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Nuclear Forces and High-Performance Computing:

The Perfect Match

T Luu1, A Walker-Loud2

1 N-division, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
2 Physics Department, College of William and Mary, Williamsburg, VA 23187-8795 USA

E-mail: tluu@llnl.gov

Abstract. High-performance computing is now enabling the calculation of certain hadronic
interaction parameters directly from Quantum Chromodynamics, the quantum field theory that
governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong
force. In this paper we briefly describe the state of the field and show how other aspects of
hadronic interactions will be ascertained in the near future. We give estimates of computational
requirements needed to obtain these goals, and outline a procedure for incorporating these
results into the broader nuclear physics community.

1. Introduction
High-performance computing is fast becoming an integral part of nuclear physics, acting as a
third pillar of scientific research standing next to theory and experiment. This integration has
brought with it a new understanding of how certain aspects of hadronic (nuclear) forces comes
from Quantum Chromodynamics (QCD), the field theory that describes the interactions of a
set of nature’s fundamental particles, quarks and gluons.

Lattice QCD (LQCD), the numerical implementation of QCD on a discretized space-time
lattice, is now emerging as a powerful calculational tool of nuclear physics observables. Even at
this early stage, the results are impacting the broader nuclear physics community. With ever
increasing high-performance computing, longstanding nuclear physics questions, such as the
nature of the nuclear spin-orbit coupling and the three-body interaction, will be tackled directly
by LQCD. Further, the predictive capability of LQCD will allow scientists to understand nuclear
phenomena in extreme environments not accessible by experiment like those found in the birth
and death throes of a star or in the crusts of neutron stars.

Current computer limitations have restricted lattice QCD calculations to a regime where the
light quark masses are equal (isospin limit) and unnaturally large. This equates to pion masses
mπ typically ≥ 300 MeV.1 Even though this does not represent the physical world, calculations
in this regime have resulted in a deeper understanding of nuclear physics. We highlight a few
examples below. These examples are by no means exhaustive.

1 With the ever increasing high-performance computing capabilities, this scenario is rapidly changing. Within
the last year lattice gauge configurations have been generated with mπ ≃ 190 MeV.
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1.1. Nuclear physics is perturbative at large mπ

The study of hadron interactions with lattice QCD is different from scattering experiments in a
conceptually important way; lattice calculations are limited to probing multi-particle interactions
with a finite, Euclidean volume. Therefore, the particles can not be asymptotically separated
from each other, nor can the in/out states be brought onto their mass shell. Consequently,
one can not perform “scattering experiments” with lattice calculations, except at kinematic
thresholds, since Euclidean Green’s functions are not simply related to the physical S-matrix
elements [1]. However, it has been shown that the energy levels of particles in a finite volume
can be related to the infinite volume scattering parameters [2], and in particular for two particles
to the scattering phase shift. This formalism was extended by Lüscher to interacting relativistic
field theories [3, 4], with the degenerate, two-particle phase shift given by

p cot δ(p)

m
=

1

πmL
S

(

pL

2π

)

, (1)

where S(x) is a known function dependent upon the geometry of the spatial volume and the
interaction momenta is defined by

∆EHH ≡ EHH − 2m = 2
√

p2 +m2 − 2m, (2)

and δ(p) is the infinite volume scattering phase shift2 and m is the mass of either particle. For
low momentum interactions, one has

p cot δ(p)

m
= − 1

ma
+

1

2
(mr)

( p

m

)2
+ · · · (3)

where a is the scattering length, r is the effective range and the ellipses denote further suppressed
terms in the effective-range expansion. It is important to note the range of validity of this
formalism, which has come to be known as Lüscher’s method. Equation (1) is only valid below
the inelastic threshold. Further, it has been assumed the effective range of the interaction is much
smaller than the spatial volume, r ≪ L. However, there are no restrictions on the scattering
length, which is important for nuclear physics, since at the physical pion mass, we know the 1S0

and 3S1 scattering lengths are unnaturally large, with a(1S0) ≃ −23.7 fm and a(3S1) ≃ 5.4 fm,
while typical lattice calculations today have L ≃ 2.5–3 fm. For a ≪ L, the interaction energy
can be expressed as

∆E =
4πa

mL3
− 4a2

mL4
I +

4a3

π2mL5

[

I2 − J
]

+O(L−6) (4)

where I and J are known geometrical constants whose numerical values are given in tab. 1 for
a square, periodic spatial volume. The relation in the converse limit, a ≫ L, relevant for NN
interactions near the physical point was derived in Ref. [10].

The first dynamical calculation of nucleon-nucleon scattering with lattice QCD was only
recently carried out at three values of the pion mass with mπ ≥ 350 MeV [11]. It was found that
at these pion masses, the interaction was weakly repulsive in both the 1S0 and 3S1 channels, see
Fig. 1. This is in contrast to the same system at the physical pion mass, where we know that,
for example, the deuteron is (weakly) bound and has an unnaturally large scattering length,
a/r ≫ 1. Nature’s fine tuning of the NN system disappears for large mπ.

2 It has been asserted in the literature that lattice QCD can be used to directly calculate the nuclear
potential [5, 6]. However, as pointed out in [7, 8, 9], this assertion is false since in an interacting field theory, like
QCD, except for infinitely heavy particles, there is no unique definition of a potential as it is not an observable
quantity. The only things which can be rigorously computed are n-point Green’s functions, which can then be
related to infinite volume scattering parameters.
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Figure 1. NPLQCD calculation of NN scattering lengths [11].

Beane et al.’s results suggest that standard perturbation theory applies to hadronic systems
in the large mπ regime. We can parametrize the interaction between hadrons by partial waves
using short-ranged repulsive forces that have interaction terms of ‘natural size’,

V0(~p
′, ~p) =

4πa0

m

[

1 +
a0r0

2

(

p′2 + p2

2

)

+ . . .

]

(s-wave) (5)

V1(~p
′, ~p) =

12πa1

m
~p′ · ~p

[

1 +
a1r1

2

(

p′2 + p2

2

)

+ . . .

]

(p-wave) (6)

V2(~p
′, ~p) =

10πa2

m

(

3(~p′ · ~p)2 − p′2 p2
)

[

1 +
a2r2

2

(

p′2 + p2

2

)

+ . . .

]

(d-wave) , (7)

and so on. The parameters al and rl constitute part of the effective range parameters from
scattering theory. Depending on the partial wave, these parameters have different dimensions.
Perturbation theory remains valid as long as a0/L≪ 1 and r0/L≪ 1, as well as a1/L

3 ≪ 1 and
r1L≪ 1, and so forth.

In most of the sections below we assume that perturbation theory holds for hadronic systems,
since to date LQCD calculations are still in a regime where mπ is large. In sect. 4 we briefly
outline the methods needed to go beyond perturbation theory.

1.2. Weinberg’s leading order prediction works very well for mesons

The simplest system of interacting hadrons, both theoretically and numerically is that of two
pions in the isospin I = 2 channel.3 The simplicity of this system follows from the fact that
the pions are the pseudo-Goldstone bosons associated with the spontaneous breaking of the
approximate chiral symmetry of QCD. At leading order (LO) in chiral perturbation theory (χ-
PT), the ππ interactions are uniquely predicted, first determined by Weinberg in 1966 [12], with
the scattering lengths given by

mπa
I=0
ππ = − 7m2

π

16πf2
π

, mπa
I=2
ππ =

m2
π

8πf2
π

. (8)

Subleading orders in the chiral expansion give rise to perturbatively small corrections containing
both non-analytic contributions as well as analytic terms whose coefficients are not determined

3 The I = 0 channel is complicated by the presence of the scalar resonance, σ. Additionally, numerical
computations of scalar scattering channels are complicated by the necessity of including the numerically-expensive
disconnected quark propagators.
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Figure 2. NPLQCD calculated values of the I = 2 ππ (a), I = 3/2 Kπ (b) and I = 1 KK (c)
scattering lengths. In all cases, the numerical-data are plotted vs. the lattice-physcal masses and
decay constants, as calculated for each ensemble. The dashed lines represent the physical point
and the curves are Weinberg’s LO prediction. The reduced mass is µKπ = mKmπ/(mK +mπ).

The LO predictions for the Kπ and KK system at the physical pion mass are mKa
I=1
KK =

m2

K

8πf2

K

and µKπa
I=3/2
Kπ =

µ2

Kπ

4πfπfK
.

Table 1. Numerical values of geometrical sums appearing in this document.

I J K L M
-8.9136 16.5323 8.4019 -6.3748 18.3

by chiral symmetry alone [13]. These coefficients must be determined either with a comparison
to experiment or to numerical results from lattice QCD.

In 2005, the NPLQCD Collaboration performed the first lattice calculation of I = 2 ππ
scattering containing both light and strange dynamical quarks [14]. Because the low energy pion
interactions are strongly constrained by chiral symmetry, the lattice calculation was performed
with a mixed action using domain-wall valence quarks [15, 16, 17] (which retain a lattice
chiral symmetry), with the asqtad improved [18, 19] staggered MILC gauge ensembles [20].
In 2007, the calculation was updated with a significant increase in statistics, as well as the
use of the relevant mixed action χ-PT expression to perform the extrapolation to the physical
point [21, 22, 23, 24, 25, 26, 27]. The result was a 1% prediction (including systematic errors)
of the I = 2 ππ scattering length, expressed at the value of the charged pion mass [28],

mπa
I=2
ππ = 0.04330 ± 0.00042 , (9)

a value competitive with the best theoretical predictions [29, 30]. The precision of these LQCD
measurements surpasses that of experiment.

With the same mixed action, the NPLQCD Collaboration has similarly computed the values
of the I = 3/2 Kπ [31] and I = 1 KK [32] scattering lengths as well as fK/fπ [33]. The high
precision attained in the lattice calculation of these quantities, combined with the I = 2 ππ
results, can be used to provide stringent checks of low energy dynamics predicted by SU(2) and
SU(3) χ-PT.

One interesting phenomenon which has been observed is that the scattering lengths, for all
values of the light and strange quark masses used, are remarkably well described by the LO
predictions of Weinberg, see Fig.2, for which there is presently no theoretical understanding.
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1.3. Lattice QCD can probe systems that are not accessible experimently

The most powerful aspect of LQCD is its predictive capability. With sufficient computer
resources, systems not accessible by experiment can be calculated on a lattice. In most cases,
these systems have impact in many areas of nuclear physics, such as nuclear astrophysics. A
recent example of this predictive capability came from LQCD simulations of multiple pions
and kaons in a box. Because of chiral symmetry, the perturbative nature of these systems
is well established and general finite-volume formulas can be derived that relate the ground
state interacting energies of these systems (measured by LQCD) to interaction parameters as a
function of the number of mesons n [34, 35],

EA1
(n) =

4πa0

mL3

(

n

2

){

1 − a0I
πL

+
( a0

πL

)2
[I2 + (2n − 5)J ]−

( a0

πL

)3
[I3 + (2n− 7)IJ + (5n2 − 41n + 63)K]

}

+

(

n

2

)

8π2a2
0r0

mL6
+

(

n

3

)

η3

L6
+O(L−7) . (10)

At order 1/L6, a dressed pure three-body interaction is needed to enforce cutoff independence.
Detmold et al. used LQCD-measured interaction energies of different numbers of pions [36, 37]
to extract this force, finding that it is repulsive with a size consistent with naive dimensional
analysis. A subsequent work determined the equivalent three body interaction for charged
kaons [38] finding an interaction strength consistent with zero. For the first time, LQCD is
allowing definitive statements of hadronic three-body forces to be made.

1.4. Three Baryon States with lattice QCD

Recently a high-satistics exploration of a three-baryon signal with the same quantum numbers
of the Ξ0Ξ0n system was undertaken, finding on a single ensemble with mπ ≃ 390 MeV, EΞΞN =
3877.9 ± 6.9 ± 9.2 ± 3.3 MeV, where the first uncertainty is statistical and the second and third
uncertainties are estimates of fitting systematics [39]. Despite the remarkable level of precision
in this calculation, no extraction of interaction parameters was performed. Lattice QCD
calculations of multi-baryon systems are emblematic of the stochastic nature of these simulations,
suffering poorer signal-to-noise ratios compared to their mesonic counterparts. Extracting a pure
three-baryon interaction will require sufficiently more computational resources than available
today, as well as improved algorithms. In Refs. [39, 40], the NPLQCD Collaboration undertook
a significant, high-statistics scaling study of the extraction of (multi) baryon energy levels from
lattice QCD calculations. This provides the basis for our resource estimates required for these
types of calculations in sect. 5.

2. Going beyond A1 (s-wave) cubic symmetry
Lattice calculations typically involve simulations inside a periodic box. System wavefunctions
with angular momentum for integer and odd-half states are therefore characterized by the
irreducible representations (irreps) of the cubic (octahedral) group O and its cover, Oh,
respectively. For zero center of mass (CM) systems, integer (spatial) states fall into one of
five representations: A1, A2, T1, T2, and E. Odd-half states belong to either G1, G2, or H
representations. There is extensive literature on how these states are comprised of infinite-
volume, continuum angular momentum states of SO(3) (e.g. [41]). For example, ground-state A1

systems represent s-wave systems in the infinite-volume limit, whereas ground-state T1 systems
represent p-wave systems in this limit.

To date all calculations have been on systems with spatial A1 symmetry. Projection onto this
symmetry is simplest, as it represents the most ‘symmetric’ and least time-consuming operation.
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With future high-performance computing, and the need to look beyond two-baryon systems,
other cubic symmetries will be probed, giving new information about the interaction between
hadrons.

For example, with two identical baryons, projection onto the negative parity T1 spatial
symmetry will force ground-states to be perturbitively connected to the non-interacting state
with kinetic energy 4π2/mL2, or the first cubic shell. The simplest system to consider consists
of a neutron and proton with spatial T1 and spin A1 coupled to total angular momentum T1,
i.e. |(T1uA1)T1u >. The energy of this system to order 1/L5 is

E(T1uA1)T1u
=

4π2

mL2
+

96π3a1

mL5
+O(L−7) . (11)

Beyond the kinetic energy term, 4π2/mL2, the leading order term of this system is only sensitive
to the “scattering volume”, a1. In the infinite volume, continuum limit this state maps to the
1P1 scattering state.

At 1/L5 we can also extract information about non-central forces by looking at, for example,
two neutrons with spatial T1 symmetry coupled to spin T1 symmetry. In the infinite volume
limit, this system can belong to three possible scattering states: 3P0,

3P1, and 3P2. In a box,
these states are split up into four possibilities, |(T1uT1)A1u >, |(T1uT1)T1u >, |(T1uT1)T2u >,
and |(T1uT1)Eu >. If life consisted of only central forces these states would be degenerate.
Non-central forces, on the other hand, will break this degeneracy. The strength and order of the
broken degeneracies give us information about the nature of the non-central force. For example,
if we identify a source of the non-central force as coming from virtual one-pion exchange (OPE),

Vπ(~q) = −
(

gA√
2fπ

)2

(τ1 · τ2)
(~σ1 · ~q) (~σ2 · ~q)

q2 +m2
π

, (12)

where ~q is the momentum transfer carried by the virtual pion, gA is the axial-vector coupling,
and fπ is the pion decay constant, we find that the degeneracies are broken in the following
manner:

E(T1uT1)A1u
=

4π2

mL2
+

96π3a1

mL5
+

8π2g2
A

3f2
πm

2
πL

5
− 80π2g2

A

3f2
πm

2
πL

5
+O

(

L−7
)

(13)

E(T1uT1)T1u
=

4π2

mL2
+

96π3a1

mL5
+

8π2g2
A

3f2
πm

2
πL

5
+

40π2g2
A

3f2
πm

2
πL

5
+O

(

L−7
)

(14)

E(T1uT1)T2u
=

4π2

mL2
+

96π3a1

mL5
+

8π2g2
A

3f2
πm

2
πL

5
+O

(

L−7
)

(15)

E(T1uT1)Eu
=

4π2

mL2
+

96π3a1

mL5
+

8π2g2
A

3f2
πm

2
πL

5
+O

(

L−7
)

, (16)

where the terms in red (blue) come from the central (non-central) part of OPE. At this order,

the scattering volume can be re-defined to absorb the central part of OPE, a1 → a1 +
g2

A
m

36πf2
πm2

π

4.

But the non-central parts clearly break the degeneracy for the |(T1uT1)A1u > and |(T1uT1)T1u >
states. LQCD calculations of these energies will therefore tell us of the existence and strength
of the tensor interaction.

Interaction terms of higher partial waves can be probed with appropriate projections onto
other spatial symmetry groups. For example, the infinite volume 1D2 scattering state will have

4 The central part of OPE also contributes at order 1/L5 in eq.(11) but can be absorbed into the scattering

volume with the following re-definition: a1 → a1 +
g2

A
m

4πf2
π

m2
π

.
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the following ground state energy in a box,

E(EgA1)Eg
=

4π2

mL2
+

240π5a2

mL7
+O(L−8) . (17)

In general higher partial wave interaction terms will be suppressed by larger powers of L, and
because of the finite dimensionality of the cubic group, operator mixing between different partial
waves will occur.

Similar results can be obtained in three-baryon systems. In [42] perturbative results were
given for a three-neutron system. Here we concentrate on the “perturbative” triton system
whose energy is

E(A1gG1)G1g
= 0 +

12π

mL3

(

as
0 + at

0

2

)

− 12

mL4

(

(as
0)

2 + (at
0)

2

2

)

I

+
12

πmL5

(

(as
0)

3 + (at
0)

3

2

)

I2 +
12

πmL5

(

as
0 + at

0

2

)

[

(as
0)

2 + (at
0)

2
]

J +O(L−6) . (18)

Here as
0 and at

0 are the scattering lengths for the spin-singlet and spin-triplet channels,
respectively. The negative parity triton has two states that are perturbatively connected to
the first cubic shell,

E(T1uG1)G1u
=

4π2

mL2
+

12π

mL3

(

as
0 + at

0

2

)

− 12

mL4

(

(as
0)

2 + (at
0)

2

2

)[

L +
1

4

]

+
9as

0a
t
0

mL4

+
12

πmL5

(

(as
0)

3 + (at
0)

3

2

)[

L2 +
1

2
(L −M) − 1

16

]

− (as
0)

2at
0 + (at

0)
2as

0

πmL5

[

9L + 3M− 15

8

]

+
6π3

mL5

(

(as
0)

2rs
0 + (at

0)
2rt

0

2

)

+
108π3

mL5

(

as
1 + at

1

2

)

+O(L−6) , (19)

and

E(T1uG1)H1u
=

4π2

mL2
+

144π3

mL5

(

as
1 + at

1

2

)

+O(L−6) . (20)

rs
0 (as

1) and rt
0 (at

1) are the effective ranges (scattering volumes) in the spin-singlet and spin-
triplet channels, respectively. In the infinite volume limit these states correspond to |Jπ > =

|12
−

> and |32
−

>.

3. LQCD offers an ideal place for performing nuclear physics “experiments”
Though not utilized to date, LQCD calculations of nuclear systems can be performed with non-
zero CM motion. Because of the box boundary conditions, one can take advantage of this option
to further probe aspects of hadronic interactions. Angular momentum states are not part of the
full cubic group, however, as only cubic operations that preserve the CM momentum vector are
allowed. As such, the classification of angular momentum states falls into subgroups, or little
groups, of the cubic group [43, 44]. A consequence of this is that the mapping of infinite volume
angular momentum states to point-group irreps can be different for non-zero CM. For example,
ground state p-wave systems can be part of the A1 symmetry for states with non-zero CM, as
opposed to T1 symmetry for zero CM.

For two baryons, the simplest way to enforce non-zero CM motion is to give one of the baryons
the smallest momentum allowed by the box, 2π/L. Angular momentum states must fall into
the irreps of the C4v group. For example, two neutrons with spins oppositely aligned have their
ground state energy as

EA1
=

2π2

mL2
+

8πa0

mL3
− 8a2

0

mL4
L +

8a3
0

πmL5

[

L2 −M
]

+
4π3a2

0r0
mL5

+O(L−6) . (21)
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Compare this to the same energy with zero CM motion given in eq.(4). Because eq.(21) is not
perturbatively connected to zero, but to 2π2/mL2, expressions involving the effective range are
not derivatively suppressed and show up at 1/L5.

On the other hand, if the two neutrons have their spins aligned their ground state energy is

EA1
=

2π2

mL2
+

24π3a1

mL5
+O(L−6) . (22)

In this case the energy shift is sensitive to a1. This system also belongs to the A1 irrep of C4v,
even though it would correspond to a p-wave system in the infinite volume limit. Further, it is
perturbatively connected to 2π2/mL2, as is eq.(21). One does not have to go to a higher cubic
shell to probe the scattering volume, as was done in the previous section; one need only project
onto the correct spin state.

In addition to working with non-zero CM motion, calculations can also be done on lattices
with asymmetric spatial volumes. Angular momentum states, in this case, will also be restricted
to subgroups of O in a similar (but not exact) manner as the examples above. This gives another
handle on probing various aspects of the interaction between hadrons. In this sense, LQCD offers
a unique and powerful “experimental” platform for learning the nature of hadronic forces.

4. As mπ → 140 MeV, life will become non-perturbative
Self-bound, non-perturbative states of multi-nucleons exist in nature (i.e. nuclei). As lattice
calculations approach the physical pion mass these states are expected to form and the
perturbative expressions of the previous sections will become inadequate. Fortunately for the
two nucleon case eq. (1) still holds. In principle, EFT prescriptions for constructing potentials
from these results can be used, giving (schematically)

V0(~p
′, ~p) = fR

0 (p′2, p2) (s-wave) (23)

V1(~p
′, ~p) =

(

~p′ · ~p
)

fR
1 (p′2, p2) (p-wave) (24)

V2(~p
′, ~p) =

(

3(~p′ · ~p)2 − p′2 p2
)

fR
2 (p′2, p2) (d-wave) , (25)

and so on. Here fR
i , being functions of only the magnitude of the initial and final momenta,

are chosen to reproduce, among other things, the effective range parameters. The superscript
R refers to the particular regularization scheme employed.

For three-baryon systems there is no analogue of eq. (1). Recently there has been work on
understanding the three-fermion system at the unitary limit (a0 → ∞) within a box [45], as well
as three-bosons [46], but a general non-perturbative method utilizing box-boundary conditions
that includes other interaction terms has not been developed. Here we outline a method that
solves the secular equation,

Heff (E)P |Ψ >=

{

H + V
1

E −QH
QV

}

P |Ψ >= E P |Ψ > , (26)

using Faddeev techniques. The term V represents the interaction between baryons (e.g.
Eqs.(23)-(25)) which can include a pure three-baryon term. The projection operators Q and
P are chosen such that Q + P = 1 and they commute with the kinetic energy operator,
[Q,T ] = [P, T ] = 0. The state |Ψ > represents the (as yet unknown) eigenstate of the interacting
three-body system and E represents the exact (to be determined) eigenvalue. The effective
Hamiltonian is only applicable in the ‘model’ space defined by P and is energy-dependent. The
space defined by P usually represents the lowest modes of the system, and in this case, will be
defined by non-interacting, fully anti-symmetric states of definite cubic symmetry that reside in
the first few cubic shells of the box.
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As described in [47], part of eq.(26) can be recast into integral form by using Faddeev
decompositions,

|ψi >= T Q|Ωi > +T QG0(E)Π|ψi > , (27)

where Π = 1 + P12P13 + P12P23 is a sum of permutation operators, G0(E) = 1/(E − T ) is the
non-interacting three-body propagator, and

T Q = V + V G0(E)QT Q (28)

is the ‘excluded-space‘ T-matrix. The state |Ωi > resides in the model space, i.e. |Ωi >∈ P , and
|ψi > must be numerically determined. There are standard techniques for solving the integral
equation in eq.(27).

Given |ψi >, model space matrix elements of Heff are related by

< Ωj|Heff (E)|Ωi >=< Ωj |T |Ωi > + < Ωj|ψi > . (29)

As the energy E is not known a priori (it is what we are trying to determine), in practice a
starting guess for E is used to construct these matrix elements, which in turn are diagonalized to
obtain a new E. This value is used to contruct new matrix elements, which are then diagonalized,
and so on. The process repeats itself until the input energy is the same as the energy after
diagonalization. In [42] we describe how to construct the non-interacting, anti-symmetric states
|Ωi >. This procedure has been applied to self-bound nucleons in the infinite volume limit [47]
and to fermions bound in an optical trap [48]

Having a non-perturbative, three-baryon formalism with box-boundary conditions is an
essential step for extracting any pure three-baryon force. In a similar fashion described in
sect. 1.3, information about the 4-, 5-, and higher-baryon systems can be used to also extract
the three-baryon force, but due to complexities inherent to baryon systems this procedure will
be tedious and require enormous computing resources. On the other hand, one can investigate
the three-baryon system (including its excited states) using non-zero CM motion, or within
asymetric spatial volumes, in an analagous manner described in the previous sections. These
systems will also give insight into the three-baryon force.

5. What does it take to get there?
The work described in sects. 1.1–1.4 resulted from teraflop-sized calculations using lattice gauge
ensembles with large pion masses (mπ > 290 MeV), relatively course lattice spacings (a ∼ 0.1 fm),
and limited spatial volumes (L = 3.5 ∼ 4 fm). Ensembles at the physical pion mass, using fine
lattice spacings a < 0.1 fm, and within large volumes L > 7 fm will require full petaflop resources
or more. Further, measurements performed on these ensembles that are relevant to nuclear
physics will require commensurate resources. Extraction of interaction parameters within two-
baryon systems at a precision that competes with experiment will also require dedicated petaflop
resources (at least). In the meson sector requirements are less restrictive. The superior signal-to-
noise behavior in this sector means that interaction parameters of higher-partial waves should be
accessible in the very near future, requiring 10X to 100X teraflop resources. Probing the three-
nucleon force should coincide with measuring the triton with adequate precision–something that
is expected to take 10X to 100X petaflop resources. Alpha particle precision measurements will
take full exascale resources, and only at this scale can investigations away from the isospin limit
be made. An understanding of isospin breaking forces, as well as non-leptonic parity violating
nuclear forces, will require exascale resources and beyond.

These rough estimates are made using current experience and knowledge about lattice
calculations. It is highly probable that disruptive technologies and algorithms will accelerate
the timescale for achieving these goals.
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6. Conclusion
High-performance computing is bringing nuclear physics into a new era where predictive
capability will become the norm. In this process, answers to longstanding questions in
fundamental physics will be attainable, and the connection between different subfields of nuclear
physics will become stronger. Nowhere is this more realizable than in the area of nuclear
forces, where high-performance computing is now allowing aspects of hadronic interactions to
be ascertained from true ab intio, first principles LQCD calculations. The impact of these
calculations will be far reaching, affecting the fields of nuclear structure and nuclear astrophysics,
for example.

In these proceedings we described how future LQCD calculations will be used to extract
hadronic interaction parameters and outlined a method for analyzing non-perturbative three-
body systems that utilize box boundary conditions. We give estimates on computational
resources needed to obtain important milestones. As we argued in these proceedings, LQCD
promises to be calculational tool for nuclear physics of unprecedented power and scope. High-
performance computing will make this promise come true.
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