the next tidal cycle (!=='4), when the winds began to 

weaken, the velocity profile was bounded landward, and then seaward flow became 

strengthened again at t=t5• The change to landward flow in the surface layer resulted in 

uni-directionallandward flow at i=i(). After t=t6, the vertical profile of along-channel 

velocity was restored to the pre-storm condition. The velocity profile fully reversed 

back-and-forth twice. At CB5.2 (Figure 6-18b), an initial two-layer circulation pattern is 

shown (t=t0). Then, landward bottom flow slightly weakened until t=t1• The change to 

landward flow in the surface layer resulted in landward flows throughout the water 

column at t=t3. Next, the surface flow changed to seaward until t=t5 and then it was again 

rebounded to landward at t=t6. Landward bottom flow increased until t=t3 and then 

decreased. After t=i6, the flow pattern began to be restored to the two-layer flow. 

Interestingly, during the storm, the flow in the surface layer changed its direction four 

times whereas that in the bottom layer had no changes in direction. This indicates that, in 

the mid Bay, the surface flow is more sensitive to the balance between wind stress and 

horizontal pressure gradient force than the bottom flow. At CB7.4 (Figure 6-18c), a two­

layer pattern in circulation was shown as the pre-storm condition (t=t0): relatively strong 

seaward flow in the surface layer but weak landward flow in the bottom layer. The 

change to landward flow occurred in the surface layer at t=t2 and resulted in vertically 

homogeneous landward flow. However, it was followed by strong seaward flow at t=t3 

and this vertically uni-directional seaward flow strengthened at t=4 showing much 

enhanced surface flow. The strong return flows to landward occurred the next day from 

t=t5 to t=i6. After t=t6, landward bottom flow weakened and the surface flow changed to 
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seaward, and subsequently the vertical profiles of along-channel velocity began to return 

to the pre-storm condition. 

For the 18-C case (right panels in Figure 6-18), the vertical profiles of the velocity 

represented different patterns at three locations. The initial profiles of the velocity at 

three locations are identical to those in the FL-C case. At CB3.3c (Figure 6-18d), in 

contrast to the FL-C case, landward bottom flow first began to increase until t=t3. At t==14, 

strong landward flow throughout the water column occurred to destroy two-layer 

circulation. This landward flow was driven by the combination of local up-Bay 

(southerly) winds and the propagated storm surge. When the seaward horizontal pressure 

gradient overwhelmed the landward wind stress, the entire water column flow rapidly 

changed to seaward (t==!(;). As the flow weakened after t=t6, the vertical profile of the 

velocity was restored to the pre-storm condition. At CB5.2 (Figure 6-18e), similar to the 

flow at CB3.3c, two-layer circulation began to be destroyed by landward flow. This 

landward flow over the entire water column remained until t==14 and then rapidly changed 

to seaward at t=t5 as a return flow. At t=t6, bottom flow changed to landward and 

seaward surface flow decreased, showing the two-layer circulation pattern. The vertical 

pattern began to be restored to the initial two-layer circulation afterwards. At CB7.4 

(Figure 6-18t), similar to the FL-C case, a uni-directionallandward flow occurred at t=t2 

but it was followed by strengthened landward flow at t=t3. At t=4, the flow was mostly 

zero and the change to seaward flow over the entire water column occurred at t=t5• This 

seaward flow remained for the next one day (t=t6). Two days later (t=t7), the vertical 

profiles of along-channel velocity nearly returned to the pre-storm condition. 
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Fig. 6-18 Vertical profiles of tidally averaged along-channel velocity at three stations 
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Vertical profiles of tidally averaged salinity 

As shown in Figure 6-19, the vertical salinity was analyzed by the same method 

as described above. For the FL-C case (left panels in Figure 6-19), at CB3.3c, the initial 

salinity difference between bottom and surface (llS) was approximately 2 ppt. The local 

winds deepened surface mixed-layer depth to z/H=-0.4, increasing surface salinity at t=h. 

At t=t3, the water column became more de-stratified to decrease surface salinity by 1 ppt 

and decrease bottom salinity by approximately 1.5 ppt. This destratification corresponds 

to the strong seaward flow as depicted in Figure 6-19a. When the winds weakened, the 

water column began to be re-stratified. The llS began to increase at t=4 representing two 

distinct mixed layers in the surface and the bottom, and it is shown that surface salinity 

decreased by 1 ppt and bottom salinity increased by 1 ppt at t=t5• Both bottom and 

surface salinities began to increase (t=t6), and the stratification slightly increased two 

days later. At CB5.2 (Figure 6-19b), when the wind was forced on the surface layer, the 

stratification began to decrease, showing that surface salinity increased and bottom 

salinity decreased (t=t1 and t2). At t=t3, the water column was completely mixed. 

Interestingly, the increase of surface salinity (approximately 2.5 ppt) exceeded the 

decrease of bottom salinity (approximately 0.5 ppt). This corresponds to the strong 

landward flow through the water column. This indicates that landward flow affects to 

increase surface salinity but to decrease bottom salinity slightly. At t=4, only surface 

salinity decreased and llS increased. Subsequently, bottom salinity decreased at t=16. 

Two days later (t=t7), the salinities throughout the water column increased by 0.5 ppt 

showing a smaller llS than the initial value. At CB7.4 (Figure 6-19c), in contrast to the 

other 2 locations, initially both surface and bottom salinities rapidly started to increase 
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and deepened the surface mixed-layer depth (t=t1). A vertically homogeneous condition 

occurred at t=tz with high salinity approximately 31.5 ppt. This high salinity condition 

remained with destratification until t=t3. Although similar salinity profiles occurred for 

two tidal cycles, the velocity profiles during these two tidal cycles showed opposite 

directions as depicted in Figure 6-18c, which were landward flow at t=tz and seaward 

flow at t=t3. Due to this seaward flow, the salinity remarkably decreased by 5 ppt at t=4 

but remained well-mixed. When the flow changed to landward, the lowest salinity 

occurred at t=t5• After the next tidal cycle (t==4;), bottom salinity first increased due to 

landward bottom flow. Two days later, both salinities increased, overshooting the initial 

condition. The salinity profile is expected to return to normal afterwards. The detailed 

recovery process will be discussed in Chapter VII. 

For the IS-C case (right panels in Figure 6-19), at CB3.3c, the local wind started 

to deepen surface mixed-layer depth, increasing the salinity over the entire water column 

(t=tz). At t=t3, both bottom and surface salinities increased whereas the salinity in mid­

depth slightly decreased. The bottom salinity was supposed to decrease due to vertical 

mixing but the enhanced landward bottom flow increased the bottom salinity. After the 

next tidal cycle (t=4), the water column was completely de-stratified and the salinity 

increased to approximately 10.4 ppt. This corresponds to the strong landward flow as 

shown in Figure 6-14d. The surface salinity first retreated at t=t5, and the salinity over 

the entire water column decreased at t=t6. Afterwards, the salinity again decreased to the 

initial level. At CB5.2 (Figure 6-19e), the surface salinity began to increase deepening 

surface mixed-layer depth whereas the bottom salinity slightly increased. At t=4, ~S was 

nearly zero, showing that the increase of surface salinity from the initial value was 
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approximately 4 ppt whereas that of bottom salinity was only 1 ppt. Similar to the 

pattern at CB3.3c, the surface salinity retreated first (t=t5) and then the both salinities 

decreased next (t=t6). The water column began tore-stratify afterwards (t=t7). At CB7.4 

(Figure 6-19±), similar to the patterns at the two other locations, the surface salinity 

increased first due to local wind-induced mixing and then bottom salinity increased at 

t=t1• The landward flow at t=t2 began to increase the salinity throughout the water 

column, and a completely mixed water column was represented at t=t3 when the strongest 

landward flow occurred. When the flow was nearly zero (t=14), the highest salinity (32.4 

ppt) was shown in a de-stratified condition. Although strong seaward flow occurred at 

t=t5, high salinity with a well-mixed condition still remained for four tidal cycles. The 

salinity began to decrease due to strong seaward flow at t=i6, and continuously decreased 

to approximately 27 ppt. The stratification subsequently appears to begin to increase. 

The vertical structures of velocity and salinity play an important role in 

determining the destratification and restratification processes during storm events. 

Therefore, some mixing parameters used by those two physical parameters will be 

discussed in the next section. 
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Fig. 6-19 Vertical profiles of tidally averaged salinity at three stations with time 
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6.3.3 Dimensionless mixing parameters 

Mixed-layer dynamics was initially classified in lakes by Spigel and Imberger 

(1980). They suggested the dimensionless parameter to examine the strength of the 

interaction between mixing and motions. The interaction is determined by the relative 

importance of the two sources of turbulent kinetic energy (TKE), which are the stirring 

mechanism at or near the water surface by winds and the mechanism arising from the 

interaction of Reynolds stresses with shear, both within and at the base of the mixed layer. 

The gradient Richardson number (Ri) is a dimensionless ratio related to the buoyant 

production or consumption of turbulence divided by the shear production of turbulence, 

indicating dynamic stability and the formation of turbulence given by: 

g 8p 

Ri= Po 8z 

(:)' 
(6.2) 

where g is gravitational acceleration, p is density, u is velocity, and z is depth. If 

internal shear causes the turbulent mixing, Ri is expected to fall below 0.25. 

Thompson and Imberger (1980) and Monismith (1986) introduced a 

dimensionless parameter called the W edderbum number (W) to quantify the interaction 

between mixing and motions induced by wind stress in lakes. Geyer (1997) suggested 

that the Wedderburn number (W) can characterize the influence of wind stress in the 

dynamics on stratified estuaries, which is defined as: 

(6.3) 

where 't w is the surface wind stress , L is the length of the estuary, ~p is the density 
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variation along the estuary, g is the gravitational acceleration, and h1 is the thickness of 

the surface mixed layer. W:::::1 indicates the important role of wind stress in the estuarine 

circulation. In Chesapeake Bay, the longitudinal density gradient commonly has a spatial 

variation during hurricane events due to the salt water influx to the lower Bay. Therefore, 

Eq. 6.3 was modified as: 

(6.4) 

where 8p I ax is the longitudinal gradient of vertically averaged density. 

Another non-dimensional parameter to examine the interaction of shear, 

stratification and mixing is the horizontal Richardson number (Rix) defined as (Stacey et 

al., 2001): 

(6.5) 

where pis the saline expansivity (::: 7.7 X 10-4 psu-1 (MacCready, 2004)), r is the 

horizontal salinity gradient, U• is the friction velocity at the bottom layer, and H is the 

water depth. However, this parameter does not include the effect of wind stress on the 

surface layer. Recently, Chen and Sanford (2009) have defined the modified horizontal 

Richardson number, which is combined with the Wedderburn number (W), as: 

(6.6) 

where Nx ( ~ g p r) is the horizontal buoyancy frequency, KM is the effective vertical 

eddy viscosity (Dyer, 1997), and u.8 and u.B are the root-mean-square values of friction 

velocities on the surface and bottom layers, respectively. The surface and bottom 
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boundary layer thickness (h8 and hB) are estimated by an entrainment model 

(Trowbridge, 1992; Chant et al., 2007) 

2 

hB = 2yRi~ 2 ~B At 
00 

where y is a constant (=1.22), Ric is a critical gradient Richardson number (=0.25), L\t is a 

characteristic time scale chosen as 3 hrs, and Noo represents background stratification. 

Following Ralston et al.(2008), KM is assumed to scale as a 0Cd U 1£ where ao is 0.028 

and .e is a vertical mixing length scale. When the surface and bottom boundary layers 

merge ( h 8 + hB ~H), .e scales with H. Otherwise, the average of h 8 and hB is used for 

.e (Chen and Sanford, 2009). For values ofRix,cs greater than a threshold value (of order 

1), the water column should stratify, and for sub-critical values the water column should 

remain unstratified (Stacey et al., 2001 ). 

These three parameters in Eqs. (6.2), (6.4), and (6.6) were calculated at the 

selected stations along the channel of the Bay proper during both hurricanes. The time 

series of the gradient Ri for three experiments were plotted in Figure 6-20. Without wind 

forcing, the minimum values of Ri at three locations are approximately 12, 7, and 2, 

respectively (Figures 6-20a to 6-20c). These minimum values are caused by flood tides. 

Ri in the upper Bay shows a larger value than that in the mid Bay. Generally, when a 

hurricane approaches, Ri begins to decrease due to the vertical mixing induced by winds. 

For the FL-C case, Ri started to decrease in the upper Bay and lower Bay whereas it 

initially increased in the mid Bay (Figures 6-20d to 6-20f). The northeasterly winds in 

the mid Bay tend to increase the vertical density gradient although they tend to increase 

vertical velocity shear as well. The strongest wind reduced Ri below 0.25, generating the 

185 



turbulent condition in three regimes. When the wind weakened, Ri began to increase. In 

the IS-C case (Figures 6-20g to 6-20i), Ri started to decrease in all three regimes. Similar 

to the FL-C case, the highest wind decreased Ri below 0.25, generating the turbulent 

condition in three regimes. Ri rapidly increased during the second half of Day 189 even 

though southerly winds were still strong. This occurred because vertical velocity shear 

became significantly small when landward current changed to seaward due to a seaward 

horizontal barotropic pressure gradient. In the mid Bay, after winds were turned off, the 

value of Ri still remained low. Since the gradient Richardson number only expresses the 

relation between vertical density gradient and vertical velocity shear, it is difficult to 

distinguish wind-induced straining from vertical mixing. 

Figure 6-21 shows the time series of the Wedderburn number (W) at three 

different locations comparing three cases, the base case run (a to c), Experiment FL-C ( d 

to f), and Experiment IS-C (g to i). During Hurricane Floyd, W represented the negative 

values due to dominant down-Bay (northerly) winds. The magnitude ofW attained a 

value on the order of 1 in the lower Bay whereas those in the mid Bay and the upper Bay 

reached values of -0.1 and -0.02, respectively. The temporal variations ofRix for three 

experiments are plotted in Figure 6-18. Without wind forcing, although Rix showed the 

tidal variability, the minimum values ofRix at all three locations are approximately 0.2, 

1.0, and 0.3, respectively (Figures 6-22a to 6-22c). This indicates that tidally induced 

mixing dominates in the upper Bay and the lower Bay whereas stratification is relatively 

significant in the mid Bay. In FL-C case (Figures 6-22d to 6-22f), Rix decreased at all 

three locations. The value ofRix dropped below 0.1 in the upper Bay and the lower Bay 

whereas, in the mid Bay, its value reached 0.25. Interestingly, the value ofRix increased 
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to greater than 1 rapidly in the upper Bay and the mid Bay. In the lower Bay, the value of 

Rix persisted below 0.1 for one day and then increased until the end of the Floyd-wind 

period. The period of increase in the value of Rix appears to be consistent with the period 

ofNx increase due to down-Bay winds. This indicates that straining becomes important 

when down-Bay winds blow. In the IS-C case (Figures 6-22g to 6-22i), Rix gradually 

began to decrease and rapidly dropped below 0.1 at all three locations. The low value of 

Rix persisted until the Isabel-wind period ended. This indicates that the Nx expansion 

was restricted by up-Bay winds towards the end of the Isabel-wind period. The peaks of 

Rix between Day 189 and Day 190 appear to occur by the small value of friction velocity 

when the landward flow changed to seaward flow. Therefore, the modified horizontal 

Richardson number appears to be more reasonable to analyze the vertical mixing and 

restratification for both types of hurricanes. 
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6.4 Effects of local and remote winds on circulation and stratification 

6.4.1 Vertical profiles of axial velocity 

Hurricane Floyd 

In the same fashion as the procedure described in Section 6.3, vertical structures 

of tidally averaged (one tidal cycle) along-channel velocity at three stations are analyzed 

in this section. For the FL-L case (left panels in Figure 6-23), the model results represent 

different salinity profiles at three locations. At CB3.3c (Figure 6-23a), an initial two­

layered flow was destroyed by strong seaward flow. When local down-Bay wind began 

to blow, seaward flow in the surface layer started to strengthen (t=t1 to t2). At t=t3, the 

flow throughout the entire water column became seaward, showing a vertically linear 

distribution. When the local wind began to weaken, the change to landward flow 

throughout the water column rapidly occurred representing the maximum in mid-depth at 

t-=4. This landward flow began to decrease to its initial value at t=t5, and uni-directional 

landward flow occurred at t=te;. After t=t6, the vertical profile of along-channel velocity 

was restored to the pre-storm condition. At CB5.2 (Figure 6-23b), both landward bottom 

flow and seaward surface flow slightly weakened initially until t=t1. Only landward 

bottom flow became strengthened until t=t3. During the next three tidal cycles, the 

surface flow changed to seaward and vertically uni-directional flow remained until t=t6 

showing the maximum value in mid-depth. After t=t6, the flow pattern began to be 

restored to a two-layer flow. At CB7.4 (Figure 6-23c), when the up-Bay wind blew, an 

initial two-layer pattern in circulation was destroyed by seaward bottom flow at t=t1. The 

surface flow began to change to landward at t=t2, showing the reversed two-layer pattern 

that represents landward flow in the surface layer and seaward flow in the bottom layer. 

When the wind changed to down-Bay wind, the rapid change to seaward flow occurred in 
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the surface layer and landward bottom flow strengthened at t=t3. This vertically uniform 

seaward flow was strained by seaward surface stress at t=t4. However, it was followed by 

strong landward return flow at t=ts and this vertically uni-directional landward flow 

strengthened until t=1:(). After t=1:(), landward bottom flow weakened and the surface flow 

changed to seaward, and subsequently the vertical profiles of along-channel velocity 

began to return to the pre-storm condition. 

For the FL-R case, the vertical profiles of the velocity represented different 

patterns from the FL-L case at all three locations. At CB3.3c (Figure 6-23d), the velocity 

profile began to change from t=tz. Landward bottom flow strengthened and the changed 

to landward flow occurred in the surface layer until t=t3. At t=t4, the flow throughout the 

water column rapidly changed to seaward. This rapid change to seaward appears to be 

induced by a seaward horizontal pressure gradient between the Bay and the continental 

shelf. As the flow weakened after t=t6, the vertical profile of the velocity was restored to 

the pre-storm condition. The remote wind initially drove the entire water column 

landward, whereas the local wind initially drove water seaward. During the period of t=t3 

to 4, two wind cases showed opposite directions in velocity profiles. These opposite 

flows were offset to incur two-layered flow during the same period as shown in Figure 6-

18a. At CB5.2 (Figure 6-23e), similar to the flow at CB3.3c, two-layer circulation began 

to be destroyed by landward flow (t=t3). Different from the pattern in the local wind case, 

this landward flow throughout the entire water column changed to seaward at t=14 and 

then the vertical profile rapidly returned to the pre-storm condition afterwards. The 

seaward flow at t=t4 was cancelled out by landward flow induced by local wind and 

subsequently two-layered flow occurred in the combined wind case (Figure 6-18b ). At 
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CB7 .4 (Figure 6-18f), a uni-directionallandward flow occurred at t=t2 but it was 

followed by seaward flow at t=t3. At t=4, landward flow was enhanced by a seaward 

horizontal pressure gradient. The vertical profile of the velocity returned to the initial 

profile with several fluctuations afterwards. In this case landward flow occurred initially 

and then retreated seaward whereas seaward flow occurred at first and then retreated to 

landward in the FL-L case. Consequently, the combined effects of the two winds 

generated landward flow initially followed by a strong seaward flow, and then the 

rebounded landward flow, as shown in Figure 6-18c. 

Hurricane Isabel 

For the IS-L case (left panels in Figure 6-24), at CB3.3c (Figure 6-24a), an initial 

two-layered flow was enhanced by a local northeasterly wind until t=t3. When local up­

Bay wind began to blow, a two-layered flow changed to landward flow that reached 80 

em s-1 in the surface layer (t=4). This landward flow rapidly changed to seaward after 

the next tidal cycle (t=t5) and then started to return to the pre-storm condition (t=t7). At 

CB5.2 (Figure 6-24b), initially landward bottom flow strengthened and a seaward surface 

flow began to change to landward until t=t3. At t=4, landward surface flow was 

enhanced whereas bottom flow started to weaken. Similar to the pattern at CB3.3c, the 

flow throughout the water column became seaward at t=t5, and then bottom flow was 

restored to regenerate a two-layered flow (t==16 and t7). At CB7.4 (Figure 6-24c), when 

the easterly wind blew, a landward surface flow occurred and bottom flow headed 

seaward until t=t3, and then bottom flow rapidly changed to landward at t=t4. When the 

wind weakened, the return flow to seaward occurred until t=t6. After t=t6, the bottom 
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flow changed to landward and seaward surface flow was reduced to return to the normal 

condition. 

For the IS-R case, the velocity profiles at three locations are characterized by the 

pattern as follows: 1) an initial two-layered flow changed to a uni-directional landward 

flow, 2) the return flow to seaward occurred throughout the water column, and 3) the 

bottom flow initially returned to landward flow and the surface flow weakened to be 

restored to the initial value. Consequently, the combined effects of local and remote 

winds generated the flow pattern at each location, as shown in Figure 6-18d to 6-18f. At 

CB3.3c, strong landward flow at t==4 was dominantly induced by local wind but strong 

seaward flow at t=t5 was influenced by both local and remote winds. At CBS .2, the 

bottom flow and surface flow were dominated by local wind, whereas the landward flow 

at mid-depth was influenced by remote wind. At CB7.4, a strong landward flow at t=t3 

was influenced by remote wind, the seaward flow of the IS-R case at t==4 was cancelled 

out by landward flow of the IS-L case, and the seaward flow at t~ was influenced by 

seaward flows of local and remote cases. 

6.4.2 Time series of surface and bottom salinities 

Hurricane Floyd 

The time series of instantaneous surface and bottom salinities are plotted in Figure 

6-25. The five stations were selected for both the FL-L and FL-R cases. In the FL-L 

case (Figure 6-25a to 6-25e ), three baroclinic phenomena for salinities are represented: 1) 

initially, wind-induced mixing gradually increased the surface salinity, whereas it 

decreased the bottom salinity and consequently the stratification decreased, 
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2) both surface and bottom salinities rapidly decreased when the strong northerly/ 

northwesterly winds began to blow, and 3) the stratification began to be restored when 

the wind intensity weakened. The destratification of the water column in this case was 

mostly influenced by the local wind-induced mixing, except the increase of surface and 

bottom salinities in the lower Bay. The local easterly/southeasterly winds drove the 

water upstream and generated the set-down in the lower Bay. Consequently, the 

landward horizontal barotropic pressure gradient drove the salt water into the Bay from 

the continental shelf (Figure 6-25e ). The saltwater intrusion affected the CB6.3 station 

increasing the bottom salinity at the station by approximately 1.5 ppt (Figure 6-25d), 

even though the influence of saltwater intrusion was diminished by the down-Bay 

(northerly) wind-induced salinity drop upstream of the CB5.3 station. The occurrence of 

rapidly decreasing salinity in the upper Bay was earlier than that in the lower Bay. The 

signal of salinity drop in the lower Bay appears to be retarded by the influence of 

saltwater intrusion. The magnitude of salinity drop was approximately 10 ppt in the 

lower Bay. The combination of the seaward wind stress force and the seaward horizontal 

pressure gradient force results in such a big drop in salinity. After the local wind was 

turned off, the increased surface salinity persisted throughout the entire Bay for one day 

or more. 

The FL-R case, as shown in Figure 6-25fto 6-25j, represented three remarkable 

baroclinic patterns for salinity as follows: 1) initially both of the surface and bottom 

salinities increased as stratification decreased, 2) the time lag in occurrence of de­

stratification existed from the lower Bay to the upper Bay, and 3) the de-stratification 

persisted in the lower Bay for a while after the wind was switched off. Initially, the 
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surface and bottom salinities in the lower Bay slightly increased due to northeasterly 

winds on the continental shelf. When southeasterly/easterly winds strengthened, they 

drove well-mixed salt water into the Bay and both salinities in the lower Bay rapidly 

increased showing completely mixed status. However, the magnitude of de-stratification 

decreased to the upper Bay. This indicates that the stratified water inside Bay and the 

destratified water from the ocean compete each other maintaining certain stratification as 

the surge propagated to the upper Bay. As depicted in Figure 5-18, the surge induced by 

remote winds propagated from the Bay mouth to the upper Bay with the same order of its 

magnitude. The increase of surface salinity exceeded that of bottom salinity by 

approximately 2-6 ppt. The surface salinity increase played a significant role in de­

stratifying the water column until the bottom salinity began to decrease. Similar to the 

FL-L case, the stratification remained in the mid Bay and the upper Bay until the winds 

on the shelf changed to northwesterly winds. The salinity drop occurred from the lower 

Bay because the seaward horizontal pressure gradient due to offshore (northwesterly) 

winds drove the water from the lower Bay to the shelf. The degree of salinity drop was 

approximately 5 ppt, which is smaller than the 10-ppt drop represented in the FL-L case. 

Its signal appears to propagate to the upper Bay as the set-down of water elevation in the 

lower Bay propagates to the upper Bay. One of the biggest differences from the FL-L 

case is that the destratification remained in the lower Bay after winds stopped. This 

indicates that the influence of the continental shelf could play an important role in 

restoring the stratification in the lower Bay. 

In the mid Bay (CB4.4 and CB5.3), interestingly, the surface and bottom salinities 

were not completely mixed in both wind cases. However, the FL-C case represented 
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completely mixed condition (see Figure 6-17c). This indicates that the vertical mixing 

induced by local winds was enhanced by the surge which was propagated from the Bay 

mouth. During the period of salinity drop, the water column in the mid Bay for the 

combined wind case was more stratified than that for the other cases. The salt intrusion 

through the bottom layer appears to prevent the bottom salinity from decreasing. When 

the destratification proceeded, the patterns of surface and bottom salinities in the 

combined wind case were mostly similar to those in the local wind case. However, the 

influence of the remote winds on restratification process was accentuated when it 

propagated to the upper Bay. Therefore, during Hurricane Floyd, the destratification was 

primarily controlled by local winds, and both destratification and restratification were 

enhanced by the influence of the remote winds. 

Hurricane Isabel 

The time series of instantaneous surface and bottom salinities were plotted at five 

stations for both wind cases as shown in Figure 6-26. In the IS-L case (Figure 6-26a to 6-

26e ), three remarkable features for salinities are shown: 1) the surface salinity at all 

stations increased, the bottom salinity increased at CB3.3c and CB7.4 but decreased at 

CB4.4, CB5.3, and CB6.3, and consequently the stratification decreased, 2) the rapid 

changes in salinity occurred when the southeasterly/southerly winds began to blow, and 

3) the completely destratified water columns at all stations began to be re-stratified when 

the wind intensity was weakened, but the destratified status remained in the lower Bay 

for a while after the winds ceased. As described in the previous section, the 

destratification in this case was mostly influenced by the local wind-induced mixing. 
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Fig. 6-26 Time series plots of surface (blue) and bottom (red) salinities at five selected stations for the IS-L case (a to e) and 

for the IS-R case (fto j). Thin lines denote the no wind case and vertical dashed lines denote the period of wind forcing. 
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The increase of both salinities in the lower Bay resulted from the salt water inflow driven 

by the local easterly/southeasterly winds near the Bay mouth. Subsequently, the 

landward horizontal barotropic pressure gradient drives the salt water into the Bay from 

the continental shelf (Figure 6-26e ). The saltwater effectively intruded to the CB6.3 

station, increasing the bottom salinity by approximately 2 ppt (Figure 6-26d). The peak 

of bottom salinity at CB6.3 near Day 190 appears to have resulted from the lateral salt 

intrusion from the east side of the Bay. In spite of strong local winds, the bottom salinity 

did not significantly decrease at CB4.4 and CB5.3. This indicates that the decrease of the 

bottom salinity was prohibited by the up-Bay (southerly) wind-induced salt intrusion. 

The occurrence of rapidly-increased surface salinity in the lower Bay was earlier than 

that in the upper Bay. As in the pattern oflocal southerly winds moving to the upper Bay, 

the signal of the surface salinity increase appears to move to the upper Bay. When the 

wind intensity weakened, the surface and bottom salinities decreased throughout the 

entire Bay. Interestingly, the bottom salinity in the lower Bay decreased in this case 

whereas that in the FL-L case increased. The de-stratified status in the lower Bay 

remained for 2-3 days after the local wind was turned off and the bottom salinity 

increased to be restored afterwards. 

The IS-R case, as shown in Figure 6-26fto 6-26j, presented the similar patterns to 

the FL-R case: 1) the surface and bottom salinities increased but the stratification 

decreased, 2) the time lag in occurrence of de-stratification existed throughout the Bay, 

and 3) the de-stratification remained in the lower Bay for a while after the wind was 

turned off. Initially, the surface and bottom salinities in the lower Bay slightly increased 

due to northeasterly winds on the continental shelf. When easterly/southeasterly winds 
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became strong, those drove salt water into the Bay and both salinities in the lower Bay 

rapidly increased, showing a completely mixed condition. However, the magnitude of 

destratification decreased in the upper Bay. The increase of surface salinity was larger 

than that of bottom salinity. This means that the surface salinity increase played a 

significant role in destratifying the water column until the bottom salinity began to 

decrease. After the peak, both salinities decreased due to the seaward return flow. In 

contrast to the FL-R case, the seaward horizontal pressure gradient between the upper 

Bay and the lower Bay dominantly controlled the decrease of salinity. This caused the 

high salinity to remain longer than when the additional seaward flow was generated by 

offshore winds on the continental shelf. Similar to the IS-L case, the de-stratification in 

the lower Bay remained for 2-4 days after winds ceased. In the lower Bay, however, the 

surface salinity was out of phase with the bottom salinity. This indicates that the surface 

salinity could interact with tides. 

Above the mid Bay (CB3.3c, CB4.4, and CB5.3), the surface and bottom 

salinities were completely mixed in the IS-L case, whereas they were not in the IS-R case. 

Interestingly, the IS-C case represented a completely mixed condition twice (see Figure 

6-17g and 6-17h). The vertical mixing induced by local winds generated the first 

complete mixing and the surge propagated from downstream caused the second complete 

mixing in the mid Bay. This indicates that the moving speed of the storm was slightly 

faster than the propagating speed of the storm surge. At CB6.3 (Figure 6-17i), the first 

peak of the bottom salinity was caused by the remote wind-induced salt intrusion and the 

second peak was occurred by the lateral salt intrusion, as shown in the IS-L case (Figure 

6-26d). For the first two days of the storm event, the patterns of surface and bottom 
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salinities in the IS-C case were mostly similar to those in the IS-L case. For the latter two 

days, the influence of remote winds on de-stratification was combined with the local 

wind influence. Therefore, during Hurricane Isabel, the de-stratification for the first two 

days of the event was dominantly determined by local winds, and this process was 

enhanced by the influence of remote winds afterwards. 

6.4.3 Vertical profiles of tidally averaged salinity 

As described in Section 6.3.2, three locations were selected to examine the effects 

of local and remote winds on temporal variations oftidally averaged vertical salinity 

structures during both hurricanes. 

Hurricane Floyd 

In the FL-L case, at CB3.3c (Figure 6-27a), the surface mixed-layer depth began 

to deepen by increasing surface salinity and decreasing bottom salinity at t=t1. and then 

the mid-depth salinity decreased at t=t2. Strong down-Bay winds decreased vertical 

salinity by approximately 2 ppt at t=t3. On the next tidal cycle, surface salinity first 

began to increase and then bottom salinity increased. During the period of t6 to t1, the 

salinity throughout the water column exceeded that of the initial salinity profile. At 

CB5.2 (Figure 6-27b), the vertical structure became linear at t=t3 with a value for ~S=0.4 

ppt. The salinity throughout the water column decreased until it started to be restored at 

t=t6. The lowest salinity was delayed two tidal cycles after it occurred at CB3.3c. At 7.4 

(Figure 6-27b ), the surface salinity increased first and then the bottom salinity increased 

to generate a vertically well-mixed structure at t=t2. This homogeneous structure rapidly 

retreated to the lowest value within the next two tidal cycles (t==4). The stratification 
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returned to the initial level but slightly overshot at t=t7, similar to the pattern shown at 

CB3.3c and CB5.2. 

For the FL-R case, the increase of salinity throughout the water column was 

characterized by persistent stratification during the first three tidal cycles at CB3 .3c 

(Figure 6-23d). The bottom salinity decreased prior to the drop of surface salinity. The 

lowest salinity value with increasing stratification at t=t5 was followed by an increase of 

salinity to the initial value at t=t7• The salinity structures at CB5.2 were similar to its 

patterns at CB3.3c. At CB7.4 (Figure 6-27f), initially the bottom salinity increased and 

then the surface salinity increased to make a vertically well-mixed condition until t=t3• 

The salinity over the entire water column began to decrease in the de-stratified condition 

at t=4. Subsequently, the stratification was generated by a decrease of surface salinity 

and the decrease of stratification was caused by a decrease of bottom salinity. The 

salinity structure began to return to the pre-storm condition afterwards. 

Compared to the FL-C case (Figure 6-19a,b,c), in the mid Bay and upper Bay, 

vertical mixing was dominantly induced by local wind, whereas that in the lower Bay 

was influenced by both local and remote winds. Additionally, in the mid Bay and upper 

Bay, restratification at t=t5 was influenced by two factors: the increase of bottom salinity 

induced in FL-L and the decrease of surface salinity induced in FL-R case. For the entire 

Bay, it is clear that vertical mixing induced by local wind was enhanced by the effect of 

remote wind. 
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Hurricane Isabel 

For the test case using only the local wind (IS-L), at CB3.3c (Figure 6-28a), 

initially the bottom salinity increased slightly and at t=t3 the surface mixed-layer depth 

rapidly deepened to z!H = -0.4 corresponding to an increase of surface salinity. The 

salinity in the surface layer and mid-depth increased more than that in the bottom layer, 

and subsequently the entire water column was mixed at t=t4. As the bottom salinity 

increased and the surface salinity decreased, the water column re-stratified at t=t5• The 

salinity structure began to return to the pre-storm condition. At CB5.2 (Figure 6-28b), 

initially the surface salinity decreased and then bottom salinity decreased until t=t3. After 

the salinity increased slightly throughout the water column, the decrease of surface 

salinity occurred prior to the decrease of bottom salinity at t=t6. At t=t7, the water 

column remained de-stratified relative to the pre-storm condition. At CB7.4 (Figure 6-

28c), the entire water column was well-mixed at t=t2 and its salinity increased to 32 ppt at 

t=t3. In contrast to the pattern in the FL-L case, high salinity remained throughout the 

entire water column until t=ts. During the next two tidal cycles (t=t7), the salinity 

throughout the water column decreased by approximately 4 ppt, which restored the 

stratification (AS=2ppt), but still a de-stratified condition remained relative to the initial 

structure. 

Only with the remote wind (IS-R), the increase of salinity throughout the water 

column persisted until t=14, represented as a thick bottom mixed-layer at CB3.3c (Figure 

6-28d). At t=16, the decrease of surface salinity enhanced the stratification relative to the 

initial status. The surface salinity increased again to return to the initial value at t=t7. At 

CB5.2 (Figure 6-28e), the evolution of the vertical salinity structure was similar to the 
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patterns described at CB3 .3c, except that the surface and bottom salinities did not drop 

below the initial values when they decreased from the maximum value. At CB7 .4 

(Figure 6-28e), similar to the patterns in the FL-R case, initially the bottom salinity 

increased and then the surface salinity increased to generate a well-mixed condition. 

After a vertically homogenous condition occurred for three tidal cycles, the water column 

was re-stratified by the decrease of surface salinity. The salinity continuously decreased 

until t=t7 but the stratification slightly recovered. 

In contrast to the IS-C case, as in the Floyd-wind cases, vertical mixing was 

primarily caused by local wind in the upper Bay and mid Bay. However, the effect of 

remote wind increased the salinity in the mid Bay whereas the combined effect of both 

winds increased the salinity in the upper Bay. The effects of both winds were present in 

the lower Bay, so that the salinity structure was influenced by the combined effects of 

local and remote winds. 
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6.5 Effects of precipitation during hurricane event 

We have so far investigated in detail about the effect of wind and pressure fields 

on the response of the Bay to the hurricane forcing. All hurricanes carried precipitation. 

For certain storms, the precipitation directly onto Bay's water surface is so large that it 

could have a potential influence on the immediate response of the Bay. During Hurricane 

Floyd, a band of rainfall totals of 4 to 12 inches aligned closely with the Bay were 

recorded from eastern North Carolina through eastern Virginia and eastern Maryland. At 

Wilmington, North Carolina, the storm total of 19.06 inches included a 24-hour record of 

15.06 inches. In Yorktown, Virginia, the storm total was 18.13 inches (Zervas et al., 

2000). The questions of what are the effects of such an extreme rainfall on the response 

of the Bay drove us to make additional study about the influence of precipitation on the 

salinity field. 

6.5.1 Numerical scheme for representation of precipitation input 

The SELFE model code released as the community model version 1.5k7 has a 

precipitation scheme. The way it was formulated and implemented is described as 

follows. First, let the rainfall rate be R and denote the surface area of the unit element by 

A. The volume of water added by the rain per unit time is then QR = R ·A. If there is no 

flux (except for the rainfall), conservation of volume in the top layer requires that the 

amount of water per unit time after rainfall (Qnew) has to balance by that before rainfall 

(Qold) plus QR: 

Qnew = Qold + QR (6.7) 

Conservation of salt requires that the amount of salt per unit time after rainfall (Snew) has 
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to be balanced by the amount of salt before rainfall (Sold). Since rain does not add salt to 

the water, the salt balance contains only two terms: 

(6.8) 

The volume balance (1) and salt balance (2) in the top layer give us one equation for the 

unknown Snew. Solving for Snew is given by: 

snew =sold Qold =sold Qold 
Qnew Qold + QR 

-S Qold +QR -S QR 
- oldQ Q oldQ Q 

old+ R old+ R 

=Sold -Sold QR 
Qnew 

(6.9) 

This formulation can be applied to the transport equation for salt (Eq. 3.3.4) described in 

Chapter III. However, since this method assumes that QR is negligible relative to Qnew or 

Qoid, the continuity equation does not include QR. The horizontal barotropic pressure 

gradient between Bay and continental shelf will be not generated by precipitation. 

Instead of assuming steady state balance for the conservation of volume and salt 

flux, we propose to treat precipitation as an additional external input in the time-varying 

continuity equation. In this vein, R (= QR I A) is added into the continuity equation as a 

point source on the right hand side of the Eq. (3.3.2), which gives 

m, '1 

-+V· Judz=R 
8t -h 

(6.10) 

As shown in Figure 6-29, the precipitation rate was recorded at Norfolk, VA. Based on 

this data, R (m s"1
) was determined as a surface boundary condition in the model to allow 

the momentum from precipitation to transfer to water velocities. The velocities obtained 
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in the momentum equations are used in the salt balance equation. Spatially different 

rainfall input should generate the horizontal pressure gradient, which enables influences 

on velocity and salinity distributions. 

6.5.2 Effect of precipitation on salinity 

Without precipitation, although the model reproduced salinity decreases at two 

stations near the Bay mouth promptly, the predicted salinity rapidly rebounded within 

two days, showing approximately 5 ppt of difference from the observed salinity, as 

shown in Figure 6-30. To improve the accuracy of the model for salinity, two methods 

described above were applied to the model by using the cap shape of precipitation (solid 

line in Figure 6-29) to the Bay proper. The first method failed to reduce the 5-ppt 

difference (not shown here) whereas the second method mostly reproduced the observed 

salinity, as shown in Figure 6-30 (thick solid line). An additional model test was 

performed by using the second method with precipitation over the entire domain 

including the continental shelf. This case was not much different from the case using the 

first method. These model results indicate that seaward horizontal barotropic pressure 

gradient induced by precipitation plays a significant role in retarding the salinity rebound 

after salinity rapidly dropped. To improve model accuracy, the spatial distribution of 

precipitation input based on observed records is suggested to use in the model simulation 

during Hurricane Floyd. 
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Fig. 6-29 Time series of observed precipitation (crosses) recorded at Norfolk 

International Airport, VA, during Hurricane Floyd and simplified precipitation as a model 

input (solid line). 
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and (c) near surface at M3, during Hurricane Floyd. 
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6.6 Summary 

The baroclinic response of Chesapeake Bay to Hurricanes Floyd (1999) and 

Isabel (2003) has been investigated by using a semi-implicit Eulerian-Lagrangian finite­

element SELFE model. The Chesapeake Bay has both similar and different baroclinic 

responses to two types of hurricanes. Oceanic saltwater influx obviously occurred from 

the continental shelf to the Bay through its entrance during both Hurricanes Floyd and 

Isabel, and the signal propagated upstream in the forms of storm surge and salt intrusion. 

Strong down-Bay (northerly) winds corresponding to the passage of eastern-type 

hurricanes restricts landward oceanic saltwater flux to the upper Bay, whereas up-Bay 

(southerly) winds corresponding to the passage of western-type hurricanes strengthens 

landward ocean saltwater flux to the upper Bay. During a hurricane event, surface wind 

stress is the primary agent to de-stratify water column by transferring generated turbulent 

kinetic energy to the lower layer. Advection of well-mixed salty water influx from the 

ocean is the second agent to change the stratification inside Bay. The rebound of bottom 

salinity is faster than that of surface salinity in the upper Bay due to the convergence 

effect, and thus this time lag of salinity rebound may generate the destratified condition. 

Down-Bay winds of eastern-type storms tend to enhance the stratification whereas up­

Bay winds of western-type storms tend to reduce the stratification. Alternatively, down­

Bay winds decrease the surface and bottom salinities to prohibit the salt intrusion 

whereas up-Bay winds increase the surface and bottom salinities to enhance the salt 

intrusion. 

Precipitation as a point source of water mass on the surface not only dilutes 

saltwater but also generates a seaward barotropic horizontal pressure gradient. It plays a 
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significant role in dropping the salinity and retarding the salinity rebound after salinity 

rapidly dropped, so that model results show better agreement with observations. It is 

suggested that spatially distributed precipitation input based on observed records should 

be taken into account in a model simulation for a hurricane that has a huge rainfall. 
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Chapter VII 

ESTUARINE RECOVERY FROM HURRICANE FORCING 

AND INFLUENCE OF CONTINENTAL SHELF DYNAMICS 

7.1 Introduction 

When the hurricane approaches the Chesapeake Bay, it brings in an oceanic water 

influx associated with the storm surge from the mouth; at the same time, it brings in 

freshwater river discharge from the watershed and stronger wind fields, which mix the 

Bay water from the surface of the water. Chapter VI outlined the effects of these forcings 

on the Bay during the event of a hurricane. However, the effects of a hurricane can far 

exceed a 2-to-3-day window, and reach beyond the domain of the Bay into the 

continental shelf water. It is the purpose of this chapter to expand the scope of the 

response of the Bay to the hurricane to cover temporal scales on the order of weeks to 

months during the estuarine recovery process, and to address the spatial extent of the 

influence beyond the Chesapeake Bay to the continental margin. 

Wind-induced mixing from a hurricane tends to destratify the water column, 

increasing the potential energy of the system. Oceanic salty water influx, on the other 

hand, increases the horizontal salinity gradient in an estuary. Once the wind forcing 

ceases, the circulation and density fields in the Bay begin to adjust to the changes 

incurred. During the adjustment stage, both river flow and normal tide-induced mixing 
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are important elements in setting up the estuarine gravitational circulation. The river 

flow creates the appropriate stratification, which is then mixed vertically either by growth 

of the tidal bottom boundary layer or by shear instability within the water column (Geyer 

and Farmer, 1989; Jay and Smith, 1990; MacCready, 1999). Occasionally, a significant 

amount of river flow occurs after the hurricane event brings in heavy rainfall. A large 

amount of river flow can have an influence on the recovery of the salinity structure to 

normal conditions since it sufficiently suppresses the salinity gradient in an estuary. A 

few studies of the estuarine recovery process from a hurricane forcing have been 

conducted. Kuo et al. (1976) observed that the transient response ofthe salinity structure 

to a sudden, large injection of river flow in the Chesapeake Bay during Hurricane Agnes, 

1972. Recently, Gong et al. (2007) estimated the timescale of estuarine recovery from 

Hurricane Isabel of2003 in the York River estuary in the range of 10 to 120 days, 

indicating that it depends on the storm surge energy and the amount of river discharge. 

Li et al. (2007) investigated the post-storm restratification process with respect to the 

gravitational adjustment of a fluid containing a horizontal density gradient and the 

geostrophic adjustment of a rotating fluid. However, the effects of hurricane types and 

the amount of river flow on the estuarine recovery still remain unclear. Therefore, the 

influences of the hurricane wind forcing and river flow on the estuarine recovery were 

explored in this chapter. It is well-known that, when a hurricane strikes the coast, the 

change of the wind field and interference of coasts will produce convergence (or 

divergence) to the horizontal transport of water along the coast (Neumann and Pierson, 

1966). It thus will have impact on the exchange of water through the Bay mouth. 
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Specifically, the effects of Ekman dynamics and the along-shelf pressure gradient on the 

inflow/outflow at the entrance of the Bay were examined. 

7.2 Estuarine recovery from hurricane forcing and influence of river discharge 

When considering estuarine recovery from a hurricane forcing, the premise has 

been made that, prior to the hurricane, the estuarine system is in a quasi-steady state, and 

at some time subsequent to the passage of the hurricane with the wind and buoyancy­

induced perturbations, the system will return to the quasi-steady state again. As 

described in Chapter VI, the SELFE model has been successfully tested to ensure the 

estuarine system reaches the exact same quasi-steady state when the forcings and 

boundary conditions are kept constant. Not all the coastal ocean models achieve this, 

especially for salinity. In SELFE, it was achieved through using high-order advection 

schemes for transport and the second-order turbulence closure scheme in which the 

advection of salt flux and vertical mixing strike a delicate balance. If the system is 

displaced by external forcings from a quasi-steady state, there are net restoring forces on 

the system, tending to bring it back to equilibrium. In the coupled Chesapeake Bay and 

continental shelf system, when it is disturbed by a hurricane forcing, the restoring forces 

are the pressure gradient force, consisting of the surface elevation gradient force and the 

horizontal density gradient force, manifested in different modes and frequencies in 

response. 
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7 .2.1 Method to estimate the estuarine recovery time scale 

Based on the premise above, the definition of recovery time was defined as the 

time scale that is required for the estuarine system to return to the pre-storm condition, 

responding to the transient forcings of hurricanes. Given the error inherent in using 

numerical methods, the time scale, instead, will be estimated and tolerated within certain 

ranges based on prescribed criteria. 

Criterion for elevation 

To examine how long it takes when sea surface elevation recovers to pre-storm 

condition, the criterion for elevation recovery should be selected. The formula for the 

criterion is given by: 

ial =Ill storm - llnostorm I < c11 (7.1) 

where llstorm and llnostorm are the sea surface elevations with and without the storm 

condition, respectively. If a converges on the criterion C ~ at a given time and all 

subsequent times, the time corresponding to the first occurrence of a is specified as the 

recovery time (Gong et al., 2007). The value of 0.5 em has been chosen as a C q since the 

gradient of the salinity difference with respect to time reduces to an insignificantly small 

value when Ia.! is smaller than 0.5 em. 

Criterion for salinity 

As for salinity recovery, the formula for the criterion is used as follows: 

irl = Sstorm - Snostorm < Cs 
snostorm 
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where sstorm and snostorm are the values of salinity with and without the storm condition, 

respectively. The relative error formulation is reasonable rather than the absolute error 

formulation since the salinity spatially varies in the Bay. The value of0.02 (2 %) has 

been selected as a Cs for salinity since the gradient of salinity difference with respect to 

time reduces to an insignificantly small value when IYI is smaller than 0.02. This 

translates to difference ofO.l ppt in the Upper Chesapeake Bay where the mean salinity 

normally is approximately 5 ppt. 

7.2.2 Estimation of recovery time from wind forcing 

A series of ideal experiments were designed to study the recovery time from the 

hurricane wind forcing. The steps are as follows: First, the initial condition was 

generated after 180 days of spin-up to ensure that the system was in quasi-steady state as 

described in Section 6.3 .1. Second, realistic wind forcings for different hurricane winds 

were imposed on the coupled Chesapeake Bay and continental shelf model system for 4 

days. The wind forcing is further divided into a local wind scenario (the wind field only 

applied in the Bay) versus a remote wind scenario (the wind field only applied in the 

continental shelf). Third, after 4 days, the wind forcing was turned off, and the model 

continued to run until it reached the criteria of quasi-steady state described above. In the 

case of evaluating effect of river discharge on the salinity recovery time (section 7.2.3), 

river discharge was begun immediately after the wind forcing stopped, and specified for 

another 4 days. Afterwards, the model continued to run until it attained the criteria of 

quasi-steady state. 
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Table 7-1 Estimated recovery time for sea surface elevation in the Chesapeake Bay from 

four-day wind forcing. Days are calculated from the wind termination day. 

(unit: days) 

Experiments for Floyd Experiments for Isabel 

station FL-C FL-L FL-R IS-C IS-L IS-R 

CB3.3c 5.6 2.2 4.0 7.7 5.7 5.8 

CB4.4 4.9 2.3 3.5 6.6 1.8 5.1 

CB5.2 2.8 2.0 3.4 6.5 4.9 5.4 

CB6.3 4.4 2.1 3.2 6.4 1.5 2.4 

CB7.4 3.8 2.8 3.5 6.8 4.4 6.8 

Avg. 4.4 2.3 3.5 6.8 3.7 5.1 

Six different experiments listed in Table 6-2 have been designed to investigate the 

estuarine recovery time under the wind forcing. The experiments were continuously run 

an additional 150 days after the four-day wind forcing period stopped; the Chesapeake 

Bay system obviously reaches quasi-steady state from the cold start after 150 days. This 

may not be universally true when the above-normal-high river discharge is injected into 

the system, as is further described in Section 7.2.3. 
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Sea surface elevation 

The recovery times for sea surface elevation were estimated at the selected five 

stations as shown in Table 7-1. The combined wind effects versus those oflocal wind (L) 

and remote wind (R) were separately evaluated. It is evident that sea surface elevations 

were restored to pre-storm condition within one week for Hurricanes Isabel and Floyd. 

The recovery time for remote wind effects tends to be slightly longer than that from local 

wind effects, which causes the recovery time from combined wind effects to be slightly 

longer overall. 

Salinity 

The time series of the salinity difference between the "no storm" case and the 

"storm" case were plotted in Figure 7.1. For Experiment FL-C, the salinity differences 

converged to within the 2% criterion within two weeks at CB7.4 of the lower Bay. At 

CB4.4, as described in Chapter VI, both salinities initially showed a rapid rebound 

immediately after winds ceased. The second rebounds occurred ten days later. Due to 

these oscillations, the bottom salinity difference met the criterion at approximately 22 

days. At CB3.3c of the upper Bay, the second overshooting of bottom and surface 

salinities occurred 15-20 days after the wind was turned off and persisted from 42-52 

days. This overshooting played a role in retarding salinity recovery to the pre-storm 

condition. For Experiment IS-C, salinity differences at all three stations converged to the 

criterion within 20 days since any significant overshooting did not occur. Salinity 

recovery times for each wind experiment are tabulated (Table 7-2). The recovery time 

from the remote wind of each hurricane had the same order of magnitude. Especially in 
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Fig. 7-1 Time series of salinity difference (y) at selected three stations for Experiment FL-C (a) and Experiment IS-C (b): Blue 

lines represent surface salinity and red lines represent bottom salinity. Black dashed lines denote 2% criterion of y and green 

dashed lines denote wind turn-on day (A) and wind termination day (B). 
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the mid Bay and the upper Bay, salinity recovery time from Floyd wind forcing took 

longer than that from Isabel wind forcing. To better understand this discrepancy between 

both hurricanes, based on time sequence plots of salinity in the mid Bay (Figure 7-2), the 

schematic vertical salinity structures are mapped in Figure 7-3. Stage 1 is specified by 

surface salinity increase due to wind-induced mixing for both hurricanes. Stage 2 is 

represented by a well-mixed condition due to highest winds for both hurricanes. For 

Experiment FL-C, at Stage 3, surface salinity for Hurricane Floyd starts to decrease since 

down-Bay wind stress began to overcome the landward pressure gradient, and bottom 

salinity began to decrease through Stage 4 due to the seaward barotropic pressure 

gradient between the Bay and the shelf(see Figure 5-12). For Experiment IS-C, Stage 3 

is characterized by the salinity increase under a well-mixed condition due to the 

combined effect of up-Bay winds and storm surge, which involves a landward barotropic 

pressure gradient and a landward wind stress. Through Stage 4, surface and bottom 

salinities decreased since the seaward barotropic pressure gradient overcame the 

landward wind stress. Bottom salinity did not decrease as much as surface salinity due to 

the landward baroclinic pressure gradient. After wind cessation, the vertical salinity 

structure in both cases began to rebound upstream. For Experiment FL-C, relatively 

strong return flow occurred due to landward barotropic pressure gradient. This drove 

surface and bottom salinities to increase on Stage 5 and even showed slight overshooting 

on Stage 6. Finally both salinities reached a quasi-steady state on Stage 7. For 

Experiment IS-C, the decreased bottom salinity started to increase again due to the 

landward baroclinic pressure gradient and surface salinity continuously decreased to a 
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quasi-steady state. As addressed above, the salinity recovery in Experiment FL-C took 

longer than that in Experiment IS-C in the mid Bay and upper Bay. 

Table 7-2 Estimated recovery time for salinity in the Chesapeake Bay from four-day 

wind forcing. Days are calculated from the wind termination day. 

(unit: days) 

Experiments for Floyd Experiments for Isabel 
FL-C FL-L FL-R IS-C IS-L IS-R 

station bott surf bott surf bott surf bott surf bott surf bott surf 

CB3.3c 42 52 42 52 14 10 18 13 18 10 14 14 
CB4.4 22 13 22 13 13 10 8 9 7 7 8 13 
CB5.2 18 12 15 10 15 12 8 12 8 12 7 13 
CB6.3 18 12 16 11 11 11 16 14 7 7 16 14 
CB7.4 11 11 7 7 11 11 14 15 7 7 14 15 

Avg. 22 20 20 19 13 11 13 13 9 9 12 14 
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Fig. 7-2 Time series of wind and salinity in the mid Bay during (a) Hurricanes Floyd and 

(b) Hurricane Isabel. Vertical dashed lines represent each characterized stage. 
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Fig. 7-3 Schematic maps of vertical salinity structure at each stage during Hurricanes 

Floyd (left) and Isabel (right). 
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7 .2.3 Effect of river discharge on salinity recovery time 

A hurricane event is usually followed by high river discharge. During Hurricane 

Isabel, the river discharge began to increase immediately after winds weakened, as shown 

in Figure 7-4. It was hypothesized that river discharge could affect the salinity rebound 

induced by wind forcing when river discharge increases immediately after wind cessation. 

Of course, if the amount of river discharge is extremely huge after Hurricane Agnes in 

1972 (Kuo et al., 1976), or high river discharge event persists for a long time, salinity 

suppression by river discharge forcing will be dominant more than salinity rebound by 

wind forcing. This means that estuarine recovery time scale is mainly determined by 

river discharges. Thus, two idealized river discharges were tested and are shown in 

Figure 7-5. One is fivefold the base river discharge ofQ=550 m3 s"1 (i.e., 5Q=2750 m3 s· 

\ and the other is tenfold this discharge (i.e., 1 OQ=5500 m3 s"1
). The river discharge 

event was specified for 4 days, the same duration as the wind forcing period, immediately 

after the wind forcing stopped. Based on this design, additional six experiments were 

conducted, as listed in Table 7-3. 

Figure 7-6 shows the time series of salinity differences between base run and 

Experiment NW-MR (a), between base run and Experiment FL-CMR (b) and between 

base run and Experiment IS-CMR (c). The biggest difference from Figure 7-1 is that the 

second overshooting of bottom and surface salinities at CB3.3c disappeared in 

Experiment FL-CMR. The river discharge of 5Q caused y to converge to within the 2% 

criterion rapidly, so that salinity recovery time became shorter than that in Experiment 

FL-C in the upper Bay. In contrast, in Experiment IS-CMR, the river discharge 

suppressed the surface and bottom salinities more due to seaward barotropic pressure 
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Fig. 7-4 The records of winds at CBBT (upper panel) and river discharges in three rivers 

of the Chesapeake Bay (lower panel) on September, 2003. 
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Fig. 7-5 Idealized river discharge inputs for the experiments. 
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Table 7-3 Summary of additional experiments performed for river discharge event. 

Total Maximum Ambient Subtidal 

Experiments Winds River Discharge Current Alongshore 

(m3 s·1) (em s-1) PG* 

FL-CMR combined winds (Floyd) 2,750 10 yes 

IS-CMR combined winds (Isabel) 2,750 10 Yes 

NW-MR no wind 2,750 10 no 

FL-CHR combined winds (Floyd) 5,500 10 yes 

IS-CHR combined winds (Isabel) 5,500 10 yes 

NW-HR no wind 5,500 10 no 

* PG represents the pressure gradient and was imposed in the wind forcing period. 
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Fig. 7-6 Time series of salinity difference (y) at selected three stations for Experiments NW-MR (a), FL-CMR (b), and IS­

CMR( c). Blue lines represent surface salinity and red lines represent bottom salinity. Dashed lines denote 2% criterion of y 

and green dashed lines denote wind turn-on day (A), wind termination and 5Q river discharge turn-on day (B), and 5Q river 

discharge termination day (C). 
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Fig. 7-7 Time series of salinity difference ('y) at selected three stations for Experiments NW-HR (a), FL-CHR (b), and IS­

CHR( c). Blue lines represent surface salinity and red lines represent bottom salinity. Dashed lines denote 2% criterion of y and 

green dashed lines denote wind turn-on day (A), wind termination and 1 OQ river discharge turn-on day (B), and 1 OQ river 

discharge termination day (C). 
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Table 7-4 Estimated recovery time for salinity in the Chesapeake Bay for high river discharge experiments. Days are 

calculated from the wind termination day. 

(unit: days) 

FL-CMR FL-CHR IS-CMR IS-CHR 
station bottom surface bottom surface bottom surface bottom surface 

CB3.3c 18 18 100 137 58 88 >150 >150 
CB4.4 18 12 18 82 10 54 90 130 
CB5.2 17 16 12 54 10 12 22 100 
CB6.3 16 10 18 32 15 14 20 40 
CB7.4 10 18 12 28 14 19 18 30 

Avg. 16 15 32 67 21 37 60 90 
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gradient, so that it caused the salinity recovery time to increase. Figure 7-7 shows the 

time series of salinity differences for high river discharge (5500 m3 s-1
). Overall, strong 

barotropic pressure gradient induced by high river discharge suppressed bottom and 

surface salinity and the recovery time was longer than those for the experiments using 5Q 

river discharge. A summary of the salinity recovery time for each experiment using 5Q 

and 10Q is provided in Table 7-4. 

7.3 Influence of continental shelf dynamics 

7.3 .1 Effect of Ekman transport 

The wind stress imposing on the rotational earth generates a surface Ekman layer. 

The wind-driven horizontal transport depends on the magnitude of the wind stress and the 

thickness of the surface Ekman layer. Due to the Earth's rotation, the transport is 

oriented at an angle clockwise to the direction of the wind stress in the Northern 

Hemisphere (Ekman, 1905; Cushman-Roisin, 1994). During Hurricane Isabel, 

northeasterly winds of20 to 25m s-1 were recorded at the Chesapeake Bay Light and 

Virginia Beach stations for the two days (> 2n If ~ 17.4 h) (Figure 2-7). These wind 

stress-induced drift currents are balanced by the Coriolis force and the bottom frictional 

force and thus generate Ekman transport into the Chesapeake Bay, as a remote-wind­

induced forcing. The transport is expected to influence the subtidal sea surface elevation 

and salinity. Figure 7-8 (a) and (b) shows the surge elevation and salinity comparisons, 

respectively, during Hurricane Isabel at the CBBT (Chesapeake Bay Bridge Tunnel). The 

modeled subtidal surge elevation, represented by the heavy blue curve, caught the entire 

hurricane event reasonably well. In the same simulation, if all conditions stayed the same 
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except that the Coriolis force was not included, the results were different, as shown by the 

thin blue line. As one can see, the surge level before the surge peak of the hurricane was 

under-predicted whereas, after the peak, it was over-predicted. It is argued that without 

proper representation of the Corio lis force, no Ekman transport into the Bay can be 

generated during the first phase of the wind from the north, resulting in under-prediction. 

After the hurricane made the landing, the hurricane wind turned from northerly to 

southerly in the second phase of the wind forcing. In this case, the Ekman transport is 

offshore, in the opposite direction as compared with the first phase, which resulted in 

over-prediction. 

The Ekman transport in the first phase not only generated higher surface elevation 

by 0.2 to 0.3 m than that without the Coriolis force, but also created higher surface and 

bottom salinity by 2 to 3 ppt in the lower Bay, as shown in Figure 7-8b. Furthermore, the 

surface and bottom velocities also increased by 0.15 to 0.2 m s"1 as well (not shown). 

This value is a reasonable agreement with the estimation from an analytical solution 

given by 

u = U = ~ ~ (-) 0.2 m s-1 

H p0fH 

where negative values are landward. 

During the northerly wind event, the local Bay wind can push the water from 

northern Bay into the southern Bay and offset the remote wind effect. A similar 

(7-3) 

phenomenon can also be described for the effect of a southerly wind event. Nevertheless, 

Garvine's (1985) investigation indicated that the remote wind has dominant effect over 

the local wind on the subtidal sea level change. 
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The above results are significant and have the following implications: 

(1) When properly calibrated, the SELFE model does have the proper modeling 

capability in modeling Ekman dynamics and simulating effects of the Corio lis force in 

the coupled estuarine and coastal ocean system. 

(2) Based on the model results, it clearly demonstrated that the continental shelf 

dynamics do affect the estuarine system and thus the approach to couple the Bay and 

continental shelf was a proper strategy and can shed light on future research. 

7.3.2 Effect of alongshore pressure gradient on the geostrophic balance 

It has been proven that wind-induced variations dominate the sub-tidal frequency 

fluctuations of coastal sea level along the East Coast of the United States (Wang, 1979a; 

Chao and Pietrafesa, 1980). During Hurricanes Floyd and Isabel, sea surface elevations 

were measured at Duck, NC near the southern boundary and at Ocean City Inlet, MD 

near the northern boundary, as shown in Figure 3-2. It clearly showed that a subtidal 

alongshore pressure gradient existed during hurricane events. The origin of it, as 

indicated above, is due to the non-uniform wind field (both in terms of its direction and 

magnitude) and the interference of the coastline. In the northern hemisphere, hurricanes 

circulate cyclonically. As a hurricane approaches the East Coast, the northern half of the 

hurricane using hurricane track as a dividing line generates onshore wind, and thus set­

up; conversely, the southern half of the hurricane generates offshore wind, and thus set­

down. In combination, the hurricane wind direction alone can set-up an alongshore 

pressure gradient from the north to the south. This make the continental shelf dynamics 

very different from the classic Ekman theory, in which wind is assumed to be uniform 
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and the ocean is unbounded. 

According to geostrophic approximation (Pedlosky, 1987), the equations of the 

quasi-geostrophic motion are developed in an asymptotic series in the small parameter: 

u 
Ro=-

Lf 
(7.4) 

where Ro is the Rossby number and U, f, and L are characteristic values for the 

horizontal velocity, the Corio lis parameter, and the horizontal length scale of the motion, 

respectively. If D is the vertical scale of the motion, the smallness of the Ross by number 

(Ro <<1) and the smallness of the aspect ratio of the motion, o, given by 

D o=- << 1 
L 

develop the quasi-geostophic motions (Pedlosky, 1996). For the quasi-geostrophic 

(7.5) 

current that have been estimated on the continental shelf of the mid-Atlantic Ocean, U = 

0(0.1 m s"1
), L = 0(200 km), and D = 0(100 m) so that, for these scales, 

Ro = 0( 5 x 10-3 
) and o = 0( 5 x 10-4 ) . Assuming quasi -geostrophic motions with small 

scales of Ro and o, the northward pressure gradient force develops the seaward 

geostrophic current whereas the southward pressure gradient force generates the 

landward geostrophic current. During Hurricane Isabel, a large northward pressure 

gradient occurred briefly and then a large southward pressure gradient occurred for one 

day(> 2rc/f ~ 17.4h) from September 18, 18:30 (UTC). Those large pressure gradients 

are expected to have an influence on subtidal sea surface elevation during the hurricane 

event. An additional experiment was performed without subtidal sea surface elevation 

specification on open boundaries. Figure 7-9 shows the surge elevation and salinity 

comparisons between the experiments with and without the subtidal sea surface elevation 
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effect. The subtidal effect plays a significant role in increasing surge by 15 em on 

average in the lower Bay. A southward alongshore pressure gradient balanced by Coriolis 

force generates onshore quasi-geostrophic currents that prohibit the surge elevation from 

rapidly dropping (Figure 7-9a). Due to subtidal sea surface elevation effect, the salinity 

slightly increased until it rapidly dropped (Figure 7 -9b,c ). Interestingly, after dropping, 

the bottom salinity decreased 1-2 ppt more than the case without the subtidal effect. It 

can be noted that the downwelling-favorable quasi-geostrophic current induced by 

southward alongshore pressure gradient tends to decrease the bottom salinity at the Bay 

mouth (Figure 7-10). For downwelling conditions, quasi-geostrophic current causes the 

sea surface to rise and the pycnocline to deepen, driving an outward transport in the lower 

layer of the estuary (Klinck et al., 1981b). Therefore, the results of the experiments 

indicate that a numerical model for hurricane events need to include the influence of 

alongshore pressure gradient from subtidal sea surface elevation, in order to preserve its 

accuracy. 
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7.4 Summary 

The SELFE model is a robust tool to examine the estuarine recovery, because it 

uses the high-order advection scheme for transport and the second-order scheme for 

turbulence closure and allows the estuarine system to reach quasi- steady state. The 

recovery time of sea surface elevation from hurricane forcing is shorter than that of 

salinity. Basically, at the sea surface, the density difference between air and water is the 

order of 1000 kg m·3. The buoyancy frequency in the interface is sufficiently large and it 

rapidly adjusts the fluctuation at the sea surface. The adjustment time of sea surface 

disturbance from both hurricanes is nearly seven days in the Chesapeake Bay. 

For the salinity, the recovery time mainly depends on the direction of local winds 

under certain amount of river discharge following the hurricane event. Strong down-Bay 

winds suppress the salinity structure to increase the horizontal density gradient as a 

restoring force. Those cause a strong oscillation of salinity and thus take longer time for 

salinity to reach a quasi-steady state than up-Bay winds do. The suppression of 

subsequent river discharge to the salinity structure plays a role not only in competing 

against the salinity rebound caused by wind forcing but also in pushing the salinity 

structure further downstream. As a result, it makes the salinity recovery time shorter in 

the Hurricane Floyd case and longer in the Hurricane Isabel case. 

Lastly, the influence of continental shelf dynamics involving Ekman transport and 

quasi-geostrophic current induced by alongshore pressure gradient, plays a significant 

role in the inflow and outflow through the entrance of the Chesapeake Bay. By including 

the continental shelf grid and using a proper open boundary condition, the model was 

able to verify the influence of continental shelf dynamics successfully. 

244 



Chapter VIII 

DISCUSSION AND CONCLUSIONS 

Discussion 

In Chapter V, as a barotropic response, it is verified that storm surges are 

primarily produced by remote winds at the entrance of the Chesapeake Bay and 

combined with set-up/set-down effects induced by local winds during hurricane events. 

Figure 8-1 shows spatial distributions of surge ranges for six experiments described in 

Chapter V, which are remote-wind case and local-wind case during each hurricane event. 

A surge range can be obtained by subtracting the minimum surge from the maximum 

surge during the event. The distributions for remote-wind cases show nearly same 

pattern as that of mean tidal range in the Chesapeake Bay. As the characteristics of long 

waves (or shallow water waves), a larger range is presented at the entrance of the Bay, 

decreases to minimum around 100 km (nodal point) from the mouth, and then increases 

in the upper Bay (Figure 8-1a and 8-1d). In contrast, the range for the Isabel local-wind 

case increases linearly with distance from the mouth (Figure 8-1e) even though it shows 

somewhat complicated pattern for the Floyd local-wind case. According to Garvine 

(1985), sea level variation is produced dominantly by the remote wind effect but the 

surface slope is dominantly produced by the local wind. He addressed that sea level 

variations within the estuary on the wavelength scale (2nc/ro) depend on the scale of the 

estuary. For the shorter estuary, the primary contributor to surface slope is local wind set-
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up, and its contribution to sea level increases linearly with distance from the mouth to 

lowest order. However, the experiments represent that the maximum surge decreases 

linearly with distance from the mouth during Floyd but increases linearly during Isabel 

(not shown), which is consistent with the results obtained by Shen et al. (2006a). Shen et 

al. (2006a) assumed that the sea level variation is caused by combination of offshore 

storm tide propagating into the Bay and the set-up (or set-down) generated by local wind. 

They found that, to lowest order, the storm tide propagating from the offshore can reach 

the Bay head without attenuation and the local wind causes set-up/set-down with a 

constant slope in the Bay. It is suggested that the location of nodal point inside Bay 

would be mostly influenced by the competition between local wind and remote wind 

effects. Consistently, in this study, the nodal points for combined wind effects during 

Floyd and Isabel occurred at 250 km and 75 km from the Bay mouth, respectively (Figure 

8-lc and 8-lf). The primary surge induced by remote winds acts as a free wave and set­

up/set-down effect induced by local winds acts as a forced wave in the Chesapeake Bay. 

Therefore, it is suggested that the surge range induced by the combined winds decrease 

(increase) to the upper Bay when two waves are in phase (out of phase) during Isabel 

(Floyd). 

In Chapter VI, as a baroclinic response, vertical profiles of along-channel velocity 

and salinity were presented for both Hurricanes Floyd and Isabel. Floyd remained down­

Bay wind whereas Isabel remained up-Bay wind. Hansen and Rattray (1965) developed 

the first theory for the central regime of an estuary, which incorporated wind-driven 

circulation into the gravitational circulation. MacCready (2004) developed a unified 

theory oftidally-averaged, width-averaged estuarine salinity and circulation in a 
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rectangular estuary. Even though the solution for longitudinal velocity with wind forcing 

was not provided, it can be easily found. First u and salinity, s, are split into depth-

averaged (overbar) and depth-varying (prime) parts: 

u = u(x) + u'(x, t)' s = s(x) + s'(x, t) (8-1) 

With some assumptions, MacCready developed the partial equation for u as follows: 

(8-2) 

where g is gravity, J3 = 7. 7 x 1 0-4 psu -I , sx is horizontal gradient of depth-averaged 

salinity, and KM is the effective vertical eddy viscosity (Dyer, 1997). Assuming that KM 

and water depth (H) are constants, and wind forcing (T) as a boundary condition is 

constant, Eq. (8-2) can be integrated directly to find the classic cubic profile (see 

Appendix): 

gp sx H3 
u = .::....:....____:.:__ 

E 48K ' 
M 

_ TH _ tw H 
Uw-----

4 4KM 
(8-3) 

The analytical solutions of tidally-averaged velocity with wind forcings were plotted in 

Figure 8-2a. Without wind stress (black line), tidally-averaged u has two layered 

circulation pattern which is seaward in the upper layer and landward in the lower layer. 

When T=O.l s-1 (blue), down-Bay wind enhanced two-layered circulation. In contrast, 

up-Bay wind (T= -0.1 s-1
) generated three-layered circulation which shows landward in 

the top layer. As shown in Figure 8-2b, however, numerical experiments demonstrated 

two differences from analytical solutions: 1) Bottom current was enhanced but surface 
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current was reduced during Floyd (down-Bay wind). 2) Landward current on the entire 

water column occurred during Isabel (up-Bay wind). There could be two main reasons 

for these differences. Firstly, analytical solutions were obtained regardless of wind­

induced set-up/set-down (at, I Ox.). During Floyd, down-Bay winds produced surge set­

up in the lower Bay and surge set-down in the upper Bay, which generate landward 

barotropic pressure gradient. It tends to enhance landward bottom current but reduce 

seaward surface current. Secondly, analytical solutions were obtained by assuming that 

the eddy viscosity is constant with depth. This means that vertical mixing induced by 

wind stress is limited by constant vertical eddy viscosity and wind stress tends to enhance 

vertical shear. Therefore, constant eddy viscosity could produce three-layered circulation 

pattern instead ofuni-direction flow. 

In the mid-Atlantic region of the continental shelf, it has been observed that there 

exists a low-frequency along-shelf component of 5-20 em/sec (Bumpus, 1973; Boicourt, 

1973; Butman, 1979; Beardsley et al., 1981). Based on the geostrophic balance between t 

he cross-shore pressure gradient and Coriolis force, Yankovsky and Chapman (1997) 

suggested that typical ambient flows of 5 to 10 em s"1 are fairly reasonable values for the 

mid-Atlantic Bight shelf. Among various functions, this low frequency ambient flow play 

sa critical role in shaping the plume that comes out of the Chesapeake Bay to reach 

steady-state. According to Fong and Geyer (2002), the plume is an unsteady 

phenomenon; it will keep expanding or shrinking if without an ambient flow. A set of 

plume experiments performed over an idealized rectangular domain verified that an 

ambient flow of 10 em s"1 is the best value for the system to reach steady-state. 

Additional model experiments were performed to examine the influence of an ambient 
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flow on the salinity field in the Chesapeake Bay domain in 2003 and during hurricane 

events. As shown in Figure 8-1, using an ambient flow of 10 em s"1 improved the 

accuracy of the salinity field at Duck, NC. Without an ambient flow, the freshwater from 

the Bay does not sufficiently flow out of the domain, so that the stratification on the 

continental shelf becomes increased until the system reaches steady state. On the other 

hand, an ambient flow effectively washes out the freshwater to the southern boundary, so 

that the stratification remains fairly intact. An ambient flow of 10 em s"1 shows the best 

match between modeled and observed salinities, and therefore this value was applied to 

the simulations for Hurricanes Floyd and Isabel as base runs. The model results indicate 

that the effect of altering ambient flow does not appear during wind events when surges 

come into the Bay because the effect of ambient flow is relatively weak compared to the 

wind effect. However, after hurricane events, the ambient flows will have influence on 

the adjustment of surface and bottom salinities. Generally, as a weak ambient flow 

allows the plume width to extend offshore, the volume and salt transports at transect of 

the Bay mouth salt intrusion to the Bay tends to decrease (Vaile-Levinson et al., 1996). 

One interesting feature that emerged from the SELFE model results after 

hurricane forcing was the appearance of seiche motion in the coupled Bay and adjacent 

continental shelf model simulation. Seiche motion is one of the responses of an estuary 

to wind forcing. Elliott (1976) indicated that the local surface slopes induced by a winter 

storm provided evidence for the presence in the Patuxent River of a surface oscillation 

with a period of approximately 88 hours that may have arisen in response to internal 

seiching of the halocline. Chuang and Boicourt (1989) reported that seiche motions in 

the Chesapeake Bay are generally driven by the longitudinal (N-S) wind at 2- to 3-day 
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time scales and are characterized by a node at the mouth and an antinode at the head of 

the Bay. What we have found was that a 4-to-5-day oscillation of the elevation field 

manifested in an x-t plot, as shown in Figure 8-2, where the horizontal axis is the distance 

x in km from the head of the Bay to the continental shelf edge and the vertical axis is 

time, t, in units of days. The wind forcing was confined within a 4-day period between 

day 6 and Day 10 shown by the dashed red line. The oscillations began at day 9 when it 

was first generated, and then repeated itself twice, once at the day 14 and the other at 

Days 19-20. For the oscillations at day 9 and Day 14, the oscillation occupied entire Bay 

and continental shelf domain whereas, for the oscillation at days 19-20, it was confined to 

the lower Bay and the continental shelf. The 4-to-5-day oscillation was indeed one of 

Wang's (1979a) signature, subtidal sea level variations observed in the Chesapeake Bay 

in response to atmospheric forcing. The answer to the crucial question as to whether the 

phenomenon observed by Wang (1979a) was actually simulated by the model will have to 

wait until further research. 

The SELFE model used for this dissertation represents the state-of-the-art 

unstructured grid model development. The present SELFE version was run on a single 

processor which takes 16 hours computational time for a 1 0-day simulation. Recently, the 

parallel versions ofELCIRC and SELFE models have been released and these allow us to 

simulate the models with multi-processors. The test on the parallel code was performed 

and the run time on an 8-processor cluster now becomes 2 hours for a 1 0-day simulation, 

a speed up by a factor of 8. With the parallel version capability, further improvement can 

be made in refining the model grid to reduce numerical dispersion errors generated from 

a coarse grid. The high resolution results will help to better understand the small scale 
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physical phenomena, not only on turbulent eddies but also on lateral circulation driven by 

wind forcing in the tributaries of the Chesapeake Bay. 
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Fig. 8-1 Spatial distributions of surge ranges for six experiments during hurricane events, Floyd 

(a, b, and c) and Isabel ( d, e, and f). 

251 



Or---~--~~~--~--~---. 

(a) 

-0.2 

-0.4 
J: 

. "'I 

.• f 

:I 
:; 
1 

t:J 

I. 

t 
-0.6 

~ ~ - do~ay wind 
: --nowmd 
: --up-Bay wind 

-1.01 I I ~ I I I 

-0.8 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 

u (m/s) 

Or-~r---~--~~----~--~ 

-0.2 

-0.4 
J: 
t:J 

-0.6 

-0.8 

(b) 
'\ 

\ 

\ 
I 

--Floyd -local 
--no wind 
-- Isabel-local 

-1.0 '------'------'-----=------'-------'------' 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 

u (m/s) 
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of contour lines is 0.2 m. Red dashed lines denote the period of Hurricane Isabel. 

254 



Conclusions 

The research presented in this dissertation represents progress made towards a 

better understanding of the responses of the Chesapeake Bay to two different types of 

hurricanes, Hurricane Floyd (an eastern-type storm) and Hurricane Isabel (a western-type 

storm) using the unstructured grid three-dimensional model. 

Barotropic responses of the Chesapeake Bay to two hurricanes 

Independent of two types of hurricanes, both hurricanes had three stages in terms 

of storm surge at the mouth ofthe Bay: growing (pre-storm) stage, transition (ongoing­

storm) stage, and decaying (post-storm) stage. The storm surge evolution is represented 

by two main behaviors: 1) Non-local (remote) winds generate the first set of storm surge 

at the entrance of the Bay due to the seaward and the surge wave propagates to the upper 

Bay with same magnitude of surge height. 2) Local winds play a role in creating the 

second thrust of the surge wave, which influences on the first surge wave. The effect of 

local winds depends on two types ofhurricanes: down-Bay (northerly) winds during 

Hurricane Floyd decrease the surge height (wind-induced set-down) in the upper Bay, 

whereas up-Bay (southerly) winds during Hurricane Isabel increase the surge height 

(wind-induced set-up) in the upper Bay. 

The inverted barometric pressure increased the sea surface elevation by 20-25 em 

during both hurricanes corresponding to a 20-25mb atmospheric pressure drop. This 

influence on the sea surface elevation rising is nearly 20 % of total meteorological 

forcing. That is, 80 % comes from direct wind forcing. 

Temporal and spatial variations of net volume flux across each transect reveal that 
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its convergence/divergence is the key to dominate the exchange of barotropic volume 

transport not only between the shelf and the Bay, but also between the Bay and its 

tributaries. The huge amount of river flow following a hurricane event generates the 

second rise of sea surface elevation in the upstream of the Bay's tributaries, which gives 

rise to the inundation damage. 

Baroclinic responses of the Chesapeake Bay to two hurricanes 

The Chesapeake Bay has both similar and different baroclinic responses to two 

types of hurricanes. Oceanic volume and salt influxes obviously occurs from the 

continental shelf to the Bay through its entrance during both Hurricanes Floyd and Isabel. 

At the onset and end of the hurricane events, barotropic adjustment drives strong transient 

salt fluxes. The influxes signal propagates upstream in the forms of storm surge and salt 

intrusion. Strong down-Bay (northerly) winds corresponding to the passage of eastern­

type hurricanes restricts landward net salt flux to the upper Bay, whereas up-Bay 

(southerly) winds corresponding to the passage of western-type hurricanes strengthens 

landward net salt flux to the upper Bay. 

During a hurricane event, surface wind stress is the primary agent to destratify 

water column by transferring generated turbulent kinetic energy to the lower layer (local 

wind effect). Advection of well-mixed salty water influx from the ocean is the second 

agent to change the stratification inside Bay (remote wind effect). Down-Bay winds of 

eastern-type storms tend to enhance the stratification whereas up-Bay winds of western­

type storms tend to reduce the stratification. A modified horizontal Richardson number 

incorporated with the Wedderburn number (W) represents reasonably wind-induced 
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straining/mixing during hurricane events. 

In addition, precipitation as a point source of water mass on the surface in the 

Chesapeake Bay not only dilutes surface water but also generates a seaward barotropic 

horizontal pressure gradient, which competes barotropic adjustment at the end of the 

wind events. It plays a significant role in dropping the salinity and retarding the salinity 

rebound after salinity has rapidly dropped. 

Estuarine recovery and influence of continental shelf dynamics 

The adjustment time of sea surface disturbance from both hurricanes is nearly 

seven days in the Chesapeake Bay. For the salinity, the recovery time mainly depends on 

the direction of local winds under a certain amount of river discharge following the 

hurricane event. Strong down-Bay winds suppress the salinity structure to increase the 

horizontal density gradient as a restoring force, and quick barotropic adjustment induced 

by the landward horizontal pressure gradient drives salt flux when winds stop. These 

barotropic and baroclinic pressure gradients have the same upstream direction and 

generate salinity overshooting. These gradients cause an oscillation of salinity in the 

upper Bay and thus a longer time is required for salinity to reach an equilibrium state than 

is the case with up-Bay winds. Salinity in the upper Bay attained a relatively high value 

due to overshooting after Hurricane Floyd, whereas salinity in the upper Bay quickly 

dropped after Hurricane Isabel. When subsequent river discharge begins, it suppresses 

salinity structure downstream and retards salinity recovery time. 

The influence of continental shelf dynamics plays a significant role in exchanging 

transport at the entrance of the Chesapeake Bay. Onshore Ekman transport raised the sea 
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surface elevation and increased the salinity at the Bay entrance during Hurricane Isabel. 

The wind change to southerly winds leads offshore Ekman transport to decrease the sea 

surface elevation and surface salinity. This leads to an upwelling condition to increase 

the bottom and surface salinities a couple of days later. Onshore quasi-geostrophic 

current plays a role in increasing sea surface elevation. This leads to a downwelling 

condition that enhances seaward flow in the bottom layer and decreases the bottom 

salinity. 
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APPENDIX 

As reviewed in MacCready (2004 ), assuming that the estuary is rectangular in cross-

section estuary, the tidally-averaged along-channel momentum balance is dominated by 

the along-channel pressure gradient and vertical Reynolds stress divergence: 

0 = __ 1 8p +~(KM eu) 
Po Ox. 8z 8z 

(A-1) 

The pressure gradient term on the right hand side ofEq. (A-1) is separated into barotropic 

and baroclinic parts: 

__ 1 8p == -g Or] + g J-1 8p dz 
Po Ox Ox Po Ox. 

(A-2) 

Since the equation of state is approximated as p = p0 (1 + Ps) , the pressure term can be 

expressed by salinity instead of density: 

as as' 
·: ->>-

Substituting Eq. (A-3) into Eq. (A-1) and taking ~,we find az 

. u =-gpsx =-B 
.. = KM 

Three boundary conditions are provided as follows: 
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Bu = T = 't w at z = 0 
oz KM 

u=O atz= -H 

1 0 -

- Judz=u 
H_H 

Integrating Eq. (A-4) twice in z yields 

Then Eq. (A-5a) is applied to Eq. (A-6), thus 

Next, integrating Eq. (A-6) in z yields, 

B C 
u = --z3 +-1 z2 +Tz+C 

6 2 
3 

Applying Eq. (A-5b) to Eq. (A-7) 

B C 
uJ = +-H3 +-1 H 2 -TH+C 

z=-H 6 2 3 

B C 
0=+-H3 +-1 H 2 -TH+C3 6 2 

By integrating Eq. (A-7) in z, depth-averaged part can be found: 

f B C T 
udz=--z4 +-1 z3 +-z2 +C3z+C4 24 6 2 

(A-5a) 

(A-5b) 

(A-5c) 

(A-6) 

(A-7) 

(A-8) 

1 °J 1 [ B 4 C1 3 T 2 J 1 [ B 4 C1 3 T 2 J - udz=- --0 +-0 +-0 +C O+C -- --H --H +-H -C H+C 
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-- B H3 Cl H2 T H C U-- +- -- + 
24 6 2 

3 

Subtracting Eq. (A-9) from Eq. (A-8), C1 can be found: 

3B 3T 1 3 _ 
:. C = --H+----u 1 8 2 H H2 

By inserting Eq. (A-10) to Eq. (A-8), C3 can be determined: 

0=-H +- --H+----u H -TH+C B 3 1 ( 3B 3T 1 3 -) 2 
6 2 8 2 H H 2 3 

3_ B 3 T 
:. C3 =-u+-H +-H 

2 48 4 

Inserting Eq. (A-10) and Eq. (A-ll) into Eq. (A-7), we find 

By definition of u = u + u', depth-varying velocity can be found: 

u'=u ---- +-H3 1-9--8- +-H 1+4-+3-( 
1 3 z

2 J B ( z
2 

z
3 J T ( z z

2 J 
2 2 H 2 48 H 2 H 3 4 H H 2 

Putting ~ = ~, Eq. (A-12) can be written as 
H 

g~S:H3 TH 'twH 
u - u =-=--
E- 48K , w 4 4K 

M M 
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