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Original Article

Impacts of a multi-trap line on benthic habitat containing
emergent epifauna within the Mid-Atlantic Bight

Cara C. Schweitzer 1,*, Romuald N. Lipcius2, and Bradley G. Stevens1

1Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
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Schweitzer, C. C., Lipcius, R. N., and Stevens, B. G. Impacts of a multi-trap line on benthic habitat containing emergent epifauna within the
Mid-Atlantic Bight. – ICES Journal of Marine Science, 75: 2202–2212.

Received 21 May 2018; revised 1 August 2018; accepted 2 August 2018; advance access publication 12 September 2018.

Alteration and degradation of benthic structure by fishing gear can impede efforts to manage fish stock sustainably. Although the impacts of
mobile gear are well known, effects of passive gear (e.g. fish traps) upon structure have been little studied. We modified commercial traps for
American lobster Homarus americanus and black sea bass Centropristis striata by attaching GoProVR cameras to ascertain the degree and
nature of impacts to seafloor habitats. Customized traps were included within a line of 20 traps, deployed and retrieved according to standard
commercial fishing practice. Less than 5% of traps landed directly on bedforms when deployed. However, during retrieval traps dragged along
the ocean floor, increasing trap–habitat contact rate to 50%, and causing traps to collide with corals, bryozoans, and other epifauna. Drag
time of traps depended on the position in the trap line. Experimentally extending the trap line reduced drag time during retrieval for traps
near the distal end of the line. Our results show that impacts of commercial trap fishing can be substantial during trap retrieval, and that the
impact depends on their location on a trap line. Fishing practices should be developed that minimize effects of trap retrieval on structural
benthic habitat.

Keywords: benthos, corals, fishing, habitats, impacts, traps

Introduction
Hard-bottom habitats consisting of sponges, corals, and bryozoans

increase structural complexity and provide critical habitat for juve-

nile and adult fish and invertebrates, many of which have high eco-

nomic value (Lough et al., 1989; Auster et al., 1997; Kaiser et al.,

1999; Thrush et al., 2002; Hixon and Jones, 2005; Scharf et al.,

2006; Gregor and Anderson, 2016). Complex habitats also enhance

community structure and species richness (Kaiser et al., 1999).

The disruption and alteration of highly complex bedforms

containing biogenic epifauna could impair stock recovery and re-

cruitment of exploited species (van der Knaap, 1993; Auster and

Langton, 1999; Mangel, 2000; Peterson et al., 2000; Lotze et al.,

2006; Scharf et al., 2006; Rogers et al., 2014). One of the greatest

sources of disturbance to benthic habitat is fishing and the effects

of mobile gear, such as trawls and dredges (Watling and Norse,

1998; Freese et al., 1999; Norse and Watling, 1999; Rumohr and

Kujawski, 2000; Lindholm et al., 2008; Buhl-Mortensen et al.,

2016; Pitcher et al., 2016; Rijnsdorp et al., 2016). Repeated

use of mobile fishing gear can degrade habitat complexity by:

(1) directly removing or damaging epifauna; (2) smoothing sedi-

mentary bedforms and reducing rugosity; and (3) eliminating

taxa that produce structure where fish aggregate (Auster and

Langton, 1999). Disturbance to benthic habitat as a result of fish-

ing with passive gear, such as traps, can create impacts similar in

scope to that of mobile gear (Auster and Langton, 1999). Despite

the widespread use of passive fishing gear, the impacts of fish

traps on live-bottom habitat have not been studied well and have

become a growing concern (Auster and Langton, 1999).
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Most published research regarding trap impacts on benthic

habitat focus on a single trap on a single buoy line (van der

Knaap, 1993; Auster and Langton, 1999; Marshak et al., 2008;

Jenkins and Garrison, 2013; Stephenson et al., 2017). These stud-

ies have largely been conducted within coral reef sites in shallow

clear water. Eno et al. (2001) reported minimal impacts on sea

pens by commercial crab traps consisting of a three-trap line in

UK waters. In their study camera frames designed to mimic traps

that were pulled by divers to simulate the retrieval process.

Stephenson et al. (2017) reported similar findings and reported

minimal disturbance of a single trap to rock reef habitats in UK

waters. The authors held the assumption that a single trap is

representative of a 10-trap line. In waters where whales migrate,

the number of buoy lines that fishermen can deploy are restricted,

requiring the use of trap lines consisting of 20 or more traps

rather than a single trap (NOAA, 2015a, b). Unfortunately, there

are currently no tests of the supposition that impacts caused by a

single trap are representative of multi-trap lines.

The degree to which trap fishing can impact the benthos is de-

pendent on the composition and physical structure of the benthos

(Grabowski et al. 2014). There is little published research on ben-

thic habitat within the Mid-Atlantic Bight (MAB) and there are no

published data on the current condition of benthic habitats within

this region. Recent surveys of benthic topography and communi-

ties have been conducted within wind energy development areas in

the MAB, but not in areas with significant structural complexity

that are commonly targeted by commercial fisheries (V. Guida,

pers. comm.). Structure within the MAB is primarily comprised of

highly fragmented natural bottom (i.e. rock-like clay bedforms and

rocks; Steimle and Zetlin, 2000) and artificial reefs (e.g. shipwrecks,

concrete pipes, cable cars). It is currently unknown how traps affect

benthic communities and habitat comprised of rock-like bedforms,

which are more susceptible to degradation than rock.

Previous studies to evaluate trap impacts on the benthos com-

monly relied on diver observations (Eno et al., 2001; Marshak

et al., 2008; Stephenson et al., 2017). However, in deeper, more

turbid waters with limited visibility can make studying trap

impacts more difficult for divers, so alternative methods are

required. Video survey tools such as remotely operated vehicles

(ROVs) and remote camera systems can be effective for observing

habitats at depths greater than 30 m. These tools can collect

important information regarding habitat characteristics, such as

abundance, degree of fragmentation, colonizing organisms,

and relative health or signs of degradation (Johnson et al., 2003;

Parry et al., 2003). However, the utilization of ROVs can cost

$1000–$3500 per day and often require additional personnel who

are experienced in controlling the ROV in turbid waters to find

traps and observe any interactions with hard bottom habitat dur-

ing the deployment and retrieval process in situ. Therefore, it is

important to develop more reliable, cost-effective remote camera

systems to allow in situ observations of impacts due to trap

fishing.

The objectives of this research were: to determine the degree

and nature of impacts to complex live-bottom habitats caused by

commercial trap fishing utilizing a cost-effective method to make

in situ observations of the deployment and retrieval of commer-

cial multi-trap lines; to develop methods to quantify such interac-

tions; to test alternative fishing practices designed to reduce

adverse impacts; and, to estimate the current conditions of the

fishing sites based on quantifying damage to gorgonian sea whips

(Leptogorgia spp.) as indicator species.

Methods
Study sites and environmental data
Three study sites (1, 2, and 3) in the MAB were selected based on

commercial fishing activity in 2015. Sites were located approxi-

mately 19–33 km off the coasts of Delaware, Maryland, and

Virginia, ranging in area from 0.80 to 1.61 km2 between the lati-

tudes of 37� N and 38.5� N, at depths of 20 to 33 m (Figure 1).

Environmental data (i.e. mean wave height and period) were

collected to determine if sea conditions and depth affected drag

duration. Sea conditions were retrieved from NDBC buoy 44009,

located off the Delaware Bay mouth at 38.461� N, 74.703� W

(http://www.ndbc.noaa.gov/station_page.php?station¼44009).

Depth was recorded by sonar.

Remotely operated vehicle
A Seabotix LBV 150 ROV was used to observe characteristics and

conditions of complex live-bottom habitat within three commer-

cially fished sites. Attempts use the ROV to view effects of trap

deployment and retrieval on benthic habitat were prevented by

sea conditions and current. Therefore, video surveys were con-

ducted in a haphazard manner to assess habitat composition and

condition, and to determine if there were any differences between

sites. Video surveys could not be conducted randomly because

the extent of each fishing area was unknown.

To assess habitat composition from the 15 min video surveys,

20 randomly selected frame images from each site were analysed

for presence or absence of sea whips Leptogorgia spp., northern

stone coral Astrangia poculata, sponge Cliona spp., hydroids

Bugula spp., cobble, bedforms, and sand. A sample size of

20 frames was selected to maintain independence between frames

and because it was on the asymptote of the rarefaction curve.

To obtain a baseline for habitat condition, sea whips were se-

lected as a potential indicator species because gorgonians have a

wide geographic range. Sea whips occur along the entire Atlantic

coast of North America, and are abundant in heavily fished habi-

tats (Gotelli, 1991; Steimle and Zetlin, 2000; Sánchez, 2007).

Within the MAB, sea whips alone provide additional height to

substrate and damage can be easily quantified. To assess their reli-

ability as an indicator species, we analysed abundance and com-

munity composition data for the three fishing sites.

Sea whip images were analysed in ImageJ (version 1.6.0_65,

NIH) to determine the proportion of damage of sea whip struc-

ture. To calculate the extent of damage or overgrowth, regions of

interest were created around each sea whip in the selected images

and the total area, and area of damage or epifaunal colonization

was measured for each sea whip. The sites were given a damage

index (DI) on a scale from 1 to 5 (Table 1) based on the mean

proportional damage of sea whips at each site.

Commercial trap-line design, hauling, and deployment
The standard commercial trap line used in the MAB contains

20 traps and is approximately 384 m in length. Each end of the

line is connected to two rectangular block concrete anchors

(�34 kg) that are marked by buoys (Figure 2). Commercial traps

(1.1 m L � 0.53 m W � 0.3 m H; 8.2 kg) used to capture black sea

bass Centropristis striata and American lobster Homarus ameri-

canus are constructed by the fishermen with galvanized wire mesh

connected to the trap line via clove hitch knots every 18 m via a

2.5 m “snood” line. Buoys are attached to the block anchors with

floating line. The majority of the trap line consists of sinking line,

Impacts of a multi-trap line on benthic habitat 2203
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except for the first and last nine m, which consists of floating line,

to avoid abrasion. All rope lines are 9.5 mm diameter. Federal

regulations require that the trap line and snood lines be com-

prised of sinking line (https://www.greateratlantic.fisheries.noaa.

gov/protected/whaletrp/14alwtrpfrbulletin.pdf).

The hauling process begins with the retrieval of the buoy lines,

which are led over a hydraulic pinch block that pulls the trap up

at a variable rate. Simultaneously, the captain drives the boat, at

various speeds, along the trap line moving toward the traps.

When a trap is pulled on deck, the boat is temporarily idle while

the trap contents are emptied. After the trap is emptied, the cap-

tain continues to haul the next trap in the same fashion while the

deckhand prepares the empty trap for redeployment.

When traps are deployed, the buoy is deployed followed by the

anchor block. Traps are set on the transom and are pulled into

the water by the trap line, causing the trap line to become taut be-

tween traps. After the last trap is deployed, the second anchor

block is dropped followed by the second buoy.

Camera trap design and preliminary data
One commercial trap was customized within a string of five traps

to assess trap–habitat interactions. This trap line was similar to

commercial rigs consisting of a trap line, with an anchor block

and buoy at each end. Stabilizing weight (2.7 kg) and floats (PVC

tubes) were added to the customized trap, neutralizing �4 kg, to

Figure 1. Locations of trap study sites off the coast of Delaware, Maryland, and Virginia in the MAB, United States. The map was created
using ArcGIS 10.4.1 software.

Table 1. Criteria used to classify individual sea whip DI and habitat
DI for images captured during the ROV survey.

DI Damage Description

1 Minimal <0.05 damage
2 Minor 0.06–0.25 damage.
3 Moderate 0.26–0.50 damage.
4 Severe 0.51–0.75 damage.
5 Critical >0.75 damage

Note: For individual sea whips, damage is defined as any visible tissue damage
and fouling of epifauna.

2204 C. C. Schweitzer et al.
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help balance the additional weight of dive lights and to ensure

that it landed upright. Three GoPro
VR

Hero cameras were placed

on the trap to give a view of the front base of the trap, the for-

ward view, and rear view of the trap (Figure 3). First edition

GoPro
VR

cameras were updated and replaced with Hero 3þ cam-

eras because the latter did not require underwater lighting for vis-

ibility (mention of trade names does not imply endorsement by

the University of Maryland Eastern Shore or NOAA). This

allowed us to remove lights, weights, and floats as well, resulting

in a less encumbered trap.

Preliminary sampling was conducted from June to September

2014 to determine how traps functioned during the retrieval pro-

cess, and to experiment with camera setup. Video analysis of the

retrieval process showed traps dragging along the ocean floor for

varying durations. To determine if there was a relationship be-

tween trap position on the rig and drag duration, subsequent

experiments utilized a trap string identical to that used by com-

mercial fishermen.

Within a standard rig containing 20 traps, two commercial

traps were replaced with our customized “camera traps”.

Customized traps were assigned a number based on their position

on the trap line during deployment. Camera traps were rotated

throughout the trap line to obtain recording from six positions

along the trap line: P1, P5, P9, P13, P17, and P20. Position P1

was the first trap deployed whereas P20 was the last (20th) trap

deployed; the remaining traps were the 5th, 9th, 13th, and 17th in

the line. However, commercial fishermen deploy and retrieve trap

lines in reverse order such that P1 was the last trap to be retrieved

and P20 was the first.

The trap line was deployed and hauled three times before ro-

tating our camera traps to the next positions. Starting positions

for the two camera traps were randomly assigned each day. All

positions were recorded during a sampling day. Traps were

hauled and deployed by commercial fishermen to ensure no

changes were made to the standard fishing process.

To determine if there was a difference between drag durations

between the first-generation camera traps (i.e. camera traps con-

taining GoPro
VR

Hero, dive lights, stabilization weights, and floats)

and the second-generation traps (i.e. camera traps containing

only GoPro
VR

Hero 3þ), drag durations of traps were compared

within positions by t-test. No significant differences in drag time

were detected (t-test, p> 0.05) between first- and second-

generation traps; therefore, the data were pooled together.

Sampling took place in two series. The standard 384-m trap

line was deployed within Series 1 from June to September 2015.

Sampling Series 2 occurred from October to November 2015,

during which the spacing between traps was doubled from 18 to

36 m, yielding a 768-m trap line. This was done to determine if

increasing the distance between traps would reduce drag time.

Within Series 1, 148 drops of customized traps were com-

pleted, all of which were analysed for interactions with habitat

and epifauna. Due to video complications or deployment prob-

lems (e.g. traps getting tangled), seven videos were not used for

drag analysis. The final sample size analysed for Series 1 included

148 sets for habitat interactions and 141 for drag duration along

the ocean floor (Table 2). During Series 2, 132 drops were com-

pleted successfully.

Trap impacts and dragging were assessed from the video

recordings of the six positions. Since we had no accurate way of

measuring the distance along which traps were being dragged on

the bottom during retrieval, dragging was quantified using “drag

time”, defined as the time the trap was in motion while maintain-

ing contact with the bottom during retrieval.

Figure 2. Diagram illustrating a common commercial trap line used off the coast of Delaware, Maryland, and Virginia. Marker buoys are tied
to a rectangular concrete block anchor, which connects to a 384 m trap line containing 20 traps. Traps are connected to the trap line via a
2.5-m “snood” line every 18 m. Positions where camera traps were used are indicated by P1, P5, P9, P13, P17, and P20.

Figure 3. Customized trap consisting of a standard commercial
fishing trap modified with dive lights and GoProVR Hero cameras.
White arrows indicate placement of cameras.

Table 2. Summary of trap drops and mean drag time, by position
and trap-line length.

Position Trap-line Length n
Drag duration (s)

Mean SE

P1 Short 23 59.23 4.83
Long 25 45.75 3.66

P5 Short 27 42.58 2.96
Long 22 32.27 3.75

P9 Short 26 34.44 1.77
Long 22 30.87 3.61

P13 Short 20 33.23 2.73
Long 20 33.52 3.10

P17 Short 22 20.24 1.32
Long 24 24.28 1.63

P20 Short 23 7.15 0.64
Long 19 6.68 0.96

Note: Short ¼ 384 m, long ¼ 768 m; n, number of drops; SE, standard error.

Impacts of a multi-trap line on benthic habitat 2205
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Video analysis consisted of three components. Initial review

consisted of editing with Final Cut Pro 10.2.2VC , and removing ex-

tended soak times and standby times on the boat. All footage of

deployment and retrieval processes remained unedited. The sec-

ond review consisted of assessing any interactions with complex

live-bottom habitat or epifauna and defining the bottom type on

which the trap landed. When a trap came into contact (“hit”)

with a patch of live-bottom habitat or epifauna, it was logged and

counted as 1 hit. Hits were documented by trap position for the

entire fishing process, including deployment and retrieval. A sin-

gle trap could have multiple hits throughout the fishing process.

The third review was used to determine drag time.

Statistical analysis
Data were analysed using R version 3.2.1 (R Core Team, 2016),

GraphPad Prism version 6.0 and PRIMER v 6.1.16 (Clarke and

Gorley, 2006). Prior to regression analysis, data were tested for

normality using the Shapiro–Wilk test. Grubbs’ test was used to

detect and remove outliers within the drag time data (Grubbs,

1969). Drag times were normally distributed (Shapiro–Wilk test,

p¼ 0.27), but three outliers were detected (in positions P1, P5,

and P17) and removed from further analysis. Drag times were fit-

ted with a weighted Poisson linear regression.

To test for depth and wave effects, depth and sea state were

grouped as described and treated as factors by subdividing the data

into two and three factor levels, respectively: shallow (<30.5 m)

and deep (�30.5 m); and low (<0.6 m), medium (0.6–1.0 m), and

high (>1.0 m) seas. A multi-factor ANOVA and a linear mixed

effects (LME) model were used to determine presence of depth or

wave effects. Morisita’s index of dispersion was used to analyse the

distribution of hits throughout trap positions (Krebs, 1989). The

effects of trap position and drag time on hit count, and all possible

interactions, were analysed using a generalized linear model

(GLM) using the Poisson family distribution. The five models in-

cluded both position and drag time (g1), position only (g2), drag

time only (g3), position and drag time in a multiplicative model

(g4), and position, drag time, and depth (g5).

Akaike Information Criterion (AIC) values from each model

were used to calculate AICc, a second-order bias correction esti-

mator. Di values were used to rank the different models (gi)

against the model with the lowest AICc. Model probabilities (wi)

estimated the probability that a particular model gi was the best

model. Models with wi less than 0.1 were eliminated. Goodness of

fit of the selected model was examined using the Hosmer–

Lemeshow goodness-of-fit test.

The relationship between drag time and position was com-

pared between the standard commercial trap line (384 m) and the

experimental extended trap line (768 m) using linear regression

and analysis of covariance. Student’s t-test was used to compare

drag time between the standard and extended trap lines within

each position, after determination of normality.

Sea whip proportional damage ratios were logit-transformed

before being analysed with a one-way ANOVA. The mean and

standard error across all three sites were calculated using a strati-

fied design, weighted by sample size at each site. To determine if

the sites observed by the ROV differed in community structure,

habitat composition and richness were compared between sites

using permutational multi-variate analysis of variance

(PERMANOVA). Post-hoc comparisons were made between all

three combinations of paired sites.

Results
Habitat composition and sea whip condition
Three fishing sites consisting of natural bottom were visited dur-

ing the ROV video surveys, which allowed us to document differ-

ences in habitat composition and sea whip condition among sites.

Twenty-two sea whips were analysed from the fishing sites for

proportional damage and sites assigned a DI as described pre-

viously (Table 1; Figure 4). There was no significant difference be-

tween the three commercially fished sites (F¼ 0.38; df ¼ 18;

p¼ 0.68). All three sites contained sea whips with various levels

of degradation; the stratified mean value of proportional area

damage was 0.371 6 0.057 (SE) for all sites, which is indicative of

moderate levels of degradation (Table 3).

Habitat composition differed significantly among the three

sites (PERMANOVA, df ¼ 2; pseudo-F¼ 6.13; p¼ 0.001) and be-

tween combinations of paired sites (Table 4). Site 1 consisted of

more cobble, site 3 had more sandy bottom, and site 2 contained

more sponge habitat (Figure 5). The three sites did not differ sig-

nificantly in abundance of sea whips, hydroids, and stony corals

(GLM, Poisson family distribution, p> 0.3 in all cases). Sea whips

were common at all sites, having been observed in 35–55% of the

20 images per site. Similarly, hydroids occurred in 35–50% of

images at each site, and stony corals in 30–50%. Consequently,

sea whips were a reliable indicator species of habitat degradation

across the three sites, and live habitat community structure did

not differ significantly among sites except for abundance of

sponges (GLM, Poisson family distribution, p¼ 0.054). Sponges

were in 45% of the images at site 2, but in only 10% of the images

at sites 1 and 2.

Trap–habitat interactions
Video analysis revealed that <5% (6/148) of the dropped com-

mercial fishing traps landed on complex live-bottom habitat.

However, 50% of traps (74/148) came into contact with live-

bottom habitat during trap retrieval due to traps being dragged

along the ocean floor. Interactions between traps and habitat, in-

cluding epifauna, were observed from every recorded position.

Interactions included damaging or breaking corals and running

over epifauna such as sea stars, sponges, hydroids, bryozoans, and

anemones (Figure 6).

During retrieval, traps were dragged along the ocean floor for

various durations, such that there was a significant correlation be-

tween trap position and drag time. Drag time was longest for

traps at position P1 (last trap retrieved) and declined monotoni-

cally through the trap line (r2 ¼ 0.73, p< 0.0001; Figure 7). For

Series 1, depth and wave height did not contribute significantly to

drag duration (F¼ 0.67; F¼ 0.99, respectively; df ¼ 132; p> 0.05;

Table 5).

A single trap could encounter habitat or epifauna more than

once per drop and retrieval cycle (i.e. have multiple hits) if it

dragged over multiple coral patches or other organisms.

Morisita’s index of dispersion (1.78) indicated that the distribu-

tion of hits was random (X2 ¼ 196.6, critical value ¼ 227.3) and

the data could therefore be represented by a Poisson distribution

(Figure 8).

From the five models analysing trap and habitat interactions,

g3 was eliminated because the probability (wi) was less than 0.05

and g5 was eliminated because the addition of the depth variable

increased the AICc by only 2.18 (Table 6). Among the remaining

models, model g4 was selected as the most reasonable, which was
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significantly better than each of the other two models by the

likelihood ratio X2 test (p¼ 0.02), and passed the Hosmer–

Lemeshow goodness of fit test (X2 ¼ 16.32, df ¼ 8, p> 0.05).

This suggests that there is an interaction effect between trap posi-

tion and drag time, both of which had a significant effect on hit

rate (p< 0.001 and p< 0.05, respectively). This interaction is il-

lustrated by Figure 8; traps at P1 and P5 show a convex curve,

Table 3. Summary of the mean sea whip proportional damage and
habitat DI by site.

Site n Mean SE Min Max DI

1 5 0.31 0.12 0.02 0.63 3
2 11 0.40 0.07 0.15 1.00 3
3 6 0.37 0.13 0.09 0.86 3
Mean 22 0.371 0.057 3

Note: n, the number of sea whips analysed for proportional damage; mean,
the mean proportional damage for the observed sea whips of that site;
SE, standard error; min, smallest proportional damage observed; max, largest
proportional damaged observed.

Figure 4. Three images from the ROV surveys taken from two different sites showing the spectrum of proportional damage. (a) Sea whip
(site 2) showing the mean proportional damage of 0.40, which is representative of the mean proportional damage throughout the three sites.
(b) A sea whip (site 1) exhibiting minimal damage ratio of 0.02 highlighted by the arrow. (c) A sea whip (site 2) exhibiting a damage ratio of
1.00.

Figure 5. Canonical analysis of principal coordinates (CAP) based
on Euclidean distance from PERMANOVA analysis of habitat
composition for three commercially fished sites: 1, 2, and 3.
Composition analysis was based on presence or absence counts for
sea whips (SW), northern stone coral (SC), sponge (SP), hydroids
(HY), cobble (CB), bedforms (RK), and open bottom sand (SD). Site
3 showed higher presence of sand and sea whips. Site 1 showed a
higher presence of cobble and bedforms. Site 2 showed higher
presence of sponge and cobble.

Table 4. Results of (PERMANOVA) pair-wise test comparing habitat
composition between commercially fished sites 1, 2, and 3.

Sites t Statistic p value Unique Permutations

2 vs. 3 2.19 <0.01 108
3 vs. 1 1.61 0.05 92
2 vs. 1 3.46 <0.01 78
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whereas those at P9 and P13 show a declining trend, while P17

and P20 show a concave curve.

Extended trap line
Within each trap position, data were normally distributed

(p> 0.05), but three outliers were detected [P1 (n¼ 2) and P13]

and removed from analysis. Similar to the standard line, drag

times for the extended line were significantly related to trap posi-

tion (r2 ¼ 0.32; p< 0.0001). The slopes of the 384 m and the 768-

m trap lines differed significantly (ANCOVA, p¼ 0.001;

Figure 7). Contrary to our hypothesis, doubling the trap line only

reduced the drag times of traps at positions P1 and P5 (t-test,

p¼ 0.024; p¼ 0.034, respectively), and presumably those between

them, indicating a trend of decreased drag time. The second series

of sampling was conducted in rougher seas (wave height > 1.0 m)

than Series 1 (t-test p< 0.01). As a result, and unlike the standard

trap line, depth and wave height had an effect on drag time

(F¼ 17.85; F¼ 3.7; df ¼ 128; p< 0.01; p¼ 0.02 respectively;

Table 5). Since the standard trap line was not tested during high

seas it is uncertain if an extended or standard trap line is more ef-

fective at reducing drag times during rough weather. However,

the data suggest that drag times would need to be reduced to

<10 s to minimize habitat interactions.

Figure 6. Images captured from the camera traps during trap retrieval. (a) Drop 144-position 17, showing the forward view of trap. The trap
and snood line show the path along which the trap will be dragged. (b) Drop 30-position 5: a trap running over sea whip corals during
retrieval. (c) Drop 60-position 5: a trap running over a patch of bryozoans, northern stone coral, and sea whips, which have some degree of
damage and overgrowth of fouling organisms. (d) Drop 35-position 1: forward view showing the coral patch over which the trap is dragged
during retrieval.

Figure 7. Duration of mean bottom drag times for traps at different
positions on a 20-trap line of either standard (384 m, slope ¼ �2.76;
r2 ¼ 0.73; p< 0.0001) or extended length (768 m, slope ¼ �1.5; r2 ¼
0.32). The intercepts and slopes of the standard 384-m trap line and
the extended 768 m trap differed significantly (p¼ 0.001). Extending
the trap line resulted in a reduction in the rate of linear decrease in
drag time with position number. Vertical bars ¼ standard error.
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Discussion
Habitat loss, reduced patch size and integrity, and fragmentation

have been strongly associated with loss of biodiversity and de-

creased species persistence (Gibbs, 1998; Collingham and

Huntley, 2000; Hovel and Lipcius, 2001; Thrush et al., 2008). It is

therefore important to quantify adverse impacts to benthic habi-

tat by all types of fishing gear to thoroughly understand the con-

sequences of such impacts for biodiversity, fish behaviour, and

recruitment (Auster, 1998; Kaiser et al., 2003; Scharf et al., 2006).

Trawls and dredges have been the focal point of most research on

the impacts of fishing and ecological disturbance, whereas passive

fishing gear (e.g. traps) have generally been overlooked, especially

multi-trap lines. A better understanding of how passive fishing

gear, such as the 20-trap lines in our study, impacts complex

habitat can facilitate a shift toward ecosystem-based fisheries

management (EBFM; Pikitch et al. 2004; Armstrong and

Falk-Petersen, 2008; Möllmann et al., 2014).

We attached GoPro
VR

cameras onto commercial lobster and

black sea bass traps, which proved to be an effective method to

observe trap fishing in situ to determine the magnitude of trap–

habitat impacts. We observed traps being dragged along the floor

and colliding with and breaking clay bedforms, running over

Table 5. Results from analysis of covariance showing effects of trap position, wave height, depth, and line length on trap drag time.

DF Sum of squares Mean square F-value p-value

384 m Position 1 26 437 26 437 149.98 <0.001
Wave height 1 175.4 175.4 0.995 0.32
Depth 1 118.9 118.9 0.674 0.41
Residuals 132 232 67.1 176.3

768 m Position 1 13 948.4 13 948.4 71.03 <0.001
Wave height 2 1444.8 722.4 3.679 0.03
Depth 1 3504.6 3504.6 17.847 <0.001
Residuals 128 25134.2 196.4

384 m vs. 768 m Trap line 1 2440 2440 18.463 <0.001
Residuals 251 33175 132

Figure 8. Relationships between drag time and hit rate by trap position on the line. Curves are second order polynomials with 95% CI
shaded. (a) Position 1; (b) position 5; (c) position 9; (d) position 13; (e) position 17; (f) position 20.
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stone coral, breaking gorgonian corals, burying epifauna, and

overturning cobble. Our findings are similar to impacts docu-

mented with mobile gear such as running over and burying epi-

fauna, removing, damaging, and displacing structure-forming

species, and overturning, moving and burying cobbles and rocks

(Watling and Norse 1998), but on a smaller spatial scale.

However, the frequency with which traps are deployed, and come

into contact with benthic habitats, can be much greater than for

trawls in some areas (Auster and Langton, 1999). Trap rigs within

the MAB are retrieved every 7–10 days equating to 36–52 times

per year, resulting in a chronic disturbance.

Previous research investigating trap impacts on benthic habitat

suggested that traps created minimal disturbance (Eno et al.,

2001; Stephenson et al., 2017). However, these studies investi-

gated the impacts of single trap or three-trap lines. In our study,

the first trap retrieved had the shortest drag time and minimal

disturbance to benthic structure (<5%), which is complimentary

to previous studies. However, the first trap in the line is not an

accurate representation of the entire trap line. Traps farther down

the line had significantly longer drag times, which caused 50% of

the traps to collide with bedforms, corals, sea whips, and other

epifauna.

Despite the correlation between drag time and habitat interac-

tions overall, such interactions were inconsistent between trap

positions (Figure 8). This variability was likely due to disparities

in the process of trap retrieval for traps at different locations

along the trap line. For instance, a trap retrieved later in the pro-

cess might be moving over habitat that has already been cleared

by previous traps, resulting in a decline in hits for longer drag

time as observed for trap locations P1, P5, P9, and P13. However,

when traps had considerably shorter drag times, which was com-

monly observed for P20 (first trap retrieved in the line), habitat

interactions were minimal throughout all research sites. This is

consistent with other research where observations consisted of a

single trap and three-trap lines. More research is needed to de-

velop ways to significantly reduce trap drag time for all traps dur-

ing retrieval. Our research suggests that a drag time of less than

10 s would have minimal impacts on benthic habitat, as observed

for the first few retrieved traps.

In an attempt to reduce drag time and therefore trap–habitat

impacts, we extended the trap line to 768 m to counteract depth

and to allow more time for the fishing vessel to manoeuvre

toward the trap. The hypothesis was that this line extension

would mimic retrieval for trap P20 for all traps allowing the boat

more time to counter act dragging when moving toward the trap

line. However, we were not successful in reducing trap drag time

to 10 s, and therefore do not recommend this alteration. More re-

search is needed to determine the factors contributing to drag

time and to explain why drag time was shorter for the first few re-

trieved traps, compared with those farther down the line.

In this study, we limited our observations to direct impacts of

traps on benthic structure. This study did not quantify possible

impacts imposed by the trap line itself, trap movement during

soak time, or how sea conditions affect trap retrieval. During de-

ployment, traps are pulled off the stern by the weight of the trap

line and anchor block, resulting in a tight line between traps

(Figure 6a). Trap lines may not move between soak times, with

the exception of lines affected by severe weather events (e.g. hur-

ricanes) or by getting entangled with other fishing gear. Our

observations for the standard trap line were limited to fair sea

conditions during spring and summer and not in the rougher

conditions commonly experienced in fall. More research is

needed to determine ways to quantify impacts of traps and line

during severe weather events, and how other environmental fac-

tors such as waves, current, and wind can affect drag time.

ROV surveys were conducted to obtain a baseline of the habi-

tat condition at the three sites. We quantified damage on sea

whip coral as an indicator species to determine a baseline for site

condition. Previous research has reported sea whip (Halipteris

willemoesi) damage (Lindholm et al., 2008) and loss of sea whip

density (Malecha and Stone, 2009) in regions of higher fishing

pressure as well as lower densities of commercially important fish

within regions of low sea whip abundance (Stone et al., 2005).

However, sea whips (Leptogorgia spp.) within the MAB possess a

degree of branch complexity (Figure 4) which may affect sensitiv-

ity to fishing gear and pressure. We observed that sea whips were

relatively abundant at similar levels at all sites, as were stony cor-

als, and therefore could be reliable indicator species. Future stud-

ies investigating correlations between fish abundance sea whip

health and density are required for indicator species validation.

In addition, all three sites had moderate and equivalent levels

of degradation such that we are confident that our study is repre-

sentative of similar sites in the MAB. Unfortunately, there are no

published studies on historical habitat conditions or composition

within the MAB, which precludes assessment of damage to habi-

tat relative to a pre-fishing baseline. Furthermore, social surveys

would be required to obtain fishing history on sites to estimate

fishing pressure, which was not part of this study. Since the ROV

surveys were a snapshot of current conditions we cannot con-

clude that the observed damage was exclusively a result of fishing

practices. Without comparable data from unfished areas we can-

not rule out other potential sources of disturbance such as storms

and changing water conditions. These data can, however, serve as

a baseline for future monitoring studies to quantify habitat resil-

ience or degradation over time.

This is the first study to utilize GoPro
VR

action cameras to in-

vestigate how a multi-trap line impacts benthic structure. This

proved to be a reliable and cost-effective method to observe traps

in situ. The costs of purchasing an ROV can range from $40 000

to over $500 000. ROV rentals can exceed $1000 per day and re-

quire access to vessels equipped to handle the size and weight of

larger ROVs. The use of ROVs can be restricted by sea conditions

limiting their use and the success of finding traps. In comparison,

GoPro
VR

cameras cost only $200–$700 each and can be used in

many environmental settings.

Table 6. Comparison of models g1–g5 corresponding to the different
hypotheses about habitat and trap interactions represented by the
models gi.

Model k Variables AICC Di wi

g1 8 Position (P) þ
drag time (DT)

270.65 1.71 0.26

g2 7 P 273.66 4.71 0.06
g3 3 DT 286.27 17.32 <0.01
g4 13 P � DT 268.95 0.00 0.6
g5 9 P þ DT þ depth 272.83 3.88 0.09

Note: k, number of parameters; AICc, corrected AIC value; Di, difference be-
tween each model and the best model in the set; and wi, model probability
that a given model provided the best fit to the data. Abbreviations: P, posi-
tion ¼ placement of the camera trap on the line; DT, drag time ¼ duration
traps dragged along the ocean floor; depth ¼ ocean depth at specific sites.
Model g4 was selected as the best model.
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Previous research investigating impacts of trap fishing on ben-

thic structure was limited to a single trap or three-trap lines (Eno

et al., 2001; Jenkins and Garrison, 2013; Stephenson et al. 2017),

which were not representative of trap lines containing 10 or more

traps. Dragging of traps along the ocean floor, specifically for sin-

gle traps, has been documented since the late 1990s (Auster and

Langton, 1999). Assumptions held by previous researchers and

fishermen, with whom we worked, were that all traps had mini-

mal drag before being lifted off the bottom, and that trap–habitat

impacts were negligible (C. Townsend and M. Hawkins, pers.

comm.). However, our findings indicate that all traps in the line

are dragged along the bottom and damage living epifauna, sug-

gesting that the real impacts of trap lines have been underesti-

mated. The necessary extension of this study is to determine the

cumulative impact of trap fishing in MAB benthic habitats by

documenting the relative abundance of damaged and undamaged

epifauna. Fish abundance and habitat quality are positively corre-

lated in that habitat degradation reduces fish and fisheries pro-

duction, such as in coral reef ecosystems (Lotze et al., 2006;

Newman et al., 2015). Similar investigations should be the focus

of future studies on the effects of habitat degradation on fish and

fisheries production in temperate rock reef ecosystems such as

the MAB.
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