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ARTICLE

A Hierarchical Bayesian Modeling Approach for the Habitat Distribution
of Smooth Dogfish by Sex and Season in Inshore Coastal Waters of the
U.S. Northwest Atlantic

Andrea Dell’Apa*
625 Sixth Avenue North, St. Petersburg, Florida 33701, USA

Maria Grazia Pennino
Instituto Español de Oceanograf�ıa, Calle Varadero 1, 30740 San Pedro del Pinatar, Spain

Charles W. Bangley
Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland 21037, USA

Christopher Bonzek
Virginia Institute of Marine Science, College of William and Mary, Post Office Box 1346, Gloucester Point,
Virginia 23062-1346, USA

Abstract
The Smooth DogfishMustelus canis is an abundant, small coastal shark occurring along the U.S. Atlantic coast. Despite

being targeted by a directed fishery and having recently undergone a stock assessment that found the population neither over-
fished nor experiencing overfishing, little is known about the spatial and temporal distribution of this species. Here, we used
catch data from the spring and fall Northeast Area Monitoring and Assessment Program’s fishery-independent trawl surveys
conducted between 2007 and 2016 and various environmental factors to perform hierarchical Bayesian modeling as a first
attempt to spatially predict adult Smooth Dogfish CPUE in U.S. northwest Atlantic Ocean waters by sex and season. Rele-
vant environmental variables differed between both sexes and seasons. Male and female CPUEs were similarly associated
with lower salinity and shallower depth in the spring. During fall, male CPUE was associated with sea surface temperature
and bottom rugosity, and female CPUE was associated with chlorophyll-a concentration, bottom rugosity, and year. Habitat
modeling results predicted that areas of high male and female CPUEs would overlap during spring but strongly diverge dur-
ing fall, when greater predicted CPUEs for males were distributed considerably farther north. These results suggest sexual
segregation among Smooth Dogfish during fall, with the springtime overlap in distribution coinciding with the pupping and
mating season in this population. This difference in distribution during fall may allow for a male-only directed fishery for
Smooth Dogfish in the northern extent of the species’ range in waters near southern New England and Georges Bank.
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Globally, fishery management for elasmobranch popu-
lations and stocks has proven to be particularly challeng-
ing due to the life history traits (e.g., slow growth rate,
late age of maturity, low fecundity, and long gestation
period) of the majority of these species (Cortés 2004; Bar-
ker and Schluessel 2005; Stevens et al. 2005), resulting in
documented decreases in some populations (Robbins et al.
2006; Dulvy et al. 2008; Ferretti et al. 2010). Nonetheless,
evidence suggests that if managed properly, elasmobranch
fisheries can be sustainable (Peterson et al. 2017;
Simpfendorfer and Dulvy 2017). The U.S. Atlantic popu-
lation of Smooth Dogfish Mustelus canis (also called the
Dusky Smoothhound or Smoothhound) is among the
stocks that have been considered to be fished at sustain-
able levels and for which a science-based fishery manage-
ment plan has been put in place (Simpfendorfer and
Dulvy 2017).

The Smooth Dogfish is a small (<2 m TL) coastal
shark that is more commonly found in waters less than
20 m in depth (Heemstra 1997; Castro 2011), although it
has also been reported at maximum depths of 460 m
(Kiraly et al. 2003). In the northwest Atlantic Ocean, its
habitat range encompasses coastal waters from the Bay of
Fundy, Canada (where it is only occasionally caught), to
the western Gulf of Mexico (though many records need to
be verified due to potential misclassification with the Gulf
Smoothhound M. sinusmexicanus; Castro 2011) off the
Texas–Mexico border (Kiraly et al. 2003). The population
is characterized by seasonal migration in response to
changes in water temperatures. The species overwinters off
the Carolinas and as far south as the central Atlantic
Florida coast, while in the summer it is more commonly
found in coastal waters between Cape Cod, Mas-
sachusetts, and Delaware Bay (Kiraly et al. 2003; Castro
2011; SEDAR 2015a).

Inhabiting mostly shallow and estuarine coastal waters,
the Smooth Dogfish is considered a nocturnal bottom fee-
der, primarily consuming crustaceans, including crabs,
shrimps, and lobsters, and more opportunistically feeding
on molluscs, bony fishes, cephalopods, and polychaete
worms (Gelsleichter et al. 1999; Kiraly et al. 2003; Castro
2011). However, the species’ feeding habits vary based on
the geographic area and prey availability and distribution
such that it is considered both an opportunistic feeder and
a scavenger depending on the prey species that are avail-
able (Kiraly et al. 2003; Castro 2011).

At the federal level, fishery management for the
Smooth Dogfish in the U.S. Atlantic has gone through
several key changes over the last decades (for a detailed
history of U.S. Atlantic Smooth Dogfish fishery manage-
ment at the federal and state levels, refer to SEDAR
2015b). Historically, and due to identification issues, the
Smooth Dogfish stock has been managed as a complex of
three species: Smooth Dogfish, Florida Smoothhound M.

norrisi, and Gulf Smoothhound. Hence, the term “Smooth
Dogfish” within U.S. Atlantic fishery management has
been used to refer more generally to these three species
combined.

The Smooth Dogfish has not been of particularly high
economic value for the U.S. Atlantic commercial shark
fishery (though it is the second most abundant shark spe-
cies in U.S. Atlantic coastal waters after the Spiny Dogfish
Squalus acanthias). At the federal level, in 1999 the
Smooth Dogfish was included on the list of shark species
that were protected from finning and for which all landed
sharks must have a fin-to-carcass-weight ratio of not more
than 5%; in 2003, the species was further included on the
list of species protected under the Shark Finning Prohibi-
tion Act (SFPA). The first commercial quota for the spe-
cies was set by the National Marine Fisheries Service
(NMFS) in 2009. In 2010, the U.S. government issued the
Shark Conservation Act (SCA) to further protect sharks
and close regulatory loopholes in the preceding SFPA.
The SCA was intended to protect all shark species from
finning and made it illegal to remove any fins of a shark
at sea. An exception was introduced for the commercial
fishery of Smooth Dogfish within 92.6 km (50 nautical
miles) of each state’s coastline. The new law increased the
fin-to-carcass-weight ratio limit for Smooth Dogfish from
5% to 12%, with Smooth Dogfish making up at least 25%
of the catch onboard a vessel when landing. In 2015, the
first benchmark stock assessments for the U.S. Atlantic
and Gulf of Mexico Smooth Dogfish complexes were con-
ducted separately. The results of the U.S. Atlantic assess-
ment indicated that the stock is likely neither overfished
nor experiencing overfishing, although the review panel
recommended caution due to uncertainty in the catches as
well as uncertainty associated with the stock–recruitment
relationship that resulted from the analysis (SEDAR
2015c).

Additionally, the review panel’s recommendations
included the need to increase efforts for monitoring and
recording of various environmental variables (e.g., bottom
water temperature and salinity) in fishery-independent sur-
veys (SEDAR 2015a). In turn, this information may be
used to enhance indices of relative abundance that serve
as proxies for the CPUE, which is commonly used as the
index in stock assessment modeling and in the process of
determining stock abundance status. Currently, there is a
lack of information on the influence of environmental
variables or abiotic factors (e.g., water depth) on the spa-
tiotemporal distribution of Smooth Dogfish. Moreover,
despite the knowledge that many shark populations have
been observed to be or are suspected to be characterized
by the presence of sexual segregation (Pratt and Car-
rier 2001; Sims 2005; Wearmouth and Sims 2008; Mucien-
tes et al. 2009; Dell’Apa et al. 2014), there is a paucity of
studies that have investigated the spatiotemporal
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distribution of Smooth Dogfish by sex—information that
may be used to enhance fisheries management of the spe-
cies. For example, the U.S. Atlantic population of Spiny
Dogfish has a long history of commercial exploitation and
associated fishery management. Recently, results from sev-
eral studies (Dell’Apa et al. 2014, 2017; Sagarese et al.
2016; Haugen et al. 2017) have drawn attention to the
possibility of exploring the potential for alternative, sepa-
rate management measures for the two sexes in order to
enhance Spiny Dogfish fishery sustainability (e.g., area- or
region-specific, male-only directed fishery). A similar fish-
ery management scenario may be envisioned for Smooth
Dogfish due to the many similarities between the two spe-
cies in terms of biology, ecology, habitat use, and repro-
ductive behavior (e.g., size, feeding habits, north–south
seasonal migration, and sexual dimorphism, with adult
females being larger than adult males).

Similarly, due to the nature of the market’s demand
and processing needs, the commercial fishery for U.S.
North Atlantic Spiny Dogfish has evolved mainly into a
size-selective fishery targeting primarily larger individuals
(i.e., females) in inshore coastal waters (adult females tend
to inhabit shallower inshore coastal waters compared to
adult males). This size-selective fishery resulted in lower
numbers of females over time and an increasingly skewed
male : female ratio in fishery-independent surveys used to
assess the stock status (for a detailed history of the Spiny
Dogfish commercial fishery, exploitation, and fishery man-
agement, refer to Dell’Apa et al. 2015). Therefore, given
the recent development of commercial quotas for Smooth
Dogfish, an increased understanding of the species’ spa-
tiotemporal distribution along the U.S. northwest Atlantic
coastal area for the two sexes and the environmental and
abiotic factors that influence their distribution and abun-
dance may enhance the development and implementation
of more sustainable fishery management strategies over
the long term.

The objective of this study was to model the abundance
of Smooth Dogfish by sex and season in inshore coastal
waters of the U.S. Atlantic by considering oceanographic
(i.e., sea surface temperature [SST], sea surface salinity
[SSS], and chlorophyll-a concentration [chl-a]) and topo-
graphic (i.e., depth, slope, distance to land, and rugosity)
characteristics as predictive variables for CPUE, which is
used as a proxy for species abundance. This is the first
study to use a large, fishery-independent database as a
source of data for analysis and prediction of the habitat
distribution of Smooth Dogfish along the U.S. northwest
Atlantic inshore coastal area. The results of this study pro-
vide information on the spatial distribution of adult
Smooth Dogfish by sex and season, which can be used by
fishery managers to identify and adopt enhanced fishery
management strategies for this species in the U.S.
Atlantic.

METHODS
Data collection.—Data on Smooth Dogfish individuals

were collected during the Northeast Area Monitoring and
Assessment Program’s (NEAMAP) fishery-independent
trawl surveys conducted between 2007 and 2016. The
NEAMAP surveys are conducted twice per year in spring
(April–May) and fall (September–October) in coastal
waters of the U.S. mid-Atlantic, covering the western edge
of Cape Cod, Massachusetts, to Cape Hatteras, North
Carolina. A detailed description of the NEAMAP mid-
Atlantic surveys was provided by Dell’Apa et al. (2017).

Calculation of CPUE.— The Smooth Dogfish CPUE by
sex for each trawl haul was calculated as the total number
of individuals for each 20 min of trawling. For each sex,
the present analysis included only adults. For the purpose
of this analysis, we opted to use size at maturity calculated
from maturity data collected by the same NEAMAP trawl
survey (Virginia Institute of Marine Science [VIMS], data
available upon request) for this species in the U.S. north-
west Atlantic (length at maturity for males [n =
3,788] = 64.4 cm precaudal length [PCL]; length at matu-
rity for females [n = 1,686] = 73.5 cm PCL). We used the
NEAMAP survey-derived data rather than the most com-
monly used size-at-maturity data reported by Conrath and
Musick (2002), even though the latter data had been rec-
ommended as references for Smooth Dogfish in this area
by Southeast Data, Assessment, and Review (SEDAR
2015b). The sizes at maturity by Conrath and Musick
(2002) were calculated from a limited number of individu-
als (166 males and 277 females) collected from a larger
area (Massachusetts to Florida) compared to our analysis,
and there was no clear indication of how the collected
samples were dispersed in terms of numbers, locations,
and time (e.g., years or seasons). Therefore, we consider
the reproductive data calculated from the NEAMAP sur-
vey (2007–2016) to be a more updated data source for
male and female Smooth Dogfish size at maturity in U.S.
northwest Atlantic coastal waters.

The lengths of individuals were converted from PCL
(cm) to TL (cm) by using a conversion factor
(TL = 3.507 + [1.192 × PCL]) that was calculated from
the VIMS longline survey (n = 795) conducted between
1980 and 2015 (VIMS, data available upon request). The
resulting size at maturity after conversion from PCL to
TL was over 91 cm TL for adult females and over
80.3 cm TL for adult males. For each sex, to determine
whether there was any significant difference in the total
number of adult sharks caught during spring versus fall,
we compared all of the CPUEs by season through a non-
parametric Wilcoxon–Mann–Whitney test because the
data were nonnormally distributed (Kolmogorov–Smirnov
test: P > 0.05).

Environmental variables.— Seven environmental vari-
ables were considered as potential predictors of Smooth
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Dogfish CPUE (Table 1). These included two oceano-
graphic variables (SST, °C; and SSS, practical salinity
units [psu]), chl-a (mg/m3), distance to shore (m), and
three bathymetric features (depth, m; slope, % grade; and
seabed rugosity). Rugosity is used as an index of benthic
terrain complexity, accounting for variations in seafloor
topography; values of rugosity range between 0 (no terrain
variation) and 1 (complete terrain variation), and it is
commonly used as a proxy for benthic diversity in the
absence of more detailed information on sediment type
and structure (Lauria et al. 2015). Low rugosity values
correspond to unconsolidated substrate, such as mud and
sand, while high rugosity values are associated with rocky
substrate (Fonseca et al. 2017).

Monthly average means for years of SST, SSS, and chl-
a data were extracted from the National Aeronautics and
Space Administration (NASA) Earth Observations project
(http://neo.sci.gsfc.nasa.gov) with a 0.1° × 0.1° grid cell
resolution. Bathymetry was derived from the same NASA
Earth Observations Web site by using the General Bathy-
metric Chart of the Oceans (GEBCO) grid. Moreover,
data for bathymetry were collected at each haul location
during the NEAMAP trawl surveys. These data were used
to correct and check the information on final mean depth.
When a discrepancy occurred between the GEBCO data
and the survey data, the mean of the two data sets was
calculated and used for the analysis.

Other environmental features—distance to shore, slope,
and rugosity—were derived from the bathymetry map
using the Near tool (World Equidistant Cylindrical coor-
dinate system), the Slope Spatial Analyst tool, and the
Terrain Ruggedness (Vector Ruggedness Measure) tool,
respectively, in ArcGIS version 10.2.2 (ESRI, Redlands,
California).

All variables were aggregated at a spatial resolution of
0.25° × 0.25° using the “raster” package (Hijmans et al.
2016) in R version 3.1.2 (R Development Core Team
2018). Variables were checked for collinearity, correlation
(Pearson’s product-moment correlation coefficient [Pear-
son’s r]), outliers, and missing data before their use in
modeling (Zuur et al. 2010). Distance to coast was highly
correlated (Pearson’s r > 0.75) with depth as well as chl-a
and SSS. For this reason, these variables were used alter-
natively in the models. Specifically, separate model runs
were performed including only one of the highly corre-
lated variables (distance to coast or depth, chl-a, or SSS)
to determine which would explain more of the variance.

Modeling of species abundance.— The spatial variation
of the CPUE values for Smooth Dogfish by sex and sea-
son was modeled using hierarchical Bayesian zero-inflated
Poisson (ZIP) intrinsic conditional autoregressive (iCAR)
models in order to account for both zero inflation and
spatial autocorrelation (Latimer et al. 2006). This type of
model integrates two processes: (1) the suitability process
for which the species is present (zi = 1) or absent (zi = 0)
in a particular location; and (2) the process determining
the number of individuals observed at suitable locations
(CPUE process). The suitability process is modeled using
a binomial distribution, while the CPUE process is mod-
eled with a Poisson distribution.

In addition to the environmental variables, both pro-
cesses include a temporal component of year as a factor and
an iCAR model (Besag 1974) for spatial autocorrelation
between observations. The iCAR component assumes that
the probability of the species’ presence and CPUE at one
site depends on the probability of the species’ presence and
CPUE at neighboring sites. Specifically, it follows that

Suitability process: zi∼BernoulliðπiÞ
logitðπiÞ ¼ Xiβþ ρjðiÞ

CPUE process: yi∼Poissonðzi; λiÞ
logðλiÞ ¼ Xiβ′þ ρjðiÞ

;

where Xi is the matrix of covariates; β and β′ represent the
vector of the regression coefficients (for the suitability pro-
cess and CPUE process, respectively); and q and q′ repre-
sent the spatial random effect of location i at grid cell j
(for the suitability process and CPUE process, respec-
tively). Each grid cell (0.25° × 0.25°) is considered a spa-
tial entity defined by eight neighbors. For the suitability
process, a logit link function is used, while for the CPUE,
an exponential link function is used.

Following Bayesian reasoning, the parameters are trea-
ted as random variables, and prior knowledge has to be
incorporated via the corresponding prior distributions of
the said parameters. In particular, for the parameters

TABLE 1. Summary of variables included in the Bayesian spatial model
as potential fixed effects influencing Smooth Dogfish distribution in the
U.S. mid-Atlantic (SST = sea surface temperature; chl-a = chlorophyll-a
concentration; SSS = sea surface salinity; psu = practical salinity units).

Variable Description Units

Bathymetry Mean fishing depth of haul m
Slope Seabed slope at the

sampling station
% grade

Distance
to shore

Distance from the coast
at the sampling station

m

Rugosity Seafloor topography at
the sampling station

0 to 1 scale

SST SST monthly value of haul °C
Chl-a Chl-a monthly value of haul mg/m3

SSS Salinity of the water psu
Year Year when haul was sampled Numeric
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involved in both the suitability and CPUE processes, we
used uninformative Gaussian priors centered at zero with
a fixed large variance of 100. The prior distribution for
the variance of the spatial effects followed a uniform dis-
tribution on the interval (0, 1,000). For each model,
50,000 Gibbs iterations were used for three chains, with a
thinning interval of 5 and a burn-in of 5,000 iterations.
These models were fitted using the “hSDM.ZIP.iCAR()”
function of the “hSDM” package (Vieilledent et al. 2014)
in R version 3.1.2 (R Core Team 2018).

All possible combinations of the candidate covariates
were tested using both backward and forward approaches
in order to select the relevant ones. We selected the model
that had the lowest deviance information criterion (DIC;
Spiegelhalter et al. 2002) and that contained only relevant
predictors (i.e., those predictors with 95% credibility inter-
vals [CrI] not including zero). Lower values of DIC repre-
sent the best compromise between fit and the estimated
number of parameters.

Model validation.— Following Dell’Apa et al. (2017),
we used two different approaches to assess the predictive
accuracy of the selected model. First, the predicted and
observed values from the full data set were compared. Sec-
ond, a 50-fold cross-validation based on a random half of
the data set was performed to build the model, and the
remaining data were used to test the prediction (Fielding

and Bell 1997). For both approaches, three statistics were
calculated: Pearson’s r, root mean square error (RMSE),
and average error (Dell’Apa et al. 2017).

RESULTS

Males
During 2,870 trawl hauls, adult male Smooth Dogfish

were present in 665 tows, of which 604 occurred in spring
and 61 occurred in fall (Figures 1, 2). In total, 3,055 males
were caught during spring, and 311 males were caught
during fall (W = 608,468.5, P < 0.001).

For the spring season, the final selected model retained
SSS and bathymetry as relevant predictors (Table S1 avail-
able separately online in the Supplement). In particular, the
expected CPUE showed a negative relationship with SSS
(posterior mean = −3.75; CrI = −2.53 to −0.02) as well as
with bathymetry (posterior mean = −2.39; CrI = −3.92 to
−1.95). Male CPUE decreased continuously from an SSS
value of about 30 psu and reached a minimal value at a
depth of approximately 250 m (Figure 3A).

No relevant interannual differences were found in male
CPUE variability during the spring. Higher estimated val-
ues of adult male CPUE were found for the area between
Long Island Sound and the continental shelf northeast of
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FIGURE 1. Sampling stations of the Northeast Area Monitoring and Assessment Program surveys (2007–2016) in (A) spring and (B) fall seasons,
indicating male Smooth Dogfish presence (red dots) or absence (black dots).
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Cape Hatteras, North Carolina, than for the other areas
sampled, with the highest CPUE predicted in inshore
waters between Delaware Bay and Nags Head, North
Carolina (Figure 4A; associated map of uncertainty in
model prediction: Figure S1A available separately online
in the Supplement).

For the fall season, the final model retained SST and
rugosity as relevant predictors (Table S2), highlighting a
negative relationship of the expected CPUE with SST
(posterior mean = −6.67; CrI = −5.13 to −2.24) and with
the rugosity index (posterior mean = −0.43; CrI = −0.72
to −0.03). In particular, as shown in Figure 3B, the CPUE
decreased continuously from 10°C and was highest for
substrata that had a rugosity index of about 0.3 (i.e., mod-
erately low terrain variation), with a decreasing trend on
both sides of this value.

No relevant interannual differences were found in male
CPUE variability for the fall season. Higher estimated val-
ues of adult male CPUE during the fall occurred at higher
latitudes (above 40°N) and off Georges Bank relative to
other sampled areas (Figure 4B; associated map of uncer-
tainty in model prediction: Figure S1B).

Females
During 2,870 trawl hauls, adult female Smooth Dogfish

were present in 524 tows, of which 348 occurred in spring

and 176 occurred in fall (Figures 5, 6). Overall, 8,540
females were caught during spring, and 6,780 females were
caught during fall (W = 886,031.5, P < 0.001).

For the spring season, the final model for adult female
Smooth Dogfish retained SSS and depth as relevant pre-
dictive variables (Table S3). Both predictors showed a
negative relationship with expected CPUE (SSS: posterior
mean = −1.23; CrI = −1.95 to −0.23; depth: posterior
mean = −0.98; CrI = −1.14 to −0.11). Figure 7A shows
a continuous decreasing pattern between SSS and adult
female Smooth Dogfish CPUE, with the highest esti-
mated CPUE at salinities less than 30 psu. The bathyme-
try also showed a decreasing pattern, with the lowest
estimated CPUEs found for water depths greater than
200 m.

No relevant interannual differences were found in
female CPUE variability during the spring. Similar to
males, higher CPUEs for females during the spring season
were found in coastal waters between Long Island Sound
and north of Cape Hatteras than in other sampled areas,
with the highest estimated CPUE occurring between
inshore coastal waters off Ocean City, New Jersey, and
the Virginia–North Carolina border (Figure 8A; associ-
ated map of uncertainty in model prediction: Figure S2A).

For the fall season, the final model for adult female
Smooth Dogfish retained chl-a, rugosity, and year as
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relevant factors (Table S4). The expected CPUE of
females showed a negative relationship with chl-a (posterior
mean = −0.94; CrI = −2.24 to −0.29), whereas it exhibited
a positive relationship with the rugosity index (posterior
mean = 1.53; CrI = 0.54–2.15). The year factor showed a
relevant interannual variability, highlighting that 2012 and
2013 were the years with highest CPUEs (2012 posterior
mean = 0.45; CrI = 0.12–1.14; 2013 posterior mean =
0.41; CrI = 0.09–1.05), while 2016 was the year with the

lowest CPUE (posterior mean: −0.23; CrI = −0.87 to
−0.05) with respect to the reference level (i.e., 2007).

As shown by Figure 7B, the highest values of estimated
CPUE for adult female Smooth Dogfish were found in
waters with chl-a of approximately 27 mg/m3 and in rocky
seabed (rugosity index > 0.6). Additionally, during the fall
season, the highest estimated CPUEs were observed
between coastal waters of Delaware and North Carolina
and mainly in inshore waters surrounding Chincoteague
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Island, Virginia (Figure 8B; associated map of uncertainty
in model prediction: Figure S2B).

Model Performance
For the final selected models, high values for Pearson’s

r were obtained for both sexes and seasons. For adult
males, Pearson’s r-values of about 0.64 for the spring and
0.68 for the fall were obtained in cross-validation with the
original data set. In cross-validation with half of the data
set, Pearson’s r-values were approximately 0.76 for spring
and about 0.73 for fall (Table 2).

For adult females, Pearson’s r-values of about 0.63 for
the spring and about 0.68 for the fall were observed in the
cross-validation with the original data set. During cross-
validation with half of the data set, Pearson’s r-values
were approximately 0.72 for spring and approximately
0.76 for fall.

Low values of RMSE and average error were achieved in
the cross-validation with the original data set for adult
males, with an RMSE of 0.88 and an average error of 0.05
for spring and an RMSE of 0.86 and an average error of
0.04 for fall (Table 2). In the cross-validation with half of
the data set for adult males, an RMSE of 0.92 and an aver-
age error of 0.05 were observed for spring, and an RMSE of
0.91 and an average error of 0.05 were obtained for fall.

Like the results for adult males, the models for adult
females obtained low values of RMSE and average error
in the cross-validation with the original data for both sea-
sons (spring: RMSE = 0.99, average error = 0.06; fall:
RMSE = 0.97, average error = 0.03). Similarly, in cross-
validation with half of the data set, an RMSE of 0.99 and
an average error of 0.07 were achieved for adult females
in spring, and an RMSE of 0.98 and an average error of
0.06 were observed for females in fall (Table 2). The vali-
dation results for both males and females indicated good
performance for all models.

DISCUSSION
This study represents the first attempt to provide pre-

dictive spatiotemporal information on the habitat distribu-
tion of Smooth Dogfish by sex and season in U.S.
northwest Atlantic coastal waters—and the environmental
variables that influence this distribution—by modeling the
CPUE obtained from a large, fishery-independent trawl
survey (i.e., NEAMAP) as a proxy for the species’ abun-
dance and distribution. Based on the results of our hierar-
chical Bayesian spatial model, the abundance of adult
Smooth Dogfish in the U.S. northwest Atlantic coastal
region changes seasonally, with adult males showing a
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more pronounced pattern of seasonal migration than adult
females in the study area.

For adult males, the highest estimated CPUE values
were found during the spring, when males were predicted
to inhabit primarily inshore coastal waters between New
Jersey and Cape Hatteras. During the fall, adult males
were found only in the northern portion of the sampled
area, with predicted CPUEs found almost exclusively in
Georges Bank’s coastal waters. Conversely, adult females

were sampled throughout the study area during both sea-
sons, although at the highest abundance during the spring
in coastal waters between North Carolina and Delaware.
A higher abundance of adult females was predicted to
occur in the spring within Chesapeake Bay and adjacent
inshore, shallow coastal waters as well as within Delaware
Bay and associated inshore coastal areas.

The results of our analysis suggest that Smooth Dog-
fish, particularly adult males, undergo seasonal migration,
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although the data used for this study do not help to eluci-
date whether this migration is north–south, inshore–off-
shore, or a combination of these two scenarios, as
NEAMAP surveys are conducted only in inshore coastal
waters. However, given the available information on the
species’ biology and habitat use, it is less likely that males
would move toward the continental shelf in waters deeper
than 200 m, thus supporting the most accepted notion of
a north–south, coastal seasonal migration in this species
(Bigelow and Schroeder 1948; Castro 2011). More studies
are needed to describe in greater detail the Smooth Dog-
fish’s migratory behavior by sex and the specifics (e.g.,
directionality and timeline) of the population’s seasonal
migration—for example, by using conventional mark–re-
capture tags or other telemetry (e.g., acoustic and satellite)
tags, which were successful in studies of the movement
and migratory behavior of Spiny Dogfish populations in
the northwest Atlantic (Campana et al. 2007; Campana
2010; Rulifson et al. 2012; Carlson et al. 2014).

In regard to key environmental variables affecting the
abundance and distribution of Smooth Dogfish in the study
area, our results suggest that they differ based on season
and sex. The estimated abundance of male Smooth Dogfish
is affected by SSS and depth (negative relationships with
CPUE) in the spring and by SST and rugosity (negative
relationships with CPUE) in the fall. These results indicate
that in the spring, a higher occurrence of males is predicted
for inshore, shallow, and less-saline waters. Conversely, in

the fall, males inhabit colder waters, with higher estimated
CPUEs for SST less than 15°C and for seafloor habitats
characterized by a rugosity index typically associated with
moderately scattered low-relief seabed.

The main environmental factors affecting the abun-
dance of adult females are SSS and depth (negative rela-
tionships with CPUE) in the spring and rugosity (positive
relationship with CPUE) and chl-a (negative relationship
with CPUE) in the fall. These results suggest that in the
spring, a higher abundance of adult females should be
found in inshore, shallower, and less-saline coastal waters,
while in the fall their abundance should be higher in
waters characterized by rocky seabeds and in less-produc-
tive waters (i.e., low chl-a), although a peak of abundance
is estimated in more productive waters with chl-a of about
27 mg/m3.

Overall, we interpret these results as a reflection of the
different habitats—and their associated key environmental
characteristics—that are inhabited by each of the sexes in
spring and fall, respectively. Specifically, in the spring,
both adult males and females are predicted in higher
abundances inside major estuaries and bays and inshore
coastal waters across the study area. These inshore,
coastal habitats are usually characterized by lower salinity
and bathymetry compared to more offshore habitats. Con-
versely, during the fall, the two sexes are segregated and
live in different areas along the U.S. mid-Atlantic coastal
region. Adult males are estimated to occupy primarily
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coastal waters off Georges Bank that are more directly
influenced by the cold, inshore Labrador Current coming
from the Arctic Ocean and the Newfoundland shelf, which
has its highest flow and strength in the fall/winter (Wang
et al. 2015), compared to the warmer, more southerly
coastal waters occupied by females.

Overall, our results indicate that the Smooth Dogfish’s
distribution is characterized by sexual segregation, mainly
in the fall compared to the spring. This is common in many
shark species (Pratt and Carrier 2001; Sims 2005; Mucientes
et al. 2009; Dell’Apa et al. 2014). However, the data used
for our analysis did not help to fully clarify whether sexual
segregation in Smooth Dogfish is spatial or temporal (Con-
radt 2005; Wearmouth and Sims 2008), as observed and
investigated for the Spiny Dogfish population in the U.S.
North Atlantic (Nammack et al. 1985; Dell’Apa et al.
2014, 2017; Sagarese et al. 2014; Haugen et al. 2017). Nev-
ertheless, the preliminary results from the surveys indicate
that the habitat distributions of the two sexes overlap dur-
ing the spring in inshore coastal waters of the U.S. mid-
Atlantic region. Smooth Dogfish have a gestation period of
approximately 10 months, and adult females off the south-
eastern USA are reported to give birth in the spring (April–
May; Castro 1993), with estuaries having a key role as
potential nurseries for Smooth Dogfish (Bangley et al.
2018). Hence, our results suggest that Chesapeake Bay and
Delaware Bay may be two important pupping grounds and
nursery areas for Smooth Dogfish in the spring. The lack of
spatial overlap between the two sexes is found during the
fall, with adult males inhabiting primarily the northern por-
tion of the study area and adult females found mainly in
inshore coastal waters between New Jersey and North Car-
olina. These results suggest that sexual segregation in
Smooth Dogfish may be spatial and driven by social avoid-
ance (Sims 2005) in adult females during the fall, with
mature females actively selecting coastal habitats in the
southern portion of the study area as an attempt to avoid
adult males and their aggressive courtship and mating
behavior. This avoidance behavior in mature females has
been observed in other sharks, such as the Spotted Dogfish
Scyliorhinus canicula (Sims et al. 2001) and the Nurse Shark

Ginglymostoma cirratum (Carrier et al. 1994), and has been
theorized to occur in Spiny Dogfish (Dell’Apa et al. 2014).
However, these results may also support the hypothesis of
habitat segregation (Wearmouth and Sims 2008) in Smooth
Dogfish during the fall, with the two sexes inhabiting differ-
ent geographic areas and habitats characterized by differ-
ences in physical and environmental characteristics or prey
species.

A second hypothesis proposed for sexual segregation in
elasmobranchs is the thermal condition hypothesis (Sims
2005), which states that pregnant females occupy warmer
waters as a strategy to increase their growth rate, embryo
growth rate, and fecundity. Adult females showed similar
geographic distributions in the spring and fall, which may
be indicative of a reduced migratory range compared to
adult males, allowing the females to remain in warmer,
more southerly waters for longer periods of time. The ther-
mal condition hypothesis was suggested for the Gray Reef
Shark Carcharhinus amblyrhynchos (Economakis and Lobel
1998), Leopard Shark Triakis semifasciata (Hight and Lowe
2007), and Atlantic Stingray Dasyatis sabina (Wallman and
Bennett 2006); however, based on our results, this strategy
may not hold true for Smooth Dogfish, as was also theo-
rized for the Spiny Dogfish (Dell’Apa et al. 2014). In fact,
SST was not identified as a key environmental factor affect-
ing the distribution of mature females in both seasons,
which further supports the hypothesis that sexual segrega-
tion in Smooth Dogfish may be driven by social avoidance
in adult females. However, NEAMAP data were only avail-
able during the spring and fall—the two seasons in which
Smooth Dogfish would likely be migrating between summer
and winter habitats and distributed over the widest area of
the coast. Temperature may be more important in defining
summer and winter distributions for both sexes, and the
thermal condition hypothesis cannot be definitively rejected
without distribution data during these seasons. More studies
are needed to clarify the specific type of sexual segregation
in Smooth Dogfish and the specific drivers (i.e., ultimate
factors).

The results for the influence of rugosity on the abun-
dance of both sexes during the fall, when the two sexes

TABLE 2. Model prediction performance statistics for the final models (based on the lower deviance information criterion and containing only rele-
vant predictors) for Smooth Dogfish by sex and season (r = Pearson’s product-moment correlation coefficient with the original data set; RMSE = root
mean square error with the original data set; avg. error = average error with the original data set; r–cross = Pearson’s r with the half of the data set
used for cross-validation; RMSE–cross = RMSE with the half of the data set used for cross-validation; avg. error–cross = average error with the half
of the data set used for cross-validation).

Sex (season) r RMSE Avg. error r–cross RMSE–cross Avg. error–cross

Males (spring) 0.64 0.88 0.05 0.76 0.92 0.05
Males (fall) 0.68 0.86 0.04 0.73 0.91 0.05
Females (spring) 0.63 0.99 0.06 0.72 0.99 0.07
Females (fall) 0.68 0.97 0.03 0.76 0.98 0.06
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are predicted to occupy different coastal habitats within
the study area, may be a direct consequence of the associ-
ation between morphological characteristics of the seafloor
and the composition and distribution of important prey
species for adult male and female Smooth Dogfish. Given
the presence of sexual dimorphism in this species, with
adult females being larger than adult males, this scenario
would suggest that during the fall, the two sexes may
occupy different habitats characterized by different prey
compositions (Sims 2005). In fact, sexual dimorphism in
elasmobranchs may be the result of the two sexes having
evolved different physiological needs and associated feed-
ing habits, which lead to specific diet and prey preferences
(Ruckstuhl and Clutton-Brock 2005; Sims 2005).

In this regard, our results showed a positive relation-
ship between rugosity and predicted CPUE for both sexes
during the fall, indicating that an increase in substratum
complexity may correspond to an increase in the availabil-
ity of refuge and the variety of microhabitats available to
marine fauna (Graham and Nash 2013), including the
prey of Smooth Dogfish. In fact, rugosity, as an index for
seafloor habitat complexity, has been used successfully to
predict fish species richness and distribution across reef
fish communities and ecosystems (Gratwicke and Speight
2005; Pittman et al. 2007). More studies are needed to
clarify the potential presence of important differences in
prey composition for Smooth Dogfish based on sex and
season.

The presence of significant interannual variability in fall
abundance of adult females between 2007 and 2016, with
the highest CPUEs found in fall 2012 and 2013 and the
lowest CPUEs reported in fall 2007 and 2016, could be
the result of other important environmental variables and
habitat quality characteristics that were not included in
the analysis, such as oceanographic conditions and habitat
degradation (Lindo-Atichati et al. 2012; Thiaw et al.
2017). Further investigations are needed to clarify the
causes of this interannual variability based on season in
adult females only.

For our modeling approach, we assumed that CPUE is
a valid proxy for the species’ abundance (i.e., CPUE is
proportional to relative abundance) and that CPUE
should be the same for each of the two sexes. However,
CPUE is not always proportional to relative abundance
because many factors affect catch rates (e.g., fleet effi-
ciency, gear effects, and environment), and, mainly for
sexually dimorphic species like the Smooth Dogfish, the
CPUE often differs between sexes due to intrinsic variabil-
ity in the catchability coefficient as fish size changes (Hil-
born and Walters 1992; Walters 2003; Maunder and Punt
2004; Maunder et al. 2006). Nevertheless, CPUE has been
commonly used as a proxy for fish population trends and
abundance when derived from standardized fishery-inde-
pendent surveys (Runcie et al. 2016; Dell’Apa et al. 2017),

which was done in this study, as this can reduce the lack
of linearity between CPUE and fish relative abundance
(Maunder and Punt 2004).

Our results provide valuable information for fishery
managers that could be used and integrated to enhance
the sustainability of the Smooth Dogfish fishery in the
U.S. mid-Atlantic coastal region. Management of this
commercial fishery is still relatively recent, with quotas
that were first introduced by NMFS in 2009. The stock is
not overfished and is not experiencing overfishing. In
2018, the federal quota for the Smooth Dogfish commer-
cial fishery was set at 1,802 metric tons in dressed weight
(NOAA 2017). An important aspect of this quota alloca-
tion is that based on historical landings, North Carolina
and Virginia (combined) are allocated approximately 60%
of the total quota for the U.S. Atlantic region from Maine
to South Carolina. Moreover, this quota does not differen-
tiate between sexes or seasons, and there is no size limit
for Smooth Dogfish in either the commercial or recre-
ational fisheries in the U.S. Atlantic.

Collectively, the results of our study suggest that there
could be potential benefits in discussing the development
of a male-only targeted fishery for Smooth Dogfish in the
U.S. Atlantic coastal area based on season and geographic
region. Specifically, the potential development of a tar-
geted fishery for adult males in the northern portion of
the study area during the fall may help to reduce the nega-
tive effects of fishing pressure on the adult female compo-
nent of the population, which contributed to reducing the
sustainability of the Spiny Dogfish fishery (Dell’Apa et al.
2015). In turn, a male-targeted fishing strategy may help
to enhance the sustainability of the Smooth Dogfish com-
mercial fishery.

Additionally, the commercial fishery for Smooth Dog-
fish has expanded the practice of fin removal for commer-
cial purposes, with an allowed fin-to-carcass-weight ratio
of 12%, because the Smooth Dogfish is the only species
for which finning is allowed in the USA. However, this
management regulation has been considered particularly
controversial, given the specific exception made only for
Smooth Dogfish and the higher fin-to-carcass ratio than is
used for other shark species (i.e., 5%). In fact, Cortés and
Neer (2006) reported an average fin-to-dressed-carcass-
weight ratio of approximately 3.7–3.8% for various shark
species and a ratio of 3.51%—much lower than the cur-
rent 12% ratio—for Smooth Dogfish in the U.S. Atlantic.

Assuming no future changes in the 12% ratio, it may
be argued that over the long term, this ratio may con-
tribute to undermining the sustainability of the Smooth
Dogfish commercial fishery. Similarly, excessive fishing
pressure in the southern portion of the U.S. mid-Atlantic
coastal area during fall, particularly off Virginia and
North Carolina, may eventually reduce, over time, the
spawning stock biomass (i.e., adult female) of the Smooth
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Dogfish population to unsustainable levels, as occurred
with Spiny Dogfish in the past (Dell’Apa et al. 2015).
Therefore, a seasonal, area-based, male-directed fishery
could potentially help to maintain the stock at sustainable
levels.

The present results provide new information on the spa-
tial distribution of Smooth Dogfish that can be of interest
to fishery managers and can help to maintain the fishery
sustainability for this stock. Collectively, these results
enhance our understanding of the environmental factors
that affect the distribution of Smooth Dogfish by sex and
season, which may contribute to shedding light on the
population dynamics of the U.S. Atlantic population.
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