2009

The joint essential numerical range of operators: convexity and related results

Chi-Kwong Li
William & Mary, ckli@wm.edu

Yiu-Tung Poon

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
The joint essential numerical range of operators: convexity and related results

by

CHI-KWONG LI (Williamsburg, VA) and YIU-TUNG POON (Ames, IA)

Abstract. Let $W(A)$ and $W_e(A)$ be the joint numerical range and the joint essential numerical range of an m-tuple of self-adjoint operators $A = (A_1, \ldots, A_m)$ acting on an infinite-dimensional Hilbert space. It is shown that $W_e(A)$ is always convex and admits many equivalent formulations. In particular, for any fixed $i \in \{1, \ldots, m\}$, $W_e(A)$ can be obtained as the intersection of all sets of the form

$$\text{cl}(W(A_1, \ldots, A_{i+1}, A_i + F, A_{i+1}, \ldots, A_m)),$$

where $F = F^*$ has finite rank. Moreover, the closure $\text{cl}(W(A))$ of $W(A)$ is always star-shaped with the elements in $W_e(A)$ as star centers. Although $\text{cl}(W(A))$ is usually not convex, an analog of the separation theorem is obtained, namely, for any element $d \notin \text{cl}(W(A))$, there is a linear functional f such that $f(d) > \sup\{f(a) : a \in \text{cl}(W(\tilde{A})))\}$, where \tilde{A} is obtained from A by perturbing one of the components A_i by a finite rank self-adjoint operator. Other results on $W(A)$ and $W_e(A)$ extending those on a single operator are obtained.

1. Introduction. Let $B(H)$ denote the algebra of bounded linear operators acting on a complex Hilbert space H. The numerical range of $A \in B(H)$ is defined as

$$W(A) = \{\langle Ax, x \rangle : x \in H, \langle x, x \rangle = 1\},$$

which is useful in studying operators; see [10, 11, 22, 24] and [25, Chapter 1]. Let $S(H)$ denote the set of self-adjoint operators in $B(H)$. Since every $A \in B(H)$ admits a decomposition $A = A_1 + iA_2$ with $A_1, A_2 \in S(H)$, we can identify $W(A)$ with

$$\{(\langle A_1 x, x \rangle, \langle A_2 x, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^2.$$

This leads to the joint numerical range of $A = (A_1, \ldots, A_m) \in S(H)^m$,

$$W(A) = \{(\langle A_1 x, x \rangle, \ldots, \langle A_m x, x \rangle) : x \in H, \langle x, x \rangle = 1\} \subseteq \mathbb{R}^m,$$
which has been studied by many researchers in order to understand the joint behavior of several operators \(A_1, \ldots, A_m\). One may see [1, 5, 12, 14, 15, 16, 19, 23, 28, 31, 33, 35] and their references for the background and many applications of the joint numerical range.

Let \(\mathcal{F}(\mathcal{H})\) and \(\mathcal{K}(\mathcal{H})\) be the sets of finite rank and compact operators in \(\mathcal{B}(\mathcal{H})\). In the study of finite rank or compact perturbations of operators, researchers consider the **joint essential numerical range** of \(A \in \mathcal{S}(\mathcal{H})^m\) defined by

\[
W_e(A) = \bigcap \{\text{cl}(W(A + K)) : K = (K_1, \ldots, K_m) \in \mathcal{K}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m\}.
\]

Here \(\text{cl}(S)\) denotes the closure of the set \(S\). For \(m = 2\), \(W_e(A)\) can be identified with the **essential numerical range** of \(A = A_1 + iA_2 \in \mathcal{B}(\mathcal{H})\), defined by

\[
W_e(A) = \bigcap \{\text{cl}(W(A + K)) : K \in \mathcal{K}(\mathcal{H})\}.
\]

One may see [2, 3, 6, 7, 13, 18, 20, 21, 26, 27, 30, 32, 36, 37] and their references for the background and many interesting results on \(W_e(A)\) and \(W_e(A)\).

In theoretical studies as well as applications, it is desirable to deal with \(A\) such that \(W(A)\) or \(\text{cl}(W(A))\) is convex. For example, if \(\text{cl}(W(A))\) is convex, one can apply the separation theorem to show that \(0 \notin \text{cl}(W(A))\) if and only if there exist \(r > 0\) and \(c = (c_1, \ldots, c_m) \in \mathbb{R}^m\) such that \((\sum_{i=1}^m c_i A_i) > rI_{\mathcal{H}}\). Unfortunately, \(\text{cl}(W(A))\) is not always convex. Here are some results concerning the convexity of \(W(A)\) and \(\text{cl}(W(A))\), and related to \(W_e(A)\) (for example, see [5, 10, 11, 36, 21, 29, 31] and their references).

1. **(P1)** [31] \(W(A_1, \ldots, A_m)\) is convex if
 (a) \(\text{span}\{I, A_1, \ldots, A_m\}\) has dimension at most 3, or
 (b) \(\dim \mathcal{H} \geq 3\) and \(\text{span}\{I, A_1, \ldots, A_m\}\) has dimension at most 4.

2. **(P2)** [31] For any \(A_1, A_2, A_3 \in \mathcal{S}(\mathcal{H})\) such that \(\text{span}\{I, A_1, A_2, A_3\}\) has dimension 4, there is always an \(A_4 \in \mathcal{S}(\mathcal{H})\) for which \(W(A_1, \ldots, A_4)\) is not convex.

3. **(P3)** [31] If \(m \geq 4\) then there exists \(A \in \mathcal{S}(\mathcal{H})^m\) such that \(W(A)\) is non-convex.

4. **(P4)** For any positive integer \(m\) and any \(A \in \mathcal{S}(\mathcal{H})^m\), \(W_e(A)\) is a compact set contained in \(W(A)\). If \(\text{span}\{I, A_1, \ldots, A_m\}\) has dimension at most 4, then \(W_e(A)\) is convex.

5. **(P5)** [36] For \(S \subseteq \mathbb{R}^m\), let \(\text{Ext}(S)\) be the set of all points in \(S\) that do not lie in the open line segment joining two distinct points in \(S\). Then \(\text{Ext}(\text{cl}(W(A))) \subseteq \text{Ext}(W(A)) \cup \text{Ext}(W_e(A))\).

We remark that (P1)–(P3) also hold if we replace \(W(A)\) by \(\text{cl}(W(A))\). In view of (P2) and (P3), if \(m > 3\), then for \(A \in \mathcal{S}(\mathcal{H})^m\) and \(K \in \mathcal{K}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m\) the set \(\text{cl}(W(A + K))\) is usually non-convex. Since \(W_e(A)\)
is the intersection of non-convex sets, one does not expect the set $W_e(A)$ to be convex. This might be the reason why the convexity of $W_e(A)$ is seldom discussed for $m > 3$. In fact, some researchers have studied different geometrical properties of $W_e(A)$ under the assumption that $W_e(A)$ is convex, and some have examined $W_e(A)$ for different classes of operators without discussing their convexity; for example, see [6, 26, 27, 30, 32].

In this paper, we prove the rather unexpected result that $W_e(A)$ is always convex. Moreover, it is shown that the closure $\text{cl}(W(A))$ of $W(A)$ is always star-shaped with the elements in $W_e(A)$ as star centers. Many results relating $W_e(A)$ and $W(A)$ are also obtained. Our paper is organized as follows.

In Section 2, we extend the results of [21] by establishing several equivalent formulations of the essential joint numerical range for $A \in S(\mathcal{H})^m$. One key obstacle for such an extension is the fact that $W(A)$ may not be convex. To get around this problem, we show that $\text{cl}(W(A))$ is star-shaped. The star-shapedness of $\text{cl}(W(A))$ and the conditions equivalent to membership in $W_e(A)$, given in Section 2, lead to our main result that $W_e(A)$ is convex and its elements are star centers of the set $\text{cl}(W(A))$, which is presented in Section 3. With the convexity theorem, we obtain additional descriptions of $W_e(A)$ in Section 4 in terms of the perturbations of one of the components of A, and also in terms of linear combinations of the components of A. For example, we show that $W_e(A_1, \ldots, A_m)$ is equal to the sets

$$\bigcap \{\text{cl}(W(A_1, \ldots, A_{i-1}, A_i + F, A_{i+1}, \ldots, A_m) : F \in \mathcal{F}(\mathcal{H}) \cap S(\mathcal{H})\}$$

and

$$\{(a_1, \ldots, a_m) : \sum_{j=1}^m c_j a_j \in W_e\left(\sum_{j=1}^m c_j A_j\right) \text{ for all } (c_1, \ldots, c_m) \in \Omega\},$$

where $\Omega = \{(c_1, \ldots, c_m) \in \mathbb{R}^m : \sum_{j=1}^m c_j^2 = 1\}$. Also, we obtain an analog of the separation theorem for the not necessarily convex set $\text{cl}(W(A))$, namely, for any element $d \notin \text{cl}(W(A))$, there is a linear functional f such that $f(d) > \sup\{f(a) : a \in \text{cl}(W(\hat{A}))\}$, where \hat{A} is obtained from A by perturbing one of the components A_j by a finite rank self-adjoint operator. In Section 5, we present additional results on $W(A)$ and $W_e(A)$. For instance, $W_e(A) = \text{cl}(W(A))$ if and only if the extreme points of $W(A)$ are contained in $W_e(A)$; the convex hull of $\text{cl}(W(A))$ can always be realized as the joint essential numerical range of $(\hat{A}_1, \ldots, \hat{A}_m)$ for linear operators $\hat{A}_1, \ldots, \hat{A}_m$ acting on a separable Hilbert space.

In our discussion, we always assume that \mathcal{H} is infinite-dimensional. For any vector $x \in \mathcal{H}$ and $A = (A_1, \ldots, A_m) \in S(\mathcal{H})^m$, we will use the notation

$$\langle Ax, x \rangle = (\langle A_1 x, x \rangle, \ldots, \langle A_m x, x \rangle).$$
Furthermore, \mathbb{R}^m will be used to denote the inner product space of $1 \times m$ real vectors with the usual inner product $\langle x, y \rangle$.

2. Equivalent conditions for $W_e(A)$. Following [21, Theorem 5.1] and its corollary on a single operator $A \in \mathcal{B}(\mathcal{H})$, we obtain several conditions equivalent to membership in $W_e(A)$.

Theorem 2.1. Let $A = (A_1, \ldots, A_m) \in \mathcal{S}(\mathcal{H})^m$. The following conditions are equivalent for a real vector $a = (a_1, \ldots, a_m)$:

1. $a \in W_e(A) = \bigcap \{ \text{cl}(W(A + K)) : K \in \mathcal{K}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m \}$.
2. $a \in \bigcap \{ \text{cl}(W(A + F)) : F \in \mathcal{F}(\mathcal{H})^m \cap \mathcal{S}(\mathcal{H})^m \}$.
3. There is an orthonormal sequence $\{x_n\}_{n=1}^{\infty} \subset \mathcal{H}$ of vectors such that $\lim_{n \to \infty} \langle Ax_n, x_n \rangle = a$.
4. There is a sequence $\{x_n\}_{n=1}^{\infty} \subset \mathcal{H}$ of unit vectors converging weakly to 0 in \mathcal{H} such that $\lim_{n \to \infty} \langle Ax_n, x_n \rangle = a$.
5. There is an infinite-dimensional projection $P \in \mathcal{S}(\mathcal{H})$ such that $P(A_j - a_j I)P \in \mathcal{K}(\mathcal{H})$ for $j = 1, \ldots, k$.

Most of the argument in [21] can be applied here except for one crucial step, where the convexity of $W(A)$ for $m = 2$ is needed. Since $W(A)$ may not be convex for $m > 3$, we need the following auxiliary result to overcome the obstacle. As a byproduct, it shows that $\text{cl}(W(A))$ is star-shaped.

Theorem 2.2. Let A satisfy the hypothesis of Theorem 2.1, and let $W_3(A)$ be the set of real vectors a satisfying condition (3) of Theorem 2.1. Then $W_3(A)$ is non-empty and closed. Moreover, each element $a \in W_3(A)$ is a star center of $\text{cl}(W(A))$, i.e., for any $b \in \text{cl}(W(A))$ we have $(1 - t)a + tb \in \text{cl}(W(A))$ for all $0 \leq t \leq 1$.

Proof. To prove that $W_3(A)$ is non-empty, let $\{x_n\}_{n=1}^{\infty}$ be an orthonormal sequence of vectors in \mathcal{H}. Then the sequence $\{\langle Ax_n, x_n \rangle\}_{n=1}^{\infty}$ is bounded. By choosing a subsequence if necessary, we can assume that $\langle Ax_n, x_n \rangle$ converges. Hence, $W_3(A)$ is non-empty.

Next, we show that $W_3(A)$ is closed. Suppose $a \in \text{cl}(W_3(A))$. Then for each $n \geq 1$, there exists an orthonormal sequence $\{x_k^n\}_{k=1}^{\infty}$ such that $\lim_{k \to \infty} \langle Ax_k^n, x_k^n \rangle = a^n \in \mathbb{R}^m$ and $\lim_{n \to \infty} a^n = a$.

Let $\delta_n = 1/(4n^2)$. By going to subsequences if necessary, we may assume that $\|\langle Ax_k^n, x_k^n \rangle - a\| < \delta_n$ for all n, k. We may also assume that $\|A_1\|^2 + \cdots + \|A_m\|^2 \leq 1$. Then $\|\langle Ax, y \rangle\| \leq \|x\| \|y\|$ for all $x, y \in \mathcal{H}$.
Choose \(x_1 = x_1^1 \). Then \(\| (Ax_1, x_1) - a \| < 1 \). Suppose we have chosen \(\{x_1, \ldots, x_n\} \) orthonormal with \(\| (Ax_k, x_k) - a \| < 1/k \) for \(1 \leq k \leq n \). Then choose \(N \) such that for all \(1 \leq k \leq n \),

\[
\| (x_k, x_k^{n+1}) \|, \| (Ax_k, x_k^{n+1}) \| < \delta_{n+1}.
\]

Let \(y = x_N^{n+1} - \sum_{k=1}^n (x_N^{n+1}, x_k)x_k \). Then

\[
\| y - x_N^{n+1} \| \leq n \delta_{n+1}, \quad \text{so} \quad 1 - n \delta_{n+1} \leq \| y \| \leq 1 + n \delta_{n+1}.
\]

Therefore,

\[
\| (Ay, y) - a \| \leq \| (A(y - x_N^{n+1}), y) \| + \| (Ax_N^{n+1}, y - x_N^{n+1}) \| + \| (Ax_N^{n+1}, x_N^{n+1}) - a \|
\]

\[
\leq \| y - x_N^{n+1} \| (\| y \| + \| x_N^{n+1} \|) + \delta_{n+1} \leq (2n + 2) \delta_{n+1}.
\]

Let \(x_{n+1} = y/\| y \| \). Then

\[
\| x_{n+1} - y \| = |1 - \| y \| | \leq n \delta_{n+1}.
\]

Hence, \(\{x_1, \ldots, x_n, x_{n+1}\} \) is an orthonormal set and

\[
\| (Ax_{n+1}, x_{n+1}) - a \| \leq \| y - x_{n+1} \| (\| y \| + \| x_{n+1} \|) + (2n + 2) \delta_{n+1}
\]

\[
\leq (4n + 3) \delta_{n+1} < 1/(n + 1).
\]

To prove the last assertion, let \(a \in W_3(A) \) and \(b \in \text{cl}(W(A)) \). Suppose \(\{x_n\} \) is an orthonormal sequence in \(\mathcal{H} \) such that \((Ax_n, x_n) \to a \). For \(0 \leq t \leq 1 \), we are going to show that \((1 - t)a + tb \in \text{cl}(W(A)) \). Given \(\varepsilon > 0 \), let \(y \) be a unit vector in \(\mathcal{H} \) such that \(\| (Ay, y) - b \| < \varepsilon \). Choose \(n \) such that \(\| (Ax_n, x_n) - a \| < \varepsilon \) and \(\| (Ay, x_n) \| < \varepsilon \). Choose \(\theta \in \mathbb{R} \) such that \((e^{i\theta}y, x_n) \) is imaginary. Let \(z = \sqrt{t} e^{i\theta} y + \sqrt{1-t} x_n \). Then

\[
(z, z) = t(y, y) + (1 - t)(x_n, x_n) + 2\sqrt{t(1-t)}(\langle e^{i\theta}y, x_n \rangle + \langle x_n, e^{i\theta}y \rangle) = 1
\]

and

\[
\| (Az, z) - ((1 - t)a + tb) \| \leq (1-t)\| (Ax_n, x_n) - a \| + t\| (Ay, y) - b \|
\]

\[
+ \sqrt{t} \sqrt{1-t} \| (e^{i\theta}Ay, x_n) + (Ax_n, e^{i\theta}y) \| \leq 2 \varepsilon.
\]

Therefore, \((1 - t)a + tb \in \text{cl}(W(A)) \).

The referee indicated that \(W_3(A) \) is clearly closed, and a short proof is possible. We include a detailed proof for the sake of completeness and easy reference.

Proof of Theorem 2.1. For \(j = 2, 3, 4, 5 \), let \(W_j(A) \) be the set of \(a \) satisfying condition \((j) \). Clearly, we have

\[
W_5(A) \subseteq W_3(A) \subseteq W_4(A) \subseteq W_2(A) \subseteq W_2(A).
\]

Suppose \(a \in W_2(A) \). We are going to show that \(a \in W_5(A) \). Without loss of generality, we may assume \(a = 0 \).
Since $0 \in W_2(A) \subseteq \text{cl}(W(A))$, there exists a unit vector $x_1 \in H$ such that $\|\langle Ax_1, x_1 \rangle\| < 1/2$. Suppose we have an orthonormal set $\{x_1, \ldots, x_n\}$ such that $\|\langle Ax_n, x_n \rangle\| < 1/2^n$. Let Q be the orthogonal projection of H onto the subspace S spanned by x_1, \ldots, x_n and let
\[
B = ((I - Q)A_1(I - Q)|_{S^\perp}, \ldots, (I - Q)A_m(I - Q)|_{S^\perp}).
\]
Let $b = (b_1, \ldots, b_m) \in W_3(B)$ and $bI_S = (b_1I_S, \ldots, b_mI_S)$. Then for $Q = I - Q$, we have
\[
bI_S \oplus B = (b_1Q + \overline{Q}A_1\overline{Q}, \ldots, b_mQ + \overline{Q}A_m\overline{Q}) = A + F
\]
for some $F \in \mathcal{F}(H)^m \cap S(H)^m$. Therefore, $0 \in \text{cl}(W(bI_S \oplus B))$. Hence, there exists a unit vector $x \in H$ such that $\|\langle (A + F)x, x \rangle\| < 1/2^{n+2}$. Let $x = y + z$, where $y \in S$ and $z \in S^\perp$. Then $\|y\|^2 + \|z\|^2 = \|x\|^2 = 1$. If $z = 0$, then $\langle (A + F)x, x \rangle = b \in W_3(B) \subseteq \text{cl}(W(B))$. If $z \neq 0$, then by Theorem 2.2, we have
\[
\langle (A + F)x, x \rangle = \|y\|^2b + \|z\|^2\langle B(z/\|z\|), z/\|z\| \rangle \in \text{cl}(W(B)).
\]
So there exists a unit vector $x_{n+1} \in S^\perp$ such that
\[
\|\langle (A + F)x, x \rangle - \langle Bx_{n+1}, x_{n+1} \rangle\| < \frac{1}{2^{n+2}},
\]
and hence
\[
\|\langle Ax_{n+1}, x_{n+1} \rangle\| = \|\langle Bx_{n+1}, x_{n+1} \rangle\| < \frac{1}{2^{n+1}},
\]
because $\langle Fx_{n+1}, x_{n+1} \rangle = 0$. Inductively, we can choose an orthonormal sequence $\{x_n\}_{n=1}^\infty$ such that
\[
(1) \quad \|\langle Ax_n, x_n \rangle\| < \frac{1}{2^n} \quad \text{for all } n \geq 1.
\]
Let $n_1 = 1$. For every $1 \leq i \leq m$, we have
\[
\sum_{n=1}^\infty |\langle A_ix_n, x_n \rangle|^2 \leq \|A_ix_n\|^2 \quad \text{and} \quad \sum_{n=1}^\infty |\langle A_ix_n, x_{n_1} \rangle|^2 \leq \|A_i^*x_{n_1}\|^2.
\]
Hence, there exists $n_2 > n_1$ such that
\[
\sum_{n=n_2}^\infty |\langle A_ix_n, x_n \rangle|^2 < \frac{1}{2} \quad \text{and} \quad \sum_{n=n_2}^\infty |\langle A_ix_n, x_{n_1} \rangle|^2 < \frac{1}{2}
\]
for all $1 \leq i \leq m$. Repeating this procedure, we get a strictly increasing sequence $\{n_k\}_{k=1}^\infty$ of positive integers such that for all $1 \leq i \leq m$, we have
\[
(2) \quad \sum_{n=n_{k+1}}^\infty |\langle A_ix_{n_k}, x_n \rangle|^2 < \frac{1}{2^k} \quad \text{and} \quad \sum_{n=n_{k+1}}^\infty |\langle A_ix_n, x_{n_k} \rangle|^2 < \frac{1}{2^k}.
\]
Formulas (1) and (2) imply that

\[
\sum_{k,l=1}^{\infty} |\langle A_i x_{n_k}, x_{n_l} \rangle|^2 < \infty.
\]

Let \(P \) be the orthogonal projection onto the subspace spanned by \(\{x_{n_k}\}_{k=1}^{\infty} \).
Then it follows from (3) that \(PA_i P \) is compact for all \(1 \leq i \leq m \).

\[\textbf{3. Convexity and star-shapedness} \]

\textbf{Theorem 3.1.} Let \(A \in \mathcal{S}(\mathcal{H})^m \). Then \(W_e(A) \) is a compact convex subset of \(\text{cl}(W(A)) \). Moreover, each element in \(W_e(A) \) is a star center of the star-shaped set \(\text{cl}(W(A)) \).

\textbf{Proof.} Because \(W_e(A) \) is the intersection of compact sets, it is compact. To prove the convexity, let \(a, b \in W_e(A) \) and \(0 \leq t \leq 1 \). Then for every \(F \in \mathcal{F}(\mathcal{H})^m \cap S(\mathcal{H})^m \), we have \(a \in W_e(A) = W_e(A + F) \) and \(b \in W_e(A) \subseteq \text{cl}(W(A + F)) \). So, by Theorem 2.2, we have \(ta + (1 - t)b \in \text{cl}(W(A + F)) \). Hence,

\[
ta + (1 - t)b \in \bigcap \{\text{cl}(W(A + F)) : F \in \mathcal{F}(\mathcal{H})^m \cap S(\mathcal{H})^m \} = W_e(A).
\]

By Theorems 2.1 and 2.2, we have the last assertion.

Note that \(W_e(A) \cap W(A) \) may be empty. For example, if

\[
A = \text{diag}(1, 1/2, 1/3, \ldots)
\]

acts on \(\ell^2 \), then \(W_e(A) = \{0\} \) and \(W(A) = (0, 1] \). One may wonder whether a point \(a \in W_e(A) \cap W(A) \) is a star center of \(W(A) \). This is not true, as shown by the example below. Moreover, the example shows that for \(m \geq 4 \) there exists \(A \in S(\mathcal{H})^m \) such that \(\text{cl}(W(A)) \) is convex whereas \(W(A) \) is not. Of course, this is impossible for \(m \leq 3 \) as \(W(A) \) is always convex.

\textbf{Example 3.2.} Consider \(\mathcal{H} = \ell^2 \) with canonical basis \(\{e_n : n \geq 1\} \). Let \(A = (A_1, \ldots, A_4) \) with

\[
A_1 = \text{diag}(1, 0, 1/3, 1/4, \ldots), \quad A_2 = \text{diag}(1, 0) \oplus 0,
\]

\[
A_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \oplus 0, \quad A_4 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \oplus 0.
\]

Then \((1, 1, 0, 0) \in W(A) \) and \((0, 0, 0, 0) \in W(A) \cap W_e(A) \), but \((1/2, 1/2, 0, 0) \notin W(A) \). Hence, \(W(A) \) is not convex. However, \(\text{cl}(W(A)) \) is convex.

\textbf{Proof.} Note that \((1, 1, 0, 0) = \langle Ae_1, e_1 \rangle \in W(A) \) and

\[
(0, 0, 0, 0) = \langle Ae_2, e_2 \rangle = \lim_{n \to \infty} \langle Ae_n, e_n \rangle \in W(A) \cap W_e(A).
\]
To show that \((1/2,1/2,0,0) \notin W(A)\), consider a unit vector \(x = \sum x_je_j\) such that \(\sum_{n=1}^{\infty} |x_n|^2 = 1\). If \(\langle A_1x, x \rangle = \langle A_2x, x \rangle = 1/2\), then
\[
|x_1|^2 + \sum_{n=3}^{\infty} |x_n|^2/n = |x_1|^2 = 1/2.
\]
Thus, \(x_n = 0\) for all \(n \geq 3\) and \(|x_1|^2 = |x_2|^2 = 1/2\). It then follows that \((\langle A_3x, x \rangle, \langle A_4x, x \rangle) \neq (0,0)\). This proves that \((1/2,1/2,0,0) \notin W(A)\).

Hence, \((0,0,0,0) \in W_e(A) \cap W(A)\) is not a star center of \(W(A)\), and \(W(A)\) is not convex.

To see that \(\text{cl}(W(A))\) is convex, note that \(0 \in W_e(A)\). Thus, by Theorem 3.1, for every \(b \in \text{cl}(W(A))\) we have \(t0 + (1-t)b \in \text{cl}(W(A))\) for any \(t \in [0,1]\).

Let \(B = (B_1, B_2, B_3, B_4)\), where
\[B_1 = \text{diag}(0,1,0), \quad B_2 = \text{diag}(0,1,0),\]
\[B_3 = [0] \oplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_4 = [0] \oplus \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix},\]
and \(C = (C_1, C_2, C_3, C_4)\), where \(C_1 = \text{diag}(1/3,1/4,\ldots) \oplus [0], \quad C_2 = C_3 = C_4 = \text{diag}(0,0,\ldots) \oplus [0]\). Then it is easy to verify that
\[W(B) = \{(r,r,s,t) \in \mathbb{R}^4 : 4(r-1/2)^2 + s^2 + t^2 \leq 1\}\]
and
\[W(C) = \{(c,0,0,0) : c \in [0,1/3]\}\]
are both compact and convex. Hence, \(W(B \oplus C) = \text{conv}(W(B) \cup W(C))\) is compact and convex and
\[W(A) \subseteq W(B \oplus C) \Rightarrow \text{cl}(W(A)) \subseteq W(B \oplus C).\]

On the other hand, \(B \oplus C = [0] \oplus A \oplus [0]\). Therefore,
\[W(B \oplus C) = \{t0 + (1-t)b : b \in W(A)\} \subseteq \text{cl}(W(A)).\]
So, \(\text{cl}(W(A)) = W(B \oplus C)\) is convex.

4. Other descriptions of \(W_e(A)\). For \(c = (c_1,\ldots,c_m) \in \mathbb{R}^m\) and \(A = (A_1,\ldots,A_m) \in S(\mathcal{H})^m\), let \(c \cdot A = \sum_{i=1}^{m} c_i A_i\). Using the convexity of \(W_e(A)\), we obtain additional conditions equivalent to membership in \(W_e(A)\) in terms of \(c \cdot A \in S(\mathcal{H})\) so that the joint behavior of \(A_1,\ldots,A_m\) can be understood from their linear combinations. For \(A \in S(\mathcal{H})\) and a positive integer \(k\), let
\[\lambda_k(A) = \inf\{\max \sigma(A + F) : F \in S(\mathcal{H}) \text{ with } \text{rank}(F) < k\}.\]

Theorem 4.1. Let \(A \in S(\mathcal{H})^m\) and \(a = (a_1,\ldots,a_m) \in \mathbb{R}^m\). Then \(a \in W_e(A)\) if and only if any one (and hence all) of the following conditions holds:
we have the following analog of the separation theorem for a convex set.

(1) For every \(c \in \mathbb{R}^m \), \(c \cdot a \in W_e(c \cdot A) \).

(2) For every \(c \in \mathbb{R}^m \), \(c \cdot a \in \bigcap \{ \text{cl}(W(c \cdot A + F)) : F \in \mathcal{F}(\mathcal{H}) \cap S(\mathcal{H}) \} \).

(3) For every \(c \in \mathbb{R}^m \), there is an orthonormal sequence \(\{ x_n \}_{n=1}^\infty \subset \mathcal{H} \) such that

\[
\lim_{n \to \infty} \langle c \cdot Ax_n, x_n \rangle = c \cdot a.
\]

(4) For every \(c \in \mathbb{R}^m \), there is a sequence \(\{ x_n \}_{n=1}^\infty \subset \mathcal{H} \) of unit vectors such that \(\{ x_n \}_{n=1}^\infty \) converges weakly to \(0 \) in \(\mathcal{H} \) and

\[
\lim_{n \to \infty} \langle c \cdot Ax_n, x_n \rangle = c \cdot a.
\]

(5) For every \(c \in \mathbb{R}^m \), there is an infinite-dimensional projection \(P \in S(\mathcal{H}) \) such that \(P(c \cdot A - c \cdot aI)P \in \mathcal{K}(\mathcal{H}) \).

(6) For every \(c \in \mathbb{R}^m \) and \(k \geq 1 \), \(\lambda_k(c \cdot A - c \cdot aI) \geq 0 \).

Proof. By the convexity of \(W_e(A) \), we can apply the separation theorem to Theorem 2.1 to show that \(a \in W_e(A) \) if and only if any one of the conditions (1) to (5) holds.

To prove the equivalence of condition (6), suppose \(a \in \mathbb{R}^m \). Without loss of generality, we may assume that \(a = 0 \). Suppose \(0 \) satisfies condition (6). Then for every \(c \in \mathbb{R}^m \) and \(F \in \mathcal{F}(\mathcal{H}) \cap S(\mathcal{H}) \) with \(\text{rank}(F) = k \), we have

\[
\lambda_1(c \cdot A + F) \geq \lambda_{k+1}(c \cdot A) \geq 0 \quad \text{and} \quad \lambda_1(-(c \cdot A + F)) \geq \lambda_{k+1}(-c \cdot A) \geq 0.
\]

Hence, \(c \cdot 0 = 0 \in \text{cl}(W(c \cdot A + F)) \). Therefore, condition (2) is satisfied.

Conversely, if \(0 \) does not satisfy condition (6), then there exist \(c \in \mathbb{R}^m \) and \(k \geq 1 \) such that \(\lambda_k(c \cdot A) < 0 \). Thus there exists \(F \in \mathcal{F}(\mathcal{H}) \cap S(\mathcal{H}) \) such that \(c \cdot A + F < 0 \) and \(0 \) does not satisfy condition (2).

Let \(A \in S(\mathcal{H})^m \). Although the set \(\text{cl}(W(A)) \) may not be convex if \(m \geq 4 \), we have the following analog of the separation theorem for a convex set.

Theorem 4.2. Let \(A = (A_1, \ldots, A_m) \in S(\mathcal{H})^m \) and \(d = (d_1, \ldots, d_m) \in \mathbb{R}^m \). Then \(d \notin W_e(A) \) if and only if any one (and hence all) of the following conditions holds:

(a) There exists \(K \in \mathcal{K}(\mathcal{H})^m \cap S(\mathcal{H})^m \) such that \(d \notin \text{cl}(W(A + K)) \).

(b) There exists \(F \in \mathcal{F}(\mathcal{H})^m \cap S(\mathcal{H})^m \) with \(d \notin \text{conv}(\text{cl}(W(A + F))) \).

(c) There exist \(F \in \mathcal{F}(\mathcal{H}) \cap S(\mathcal{H}) \), \(r > 0 \) and \(c = (c_1, \ldots, c_m) \in \mathbb{R}^m \) such that

\[
\left(\sum_{i=1}^m c_i(A_i - d_i I) \right) + F > rI_{\mathcal{H}}.
\]

Proof. For simplicity, replace \((A_1, \ldots, A_m) \) by \((A_1 - d_1 I, \ldots, A_m - d_m I) \) and assume that \(d = (0, \ldots, 0) \).
(c)⇒(b). If (c) holds, we may perturb \((c_1, \ldots, c_m)\) so that \(c_j \neq 0\) for all \(j \in \{1, \ldots, m\}\) and condition (4) still holds true. In particular, \(c_1 \neq 0\). Then let \(F = (F/c_1, 0, \ldots, 0)\). We have \(c \cdot a > r > 0\) for all \(a \in W(A + F)\). Therefore, \(0 \notin \text{conv}(\text{cl}(W(A + F)))\).

Clearly, we have (b)⇒(a), which implies that \(0 \notin W_e(A)\).

Finally, suppose \(0 \notin W_e(A)\). Then by Theorem 4.1(2), there exist a real vector \(c = (c_1, \ldots, c_m)\) and \(F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})\) such that \(0 = c \cdot 0 \notin \text{cl}(W(c \cdot A + F))\). Since \(\text{cl}(W(c \cdot A + F))\) is a closed subinterval \([s, t]\) of \(\mathbb{R}\), we may assume that \(0 < s \leq t\). Let \(r = s/2\). Then \((\sum_{i=1}^{m} c_i A_i) + F > r I_\mathcal{H}\). Hence, (c) holds.

Let \(\Omega = \{c \in \mathbb{R}^m : \langle c, c \rangle = 1\}\). By Theorem 4.2, we have the following result showing that \(W_e(A)\) can be expressed as the intersection of half-spaces.

Corollary 4.3. Let \(A = (A_1, \ldots, A_m) \in \mathcal{S}(\mathcal{H})^m\). Then
\[
W_e(A) = \bigcap_{c \in \Omega} \{d \in \mathbb{R}^m : \langle c, d \rangle \leq \max W_e(c \cdot A)\}
= \{d \in \mathbb{R}^m : \langle c, d \rangle \in W_e(c \cdot A) \text{ for all } c \in \Omega\}.
\]

For \(A \in \mathcal{B}(\mathcal{H})\), let \(\sigma_e(A) = \bigcap \{\sigma(A + K) : K \in \mathcal{K}(\mathcal{H})\}\) be the essential spectrum of \(A\). Then for \(A \in \mathcal{S}(\mathcal{H})\), we have
\[
W_e(A) = \text{conv} \sigma_e(A).
\]
Thus, one may replace \(\max W_e(c \cdot A)\) by \(\max \sigma_e(c \cdot A)\) in Corollary 4.3.

Corollary 4.4. Let \(A = (A_1, \ldots, A_m) \in \mathcal{S}(\mathcal{H})^m\). If \(d \notin \text{cl}(W(A))\), then for any \(i \in \{1, \ldots, m\}\) there exists \(F \in \mathcal{F}(\mathcal{H}) \cap \mathcal{S}(\mathcal{H})\) such that \(d \notin \text{conv}(\text{cl}(W(A)))\), where \(A = (A_1, \ldots, A_{i-1}, A_i + F, A_{i+1}, \ldots, A_m)\).

Proof. If \(d \notin \text{cl}(W(A))\), then \(d \notin W_e(A)\). The result readily follows from the arguments in the last paragraph in the proof of Theorem 4.2.

It follows from Theorem 2.1 that the intersection of the non-convex sets \(\text{cl}(W(A + K))\), which equals \(W_e(A)\), is a convex set. By Theorem 4.2 and Corollary 4.4, we see that one can replace \(\text{cl}(W(A + K))\) by its convex hull in the intersection to obtain the same convex set \(W_e(A)\). It is known that for any \(B = (B_1, \ldots, B_m) \in \mathcal{B}(\mathcal{H})^m\),
\[
\text{conv}(\text{cl}(W(B))) = \{(f(B_1), \ldots, f(B_m)) : f \in \Xi\},
\]
where \(\Xi\) is the set of linear functionals \(f\) on \(\mathcal{B}(\mathcal{H})\) satisfying \(1 = f(I) = \max \{f(X) : X \in \mathcal{B}(\mathcal{H}), \|X\| \leq 1\}\) (for example, see [10, 11]). So, it is easier to determine \(\text{conv}(\text{cl}(W(A + K)))\) than \(\text{cl}(W(A + K))\). In fact, we have the following.
Corollary 4.5. Let $A \in S(H)^m$ and $i \in \{1, \ldots, m\}$. Then

$$W_e(A) = \bigcap \{\text{cl}(W(A + F)) : F \in \{0\}^{i-1} \times (F(H) \cap S(H)) \times \{0\}^{m-i}\}$$

$$= \bigcap \{\text{conv}(\text{cl}(W(A + F))) : F \in \{0\}^{i-1} \times (F(H) \cap S(H)) \times \{0\}^{m-i}\}.$$

Proof. Let $F \in \{0\}^{i-1} \times (F(H) \cap S(H)) \times \{0\}^{m-i}$. Clearly,

$$W_e(A) \subseteq \text{cl}(W(A + F)) \subseteq \text{conv}(\text{cl}(W(A + F))).$$

So, we may take the intersection of the second and third sets over all $F \in \{0\}^{i-1} \times (F(H) \cap S(H)) \times \{0\}^{m-i}$, and get an inclusion involving the three sets in the corollary. Finally, if $d \notin W_e(A)$, then d will not belong to the third set by Corollary 4.4. So, the third set is a subset of $W_e(A)$. Hence, the three sets in the corollary are equal. □

5. Additional results. The following result shows that $W_e(A)$ is unchanged under certain operations on A.

Theorem 5.1. Let $A = (A_1, \ldots, A_m) \in S(H)^m$.

(a) Suppose H_1 is a closed subspace of H such that H_1^\perp is finite-dimensional. If $X : H_1 \to H$ is such that $X^*X = I_{H_1}$, then

$$W_e(A) = W_e(X^*A_1X, \ldots, X^*A_mX).$$

(b) For each $j \in \{1, \ldots, m\}$, suppose $P_j : H \to H$ is an orthogonal projection such that $I - P_j$ has finite rank. Then

$$W_e(A) = W_e(P_1A_1P_1, \ldots, P_mA_mP_m).$$

Proof. Use Theorem 2.1. □

We will establish some additional relationships between the sets $W_e(A)$ and $W(A)$. The next theorem generalizes the results of [29] and [14].

Theorem 5.2. Let $A \in S(H)^m$. Then $W_e(A) = \text{cl}(W(A))$ if and only if $\text{Ext}(W(A)) \subseteq W_e(A)$.

Proof. If $W_e(A) = \text{cl}(W(A))$, then

$$\text{Ext}(W(A)) \subseteq W(A) \subseteq W_e(A).$$

Conversely, if $\text{Ext}(W(A)) \subseteq W_e(A)$, then by (P5),

$$\text{Ext}(\text{cl}(W(A))) \subseteq W_e(A).$$

Hence,

$$\text{cl}(W(A)) \subseteq \text{conv}(\text{Ext}(\text{cl}(W(A)))) \subseteq \text{conv}(W_e(A)) = W_e(A).$$

Since $W_e(A) \subseteq \text{cl}(W(A))$, we have $W_e(A) = \text{cl}(W(A))$. □
For \(k \geq 1 \), let \(I_k \) denote the \(k \times k \) identity matrix. Then for \(A = (A_1, \ldots, A_m) \in S(H)^m \), we have
\[
A \otimes I_k = (A_1 \otimes I_k, \ldots, A_m \otimes I_k) \in S(\overline{H} \oplus \cdots \oplus H)^m.
\]

Similarly, let \(I_\infty \) denote the identity operator acting on \(\ell_2 \). Then for \(A = (A_1, \ldots, A_m) \in S(H)^m \), we have
\[
A \otimes I_\infty = (A_1 \otimes I_\infty, \ldots, A_m \otimes I_\infty) \in S(\overline{H} \oplus H \oplus \cdots)^m.
\]

Theorem 5.3. Let \(A = (A_1, \ldots, A_m) \in S(H)^m \). Then for any positive integer \(k > \sqrt{m} - 1 \),
\[
W(A \otimes I_k) = \text{conv}(W(A)).
\]
Moreover,
\[
W_e(A \otimes I_\infty) = \text{cl}(\text{conv}(W(A))).
\]

Proof. Suppose \(k > \sqrt{m} - 1 \). By the result in [34], every \(a \in \text{conv}(W(A)) \) can be written as \(a = \sum_{j=1}^k t_j \langle Ax_j, x_j \rangle \) for some unit vectors \(x_1, \ldots, x_k \in H \). Thus, for \(x = (\sqrt{t_1} x_1, \ldots, \sqrt{t_k} x_k) \in H \oplus \cdots \oplus H \), we have \(\langle A \otimes I_k x, x \rangle = a \). Conversely, if \(a = \langle A \otimes I_k x, x \rangle \in W(A \otimes I_k) \), one can decompose the unit vector \(x \) into \(k \) parts \(y_1, \ldots, y_k \) according to the structure of \(H \otimes I_k \).

Then
\[
a = \sum_{j=1}^k \|y_j\|^2 \langle Ay_j/\|y_j\|, y_j/\|y_j\| \rangle \in \text{conv}(W(A)).
\]

If \(a \in \text{cl}(\text{conv}(W(A))) \), then there is a sequence \(\{x_n\} \) of unit vectors in \(H \) such that \(\langle Ax_n, x_n \rangle \to a \). Let
\[
\tilde{x}_n = \left(0, \ldots, 0, x_n, 0, \ldots\right) \in \overline{H} \oplus \overline{H} \oplus \cdots.
\]
Then \(\{\tilde{x}_n\} \) is an orthonormal sequence in \(H \oplus H \oplus \cdots \) and \(\langle A \otimes I_\infty \tilde{x}_n, \tilde{x}_n \rangle \to a \). Therefore, \(a \in W_e(A \otimes I_\infty) \).

Since
\[
W_e(A \otimes I_\infty) \subseteq \text{cl}(W(A \otimes I_\infty)) = \text{cl} \left(\bigcup_{k=1}^\infty W(A \otimes I_k) \right) \subseteq \text{cl}(\text{conv}(W(A))),
\]
we get the reverse inclusion. \(\blacksquare \)

Corollary 5.4. Let \(S \) be a compact convex subset of \(\mathbb{R}^m \). Then there are \(A, \tilde{A} \in S(H)^m \) with \(H = \ell^2 \) such that \(W(A) \) is convex and
\[
W(A) \subseteq S = \text{cl}(W(A)) = W_e(\tilde{A}).
\]

Proof. For \(j = 1, \ldots, m \), let \(A_j = \text{diag}(a_{1j}, a_{2j}, \ldots) \) act on \(\ell^2 \) with the standard canonical basis \(\{e_n : n \geq 1\} \) and be such that \(\{(a_{i1}, \ldots, a_{im}) : \)
$i \geq 1$} is a dense subset of S. Then for $A = (A_1, \ldots, A_m)$ the set

$$W(A) = \text{conv}\{(a_{i1}, \ldots, a_{im}) : i \geq 1\}$$

is convex, and $\tilde{A} = A \otimes I_\infty$ satisfies the assertion by Theorem 5.3.

Acknowledgements. Research of both authors was supported by NSF. Li was also supported by the William and Mary Plumeri Award; he is an honorary professor of the University of Hong Kong and an honorary professor of the Taiyuan University of Technology.

References

Department of Mathematics
The College of William and Mary
Williamsburg, VA 23185, U.S.A.
E-mail: ckli@math.wm.edu

Department of Mathematics
Iowa State University
Ames, IA 50011, U.S.A.
E-mail: ytpoon@iastate.edu

Received May 1, 2008
Revised version February 8, 2009
(6348)