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a b s t r a c t

Intracellular Ca2+ signaling is important to perfusion pressure related arterial reactivity and to vascular
disorders including hypertension, angina and ischemic stroke. We have recently shown that advanc-
ing-age leads to calcium signaling adaptations in mesenteric arterial myocytes from C57 BL/6 mice
[Corsso, C.D., Ostrovskaya, O., McAllister, C.E., Murray, K., Hatton, W.J., Gurney, A.M., Spencer, N.J., Wilson,
S.M., 2006. Effects of aging on Ca(2+) signaling in murine mesenteric arterial smooth muscle cells. Mech.
Ageing Dev. 127, 315–323)] which may contribute to decrements in perfusion pressure related arterial
contractility others have shown occur. Even still, the mechanisms underlying the changes in Ca2+ signal-
ing and arterial reactivity are unresolved. Ca2+ transport and storage capabilities are thought to contrib-
ute to age-related Ca2+ signaling dysfunctions in other cell types. The present studies were therefore
designed to test the hypothesis that cytosolic and compartmental Ca2+ homeostasis in mesenteric arterial
myocytes changes with advanced age. The hypothesis was tested by performing digitalized fluorescence
microscopy on mesenteric arterial myocytes isolated from 5- to 6-month and 29- to 30-month-old C57Bl/
6 mice. The data provide evidence that with advanced age capacitative Ca2+ entry and sarcoplasmic retic-
ulum Ca2+ storage are increased although sarcoplasmic reticulum Ca2+ uptake and plasma membrane
Ca2+ extrusion are unaltered. Overall, the studies begin to resolve the mechanisms associated with
age-related alterations in mesenteric arterial smooth muscle Ca2+ signaling and their physiological
consequences.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

Intracellular Ca2+ homeostasis of smooth muscle cells is a well-
regulated and dynamic process. Myocyte stimulation increases the
cytosolic Ca2+ concentration ([Ca2+]i), which induces actin–myosin
crossbridge cycling. Ultimately, this results in contraction and a nar-
rowing of the arterial lumen. These activity-dependent cytosolic
[Ca2+] elevations are due to activation of Ca2+ permeable ion chan-
nels on the plasma membrane as well as sarcoplasmic reticulum
(Kuriyama et al., 1998). In particular, L-type Ca2+ (CaL) as well as
Na+ and Ca2+ permeable non-selective cation (NSC) channels provide
for Ca2+ influx across the plasma membrane, while InsP3 receptors
and ryanodine receptors release Ca2+ from the sarcoplasmic reticu-

lum (Davis and Hill, 1999; Kuriyama et al., 1998). Following an
increase in the cytosolic [Ca2+]i, the Ca2+ is buffered by proteins such
as calmodulin. The Ca2+ ions are then released from the buffers and
transported into the sarcoplasmic reticulum by sarcoplasmic–endo-
plasmic Ca2+ ATPases (SERCA) or out of the cell by plasma membrane
Ca2+ ATPases or Na+/Ca2+ exchangers (Wagner and Keizer, 1994;
Keizer et al., 1995; Smith et al., 1996; Brini et al., 2002; Blaustein
et al., 2002; Thayer et al., 2002; Gros et al., 2003; Rosker et al.,
2004; Zhang et al., 2005).

Given the intimate link between Ca2+ and smooth muscle con-
tractility, it is not surprising that Ca2+ homeostasis alterations
likely contribute to vascular diseases such as hypertension, angina
and ischemic stroke. This is particularly true as CaL blockers are
effective antihypertensive agents. Even still, there are varying
changes in smooth muscle excitability with aging in arterioles iso-
lated from different vascular beds. Nor-epinephrine induced vascu-
lar reactivity was significantly reduced in skeletal muscle arterioles
from 24-month when compared to 4-month-old rats (Muller-Delp
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et al., 2002). This suggests there are age-related decrements in
receptor coupling mechanisms. Previous evidence shows reduced
agonist mediated as well as K+-induced contractions in aorta from
old rats, implying CaL function may also be decreased (Delp et al.,
1995). In mesenteric arteries from C57Bl/6 mice, the ability of
the arteries to constrict in response to increases in perfusion pres-
sure diminishes during the first year (Gros et al., 2002). However,
the cellular pathways responsible for this altered reactivity with
advancing-age are presently unknown. Our recent findings provide
some mechanistic details that might contribute to this decrement
in arterial reactivity with age. In mesenteric myocytes from elderly
mice, there was a depression in ryanodine receptor and InsP3

receptor driven Ca2+ signals but not the functional expression of
CaL (Corsso et al., 2006). One shared element between InsP3 and
ryanodine receptor dependent Ca2+ signaling is that activation of
either receptor releases Ca2+ from the sarcoplasmic reticulum into
the cytosol, which is then cleared back into the sarcoplasmic retic-
ulum or transported across the plasma membrane.

The cellular pathways important to sarcoplasmic reticulum Ca2+

signaling and cytosolic Ca2+ homeostasis change with advancing-
age. In the aging brain, there is reduced Ca2+ buffering (Verkhratsky
and Toescu, 1998) as well as SERCA and plasma membrane Ca2+

ATPase function (Michaelis et al., 1996; Pottorf et al., 2000; Vant-
erpool et al., 2005). Similarly, Na+/Ca2+ exchanger function is de-
pressed in heart (Janapati et al., 1995). Related to these findings,
alterations in plasma membrane extrusion or sarcoplasmic reticu-
lum Ca2+ uptake capabilities greatly affect Ca2+ signaling in numer-
ous cell types including T-lymphocytes (Dolmetsch and Lewis,
1994; Bautista et al., 2002), neurons (Blaustein et al., 2002; Pottorf
et al., 2000; Thayer et al., 2002; Vanterpool et al., 2005), astrocytes
(Blaustein et al., 2002), smooth muscle cells (Janssen et al., 1997;
Zhang et al., 2005), and Chinese hamster ovary cells (Brini et al.,
2002). Any alteration in Ca2+ clearance at either the sarcoplasmic
reticulum or plasma membrane is therefore likely to affect arterial
reactivity. The intimate relationships between sarcoplasmic reticu-
lum Ca2+ release, cytosolic Ca2+ homeostasis, and arterial contrac-
tility lead to the proposal that there are reductions in plasma
membrane Ca2+ transport as well as sarcoplasmic reticulum Ca2+

sequestration and storage abilities with advanced age. These
hypotheses were examined in mesenteric arterial smooth muscle
cells (MASMCs) from 5- to 6- (mature) and 29- to 30-month
(old) C57bl/6 mice.

2. Methods

2.1. Cell isolation

Smooth muscle cells were isolated from murine mesenteric
arteries from male C57BL/6 mice purchased from Harlan
Sprague–Dawley. These mice were anesthetized and then eutha-
nized with CO2, as approved by the University of Mississippi Insti-
tutional Animal Care and Use Committee. The mesentery, including
the vasculature and gut was excised en bloc. Arteries <250 lM
were dissected at 5 �C to decrease cellular metabolic activity in a
low-Ca2+ physiological saline solution (PSS) containing in mM:
125 NaCl; 5.36 KCl; 0.336 Na2HPO4; 0.44 K2HPO4; 11 HEPES; 1.2
MgCl2; 0.05 CaCl2; 10 glucose; 2.9 sucrose, pH 7.4 (adjusted with
Tris), osmolarity 300 mOsm (adjusted with sucrose). Arteries were
cleaned of adipose and connective tissues, cut into small pieces and
placed in a tube containing fresh PSS. Tissue was then immediately
digested. To disperse cells, tissue was placed in low-Ca2+ PSS con-
taining (in mg/ml): 1.67 collagenase type XI; 0.13 elastase type IV,
and 0.67 bovine serum albumin (fat free) for 18–23 min at 34 �C.
The tissue was then washed several times in warm (34 �C) low-
Ca2+ PSS, and subsequently triturated with fire-polished Pasteur

pipettes. The resulting dispersed MASMCs were cold stored at
5 �C up to 8 h until experiments were performed.

2.2. Global Ca2+ measurements

Cytosolic [Ca2+] was measured in SMCs loaded with the ratio-
metric Ca2+ sensitive dye fura-2 AM (Molecular Probes, Eugene,
OR) using a dual excitation digital Ca2+ imaging system (IonOptix
Inc., Milton, MA) equipped with an intensified charged coupled
device (CCD) camera. The imaging system was mounted on an
inverted microscope (Nikon) outfitted with a 40� (NA 1.3, Nikon
Inc., Melville, NY) oil immersion objective. Fura-2 AM was dis-
solved in DMSO and added from a 1 mM stock to the cell suspen-
sion at a final concentration of 10 lM. Cells were loaded with fura-
2 AM for 20–25 min in a perfusion chamber (Warner Instruments,
Hamden, CT) at room temperature in the dark. Cells were then
washed for 30 min to allow for dye esterification at 1 ml/min with
a balanced salt solution of the following composition (mM): 126
NaCl; 5 KCl; 0.3 NaH2PO4; 10 Hepes; 1 MgCl2; 2 CaCl2; 10 glucose;
pH 7.4 (adjusted with NaOH) 300 mOsm. In all experiments, cells
were continuously perfused with a peristaltic pump (Rainin, Wo-
burn, MA) and solution flow controlled with a multichannel Valve-
bank computerized system connected to pinch valves (Automate
Scientific, Berkeley, CA). Cells were illuminated with a xenon arc
lamp at 340 ± 15 and 380 ± 15 nm (Chroma Technology, Rocking-
ham, VT) and emitted light was collected from regions that encom-
passed single cells with a CCD at 510±nm. In most experiments,
images were acquired at 1 Hz and stored on either compact disk
or magnetic media for later analysis. Intracellular calcium
([Ca2+]i) was estimated from the ratio of fluorescence excited at
340 and 380 nm (R) as described by Grynkiewicz et al. (1985),
assuming a KD for Ca2+ binding to fura-2 of 224 nM (Grynkiewicz
et al., 1985) from the relation,

½Ca2þ�i ¼ Kd � ðSf2=Sb2Þ � ðR� RminÞ=ðRmax � RÞ ð1Þ

where the values for F380 in the absence of extracellular Ca2+ (Sf2),
F380 in the presence of 10 mM extracellular Ca2+ (Sb2), minimum
ratio (Rmin), and maximum ratio (Rmax) were determined from
in situ calibrations of fura-2 for each cell. These in situ calibrations
were carried out at the end of each experiment after applying 1 lM
ionomycin. To determine the maximum ratio, Rmax, cells were per-
fused with a balanced salt solution that contained 10 mM Ca2+,
while the minimum ratio, Rmin, was obtained after applying bal-
anced salt solution that did not have any added Ca2+ and contained
10 mM EGTA. The amplitudes of the increase in cytosolic [Ca2+] due
to depletion of the sarcoplasmic reticulum Ca2+ stores are expressed
relative to baseline values. Background fluorescence was collected
automatically and subtracted from the acquired fluorescence video
images during each experiment. The Ca2+ free balanced salt solution
was prepared by substituting MgCl2 for CaCl2 and adding 1 mM
EGTA. All experiments were performed at room temperature 22–
25 �C.

2.3. Chemicals and drugs

Ionomycin free acid was purchased from Calbiochem (San
Diego, CA) and all other chemicals were purchased from Sigma
(St. Louis, MO).

2.4. Statistical analysis

All curve fitting and integration routines were performed with
IGOR pro 3.0 (Wavemetrics, Lake Oswego, OR). All data are pre-
sented as means ± SEM. Statistical difference was determined with
either a two-tailed paired or unpaired Student’s t test. The specific
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test used for each data set is noted in the legend for each figure. A
P value <0.05 was accepted as statistically significant. Multiple tri-
als were performed on cells isolated from multiple mice for each
experimental paradigm. The specific number of cells and animals
evaluated are provided in the legend for each figure. Notably, mea-
surements Ca2+ concentration and rates of Ca2+ movement across
the plasma membrane and sarcoplasmic reticulum were per-
formed on myocytes isolated from the same animals.

2.5. Abbreviations

1/sSR, the rate constant for the leak of Ca2+ from the sarcoplasmic
reticulum; CaL, L-type Ca2+ channel; CPA, cyclopiazonic acid; InsP3,
inositol-1,4,5-trisphosphate; Jin, Ca2+ influx rate; MASMC, mesen-
teric arterial smooth muscle cell; mclear, plasma membrane Ca2+

clearance; NSC, Na+ and Ca2+ permeable non-selective cation chan-
nels; Q(t), fractional release of Ca2+ from the sarcoplasmic reticulum;
SERCA, sarcoplasmic endoplasmic reticulum calcium ATPase; Zo,
releasable content of the sarcoplasmic reticulum [Ca2+] store.

3. Results

3.1. Effect of aging on basal Ca2+ and capacitative Ca2+ entry

Fig. 1 shows the average basal cytosolic [Ca2+] measured in
MASMCs from mature and old mice. Cells from mature mice had
a basal [Ca2+] of 102 ± 19 nM, which was not significantly different
than that measured in cells from old mice (96 ± 11 nM). It is inter-
esting to note that the basal Ca2+ levels reported here are approx-
imately 2-fold greater than what we showed previously (Corsso et
al., 2006). This is likely a temperature dependent effect as the cur-
rent experiments were performed at room temperature while the
previous study was performed roughly 10 �C warmer, being
approximately 33 �C. The differences in experimental temperature
could influence the binding of Ca2+ to fura-2 and thus affect the
reported [Ca2+] values. Elevations in temperature can also increase
protein activity, which may cause complex changes in the regula-
tion of cytosolic [Ca2+] relative to our previous study (Corsso et al.,
2006). In addition, these data are consistent with basal [Ca2+] levels
made at room temperature in peripheral neurons that innervate
blood vessels (Vanterpool et al., 2005) and pulmonary arterial myo-
cytes (Ostrovskaya et al., 2007).

Fig. 2 shows that depletion of the sarcoplasmic reticulum Ca2+

stores results in a sustained cytosolic Ca2+ elevation consistent
with capacitative calcium entry activation (Goyal et al., 2008;
Wilson et al., 2002; Ng et al., 2005, 2007). Fig. 2A shows an exem-
plary tracing of the Ca2+ signal over time in a MASMC from an older
mouse. In this cell, the sarcoplasmic reticulum Ca2+ stores were
fully depleted by bathing the cell in a Ca2+ free solution in the

continuous presence of 10 lM cyclopiazonic acid (CPA), which
inhibits the sarcoplasmic–endoplasmic reticulum Ca2+ ATPase
(SERCA), and thereby facilitates depletion of the intracellular Ca2+

stores. This depletion occurs because the sarcoplasmic reticulum
is in a state of dynamic equilibrium whereby Ca2+ is continuously
pumped into the sarcoplasmic reticulum compartment by SERCA,
and continuously released or passively leaked from it. The CPA-
induced SERCA inhibition in combination with extracellular Ca2+

removal caused a substantial cytosolic Ca2+ increase, as illus-
trated by the initial peak in Fig. 2A. This CPA-induced increase
in the cytosolic [Ca2+] is presumably due to passive leak of
Ca2+ from the sarcoplasmic reticulum. However, as the cells
are bathed in a zero calcium solution, there is also a unidirec-
tional Ca2+ flux through the cytosol, and across the plasma mem-
brane. Ultimately, this movement of Ca2+ out of the cell depletes
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the intracellular Ca2+ stores and, as shown in Fig. 2A, this
reduces the cytosolic [Ca2+] to values that are often less than
what is observed under basal conditions. This response is similar
to that we reported previously in canine pulmonary and renal
arterial myocytes (Wilson et. al., 2002), and in fetal and adult
ovine pulmonary arterial myocytes (Goyal et al., 2008), and to
that reported in T-lymphocytes (Bergling et al., 1998). Depletion
of Ca2+ from the sarcoplasmic reticulum was verified by expos-
ing the cells to 10 mM caffeine twice for 30 s, and the lack of
a Ca2+ response, as shown in Fig. 2A, was taken as an indicator
that the sarcoplasmic reticulum was devoid of releasable Ca2+.
After this, extracellular Ca2+ was added to the bathing solution
containing 10 lM CPA and the cytosolic [Ca2+] increased
100 nM above basal values. This Ca2+ increase is indicative of
capacitative calcium entry (Goyal et al., 2008; Wilson et al.,
2002; Ng et al., 2005, 2007). Fig. 2B shows a graphical represen-
tation of the change in the mean cytosolic [Ca2+] values after
depleting the sarcoplasmic reticulum stores, and activating capa-
citative calcium entry by reintroducing 2 mM Ca2+ with 10 lM
CPA. The figure provides evidence that there is a 2-fold increase
in the development of capacitative calcium entry with advanced
age, where the mean increase in the cytosolic [Ca2+] was
86 ± 13 nM in cells from mature mice and 152 ± 21 nM for cells
isolated from old mice. Fig. 2C shows a histogram analysis of
the mean data shown in Fig. 2B illustrating the heterogeneity
of the capacitative calcium entry response for individual cells,
and providing further evidence that capacitative calcium entry
is augmented in myocytes from older mice.

3.2. Effect of aging on plasma membrane Ca2+ clearance

The potential for alterations in cytosolic Ca2+ clearance with
advanced age were evaluated using experimental and mathemat-
ical approaches developed by Keizer and co-workers (Bergling et
al., 1998). The analysis is based on several simple mechanistic
assumptions. A primary assumption is that in an un-stimulated
myocyte the basal cytosolic [Ca2+] is maintained through a
dynamic equilibrium of balanced fluxes across the plasma mem-
brane and sarcoplasmic reticulum. As such, the sarcoplasmic
reticulum [Ca2+] is maintained by equal and opposing influences
of Ca2+ uptake by the SERCA pump and continuous passive leak.
Cyclopiazonic acid is assumed to instantaneously inhibit Ca2+

uptake into the sarcoplasmic reticulum. The resultant unregu-
lated passive leak from the sarcoplasmic reticulum is assumed
to be proportional to the concentration gradient between the
sarcoplasmic reticulum and the cytosol; this leak is approxi-
mately proportional to the [Ca2+] in the sarcoplasmic reticulum
because this concentration is far greater than the cytosolic
[Ca2+]. The mathematical approach also presumes the mecha-
nisms of plasma membrane Ca2+ influx and efflux are a linear
function of the cytosolic [Ca2+]. The rates of change in the cyto-
solic [Ca2+] express the underlying fluxes and includes the influ-
ence of rapid Ca2+ buffers (Wagner and Keizer, 1994). The
releasable Ca2+ content of the sarcoplasmic reticulum is mea-
sured in cytosolic equivalents, which is the increase in the cyto-
solic [Ca2+] if the entire sarcoplasmic reticulum Ca2+ store
content were instantaneously distributed throughout the cytosol.
This method of measuring the sarcoplasmic reticulum Ca2+ con-
tent facilitates comparison between cells of different size, which
is especially important as cells from old mice are substantially
larger than those from mature (Corsso et al., 2006).

Fig. 3A shows a representative recording of cytosolic Ca2+ clear-
ance in a myocyte isolated from an old mouse. The experimental
design entails depletion of the sarcoplasmic reticulum Ca2+ stores,
activation and measurement of capacitative calcium entry
([Ca2+]CCE) (i.e. Fig. 2) and lastly removal of extracellular Ca2+.

During this last phase of extracellular Ca2+ removal, the rate con-
stant of plasma membrane Ca2+ clearance (mclear) is measured by
fitting the data with an exponential function

½Ca2þ�iðtÞ ¼ ½Ca2þ�iðt1Þ þ ½Ca2þ�ið0Þ expð�mcleartÞ ð2Þ

The experimental protocol is similar to ones used previously to
examine capacitative calcium entry in pulmonary and renal arte-
rial smooth muscle cells (Wilson et al., 2002; Goyal et al., 2008),
T-lymphocytes (Bergling et al., 1998), HEK-293 cells (Shalabi et
al., 2004), and A7R5 cells (Soboloff et al., 2005). The Ca2+ decay
curves used to compute mclear (Fig. 3A) was well fit by equation 2
and similar to those published for T-lymphocytes (Bergling et al.,
1998), with mclear being 0.034 s�1 for the myocyte shown in
Fig. 3A. As shown in Fig. 3B, there were no significant differences
in the average mclear measurements for mature and old myocytes,
being 0.027 ± 0.004 s�1 in cells isolated from mature mice and
0.033 ± 0.003 s�1 in cells from old mice.

3.3. Effect of aging on sarcoplasmic reticulum Ca2+ uptake and storage

Given the simple mechanistic assumptions described above,
when sarcoplasmic reticulum Ca2+ uptake is inhibited and extra-
cellular Ca2+ influx abolished the releasable Ca2+ content from
the sarcoplasmic reticulum can be measured in cytosolic equiva-
lents as given by (Bergling et al., 1998)

z0 ¼
Z t1

0
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resultant exponential curve fit to the data (solid lines). Recording shows the effect
of extracellular Ca2+ removal in the presence of 10 lM CPA once the sarcoplasmic
reticulum Ca2+ stores are depleted using the protocol shown in Fig. 1. (B) Bars
indicate the plasma membrane clearance rate constant (mclear) for cells from mature
(solid) and old (open) mice. Error bars represent ± sem. No significant difference
was observed by an unpaired t-test (P = 0.26). Recordings were performed in 18
cells from 3 mature and 25 cells from 4 old mice.
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Based on this equation, in cells where mclear was measured the
releasable content of the sarcoplasmic reticulum [Ca2+] store (Zo)
can be estimated. Fig. 4 shows exemplary traces for the Zo compu-
tation, which was achieved by integrating the Ca2+ release curve
(Eq. 3) at the time points illustrated in Fig. 4A, where extracellular
Ca2+ was removed and SERCA was inhibited with 10 lM CPA. This
method provides the releasable calcium inside the lumen of the
sarcoplasmic reticulum, which is responsible for vascular reactivity
when the myocyte is activated. The measurement was made as a
function of the cytosolic volume, which therefore eliminates the
fact that cell morphology is altered with age, and indeed gives an
estimate of sarcoplasmic reticulum Ca2+ release in mature and old-
er myocytes. Fig. 4A shows an exemplary trace from an old cell
where the Zo was 216 nM. Fig. 4B shows the average Zo measure-
ments, which were 210 ± 36 nM in mature cells and greater,
374 ± 38 nM, in old cells. Fig. 4C shows a histogram analysis of
the mean data shown in Fig. 4B illustrating the heterogeneity of
the storage capacity of individual cells, and providing further evi-
dence that cells from mature mice have smaller sarcoplasmic retic-
ulum Ca2+ stores.

The rate constant for the leak of Ca2+ from the sarcoplasmic
reticulum (1/sSR) can be computed using the following two rela-
tionships (Bergling et al., 1998)

lnðQðtÞÞ ¼ �t=sSR ð4Þ

with

QðtÞ ¼ 1� fmclear

Z t

0
D½Ca2þ�ðt0Þdt0 þ D½Ca2þ�ðtÞg=z0 ð5Þ

Under basal conditions, the rate of sarcoplasmic reticulum Ca2+

release is balanced by sarcoplasmic reticulum Ca2+ uptake and thus
1/sSR provides a measure of SERCA activity.

Further to this, SERCA function can be evaluated by the expo-
nential curve fitting analysis of Q(t) (Eq. 5), which is the fractional
release of Ca2+ from the sarcoplasmic reticulum. Fig. 5 shows rep-
resentative and average data, based on the analysis of ln Q(t) (Eq.
4). Fig. 5A shows a semi-logarithmic plots of QðtÞ for an individual
myocyte from an old mouse in a Ca2+-free bathing solution con-
taining 10 lM CPA. This data was derived from the CPA-mediated
Ca2+ release data shown in Fig. 2A, when extracellular Ca2+ was re-
moved. The decline in fractional Ca2+ release over time was mono-
exponential in this cell for approximately 90% of the Ca2+ released
from the store, as illustrated by the single exponential curve fit to
ln Q(t). The decay of cytosolic Ca2+ deviated from the curve fit as
the cytosolic [Ca2+] became very low. These non-exponential
changes in ln Q(t) were expected as they were also observed in
T-lymphocytes (Bergling et al., 1998), and in ovine pulmonary arte-
rial myocytes (Goyal et al., 2008). Fig. 5B shows average data based
on this exponential curve fitting analysis with 1/sSR being
0.021 ± 0.002 in myocytes from mature and 0.018 ± 0.002 in myo-
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cytes from old mice. Based on this analysis, SERCA function was not
altered with advanced age.

4. Discussion

This is the first report to examine Ca2+ homeostasis in aged
smooth muscle using experimental and mathematical analysis
techniques of Keizer and co-workers (Bergling et al., 1998), and
builds from our report using these techniques in pulmonary arte-
rial myocytes (Goyal et al., 2008). These analytical techniques pro-
vide estimates for plasma membrane Ca2+ entry and clearance,
SERCA function, and sarcoplasmic reticulum Ca2+ content. The re-
sults show increased capacitative calcium entry and sarcoplasmic
reticulum storage capacity in mesenteric arterial myocytes from
old mice, and maintained plasma membrane Ca2+ clearance as well
as SERCA function. This work expands on our recently published
report showing hypertrophy and reduced sarcoplasmic reticulum
Ca2+ release of mesenteric arterial smooth muscle cells from aged
C57Bl/6 mice when compared to cells isolated from mature mice
(Corsso et al., 2006).

The increased sarcoplasmic reticulum Ca2+ storage with ad-
vanced age was unexpected given that sarcoplasmic reticu-
lum-related Ca2+ signaling is depressed (Corsso et al., 2006).
In essence, mesenteric arterial myocytes from aged mice store
a greater amount of Ca2+ in their sarcoplasmic reticulum,
although it is not released as well. Because our measurement
of Ca2+ content is independent of the cell volume, the data sug-
gest the enhanced sarcoplasmic reticulum Ca2+ content may be
independent of age-related cellular hypertrophy. This indicates
the augmented Ca2+ content may be due to an increase in the
proportion of the sarcoplasmic reticulum relative to the total
cell volume, or to an increase in the concentration of Ca2+

stored in the sarcoplasmic reticulum.
In general, the sarcoplasmic reticulum Ca2+ content relies on the

balance of SERCA dependent Ca2+ uptake to sarcoplasmic reticulum
Ca2+ leak (Keizer and De Young, 1993; Bergling et al., 1998). Yet,
our computations indicate these parameters remain unchanged
with advanced age and thus cannot account for the augmented sar-
coplasmic reticulum Ca2+ storage capacity. This compares with
aged neurons, where SERCA function and releasable sarcoplasmic
reticulum Ca2+ content are reduced (Tsai et al., 1998; Pottorf et
al., 2000; Vanterpool et al., 2005).

The enhancement in capacitative calcium entry with advanced
age was striking and may provide for the increased sarcoplasmic
reticulum Ca2+ storage capacity. Capacitative Ca2+ entry is a ubiq-
uitous process in many cell types such as smooth muscle, lympho-
cytes, neurons, fibroblasts, and endothelial cells and is activated by
release or depletion of the sarcoplasmic–endoplasmic reticulum
Ca2+ stores (Putney, 2005). Capacitative Ca2+ entry then acts to re-
fill the intracellular Ca2+ stores (Beech 2005; Putney, 2007). Pre-
sumably, increasing the activity of capacitative calcium entry
could provide a pathway allowing for augmented sarcoplasmic
reticulum Ca2+ content. This would likely be due to an increased
function or expression of the ion channels that provide for this
Ca2+ influx pathway. The potential for a role of capacitative calcium
entry in the filling of the sarcoplasmic reticulum is supported by
reports of a superficial buffer barrier in smooth muscle, which pro-
vides vectoral Ca2+ transport across the plasma membrane and to
the sarcoplasmic reticulum (van Breemen et al., 1995; Yoshikawa
et al., 1996; Lee et al., 2002; Poburko et al., 2004). Poisoning SERCA
with cyclopiazonic acid would then activate as well as unmask this
vectoral-transport pathway, and may explain why SERCA function
was unchanged even though releasable store content increased.

The present series of experiments build on our previous studies
that show advanced age leads to reduced sarcoplasmic reticulum

mediated Ca2+ release events and myocyte hypertrophy (Corsso et
al., 2006). The increases in capacitative calcium entry and sarcoplas-
mic reticulum Ca2+ storage capacity we observed with advanced age
may compensate or contribute to the loss in pressure-induced arte-
rial reactivity depicted by Gros et al. (2002). Although unresolved,
the molecular determinants underlying the responses illustrated
by us and others and their physiological consequences are requisite
to understanding mechanistic details important to vascular aging.
Comprehension of these age-related transformations in intracellular
Ca2+ homeostasis and their importance to arterial function is
expected to provide novel therapeutic avenues for the treatment
of vascular disease.
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