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ABSTRACT

Allee effects occur when individual fitness suffers at low population size or density. This 
can lead to reduced population growth rate, which can in turn lead to a critical density 
below which the population goes extinct. Allee effects are important for conservation and 
management, but are poorly understood theoretically and in real populations. I examine 
Allee effects and their population consequences in models and in the field.

Chapter 1 is a review of evidence for Allee effects in marine systems. There is little firm 
evidence of Allee effects, perhaps for methodological reasons, but there are suggestive 
observations in broadcast spawners and heavily exploited populations. In theoretical 
models, Allee effects interact with exploitation to cause non-linear population collapse.

Chapter 2 examines the population consequences of Allee effects in juvenile survival and 
reproduction using a two-stage matrix model. Critical densities are higher in reproductive 
Allee effects than in juvenile survival Allee effects, making reproductive Allee effects 
more severe (higher extinction probability). In terms of the critical Allee effect threshold, 
reproductive Allee effects are more severe in r-selected populations, while juvenile 
survival Allee effects are more severe in ^-selected populations. For populations with 
negative density dependence, there is a maximum critical Allee threshold, above which a 
population of any density goes extinct. Critical thresholds are reduced (Allee strength) or 
increased (density) by increases in mortality or time to maturity or decreases in 
reproductive output. Adding two Allee effects together has unpredictable consequences 
depending on the life history, while adding negative density dependence makes Allee 
effects more severe. The ^-selected life history model often took many time-steps to 
equilibrate. The r-selected model could show stable, large-amplitude oscillations under 
circumstances not previously reported in the literature.

Chapter 3 presents the results of a field test of Allee effects. In the queen conch Strombus 
gigas, a heavily exploited marine gastropod, mating and egg production are reduced in 
low-density areas. This could be due to low encounter rates, habitat quality or 
ontogenetic differences. To distinguish between these hypotheses, mature conch were 
translocated between high and low density sites. Conch were at equal high density in all 
enclosures, but high source-site density produced higher reproductive activity. Conch 
from high-density source sites also had thicker shell lips, indicating that they were older. 
These data reject the hypothesis of an Allee effect; possibly reproduction is delayed after 
morphological maturity. In model simulations, a reproductive Allee effect and delayed 
reproduction could both produce non-linear population collapse.

Chapter 4 sets out a theoretical framework for Allee effects driven by predation.
Predators can generate an Allee effect in prey if they have a Type n  functional response 
and the aggregative or numerical response is not Type III (or vice versa). A literature 
review reveals several unrecognised examples of predation-driven Allee effects from the 
literature, mainly from systems that have been perturbed by exploitation or introduced 
predators. This mechanism for Allee effects does not arise from the specifics of prey life 
history, which makes it difficult to predict and prepare for.

ix
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CHAPTER 1 

ALLEE EFFECTS IN MARINE SYSTEMS

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

A population with Allee effects has positive density dependence in fitness or in the 

population growth rate at low population size or density, which can result in a critical 

threshold below which the population goes extinct. I argue that Allee effects are 

intrinsically feasible in marine populations and metapopulations. I model the population 

consequences of Allee effects and show that increases in mortality interact with critical 

Allee thresholds, such that an Allee effect with no population consequences at low 

mortality can drive a population to extinction when mortality is increased. I predict that 

Allee effects are likely to be most apparent in exploited species, because populations that 

have been exposed to periods of low population size or density over evolutionary time are 

likely to have evolved mechanisms to avoid Allee effects, while populations that have 

been large and stable prior to exploitation may have latent Allee effects. I review 

empirical evidence for Allee effects in marine populations, and find suggestive 

observations, particularly for broadcast spawners and exploited fish populations, but little 

firm evidence. This might be for methodological reasons, i.e. problems with the 

definition of Allee effects and with demonstration of causal relationships. The 

population-level consequences of mechanisms for Allee effects in many marine species 

remain virtually unexplored. I suggest that including Allee effects in models of 

potentially vulnerable populations is useful, and may be particularly critical for the 

precautionary management of exploited marine species.
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INTRODUCTION 

What are Allee effects?

An Allee effect occurs when some component of individual fitness declines as population 

density or size decreases towards zero (Allee 1938, Stephens et al. 1999), resulting in a 

positively density-dependent relationship. Standard population models assume that 

fitness increases as density declines (negative density dependence), but there are various 

processes that can reduce fitness when there is a dearth of conspecifics (e.g. a lack of 

mating encounters, failure of fertilisation for broadcast spawners or wind pollinated 

plants, inbreeding depression; see Fowler and Baker 1991 and Stephens et al. 1999 for 

reviews).

If there is an Allee effect in some component of fitness, there may also be a decline in per 

capita population growth rate at low population size or density. If the population growth 

rate becomes negative, there will be a critical population size or density below which the 

population cannot sustain itself (Courchamp et al. 1999). An Allee effect in some 

component of fitness (e.g. output of fertilised eggs) may or may not result in a decline in 

the population growth rate since it may be balanced by negative density dependence in 

other components of fitness (e.g. survival or growth). Stephens et al. (1999) distinguish 

between component Allee effects (positive density dependence in some component of 

individual fitness) and demographic Allee effects (positive density dependence in the per 

capita population growth rate). Component Allee effects may or may not lead to 

demographic Allee effects. Note that “depensation” can be used to refer to positive
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density dependence in stock-recruitment relationships (Myers et al. 1995), by analogy 

with compensation (negative density dependence). This is equivalent to a demographic 

Allee effect.

Component Allee effects can arise from various processes, such as reproductive strategies 

(Levitan et al. 1992, Shepherd and Brown 1993, Kuussaari et al. 1998, Petersen and 

Levitan 2001), predator-prey interactions (Kenward 1978, Calvert et al. 1979, Foster and 

Treheme 1981, Inman and Krebs 1987, Chapter 4) or social systems (Halliday 1980, 

Clutton-Brock et al. 1999, Courchamp et al. 2000a, b, Courchamp and Macdonald 2001). 

Conservation biologists and managers are usually more interested in demographic Allee 

effects because they ultimately govern extinction or recovery probability of species at 

low abundance.

Are Allee effects likely in marine systems?

Marine populations have generally been considered to be open with large effective 

population sizes because most marine taxa have planktonic larvae that spend days to 

months in the water column and are therefore (in theory) capable of wide dispersal. Allee 

effects have thus been assumed to be relatively unimportant. However, for many species 

larvae may be retained locally, which produces relatively closed populations (Jones et al. 

1999, Swearer et al. 1999, Barber et al. 2000, Cowan et al. 2000), and many species have 

fragmented or dramatically reduced populations (Myers and Worm 2003), rendering 

them susceptible to Allee effects.
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Allee effects may occur at low population size or low population density. Most marine 

populations are probably metapopulations with subpopulations connected by larval 

transport (Lipcius et al. 1997, 2001, Crowder et al. 2000). Allee effects relating to 

density (such as encountering conspecifics for reproduction) can still exert an effect on 

large populations or on metapopulations if population density has declined to low levels. 

Allee effects dependent on population size are also possible in large populations and 

metapopulations, if they depend on the size of the local sub-population rather than on the 

metapopulation as a whole (e.g. predator dilution effects). Local population size and 

density may interact, as for fertilisation success in broadcast spawning sea urchins, where 

an effect of density is exacerbated by small population size (Levitan and Young 1995). 

Allee effects on subpopulation growth rate can also cause metapopulation-level “Allee 

effects” on a larger spatial scale, with a critical number of sub-populations below which 

the metapopulation will go extinct (Courchamp et al. 2000a). Hence the postulated large 

size and metapopulation structure of marine populations is not necessarily a protection 

against Allee effects.

Allee effects and human impacts on marine systems

Populations that are naturally susceptible to Allee effects are under selective pressure to 

evolve mechanisms to avoid them (e.g. large eggs, long-lived sperm, and aggregation or 

spawning synchrony in the case of broadcast spawners; Yund 2000). The simplest way of 

avoiding Allee effects is to maintain a large or dense, and stable population -  if the 

population is never small or at low density, Allee effects never become relevant. Allee 

effects could still be “latent” in the population, should population size or density be
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reduced -  there is a component Allee effect (a mechanism for an Allee effect) but the 

population is not small or sparse enough for the mechanism to create a demographic 

Allee effect.

Top-down predation by humans has become a dominant force in almost every marine 

ecosystem (Dayton et al. 1998, Pauly et al. 1998, Jackson et al. 2001), even in remote 

locations and at what is normally considered low levels of fishing intensity (biomass at 

95% of unfished levels; Jennings and Polunin 1996). Numerous species have been fished 

to greatly reduced population levels; in 1994, the FAO considered 25% of the world’s 

exploited marine resources to be “overexploited”, “depleted” or “recovering”, with 

another 44% “heavily or fully exploited” (Garcia and Newton 1997), and the assessment 

of the situation has deteriorated since then (Watson and Pauly 2001, Myers and Worm 

2003). Hence, population dynamics at low population size or density have recently 

become important for marine species in a way that it has not been in “natural” systems 

through their evolutionary history.

Some marine species have also been severely reduced through disease outbreaks. The 

causes are frequently anthropogenic, either directly by introduction of diseases into new 

areas (e.g. the oyster disease agents Bonamia ostreae and Haplosporidium nelsonr, Ford 

and Tripp 1996), or indirectly through land use and desertification (e.g. mass mortalities 

of Acropora corals and the Caribbean long-spined sea urchin Diadema antillarum] Shinn 

et al. 2000, although this idea is controversial).
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It is important to know how exploitation, or other anthropogenic factors that increase 

mortality, interact with latent or component Allee effects. Exploited or perturbed 

populations are the logical place to look for empirical evidence of demographic Allee 

effects in marine systems. I develop a model to examine the interaction between Allee 

effects, exploitation and critical thresholds quantitatively. I then examine the published 

evidence for Allee effects in marine populations.

MODEL DESCRIPTION

I used a matrix population model (Caswell 2001) with density-dependent reproduction to 

examine the interaction between Allee effects, critical thresholds and exploitation. The 

core of the model is a transition matrix that defines transition probabilities within and 

between each stage of the life history, as determined by rates of survival, maturation and 

reproduction. A vector representing the population size at time t is multiplied by the 

transition matrix (Table 1) to obtain the projected population at time t+1, and so on for 

the desired number of iterations.

This model has two stages (juvenile and adult). Individuals move from juvenile to adult 

at a rate determined by the time to maturity (x). Adults reproduce at a per capita rate a  -  

in this case this value incorporates the production of embryos and survival up to the 

juvenile stage. Individuals in each stage have a natural mortality rate Mj (juveniles) and 

Ma (adults), resulting in survival probabilities e'Mj and e'Ma. This definition of mortality is 

usual in fisheries science, and has the advantage that different sources of mortality are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9

additive. In addition to natural mortality, adults suffer a fishing mortality rate F, resulting 

in an overall adult survival probability of e'(Ma+F).

I added density dependence to the model in reproduction only, for simplicity. In Chapter 

2 1 show that density-dependent reproduction and juvenile mortality have similar 

qualitative population consequences. Mortality from exploitation may be negatively 

density-dependent (if fishers aggregate in high density areas) or positively density- 

dependent or density-independent (if fishers are not completely free to choose a fishing 

area). Here I assume it is density-independent. The model is appropriate for iteroparous 

species without a fixed life span; but other life histories can be accommodated by 

changing the parameters (Table 1; see Chapter 2).

I added density dependence in reproduction as follows:

Per capita reproductive output = a  / (1 + piVf8) - Equation 1

where Nt = adult density at time t, a  = maximum reproductive output and P sets the slopes 

and intersection point of the curves (Table 2).

When 8=1, Equation 1 collapses to a / (1 + $Nt), which results in negative density 

dependence. Increasing 8 any amount above 1 adds positive density dependence at low 

density (a component Allee effect in reproduction). Larger values of 5 intensify the Allee 

effect by shifting the peak reproductive output towards higher densities, while not 

affecting reproductive output at densities above the peak (Fig. 1). I varied the value of 8
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between 1 (no Allee effect) and 5 (a strong Allee effect) (Myers et al. 1995; Stoner and 

Ray-Culp 2000).

Parameter values were set such that the model represented a generalised iteroparous 

“marine invertebrate” and equilibrated at reasonable population values: adult 

reproductive output per time-step (embryo production plus larval survival) a  = 1000, 

adult mortality per time-step Ma= 0.5 resulting in adult survival probability of 0.61 per 

time-step, juvenile mortality per time-step Mj = 2, resulting in juvenile survival 

probability of 0.14 per time-step, time to maturity x = 3 time-steps, scaling parameter P = 

45. P was set empirically; biologically, its role is to ensure that the curves look similar at 

high density, such that the Allee effect only operates at low density. The model was run 

for 200 time steps, by which time it had reached equilibrium.

With the model I examined the effects of fishing mortality (F) and initial density for 

different levels of Allee effect (5) upon equilibrium population size and critical 

thresholds. I defined the critical threshold in three ways; i) a critical Allee effect threshold 

(critical 5 value), above which a population of given density and mortality rate goes 

extinct, ii) a critical mortality rate, above which a population of given density and Allee 

effect strength goes extinct, and iii) a critical density threshold, below which a population 

with a given Allee effect strength and mortality go extinct.

MODEL RESULTS

Equilibrium population size for an unexploited population is affected very little by the 

strength of Allee effect, while exploitation without an Allee effect causes an approximate
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exponential decline in equilibrium population size. The most dramatic effect of 

exploitation on a population with Allee effects is that there is a critical threshold value of 

fishing mortality, above which the population crashes abruptly to extinction. Such 

thresholds have been shown in many models incorporating Allee effects (Gerritsen 1980, 

Dennis 1989, Quinn et al. 1993, Courchamp et al. 1999, Boukal and Berec 2002). When I 

varied the strength of the Allee effect, fishing mortality and the Allee effect interacted, 

such that populations with stronger Allee effects became extinct under lower levels of 

fishing mortality, or conversely that as fishing mortality increased, weaker Allee effects 

drove populations extinct (Fig. 2). Additional fishing mortality caused an exponential 

decline in the critical Allee effect (the Allee effect which drives a population of given 

size extinct; Fig. 3). It also caused an exponential increase in critical density thresholds 

(Fig. 4). The modelling results demonstrate that increased fishing mortality (or any other 

anthropogenic source of mortality) can activate latent demographic Allee effects by i) 

reducing population size or density to the Allee threshold and ii) increasing the critical 

density threshold such that a given component Allee effect has more severe demographic 

consequences.

EMPIRICAL EVIDENCE

In general, there have been two approaches to the empirical study of Allee effects in 

marine and terrestrial systems: i) experimental or observational studies on component 

Allee effects, with the link to population dynamics sometimes made through modelling; 

and ii) Allee model fitting to empirical data such as reproductive success or population 

time series where there is large variation in population size. Studies of component Allee
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effects, or possible mechanisms for Allee effects, can show where there are latent Allee 

effects in a population. Studies of population time series, however, are looking for 

demographic Allee effects.

In marine systems, studies of component Allee effects have focused mainly on 

reproductive success in invertebrates, particularly broadcast spawners. In contrast, studies 

of demographic Allee effects have focused on searching for evidence of Allee effects in 

fisheries stock-recruitment data as a possible explanation for the collapse and lack of 

recovery in exploited fish populations.

Broadcast spawners

Many marine taxa possess a clear-cut mechanism for component Allee effects in their 

reproductive system: they are sessile or semi-sessile broadcast spawners. Fertilisation 

success of eggs depends on the concentration of sperm in the water column. The 

proportion of eggs fertilised declines exponentially with the distance of the female 

downstream from the nearest male (Fig. 5). At nearest-neighbour distances of less than a 

metre, models predict that less than 0.1% of eggs will be fertilised under high turbulence 

(Denny and Shibata 1989), although fertilisation efficiency varies depending on the taxon 

and the environment (Pennington 1985, Babcock et al. 1994).

Numerous marine invertebrate taxa are broadcast spawners (Giese and Kanatani 1987). 

Most species such as corals, anemones, ascidians and sponges, where the adults are 

usually sessile, have no other option for sexual reproduction, although they usually also 

reproduce clonally and may be self-fertile (Carlon 1999). Bivalves, echinoderms and
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archaeogastropods are also broadcast spawners, despite many being somewhat mobile as 

adults.

In sea urchins, both density and population size have an effect on fertilisation efficiency, 

with density being critical in small populations but less so in large ones. There is 

evidence of a trade off between fertilisation efficiency and competition in several species, 

implying that there is a positive relationship between density and fertilisation efficiency 

across the full range of natural densities to the carrying capacity (Levitan et al. 1992, 

Levitan and Young 1995). Research has therefore emphasised the importance of Allee 

effects in these species.

The relationship between population size, density and fertilisation efficiency do not 

guarantee a demographic Allee effect or even a component Allee effect in reproductive 

output. In urchins, competition often results in a smaller mean body size rather than 

higher mortality, since most echinoderms can shrink as well as grow if resources are 

scarce (Levitan 1991). In Diadema antillarum, the increase in gamete production by 

larger individuals at low density seems to offset the reduction in fertilisation efficiency, 

such that individual reproductive output remains broadly comparable across a wide range 

of densities (Levitan 1991). In addition, many taxa have evolved ecological and 

physiological mechanisms to avoid sperm limitation, so in natural (non-experimental) 

systems, it may be more of an evolutionary than an ecological phenomenon (Yund 2000). 

Moreover, various invertebrates show negatively density-dependent predation mortality 

at low population densities (Seitz et al. 2001), which could offset component Allee 

effects in reproduction.
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The populations of many broadcast spawners have suffered dramatic reductions in 

density through exploitation. There has been heavy exploitation of sea urchins (Pfister 

and Bradbury 1996), sea cucumbers (Uthicke and Benzie 2001), Eastern oysters (Hargis 

1999), scallops (Murawski et al. 2000) and abalone (Guzman del Proo 1992, Tegner et al. 

1992, Parker et al. 1992, Farlinger and Campbell 1992). An anthropogenic origin for the 

major disease outbreaks in corals and Diadema antillarum is controversial but they seem 

to be unprecedented in recent or even geological history (Lessios et al. 1984, Aronson 

and Precht 2001). Is there evidence that a component Allee effect from broadcast 

spawning has had demographic consequences in these exploited populations?

There are several examples where populations subjected to exploitation have collapsed 

rapidly (e.g. abalone: Guzman del Proo 1992, Tegner et al. 1992, Parker et al. 1992, 

Farlinger and Campbell 1992; urchins: Lesser and Walker 1998, Kalvass 2000). Others 

have recovered only slowly from low abundance (e.g. Karlson and Levitan 1990). There 

is also evidence from the geological record that, within taxa which have a diverse variety 

of life histories (e.g. corals, gastropods), species with brooding larvae survived better 

through times of stress, implying that they can recover more easily from episodes of 

reduced density or population size (Wray 1995). Aronson and Precht (2001) suggested 

that Allee effects are implicated in the failure of the corals Acropora palmata and A. 

cervicomis to recover from the disease and bleaching outbreaks of the 1980s and 1990s. 

Both species broadcast eggs and sperm, with fertilisation in the water column and 

planktotrophic larvae. They have been largely replaced on Caribbean reefs for the first 

time in recent geological history by Agaricia and Porites, which are by contrast brooding
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species where eggs are retained by the females during and after fertilisation, hence 

allowing them to circumvent problems of sperm limitation.

Aside from the effects of decreased population size or density and increased mortality, 

evolved mechanisms for avoiding sperm limitation may break down at low density. In 

abalone, a decreasing proportion of reproductive adults participate in reproductive 

aggregations in heavily fished, low-density populations (Shepherd and Brown 1993). 

Abalone species have been serially depleted along northeastern Pacific coasts, 

demonstrating the rapidity with which each population collapsed after the fishery focused 

on that species (Fig. 6).

Abalone may be unable to support heavy fishing mortality at any density -  i.e. the decline 

in population growth rate may not be density-dependent, as would be required for a 

demographic Allee effect. To test this, I examined landings of red and pink abalone, 

which have the longest time series. If I assume that landings are proportional to 

population size, the ratio of landings at time t+l to landings at time t is an estimate of the 

average population growth rate over the year. The relationship between estimated 

population growth rate and landings is significantly positive (Figs. 7 and 8), suggesting 

that population growth rate increases with population size. This is suggestive of a 

demographic Allee effect, though it could also be a function of changes in effort.

Reproduction in non-broadcast spawners

There are few experimental studies on Allee effects in marine systems not related to 

fertilisation efficiency in broadcast spawners. In general, non-broadcast spawners have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

been considered too mobile and too behaviourally sophisticated to suffer from 

reproductive Allee effects, however, there are some exceptions. In queen conch 

(Strombus gigas), a heavily exploited Caribbean gastropod, there is a positive 

relationship between density and per capita reproductive activity at low density (Stoner 

and Ray-Culp 2000). This has been interpreted as an Allee effect related to the decreasing 

probability of encountering a mate at low density.

An observational study cannot demonstrate a causal relationship between per capita 

reproductive output and density. There are alternative explanations, such as migration 

into and away from reproductive aggregations, ontogenetic effects or phenotypic 

plasticity. This is not to say that Allee effects are not important, but rather, that the 

evidence for Allee effects in queen conch is indirect (including vulnerability to fishing 

pressure and failure to recover when fishing is stopped, e.g. in Bermuda and Florida;

Berg et al. 1992a,b, Glazer 2001; see Chapter 3). Such studies illustrate the difficulty of 

demonstrating Allee effects in natural populations convincingly.

Several studies have shown that sperm limitation can be an issue at low density, even in 

mobile animals, particularly when the mechanism for density reduction is fishing, since 

this also reduces the proportion of older and larger males (Fig. 9). Potential for sperm 

limitation has been demonstrated in the New Zealand rock lobster {Jasus edwardsii), the 

Caribbean spiny lobster (Panulirus argus), and the blue crab (Callinectes sapidus), all of 

which are fished heavily and where large males are targeted. Smaller males and fewer 

matings result in smaller female clutch sizes and a higher proportion of unfertilised
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females (MacDiarmid and Butler 1999, Kendall et al. 2001, Jivoff, P., Rutgers University 

Marine Station, pers. comm.).

Sperm limitation in crabs and lobsters may or may not reduce female fitness at low 

density (i.e. a component Allee effect). These species possess other life-history 

components that mitigate the impact of component Allee effects at the population level. 

Rock and spiny lobster have an exceptionally long larval duration (several months; 

Lipcius and Eggleston 2000), which decouples local recruitment from local reproductive 

success (Lipcius et al. 1997, 2001). The blue crab also has larval mixing on a broad scale 

and is cannibalistic, such that low adult density may improve juvenile survival (Moksnes 

et al. 1997) and female reproductive output (Lipcius and Stockhausen 2002).

Nonetheless, if fishing pressure is substantial across the entire metapopulation, which is 

likely in these species, demographic Allee effects may occur.

Survival-related Allee effects

Positive density dependence in individual survival also constitutes a component Allee 

effect. For example, survival due to predation will be positively density-dependent where 

predators have a Type II functional response (Holling 1959) with a limited aggregative or 

numerical response (Fig. 10). This is an interesting mechanism in that it is not linked to 

specific life-history traits such as broadcast spawning (see Chapter 4).

Positive density dependence in survival during some life stage has been demonstrated 

experimentally in a number of marine species, including queen conch (Marshall 1992, 

Ray and Stoner 1994), New Zealand rock lobster (Butler et al. 1999), Caribbean spiny
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lobster (Mintz et al. 1994), red sea urchins (Strongylocentrotus franciscanus; Quinn et al. 

1993), Pacific salmonids (Wood 1987), soft-shell clams (Mya arenaria; Lipcius and 

Hines 1986), Eastern oysters (Crassostrea virginica; Eggleston 1990), marine insects 

(Foster and Treheme 1981) and zooplankton (Folt 1987); see Seitz et al. (2001) for a 

review for marine bivalves. The survival of one life history stage may be positively 

related to the density of another; for example, newly settled red sea urchins, Virginia 

oysters (Crassostrea virginica) and mussels (Mytilus edulis) survive better under adult 

canopies (Rowley 1989, Quinn et al. 1993, R. Mann, Virginia Institute of Marine 

Science, pers. comm.), and adult cod feed on the competitors and predators of juvenile 

cod (Walters and Kitchell 2001). With the exception of red sea urchins (Botsford et al. 

1993, Quinn et al. 1993, Pfister and Bradbury 1996), these results have not yet been 

linked to demographic Allee effects.

Human “predation” can be a mechanism for creating component Allee effects in survival. 

An exploitation Allee effect occurs when the per capita exploitation rate increases as 

population size or density decreases. There are, for example, situations where decreasing 

population size does not result in decreasing population density (e.g. schooling fish, 

spawning aggregations), and in this case a reduction in population size will not make 

individuals any harder to catch. Hence if effort is constant, total catch will remain more 

or less constant, and the proportion of individuals caught (the per capita exploitation rate) 

will increase as population size decreases, creating an Allee effect (= depensatory fishing 

mortality). Another possibility is for effort to increase as catch per unit effort declines (as 

is usual, given economic investments in fisheries), so that catches decrease at a lower rate
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than population size, again resulting in an increase in the per capita exploitation rate. 

Note, however, that these Allee effects will only operate under exploitation; elimination 

of exploitation also removes the Allee effect. Therefore, exploitation Allee effects will 

affect the rate at which a population declines under heavy exploitation, but will not affect 

the rate at which populations recover if exploitation stops, unlike Allee effects intrinsic to 

species life history or ecology.

Demographic Allee effects

For fish, as for mobile invertebrates, Allee effects were not considered likely to be 

important, until the failure of several populations to recover from overexploitation after 

substantial reductions in fishing effort led to a debate about the possibility of recruitment 

failure and low or negative per capita population growth rates at low density 

(demographic Allee effects). This work has focused on fitting models with and without 

Allee effects to population size and recruitment data, which is possible only for 

intensively studied (economically important) species for which such data sets exist. In a 

database of population size and recruitment for 128 fish stocks, 26 allowed an analysis 

with high statistical power (>0.95) and there was significant evidence of Allee effects in 

only three (Myers et a l  1995). Myers concluded that Allee effects were not likely to be 

of widespread importance, and collapses and recovery failures should be attributed to 

other causes.

The large variance in stock-recruitment data means that Myers’s approach may have 

limited power to detect Allee effects, and the failure to reject a null hypothesis of no
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Allee effects might not be an indicator that they are not present (Shelton and Healey 

1999, Liermann and Hilbom 1997). In addition, there is often uncertainty about what 

constitutes a “stock”, which should be a population or sub-population that is more or less 

reproductively isolated. If the stock considered by managers actually consists of several 

sub-stocks, the impact of Allee effects and extinctions at the sub-stock level may be 

masked until the metapopulation reaches a critical point (Frank and Brickman 2000, 

Courchamp et al. 2000a). Conversely, if the “stock” is only part of a much larger open 

population, recruitment will be decoupled from local individual fitness, even if 

component Allee effects due to density are important (i.e. component Allee effects will 

not lead to demographic Allee effects until a critical point is reached across the whole 

population).

There is indirect evidence for Allee effects in some exploited fish species, particularly 

gadids (the cod family). An analysis of recovery from exploitation in 90 fish populations 

showed that 15 years after major declines in stock size, 40% of populations (mainly 

gadids) showed no recovery, with 48% showing only marginal recovery (Hutchings 

2000).

CONCLUSIONS

There is no a priori reason for Allee effects to be intrinsically unlikely in marine 

populations, despite their (possibly) open, metapopulation structure. Furthermore, 

exploitation and disease have made many marine populations exceptionally vulnerable to 

Allee effects, which can interact catastrophically with increased mortality. Our analysis
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of the empirical data on Allee effects in diverse marine species revealed numerous 

suggestive observations but very little firm evidence. Does this mean that Allee effects 

can be dismissed as unusual or marginal in marine systems?

The failure to demonstrate Allee effects convincingly in marine populations might in fact 

be methodological. There is a lack of clear understanding on the part of many ecologists 

as to the precise definition of Allee effects. Allee effects require a causal relationship 

between density or population size and either a component of individual fitness 

(component Allee effects, sensu Stephens et al. 1999) or the per capita population 

growth rate at low density (demographic Allee effects, sensu Stephens et al. 1999). 

Correlations between density and fitness can have various explanations, including mutual 

dependence on a third variable such as site or age. Showing a causal relationship between 

two variables is an age-old problem for ecologists, to which I do not have a solution, 

except to say that clear demonstrations of component Allee effects are likely to require 

large-scale manipulative experiments, and will therefore be limited to a few taxa.

Given constraints on assessing Allee effects in marine populations, I feel that a promising 

tactic is to model potentially vulnerable populations with different strengths of Allee 

effect (e.g. Fig. 2; see Chapter 2). This heuristic approach gives a prediction of the likely 

consequences of different scenarios if Allee effects are important. This is particularly 

useful for exploited populations in the context of precautionary management. If Allee 

effects are strong, spatial considerations become critical. Traditional fisheries 

management, with control of inputs (effort) or outputs (landings) may not be very 

successful because it allows fishers to target dense areas and tends to reduce a population
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to uniform low density. Spatial management, such as permanent no-take reserves, 

maintains areas of high population density, and should be considered seriously in the 

management and conservation of species where Allee effects may be a risk.

Where the modelling approach has been applied (Botsford et a l 1993, Quinn et al. 1993, 

Pfister and Bradbury 1996) it has demonstrated that Allee effects have major 

consequences for population dynamics, sustainable exploitation and management. The 

potential population consequences of mechanisms for component Allee effects remain 

unexplored in most marine species. I contend that this limits both our ecological 

understanding and the probable success of conservation for marine species.
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TABLES

Table 1
Transition matrix for the density-independent version of the model; Mj = mortality of 
juvenile stage, Ma = mortality of adult stage, t  = time to maturity, a  = reproductive output 
of adults.

e m  . (1 -  1 /t) a

e'Mj. 1/t
g-Ma

Table 2
Transition matrix for density-dependent Allee effect model; S=Allee effect parameter, a  = 
maximum reproductive output, P = scaling factor, Mj = mortality of juvenile stage, Ma = 
mortality of adult stage, t = time to maturity.

e Mi. (1 -  1 /t) a • Na8'1 / (1 + PNas)

<fMj. 1/T e'Md
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FIGURES
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The effect of the exponent 8 in the density-dependent equation for reproductive output.
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Fig. 2

Fishing mortality and equilibrium population size with varying strength of Allee effect. 
No Allee effect: 8=1, moderate Allee effect: 8=3, strong Allee effect: 8=5.
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Fig. 3

Relationship between fishing mortality and the strength of Allee effect at which the 
population goes extinct (critical 8). Mortality causes an exponential decline in the 
strength of Allee effect that causes extinction.
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Fig. 4

Relationship between fishing mortality and critical density thresholds for a given strength 
of Allee effect (in this case, 8=3). Increasing fishing mortality causes an exponential-type 
increase in the critical density below which the population goes extinct.
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Fig. 5

Fertilisation success in echinoderms, showing a general trend of exponential decline in 
the proportion of eggs fertilised with distance downstream of the nearest male. Data from 
Babcock et al. 1994 (crown of thorns starfish, Acanthaster planci)', Levitan et al. 1992 
(red sea urchin, Strongylocentrotus franciscanus)', Pennington 1985 (green sea urchin, S. 
droebachiensis)', Levitan 1991 (Caribbean long-spined sea urchin, Diadema antillarum).
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Fig. 6

Population size of abalone species (red abalone Haliotis rufescens, pink abalone H. 
corrugata, green abalone H. fulgens and black abalone H. cracherodii) in California. 
Note the pattern of serial collapse as the fisheries moves on to each species in turn. Red 
are the preferred species for the fishery, followed by pink, green and black. Data from 
Tegner et al. 1992, Parker et al. 1992.
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Fig. 7

Mean annual population growth rate of red abalone, on the assumption that landings are 
proportional to the population size (ratio of landings at time tt-1 to landings at time t) vs. 
landings in metric tonnes. A positive slope indicates the possibility of an Allee effect, 
with an Allee threshold (population growth rate = 1) at the population which provides 
landings of -1,200 tonnes.
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As Fig. 7 for pink abalone. Again, a positive slope indicates a potential Allee effect with 
a threshold at landings of -1,200 tonnes.
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Fig. 9

Age structure of populations with different probabilities of survival ip) from one stage to 
the next. Data from a simple density-independent matrix population model. High p  (0.7) 
corresponds to low mortality (i.e. the unfished scenario), while low p  (0.3) corresponds to 
high mortality (i.e. the fished scenario). Note that even though all stages have an equal 
survival probability in each case, the lower survival probability (higher mortality) 
scenario results in a depletion of older stages relative to younger ones. Hence a fishery 
that targets all individuals in the population equally still alters the age structure by 
reducing the proportion of older individuals.
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Fig. 10

Prey survival probability due to predation as a function of prey density, where predators 
have a Type II functional response and constant numbers.
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CHAPTER 2

POPULATION CONSEQUENCES OF ALLEE EFFECTS IN 

REPRODUCTION AND SURVIVAL IN RELATION TO LIFE HISTORY

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

ABSTRACT

Allee effects (reduced fitness at low density) can occur in different components of the life 

history, however, there is at present no theoretical framework for comparing different 

types of Allee effect, or for considering the consequences of several Allee effects 

simultaneously. I use a simple density-dependent model to i) compare the population 

consequences of Allee effects in juvenile survival and reproduction, ii) examine the effect 

of adding two kinds of Allee effect together and iii) examine the impact of vital rates and 

negative density dependence on Allee dynamics. I measured the severity of the 

population consequences of an Allee effect by examining critical thresholds at which 

populations went extinct. I parameterised the model in two ways; “r-selected” (high 

mortality and reproduction, short time to maturity) and “Z-selected” (low mortality and 

reproduction, long time to maturity). I found that reproductive Allee effects usually have 

higher density thresholds than juvenile survival Allee effects, and thus in these terms are 

usually more severe. This is not surprising given that reproductive Allee effects act on the 

adult stage, which is nearly always less numerous than the juvenile stage (except for 

some clonal organisms). In terms of critical Allee effect thresholds (the strength of Allee 

effect that drives a population with given initial conditions extinct), I found more 

complex results. For the model with negative density dependence, longer time to maturity 

increased the severity of juvenile survival Allee effects relative to reproductive Allee 

effects. In this model, there was a critical strength of Allee effect above which all 

populations would go extinct regardless of initial density. For the model with no negative 

density dependence, reproductive Allee effects were more severe for the r-selected
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parameterisation, while juvenile survival Allee effects were more severe for the K- 

selected parameterisation, even when they both had the same time to maturity. In the 

density-dependent model, the ^"-selected parameterisation took much longer to 

equilibrate than the r-selected parameterisation, and I suggest that the population 

consequences of Allee effects will be difficult to detect in these populations because they 

are unlikely to be at equilibrium, although they will still be present. The population 

consequences of adding two types of Allee effect together are difficult to predict, and 

depend on parameter values. Adding a second Allee effect can change extinction 

thresholds drastically, or can have relatively little effect. I found that adding negative 

density dependence in the non-Allee stage of the model nearly always had a large effect 

on extinction thresholds. Density-independent parameters have an exponential-type 

relationship with critical density thresholds, so that human-induced changes in mortality, 

growth rates or fecundity could potentially have large impacts on populations with Allee 

effects. Finally, I found that with the r-selected parameterisation, both types of Allee 

effect can create stable, large-amplitude oscillations with a broader range of population 

parameters than are reported for this kind of dynamics with Allee effects elsewhere in the 

literature.
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INTRODUCTION

In standard equilibrium population models such as the logistic model, individual fitness is 

inversely related to population density, resulting in negative density dependence (Gotelli 

1998). There are, in contrast, organisms that benefit from the presence of conspecifics at 

low density (see review by Fowler and Baker 1991). In these instances, fitness declines as 

population density decreases at low density (positive density dependence) such that per 

capita population growth rate may become negative, causing a threshold below which the 

population will collapse to extinction (Courchamp et al. 1999). Populations with positive 

density dependence at low density are said to have Allee effects (Allee 1931). Allee 

effects do not necessarily cause extinction since per capita population growth rate can be 

depressed but still remain positive.

Allee effects can occur in various components of the life history (Stephens et al. 1999). 

Reproductive Allee effects are a commonly cited example, with mechanisms including 

mate finding (McCarthy 1997, Kuussaari et al. 1998, Shepherd and Brown 1993), 

fertilisation efficiency (Levitan et al. 1992, Baker and Tyler 2001, Widen 1993, Groom 

1998, Hackney and McGraw 2001) or threshold group size for cooperative breeding 

(Courchamp et al. 2000). Allee effects can also occur in survival. They can be driven by 

generalist predators (often called the “dilution effect”; Marshall 1992, Gilchrist 1999, 

Seitz et al. 2001, Cuthbert 2002; see Chapter 4), as well as factors such as group defence 

against predation (wood pigeons - Kenward 1978), exposure protection (monarch 

butterflies - Anderson and Brower 1996), cooperative hunting (African wild dog -
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Courchamp and Macdonald 2001), or if adults enhance juvenile survival by providing 

physical protection (oyster reefs; red sea urchin -  Tegner and Dayton 1977) or preying on 

their predators (Atlantic cod - Walters and Kitchell 2001).

By extension, there are examples of animals that may have Allee effects in both 

reproduction and survival. Armoured bivalves tend to suffer heaviest predation at low 

density (Seitz et al. 2001), and are also broadcast spawners. Adult red sea urchins 

(Strongylocentrotus franciscanus), also broadcast spawners, provide protection against 

predation for juveniles under their spine canopy. Very few studies have considered 

examples where species may have more than one Allee effect (but see Quinn et al.1993).

There are a variety of general (non-species specific) models examining Allee effects in 

diverse ways (see review of older literature in Dennis 1989). This includes their role in 

extinction and conservation of rare species and the evolution of reproductive strategies 

(Gerritsen 1980, Wells et al. 1998), their interaction with demographic and 

environmental stochasticity (Dennis 1989, Mpller and Legendre 2001), their interaction 

with dispersal (Etienne et al. 2002) and metapopulation dynamics (Amarasekare 1998, 

Courchamp et al. 2000), their potential to create oscillatory and chaotic population 

dynamics (Cushing 1994, Schreiber in press) and their potential to determine the spatial 

distribution of species (Hopf and Hopf 1985).

No general modelling study has considered i) whether Allee effects in different 

components of the life history have different effects on population dynamics and 

extinction thresholds (e.g. is one more “severe” than another?) or ii) the population
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effects of different types of Allee effect in combination. In this study, I construct and 

analyse simple, heuristic models to examine the population consequences of Allee effects 

in reproduction and juvenile survival, both separately and in combination. I use the 

models to address the following questions:

• Do Allee effects in different components of the life history have qualitatively and 

quantitatively different impacts on population dynamics?

• Are the effects of several types of Allee effects additive and symmetrical?

• How are the outcomes of different types of Allee effect affected by life history and 

negative density dependence?

In this paper, I use the terms “strength” and “severity” of Allee effects to refer to 

different concepts. In the models, I can set parameter values which determine the 

“strength” of an Allee effect in terms of the amount of positive density dependence in the 

model. I measure the “severity” of an Allee effect in terms of the population 

consequences, i.e. the value of critical extinction thresholds. For example, if two model 

runs had the same strength of Allee effect (the same parameter value), but went extinct at 

different densities, the model with the higher critical density would be considered to have 

more severe Allee effects, since a given strength of Allee effect had more severe 

consequences.
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METHODS 

Model description

I used a two-stage Leslie matrix projection model (Caswell 2001) to compare population 

trajectories with and without Allee effects in reproduction and juvenile survival. I 

concentrate on juvenile survival for several reasons: i) juveniles tend to have higher 

mortality than adults, ii) juvenile survival affects only one life history stage, as does 

reproduction, and thus provides a contrast of Allee effects in Stage I vs. Stage II and iii) 

focusing on survival in only one model stage simplified analysis and interpretation.

The model is heuristic, and is not intended to predict the dynamics of any particular 

species or population. I parameterised the model in two different ways, to represent two 

sets of contrasting life histories, “r-selected” and “AT-selected” (Table 1).

By adapting the model I was able to examine juvenile survival probability and 

reproductive output in four ways: i) density independent, ii) with negative density 

dependence only (Model 1), iii) with negative density dependence plus Allee effects 

(Model 1) and iv) with Allee effects only (Model 2).

In the basic (density-independent) model, individuals move from Stage I (“juvenile”) to 

Stage II (“adult”) at a rate determined by the time to maturity (t). Adults reproduce at a 

rate a  Individuals in each stage have a density-independent mortality rate (Mj and Ma, 

resulting in survival probabilities e'Mi and e'Ma). This definition of mortality is usual in 

fisheries science, and has the advantage that different sources of mortality are additive.
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Adults die at a rate determined by Ma, rather than after a predetermined time period. The 

specifics of the life history can be changed by setting the four basic population 

parameters; a, Mj, Ma and x. a has units of individuals, x has units of time, while Mj and 

Ma are dimensionless. I did not draw any conclusions from the density-independent 

model, but it is included here for clarity, as the basis of the Allee effect models (Table 2).

Models 1 and 2 incorporate Allee effects in juvenile survival probability (<?‘Mj) and 

reproductive output (a). Density dependence in juvenile survival probability depends on 

the density of juveniles only, i.e. the model assumes that juvenile and adult stages are 

either spatially segregated or have different predators. Density dependence in 

reproductive output depends on the density of adults only.

In Model 1, the model adds negative density dependence at high density as well as Allee 

effects at low density, so that the model reaches some equilibrium value. I used the 

following density-dependent equation (Myers et al. 1995):

per capita survival probability or reproductive output = K . / (1 + (3/Vlt5)

- Equation 1

where K = density-independent rate (e'Mj for juvenile survival, a for reproduction) and Nu 

= density of stage i at time f, for description of |3 and 8 see below.

When 8=1, the right hand side of Equation 1 collapses to K /  (1 + |3Nit), providing 

straightforward negative density dependence. Increasing the value of 8 even a fraction
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above one gives curves with similar negative density dependent behaviour at high density 

but positive density dependence at low density, which becomes increasingly strong as the 

value of 8 is increased. 5 can be considered an index of the strength of the Allee effect 

(Myers et al. 1995). I tested values Of 5 between 1 and ~6, since this seemed to be a 

realistic range when this method was used to obtain best fit values of 5 from field data for 

a marine invertebrate (Stoner and Ray-Culp 2000). p sets the slope of the curve relative 

to values of N  and 8. Biologically, p is used to ensure that the curves varied as little as 

possible from each other at high density, since Allee effects act only at low density. In 

this heuristic model P was set such that for 8 values between 1 and 6 the curves were 

similar at high density and the model equilibrated at reasonable population values (p=45) 

(Table 3, Fig. 1). I determined that equilibrium had been reached by plotting and 

inspecting the trajectory.

In Model 2 ,1 incorporated Allee effects without adding negative density dependence. In 

this model, the density-dependent equation was as follows:

per capita survival probability or per capita reproductive output = K . yNu / (1 + yNu)

- Equation 2

where K = density-independent rate (e'Mj for juvenile survival, a for reproduction) and Nu 

= density of stage i at time f, for description of y see below.

Equation 2 is a hyperbolic equation that reaches an asymptote at the density-independent 

value of reproductive output or juvenile survival, and declines at low density. The rate of
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decline is set by the value of y, by assuming that at N = 1, the per capita survival 

probability or reproductive output is some proportion y of the density-independent rate 

(Fig. 2). Substituting into Equation 2:

y K = K  y / (1 + y), and hence y = y / (1 - y).

Thus y can be regarded as an index of the strength of the Allee effect, albeit not one that 

is directly comparable with 8 (since it must be greater than zero and less than one), y can 

be calculated from y  (Table 4). The advantage of these techniques for modelling Allee 

effects is that the strength of the Allee effect can be set by the values of 8 or y. This 

allows a more subtle analysis of Allee effect dynamics than a straightforward Allee vs. 

no-Allee comparison.

Model runs

The model was run in terms of population density rather than population size. I assumed 

a population area of 105 units, so density values are multiplied by 105 to get population 

size (i.e. population size and population density are interchangeable in the results). I 

started with a vector containing initial population density for juvenile and adult stages. 

This vector was multiplied iteratively by the appropriate transition matrix (Tables 3 and 

4) using Matlab version 6.1 (The MathWorks Inc.).

In Model 1 the population trajectory would eventually equilibrate, with the rate of 

equilibration depending strongly on parameter values. For each set of parameter values, I 

inspected the population trajectory and chose an appropriate number (feq) of time-steps,
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such that the model was at or near equilibrium by t = teq. The population vector at req was 

assumed to be an equilibrium level (with some exceptions, see below). The model could 

be run across a range of values for a particular parameter or initial population vector and 

the population vector at teq plotted against parameter values to examine the effect of 

parameters on equilibrium population size.

In Model 2, since there is no negative density dependence, the model does not 

equilibrate. This made the model more difficult to deal with, since the population size 

could exceed the capacity of Matlab to deal with large numbers in 50 time-steps or fewer. 

For this model I set teq at -30 time-steps, and visually inspected population trajectories to 

make sure that the model dynamics had settled down to a constant population growth 

rate. Instead of equilibrium population, I used “equilibrium” population growth rate (req) 

as a dependent variable. This was calculated as follows:

feq = (InA/feq — lnlVfeq-s) / 5

where Nt is the density of either stage at time t (since both stages grow at the same rate).

Critical values (unstable equilibria) correspond to points where r = 0, since if r < 0 the 

population declines to extinction, while if r > 0 the population grows without bound.

The short trajectories in Model 2 resulted in some limitations; specifically, models with 

the K  parameterisation sometimes took so long to equilibrate that analysis using Model 2 

was not possible. I used Model 2 to test the generalities of conclusions drawn using
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Model 1, and particularly to tease out the interacting impacts of Allee effects and 

negative density dependence.

Analysis of equilibria

I looked at model equilibria more directly, by calculating equilibrium equations. For each 

model, the equation for the equilibrium in terms of 5 and the equilibrium population 

density A* for the density-dependent stage (juveniles for the juvenile survival Allee 

effect, adults for the reproductive Allee effect) can be calculated by setting At+1 equal to 

At, or alternatively by calculating the determinant of the matrix (A -  XI) where A is the 

transition matrix (Tables 3 and 4), I is a 2 x 2 identity matrix and k=l.

For Model 1, the population is at equilibrium for either type of Allee effect separately 

when the following equation is satisfied:

PA*8 -  K  A*8'1 + 1 = 0

where A* = equilibrium density of density-dependent stage and K  = amalgam of density- 

independent parameters.

For reproductive Allee effect, Kiep = (a e'Mi 1/x) / [(1 -  e'Ma)(l -  e'Mj (1 -  1/t))]

For juvenile survival Allee effect, AjUV = e'M̂ (1 -  1/t) (1 -  e"Ma) + (a e'Mj 1/t) / (1 -  <?‘Ma)

When t  (time to maturity) = 1, Kkv and Ajuv are identical, i.e. the equilibrium population 

size of the juvenile stage with juvenile survival Allee effects is equal to the equilibrium 

population size of the adult stage with reproductive Allee effects.
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For Model 2, the equilibrium equations are as follows:

Reproductive Allee effects: N* = K / y ( a - K )

where N* = equilibrium density of density dependent stage, K  = (1 -  e'Ma)(l -  e M\ l  -  

1/x)) / (e'Mj. 1/t)

Juvenile survival Allee effects: N* [(y e~M* / t )  (t  + a -  1) -  y] = 1 

For both types of Allee effect together, a solution is possible for Model 2:

Na* = (1 + yNj* -  e Ma -  yNj*e"Ma) / y (yNf e Ma + ayNj* + e'Ma - yNj* -1)

This solution is also true if Nj* and Na* are reversed above.

RESULTS 

Dynamics with one Allee effect only

Allee effects in reproduction and juvenile survival show very similar qualitative 

dynamics, characterised by threshold effects and abrupt population crashes. I use these 

threshold values as a measure of the severity of an Allee effect in terms of its population 

consequences. The thresholds can be displayed in several ways; i) as critical values of the 

Allee parameters (5, y) for a given set of initial conditions above (8) or below (y) which 

the population goes extinct; ii) as critical values of density for a given set of model 

parameters, below which the population goes extinct; iii) as critical values of some 

density-independent parameter (e.g. mortality), above which the population goes extinct.
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Critical Allee effect thresholds: In Model 1, below a critical value of Allee effect strength 

for reproductive Allee effects (8r) or juvenile survival Allee effects (8j), a linear increase 

in 5 causes a gradual (but accelerating) decline in the final population size, but above a 

critical value, the population crashes to extinction (Fig. 3). For a given set of parameter 

values, the critical 8 value is identical for reproductive Allee effects and juvenile survival 

Allee effects when r= l, but lower for juvenile survival Allee effects when x>l (Fig. 4). 

Thus increasing the time to maturity increases the severity of juvenile survival Allee 

effects relative to reproductive Allee effects, if severity is measured by the Allee effect 

threshold.

The equivalent phenomenon in Model 2 is an abrupt change in population growth rate 

from positive to negative as y decreases (the Allee effect gets stronger). In this case, 

reproductive and juvenile survival Allee effects are not equivalent, even when x=l. The 

relative importance of juvenile survival and reproductive Allee effects depends on the 

parameterisation. For the r parameterisation (low survival probability, high reproductive 

output, short time to maturity), reproductive Allee effects are more severe, since they 

cause population collapse at a collapse at a higher value of y, corresponding to weaker 

Allee effects. For the K  parameterisation (high survival, low reproductive output, long 

time to maturity), juvenile survival Allee effects are more severe. This is not simply a 

function of the value of x (as in Model 1) since reproductive Allee effects are still more 

severe in the r parameterisation when x=2 and juvenile survival Allee effects are still 

more severe in the K  parameterisation when x=l (Figs. 5 and 6).
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In Model 1, the critical value of 5r and 8j increases with the initial population size over a 

range of initial population size; however, for a given set of density independent 

population parameters, the critical 5 value reaches a maximum above which the 

population will always go extinct, regardless of the size of the initial population is (Fig. 

7). Model 2 also reaches a point at which there is extinction for all initial densities, but 

unlike Model 1, this point depends only on the value of density-independent parameters 

(the balance between reproduction and mortality), rather than the strength of the Allee 

effect.

Critical density thresholds: In Model 1, for any value of 8r or 8j below the maximum 

critical value, there is a threshold in initial density, such that populations that start off 

below that density go extinct, while those above that density reach some positive 

equilibrium. Density dependence in juvenile survival has a stronger proportional 

depressing effect on the equilibrium population size than density dependence in 

reproduction, since when the population is extant the equilibrium population size is lower 

in the juvenile survival model than the reproduction model. On the other hand, this means 

that critical thresholds are also lower, such that for a given value of 8, the critical density 

for a population with reproductive Allee effects is greater than the critical density for a 

population with juvenile survival Allee effects.

Model 2 also has critical density thresholds associated with particular values of y, with 

critical densities being higher for lower values of y (stronger Allee effects). For the r 

parameterisation, critical density thresholds are higher for reproductive Allee effects than 

for juvenile survival Allee effects, i.e. reproductive Allee effects are more severe. For the
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K  parameterisation, the converse is true; critical density thresholds are higher for juvenile 

survival Allee effects than reproductive Allee effects, so juvenile survival Allee effects 

are more severe.

In terms of critical density thresholds, reproductive Allee effects are more severe than 

juvenile survival Allee effects in Model 1 (i.e. when there is negative density 

dependence) regardless of parameter values. When there is no negative density 

dependence (Model 2), the relative severity of the different types of Allee effect, in terms 

of the critical density thresholds, depends on the life history (Figs. 7 -  9).

Other comments on qualitative dynamics: There is a significant difference in the 

dynamics of Model 1 with the r vs. K  parameterisation in that the K  parameterisation 

takes much longer to equilibrate (-2000 time-steps or more, vs. 5-100 for the r 

parameterisation).

For some combinations of parameter values and initial adult and juvenile density, the r 

parameterisation of Model 1 results in periodic dynamics, with stable, large amplitude 

oscillations rather than a straightforward equilibrium population size or extinction. The K 

parameterisation does not do this, due to its much longer response time. I discuss the 

cause of these periodic dynamics in the analysis of equilibria below.
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Effect of density-independent parameter values

I examined the relationship between different density-independent parameters (juvenile 

and adult mortality, maximum reproductive output and time to maturity) and critical 

thresholds.

For Model 1, both kinds of Allee effect have qualitatively similar responses to changes in 

juvenile mortality (Mj) and adult mortality (Ma). Critical thresholds of 5 decrease as 

mortality increases with the rate of decline tailing off as mortality increases further. The 

relationship looks qualitatively like an exponential decline, but I did not find any simple 

exponential or quadratic function that fits the model results well. For both kinds of Allee 

effect, juvenile mortality is more important than adult mortality in determining the 

critical value of 5 (Fig. 10).

As with critical values of 8, critical population thresholds change with mortality, 

increasing as mortality increases. Again, no standard exponential or quadratic function 

could be fitted to the data. Adult and juvenile mortality have similar quantitative effects 

on the critical density, but the maximum critical mortality value is lower for juvenile 

mortality than adult mortality (Figs. 11 and 12).

The relationship between critical values of 5 and density and the other population 

parameters (time to maturity t and maximum reproductive output a) look similar to the 

relationships with mortality (an exponential-type decline in critical 8 with increases in x 

or a, although an exponential relationship does not fit the model values precisely).
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Although mortality and reproductive output affect the two kinds of Allee effects equally 

in Model 1, x has a stronger effect on populations with juvenile survival Allee effects 

than with reproductive Allee effects. When x=l, the critical threshold for juvenile 

survival and reproductive Allee effects is equal. Increasing x above one decreases the 

critical 5 threshold for both kinds of Allee effects, but more strongly for juvenile survival 

Allee effects than reproductive Allee effects, meaning that juvenile survival Allee effects 

become more severe than reproductive Allee effects in terms of critical 5 thresholds 

(Figs. 13 and 14).

In Model 2, each of the density-independent parameters in isolation has a relatively small 

effect on model dynamics, which is qualitatively similar to that of Model 1. Eventually, a 

point is reached at which reproduction can no longer balance mortality, resulting in 

global extinction. Unlike Model 1, this point is unrelated to the strength of the Allee 

effect (Figs. 15 and 16).

Adding negative density dependence to Allee effects

It is apparent from the differences in behaviour between Model 1 and Model 2 that 

negative density dependence has some effect on the qualitative dynamics of populations 

with Allee effects. The model with both Allee dynamics and negative density dependence 

(Model 1) has more complex dynamics, and includes a critical strength of Allee effect 

that results in extinction regardless of initial density. However, the qualitative dynamics 

outlined above are broadly similar for Models 1 and 2.
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There is a large difference in the range of initial conditions in which Models 1 and 2 go 

extinct, which implies that negative density dependence has a strong quantitative effect 

on Allee dynamics (e.g. see initial conditions for Figs. 3 and 5). Negative density 

dependence appears to increase critical density thresholds and decrease critical 5 

thresholds dramatically. I examined this idea by using Model 1 to add negative density 

dependence in reproduction to Allee effects in juvenile survival, and vice versa.

The effects of adding negative density dependence in one parameter to Allee effects in 

the other are not symmetrical. For the r parameterisation, negative density dependence in 

juvenile survival has a very significant effect on the critical 8r and equilibrium population 

size for reproductive Allee effects. Although negative density dependence in 

reproduction has an effect on both critical 8j and equilibrium population size for juvenile 

survival Allee effects, it is much more limited (Figs. 17 and 18). For the K 

parameterisation with x=l, the situation is reversed, with negative density dependence in 

reproduction having a greater effect on critical 8 and equilibrium population size than 

negative density dependence in juvenile survival (Figs. 19 and 20).

For the K  parameterisation with x=5, the outcome is more ambiguous, with each kind of 

density dependence having a comparable proportional effect on critical 8 and population 

size. This is interesting, in that for Allee effects individually both the K  parameterisation 

and increasing x made juvenile survival Allee effects more severe relative to reproductive 

Allee effects. However, the effects of the density-independent parameters are non-linear, 

and in this case, since critical 8 for reproductive Allee effects was already higher with the 

K  parameterisation, increasing the value of x had a proportionately higher effect on
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reproductive than juvenile survival Allee effects. Thus, the comparisons of the effects of 

individual population parameters only hold if all other parameters are held equal (Figs. 21 

and 22).

Combining both kinds of Allee effect

As with negative density dependence, a combination of two kinds of Allee effects 

reduces critical values significantly relative to only one Allee effect at a time, for both 

Model 1 and Model 2. The effects of the two kinds of Allee effect are again not 

symmetrical, either for equilibrium population size or for critical 8 or y values. For the r 

parameterisation, critical thresholds usually depend more on the value of 5r than Sj, while 

the reverse is true for the K  parameterisation. Thus effects cannot be said to be additive -  

the outcome of changes in parameter values are non-linear so the effect of different 

combinations is difficult to predict (Tables 5 and 6 and Figs. 23 -  26). Note that Tables 5 

and 6 apply to the r parameterisation only -  it proved impossible to do the same for the K  

parameterisation because the model took too long to equilibrate around critical values.

In combination, population persistence depends more on reproductive Allee effects than 

juvenile survival Allee effects in the r  parameterisation, but depends more on juvenile 

survival than reproductive Allee effects for the K  parameterisation (for both models).

This is despite the fact that in Model 1, negative density dependence in the juvenile stage 

combined with reproductive Allee effects is more serious for the r parameterisation, 

while negative density dependence in the adult stage combined with juvenile survival 

Allee effects is more serious for the K  parameterisation (Figs. 17 -  20). In fact, these two
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are a corollary of each other; essentially for the r parameterisation, a higher value of 8r 

than 5j is more serious, while for the K parameterisation, a higher value of 5j than 5r is 

more serious.

Analysis of equilibria

So far I have been concentrating on critical values -  the boundaries between areas of 

parameter space that result in different equilibrium points. These are unstable equilibria, 

and I can examine these directly by analysing the equilibrium functions themselves. 

Analysing the equilibria sheds some light on the phenomena discussed above.

For Model 1, the form of the equilibrium equations for each type of Allee effect is shown 

in Fig. 27. The upper part of each line represents a stable equilibrium, while the lower 

line is an unstable equilibrium. The stable and unstable lines meet at the maximum 

critical 8, above which the population goes extinct regardless of initial density. If both 

stages have initial densities above their respective lower line, the population of each stage 

goes to the value of the upper line for the given value of 8. If both stages are below their 

respective lower line, the population goes to extinction. If one stage is below and one is 

above, the behaviour of the model is unpredictable. Periodic behaviour can happen when 

one stage is above its unstable equilibrium (i.e. tending to the upper stable equilibrium) 

while the other stage is below its unstable equilibrium (i.e. tending to extinction). 

However, it does not fill this entire region of parameter space, nor does it always occur in 

any part of parameter space under these circumstances (Fig. 28).
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Fig. 29 shows the effect of adult mortality on the equilibrium curves for reproductive 

Allee effects. The other density-independent parameters (Mj, a, x) look similar, as do the 

curves for juvenile survival Allee effects.

For Model 2, the equilibrium equation is simpler, with only one solution for any given 

value of y and density-independent parameters. This solution is an unstable equilibrium 

corresponding to the critical values. For both types of Allee effect together, the 

equilibrium curve bisects the Nj/Na plane, with points to the left and below the curve 

going to extinction and points above and to the right going to infinity. Changing values of 

y moves the position of the curve (Fig. 30).

DISCUSSION

Qualitative dynamics

In common with other Allee effect models of different types (differential -  Dennis 1989, 

Quinn et al. 1993, Amarasekere 1998, Wells et al. 1998, Courchamp et al. 1999; delay 

differential -  Cushing 1994; difference -  Schreiber in press', stochastic -  Dennis 1989; 

Poisson -  Gerritsen 1980; spatial and temporal simulation model -  Etienne et al. 2002), 

this model confirms that Allee dynamics result in threshold effects. For a given set of 

parameter values, a model with an Allee effect has a critical population size below which 

the population does not persist. Conversely, a population of a given size may have a 

critical strength of Allee effect above which the population will go extinct. This applies 

equally to Allee effects in reproduction, in juvenile survival and to a combination of both.
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I found the same qualitative dynamics with each kind of Allee effect, and by both Allee 

effects together.

The model with negative density dependence also showed a potential for periodic 

behaviour (large amplitude oscillations). As with thresholds, I observed periodicity both 

for reproductive Allee effects and juvenile survival Allee effects, as long as one stage 

starts above the critical density while one is below (but not in all cases where this is true). 

Stable, large amplitude oscillations have previously been observed in a model with 

reproductive Allee effects, where there is a delay in maturation and a narrow fertility 

window (Cushing 1994), or overcompensatory density dependence (Schreiber in press). 

This model does not have these requirements for periodicity to occur.

Natural systems are more complicated than models, and periodicity is likely to be 

disrupted by environmental stochasticity, more age classes, recruitment from elsewhere, 

metapopulation structure etc. Nonetheless, such periodic and chaotic behaviour has been 

shown to be more important than expected in undermining persistence in simple 

experimental systems (Belovsky et al. 1999), although in models chaotic fluctuations can 

either increase or decrease extinction probability (Allen et al. 1993, Schreiber in press). It 

is important to bear in mind that Allee effects have the potential to create such unstable 

dynamics.

Which type of Allee effect is worse?

I have considered the severity of an Allee effect in terms of critical thresholds in both 

density and Allee effect strength. Using the critical density measure, reproductive Allee
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effects are usually more severe than juvenile survival Allee effects. This is not surprising 

since reproductive Allee effects are acting on the adult stage, which is nearly always 

going to be less numerous than the juvenile stage (some clonal organisms excepted).

Thus, all else being equal, an Allee effect which acts on a later life history stage, up to the 

point of first reproduction, will cause a higher critical density than an Allee effect that 

acts earlier in the life history. An Allee effect that acts only after the point of first 

reproduction has much greater difficulty in driving a population extinct. I tested this by 

trying to incorporate Allee effects into adult survival (the bottom right element of the 

transition matrices shown in Tables 3 and 4), and found that I could not get the Allee 

effect to drive the population to extinction for any parameter values that I tried.

Using the measure of critical density thresholds, it is possible that an Allee effect is most 

severe when it acts on the stage which has the highest reproductive value. Reproductive 

value, which measures the proportional contribution of an individual to future generations 

from that point on, is usually maximised around or just before the age of first 

reproduction (Gotelli 1998, Caswell 2001). It is difficult to calculate reproductive value 

in a density-dependent model, but in the density-independent version of our model, adults 

have a higher reproductive value than juveniles for both r and K  parameterisations, which 

would be consistent with this hypothesis.

If I consider severity in terms of critical Allee thresholds, the relative severity of 

reproductive and juvenile survival Allee effects depends on life history. Essentially, 

populations with more “K  selected” life histories (low reproductive rates, low mortality 

and long time to maturity) are more likely to be affected by juvenile survival Allee
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effects, while populations with more “r selected” life histories (high reproductive rates, 

high mortality and short time to maturity) are more likely to be affected by reproductive 

Allee effects. This does not mean that certain species will only have certain types of 

Allee effect, it just means that a given strength of Allee effect has different population 

consequences, depending on the life history.

I found very different response times in the model for the r vs. K parameterisation. While 

the r model equilibrated quickly (nearly always in less than 10 time-steps), the K  model 

took several hundred or more time-steps to equilibrate. In real populations, this will have 

the effect of blurring the population consequences of Allee effects, particularly in 

combination in demographic and environmental stochasticity. Allee effects can still exist 

in K  selected populations, and can still have population consequences, but those 

consequences might be difficult to observe since such populations are not usually at 

equilibrium.

Adding Allee effects together

I found that it is difficult to predict the consequence of combining more than one kind of 

Allee effect. Sometimes the effect of two Allee effects was minimally different from one, 

sometimes it was drastically worse, although it was never better. Since reproductive and 

juvenile survival Allee effects had different population consequences depending on the 

life history, the effect of adding them together was also not symmetrical. Overall, for a 

population that has two potential sources of Allee effects, I found no convenient rule for 

combining Allee thresholds, and can only recommend that research concentrates on
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elucidating the life history. Only when that is known can predictions be made about the 

impact of multiple Allee effects on population dynamics.

Effect of negative density dependence

It is clear from this study that negative density dependence has strong impacts on the 

population consequences of Allee effects. This can be seen in the quantitative differences 

between Models 1 and 2, as well as when negative density dependence was added in the 

non-Allee stage in Model 1. In both cases, adding negative density dependence made the 

population consequences of a given Allee effect much worse. Often, adding negative 

density dependence alone had almost the same impact as adding negative density 

dependence plus a second Allee effect. It is clear from this model that information about 

other sources and types of density dependence are important in making predictions about 

the population consequences of Allee effects.

Effect of human disturbance

Anthropogenic changes to density-independent population rates: I found with this model 

that there is an exponential-type relationship between the value of density-independent 

parameters in the model (juvenile and adult mortality, maximum reproductive output and 

time to maturity) and critical thresholds. Thus relatively small change in density- 

independent parameters could have large impacts on the value of critical thresholds 

(increasing critical density thresholds and decreasing critical Allee effect thresholds). 

Human activities have the potential to alter the value of all these parameters in natural
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populations, by changing survival, condition and growth rates. I am particularly 

interested in the effect of mortality, since this is where there is the strongest evidence for 

human-induced change in many populations. Here I consider the potential effect of direct 

human intervention in mortality rates through exploitation, in the context of an Allee 

effect.

Several models conclude that mortality or exploitation increases critical density 

thresholds for Allee effects (Gerritsen 1980, Dennis 1989, Quinn et al. 1993), but not 

many have looked at the form of the relationship. Gerritsen (1980) describes the 

relationship between mortality and critical density as “exponential”, which is true also in 

the model in the sense that a linear increase in mortality - defined as -/n(survival 

probability) - results in a monotonic relationship with critical density of increasing slope. 

However, in this model, a simple exponential model does not fit the data for any of the 

density-independent parameters, and this appears to be the case with Gerritsen (1980) as 

well. The relationship may not be easily defined mathematically.

Exploitation can double or more than double adult mortality relative to natural levels, 

even when it is considered sustainable. The American Fisheries Society recommends that 

for vulnerable stocks such as long-lived reef fish, management should act conservatively 

by keeping fishing mortality “at or near natural mortality” i.e. doubling total mortality 

(Coleman et al. 2000). See Table 7 for some examples of estimates of natural and fishing 

mortality in some exploited populations.
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From this model, what are the potential consequences of large increases in mortality rates 

for a population with Allee effects? Given the “exponential” nature of the relationship, 

this model suggests that a doubling of total mortality could have a dramatic impact in 

terms of approaching critical thresholds and thus increasing extinction probability. Recall 

that with ^-selected species, the crossing of a critical threshold will not be immediately 

visible according to this model, but it can nonetheless put the population on a downward 

trajectory towards extinction. Some ^-selected exploited species, such as sharks, may be 

on such a trajectory (Baum et al. 2003), although as far as I know no-one has looked for 

Allee effects in sharks.

Dennis (1989) applied Allee effects to a standard fisheries model, and showed that as 

harvesting rates (adult mortality) increase, critical population thresholds approach the 

population size at which maximum sustainable yield (MSY) is obtained. Traditional 

fisheries management has focussed on trying to maintain biomass at the level which 

produces MSY (Bmsy), since this is the most efficient (biologically speaking), although 

most modem work on fisheries suggests that this is a risky approach (Hilbom and 

Walters 1992). If Bmsy is also close to the Allee threshold biomass, managing stocks for 

MSY is even more risky that previously thought.

There are a large variety of mechanisms for Allee effects in exploited marine species, 

including broadcast spawning (Denny and Shibata 1989, Levitan et al. 1992), predation 

(Wood 1987, Seitz et al. 2001), “cultivation effects” (predation by adults on the predators 

of juveniles; Walters and Kitchell 2001) and the physical protection of juveniles or 

habitat modification for juveniles by adults (Tegner and Dayton 1977, Quinn et al. 1993).
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Could Allee effect thresholds provide part of the explanation in some cases for 

unexpected collapses in fished populations where mortality has been increased to several 

times natural levels? Evidence for Allee effects (or “depensation” as it is usually referred 

to in the fisheries literature) in exploited fish stocks is equivocal (Myers et al. 1995), 

however the large variance in stock-recruitment data means that Myers’s approach may 

have limited power to detect Allee effects (Liermann and Hilbom 1997, Shelton and 

Healey 1999, Hutchings 2000). In addition, there is often uncertainty about what 

constitutes a “stock”, which should be a population or sub-population that is more or less 

reproductively isolated. If the stock considered by managers actually consists of several 

sub-stocks, the effects of Allee effects and extinctions at the sub-stock level may be 

masked until the metapopulation reaches a critical point (Frank and Brickman 2000, 

Courchamp et al. 2000a). I suggest that some expectation of non-linear dynamics, rather 

than smooth, gradual stock declines under exploitation, should be incorporated as a 

component of precautionary fisheries management.

Anthropogenic changes to density dependence: Human impacts on natural populations 

can create Allee effects. For example, fishing tends to act like a Type II predator 

functional response, causing increasing per capita mortality with declining population 

size (Post et al. 2002). Introduced predators can act the same way (Sinclair et al. 1998, 

Chapter 4). Human activities can also alter the strength of Allee effects. For example, a 

predation-driven Allee effect is affected by the number, species composition and mobility 

of predators, availability of alternative prey, availability of shelter, spatial heterogeneity 

etc. (Sinclair and Pech 1996, Murdoch et al. 1996). An Allee effect that is driven by some
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factor intrinsic to a population (such as reproduction) may also vary. For example, if the 

Allee effect is mediated by the animal’s ability to locate a suitable mate at low density, 

this might vary by habitat type, habitat fragmentation, water clarity (for visual cues) and 

pollution (for chemical cues). Anthropogenic changes to ecosystems could make Allee 

effects stronger (e.g. disrupting mate finding ability) or weaker (e.g. reducing predator 

populations).

The model with negative density dependence has a maximum critical strength of Allee 

effect for a given population, above which the population will go extinct regardless of the 

initial population size. This becomes clear in the equilibrium analysis, since there is a 

value of 5, above which there is no equilibrium population size except zero. Essentially, 

the population is being squeezed between the lower, unstable Allee threshold and the 

carrying capacity. As well as changing the Allee effect threshold, human activities can 

reduce the carrying capacity, by reducing habitat quality or resource availability, or by 

fragmenting habitat. Thus while it seems unlikely that a population in its natural state 

would have evolved under conditions which bring it close to a “maximum critical Allee 

effect” (Yund 2000) it is not impossible that human pressure could squeeze population 

equilibria in both directions such that an Allee effect could drive even a large or dense 

population extinct (Fig. 29).

Resilience in populations and ecosystems

In Fig. 27, the distance between the top and bottom of the equilibrium curve can be 

thought of as corresponding to the resilience of the population to natural or anthropogenic
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change. As the critical Allee threshold gets closer to the upper stable equilibrium, the 

population is less able to recover back to the stable equilibrium from perturbations, hence 

increasing the value of 5 or increasing mortality makes the population less resilient. 

Resilience is a concept which is usually applied to ecosystems which have shown a 

propensity for abrupt transitions to alternative stable states, such as rangelands, coral 

reefs and lakes (Noy-Meir 1975, Scheffer et al. 2001). Allee effects may provide a new 

way to look at mechanisms for resilience and rapid change at the ecosystem as well as the 

population level.
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TABLES

Table 1
Value of density-independent parameters used in this paper.

Parameter Symbol “r” parameter 
values

“A” parameter 
values

Survival probability -Mi -Mae \ e 0 .03-0 .6 0.78-0 .99

Maximum reproductive output a 10-150 0 .5-0 .75

Time to maturity X 1 1 - 5

Table 2
Density-independent transition matrix (Model 1). e'Mi = juvenile survival probability, e'Ma 
= adult survival probability, x = mean time to maturity, a  = reproductive output.

e ' M j . ( 1  -  1/ t ) a

e M j . 1/T
-Mae

Table 3
Density-dependent transition matrix with Allee effect and negative density dependence 
(Model 1). 8 = Allee effect parameter, (3 sets slopes and intercepts of curves with 
different 5 values, Nj = juvenile density, Na = adult density, Dr and Dj are dummy 
variables that act as switches turning on and off density dependence in juvenile survival 
and reproduction respectively.

Dj . e m . (1 -  1/t) . Nj5'1 / (1 + pNj8) + 

( l - D i ) . e Mj. ( l - l / T )

Dr . a . Na84 / (1 + pNa8) + (1 - D r ) . a

D j . e Mi. 1/t . Nj8’1 / (1 + pNj8) + 

(1 -  DO . e u i . 1/t

e m
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Table 4

Density-dependent transition matrix with Allee effect only (Model 2). y is a function of y, 
the Allee effect parameter.

D j . e ‘Mj. (1 -  1/t) . yNj / (1 + yNj) + 

(1 -  Dj). e'Mj. (1 -  1/t)

Dr . a . yNa / (1 + yNa) + (1 -  Dr) . a

Dj . e M]. 1 /t . yNj / (1 + yNj) + 

(1 -  Dj). . 1 /t

-Mae

Table 5
Model 1: Critical values of adult mortality (Ma) for different combinations of Allee 
effects and negative density dependence, in order of decreasing critical Ma (increasing 
severity of population consequences of Allee effect), for the r parameterisation. The 
effects of combined density dependence in juvenile survival and reproduction are not 
symmetrical, even though the effects of each separately are (for these parameter values). 
Critical Ma depends to some extent on the value of Sj but much more on the value of 5r. 
(Initial conditions are Mi = 1.5, t  =  1, a  = 100, initial population density vector = [10 
10].)

5r *1 critical Ma with 
r  parameters

density indep. 4 1.3

4 density indep. 1.3

1 4 0.8

2 2 0.07

2 3 0.05

3 2 0.025

4 1 0.02
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Table 6

Model 2: Critical values of y for different combinations of Allee effects, in order of 
increasing y (increasing severity of population consequences of Allee effect), for the r 
parameterisation. Where there are two Allee effects, the value of one is fixed and the 
critical value of the other is shown. A given value of reproductive Allee effect has a 
stronger effect on critical values of juvenile survival Allee effects than vice versa. (Initial 
conditions are M; = Ma = 2, x = 1, a = 10, initial population density vector = [10 10].)

Reproductive 
Allee effect?

Juvenile survival 
Allee effect?

Value of 
fixed yr

Value of 
fixed y  j

Critical y

no yes - - 0.02

yes yes 0.5 - 0.02

yes no - - 0.18

yes yes - 0.5 0.18

yes yes - 0.2 0.22

yes yes - 0.1 0.26

yes yes 0.2 - 0.52

yes yes 0.1 - extinct for all y
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Table 7

Natural mortality and fishing mortality for a variety of exploited species, showing that 
fishing can cause large increases in the mortality of exploited stages (usually adults).

Stock Natural
mortality

Fishing
mortality

Reference

Pink shrimp, Pandalus borialis, 
Kachemak Bay, Alaska

0.4 0.3 1 Fu et al. 2001(b)

Pink shrimp, northern Barents Sea 0.24 0 .2 -0 .39  1 Fu et al. 2001(b)

Bigmouth sole, Hippoglossina stomata, 
Baja California

0.17 0.522 Martinez-Munoz 
and Ortega-Salas 
2001

Atlantic cod, Gadus morhua, eastern 
Nova Scotia, pre-1990

0.3 0.5 Fu et al. 2001(a)

Southern rock lobster, Jasus edwardsii, 
northwest Tasmania

<0.1 1 -1 .2 Frusher and 
Hoenig 2001

Striped bass, Morone saxatilis, Lake 
Gaston, North Carolina, 1997 /1998

0.16/0.12 0.74 / 0.34 Hightower et al. 
2001

Brown trout, Salmo trutta, Lake 
Songsjoen, Norway

0.31 0.5 Langeland and 
Pedersen 2000

Western king prawn, Penaeus 
latisulcatus, Gulf St. Vincent, Australia, 
males / females

1.25/1.12 6.1/4.9 Xiao and 
McShane 2000

Red sea urchin, Strongylocentrotus 
franciscanus, northern California

0 -0 .2 3 0.11-1.87 Morgan et al. 
2000

1 Considered optimum fishing mortality for maximum sustainable yield

2 Not a target species; mortality from by-catch
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FIGURES

Fig* 1
Effect of 8 on curves in Model 1. With P=45, the curves are affected by the value of 8 
only at low density, as is appropriate for modelling an Allee effect.
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Fig. 2

Effect of y  on curves in Model 2.
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Fig. 3

Model 1: Strength of Allee effect (value of 8) vs. adult population size at equilibrium, for 
reproductive Allee effects and juvenile survival Allee effects with r parameterisation. 
There is a threshold strength of Allee effect above which a population with a given set of 
initial conditions goes extinct; for x = 1 the threshold value is identical for both kinds of 
Allee effects (initial conditions: Mj = Ma = 1.5, x = 1, a = 100, initial density vector = [10 
10]).

1e+5
CD
N
<75
d  1e+4
o
o .

^ "I6+3 
E
3

I H

n
=  1 e + 2
3
O ’

LU

reproduction 
juvenile survival

2 3 4
Strength of Allee effect (delta)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

Fig. 4

As Fig. 3, with x=2. The critical Allee threshold is reduced for both types of Allee effect, 
but more so for juvenile survival Allee effects.
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Fig. 5

Model 2: Strength of Allee effect (value of y -  lower value of y is a stronger Allee effect) 
vs. population growth rate (r), for reproductive Allee effects and juvenile survival Allee 
effects, with r parameterisation. As with Model 1, there is a threshold strength of Allee 
effect below which a population with a given set of initial conditions goes extinct, 
indicated by the heavy dashed line at r=0. The threshold is higher for reproductive than 
for juvenile survival Allee effects, indicating that a given strength of reproductive Allee 
effects has more serious population consequences than the same strength of juvenile 
survival Allee effects for these initial conditions (Mj = Ma = 2, x = 1, a = 10, initial 
density vector = [10 10]).
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Fig. 6

As Fig. 5 , with K  parameterisation (M j= 0 .2 5 , M a= 0 .2 , a = 0 .5 ,  x= 5). In this case, juvenile 
survival Allee effects cause collapse at a higher value of y than reproductive Allee 
effects.
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Fig. 7

Model 1: Strength of Allee effect (value of 5) vs. critical adult population density (initial 
density below which the population collapses to extinction) for reproductive and juvenile 
survival Allee effects. The maximum critical 8 for these parameter values is 5=3.7 for 
both kinds of Allee effect. For 5<3.7, the relationship between critical density and 
strength of Allee effect is roughly exponential.
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Fig. 8

Model 2: Strength of Allee effect (value of y) vs. critical juvenile population density 
(initial density below which the population collapses to extinction) for reproductive and 
juvenile survival Allee effects, with r parameterisation.

reproduction 
juvenile survival

Ui
n 100

0.1

0.2 0.8 1.00.0 0.4 0.6
Strength of Allee effect (y)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

Fig. 9

As Fig. 8, but with K  parameterisation (Mj=0.2, Ma=0.1, x=l, a=2). Note that juvenile 
survival Allee effects are now more severe than reproductive Allee effects in terms of 
critical density thresholds.
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Fig. 10

Model 1: Adult and juvenile mortality vs. max. critical 8. Increasing mortality decreases 
maximum critical 8, with juvenile mortality having a stronger effect that adult mortality. 
This qualitative relationship applies for reproductive Allee effects, juvenile survival Allee 
effects and a combination, although the specific values of 8 and M are different. Here 
initial conditions are as for Figs. 7 and 8, with reproductive Allee effects (8r=3).
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Fig. 11

Model 1: Adult and juvenile mortality vs. critical density for reproductive Allee effect (5r 
= 3). The relationships are similar in shape, with a possible change in slope at 
intermediate mortality. The curve in each case stops at the maximum critical mortality 
(extinction at all densities).
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Fig. 12

As Fig. 11, but with juvenile survival Allee effects (§j=3).
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Fig. 13
Model 1: Maximum critical 5 as a function of time to maturity (x).
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Fig. 14

Model 1: Maximum critical 5 as a function of maximum reproductive output (a). Curves 
for reproductive and juvenile survival Allee effects are identical for x=l, and very similar 
for other values of x.
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Fig. 15
Model 2: Critical density vs. y for various values of adult mortality (other initial 
conditions as for Fig. 5). Density independent parameters had a more limited impact on 
Model 2 than Model 1, up to the point were reproduction no longer balanced mortality 
(global extinction).
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Fig. 16

Model 2: Effect of time to maturity (x) on critical densities for a given strength of Allee 
effect. Curves look qualitatively similar for both types of Allee effects and 
parameterisations; in this case I show juvenile survival Allee effects and K  
parameterisation.
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Fig. 17

Model 1: Strength of Allee effect vs. adult equilibrium population size with r 
parameterisation, for i) reproductive Allee effect only; ii) reproductive Allee effect, with 
negative density dependence in juvenile survival (5j = 1), iii) juvenile survival Allee 
effect only and iv) juvenile survival Allee effect with negative density dependence in 
reproduction (8r = 1). (Initial conditions: Mj=Ma=1.5, a=100, t=1, initial density vector = 
[10 10].)

o) 1 e + 6  -|
N
CO

5 1e+5 - o

3
a
0  a
g 1e+3 -
3

1  1 e + 2
3
U"
£  1e+1 -
3
■o
<  1e+0

1e+4 -

2 41 3 5
Delta (Strength of Allee effect)

----------  rep only
  rep, dj=1

----------  juv only
---------- juv, dr=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

Fig. 18

As Fig. 17, with juvenile rather than adult equilibrium population size.
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Fig. 19

As Fig. 17, but for K  parameterisation with t=1.
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Fig. 20

As Fig. 19, with juvenile equilibrium population size.
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Fig. 21
As Fig. 19, but for K  parameterisation with t=5.
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Fig. 22

As Fig. 21, with juvenile equilibrium population size.
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Fig. 23

Model 1: Combined critical values of 5r and 5j for r parameterisation (Mj=Ma=1.5, 
a=100, x=l, initial population vector = [10 10]). Extinction thresholds depend more 
strongly on reproductive Allee effects (Sr) than juvenile survival Allee effects (5j).

3.0

e  2.5

o 1.5

1 .0

1 .0 1.5 2.0 3.02.5
critical delta(j)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

Fig. 24

As Fig. 23, for Model 2 with r parameterisation. Again, extinction thresholds depend 
more strongly on reproductive Allee effects.
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Fig. 25

As Fig. 23, with K  parameterisation, x=l. Extinction thresholds now depend more on 
juvenile survival Allee effects.
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Fig. 26

As Fig. 25, for Model 2 with K  parameterisation (Mj=0.2, Ma=0.1, t=2, a= l, initial 
population vector = [10 10]). In this case, critical thresholds depend to approximately 
equal extent on reproductive and juvenile survival Allee effects.
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Fig. 27

Model 1: Form of equilibria (in this case for reproductive Allee effects but form is 
qualitatively the same for juvenile survival Allee effects). For each stage, the upper line 
represents a stable equilibrium and the lower line is an unstable equilibrium. They meet 
at the maximum critical 8.
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Fig. 28

Model 1: Dynamics with different values of initial juvenile and adult population density 
(N). Blue curve = adult equilibrium curve, yellow curve = juvenile equilibrium curve. 
Both stages were started at the same value of N. The area between the lower part of the 
blue curve and the lower part of the yellow curve represents the area where one stage (in 
this case juveniles) were tending to extinction, while the other stage (adults) were tending 
to the upper stable equilibrium. In the red area, populations of size N and Allee effect 
strength 8 remained extant, in the blue area populations went extinct, and the in the green 
area dynamics were periodic. Periodic dynamics only occur in the area where there is 
tension between the juvenile and adult equilibria, but do not fill the entire area. In this 
case I used a reproductive Allee effect with initial conditions Mj = 0.9, Ma = 3, a  = 100, x 
= 1.
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Fig. 29
Model 1: Effect of adult mortality on equilibrium curves (in this case for adult equilibria 
for reproductive Allee effects, although the form of the curves is the same for both 
population stages and both types of Allee effect).
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Fig. 30

Model 2: Equilibrium curves for different values of y (strength of Allee effect). Initial 
conditions Mj = Ma = 2, a=70, t=1.
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ALLEE EFFECTS IN QUEEN CONCH REPRODUCTIVE BEHAVIOUR: FIELD 

TEST AND THEORETICAL CONSEQUENCES
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ABSTRACT

The Allee effect -  a reduction in fitness at low population density -  can increase 

extinction probability for exploited or endangered species. In queen conch (Strombus 

gigas), a heavily exploited gastropod, mating and egg production are reduced in low- 

density areas. This was hypothesised to be due to low encounter rates with suitable mates. 

Alternative hypotheses include effects of habitat quality or decreased reproductive 

activity and tendency to aggregate in younger mature conch. To distinguish between 

these hypotheses, morphologically mature conch were translocated from source sites with 

ambient conch density either high (-1,000 conch/ha) or low (-20 conch/ha), and kept at 

high density in enclosures within high- and low-density host sites; reproductive activity 

was then monitored. I also modelled conch population dynamics under exploitation, a 

reproductive Allee effect and delayed reproduction. Though conch were at equal high 

density in all enclosures, high source-site density produced higher reproductive activity. 

Conch from high-density source sites also had thicker shell lips, indicating that they were 

older. These data do not support the hypothesis that reduced reproductive activity in low- 

density areas is due solely to an Allee effect, or to differences in habitat quality. I 

hypothesise that a high cost of reproduction and low adult mortality have selected for 

delayed reproduction in maturing conch, which also have less tendency to aggregate, at 

least in some habitats. In model simulations, both a reproductive Allee effect and delayed 

reproduction in maturing conch produced non-linear population collapses when fishing 

mortality was increased to moderate levels, indicating that both an Allee effect and 

delayed reproduction in queen conch can affect population persistence.
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INTRODUCTION

In most equilibrium population models, individual fitness is inversely related to 

population density (Gotelli 1998); however, in some cases organisms benefit from the 

presence of conspecifics at low density (see review by Fowler and Baker 1991); e.g. 

encounters with potential mates (Kuussaari et al. 1998), fertilisation efficiency in 

broadcast spawners (Levitan et al. 1992, Baker and Tyler 2001), plant pollination success 

(Widen 1993, Groom 1998, Hackney and McGraw 2001), vigilance against predators 

(Kenward 1978) and social structure (Shepherd and Brown 1993, Courchamp et al.

2000). In these instances, fitness declines as population density decreases such that per 

capita population growth rate may become negative and local extinction may result 

(Courchamp et al. 1999). Population dynamics of this kind are known as Allee effects 

(Allee 1931). Allee effects do not necessarily cause extinction since per capita 

population growth rate can be depressed but still remain positive.

Stoner and Ray-Culp (2000) provide field evidence for a reproductively driven Allee 

effect in the queen conch, Strombus gigas, a large, heavily exploited, tropical gastropod. 

In surveys of a conch population in Exuma Sound, Bahamas, no reproductive activity 

was observed where adult conch density was less than 50 ha'1 (Fig. 1). The presumed 

mechanism was a reduced encounter rate with suitable mates at low conch densities due 

to low mobility. Copulation in conch is also more likely in spawning than non-spawning 

females, providing another positive feedback mechanism that would enhance this effect 

(Appeldoom 1988a).
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If animals are distributed randomly in space, the probability of encountering a mate in 

some time period can be estimated from the Poisson probability distribution (McCarthy 

1997) as:

p  = l - e mS

where m = mate density and S = search area per unit time. If density of the opposite sex is 

25 per ha (= critical conch density below which there is no reproduction, assuming a 1:1 

sex ratio; Fig. 1), and with estimated daily movements that cover ~50 m (Stoner and 

Ray-Culp 2000), a male and female conch have an encounter probability of 0.12 per day, 

or one encounter with the opposite sex every 8.3 days, on average. This encounter rate is 

a rough approximation -  it would be reduced if some proportion of females are not 

receptive (females can store sperm for 4-6 weeks; D’Asaro 1965, Weil and Laughlin 

1984) or if the sex ratio is biased, which is possible in some areas (see below), but 

increased if mate searching is non-random; in fact, males may follow female tracks 

(Stoner and Ray-Culp 2000). However, if encounter rate is the only issue, it is surprising 

that no reproduction was observed in these areas. Although it is difficult to discover 

individuals in the act of reproduction at these low densities, mating can last several hours 

(Reed 1995, pers. obs.) and egg masses persist several days before hatching and for some 

time as egg-mass remnants (Stoner et al. 1992), such that some form of reproductive 

activity should be evident.

The lack of observations of reproductive behaviour may be explained by alternative 

mechanisms that are not Allee effects, but which may be associated with low population
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density. Adult conch migrate between feeding and reproductive sites seasonally, at least 

in deep water (Stoner and Sandt 1992). Hence, conch might migrate between high- 

density spawning grounds, where environmental triggers for reproduction (e.g., for larval 

transport) are present, and low-density feeding areas, where reproductive activity is 

minimal. Alternatively, both density and reproductive activity could be associated with 

site-specific habitat quality or ontogenetic changes. During maturation, conch are 

progressively migrating from shallower nursery grounds to deeper adult habitats (Randall 

1964, pers. obs.). Conch mature a few months after developing a flared lip on the shell 

(Appeldoom 1988b), when the shell is at least 5 mm thick (Egan 1985). However, newly 

morphologically mature conch may become functionally mature gradually, and these 

newly mature conch might be at low population density compared to their more 

reproductively active counterparts due to ontogenetic migration, low adult mortality and 

the associated accumulation of conch in adult habitats.

It is therefore uncertain whether the lack of reproductive activity at low conch density is 

due solely to an encounter-rate mediated Allee effect. The issue is of practical importance 

because the queen conch is heavily exploited and in decline throughout most of its range 

(Berg and Olsen 1989). Understanding the mechanisms underlying spatial patterns of 

adult aggregation and reproductive activity may be important for effective conservation 

and restoration.

More generally, this is of interest because the other mechanisms are not strictly Allee 

effects. Although they predict a correlation between low density and low per capita 

reproductive output, the decline in fitness is not caused by low density, but by another
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factor (e.g. habitat quality, reproductive status) which is correlated with both density and 

reproductive output. This is important in trying to predict the population consequences of 

the ongoing “experiment” in fishing conch to low density throughout much of their range. 

In general, observations of low reproductive activity or low population growth rates 

coincident with low population densities in any species cannot be presumed to reflect 

Allee effects. Conservation strategies devised for Allee effects and disregarding other 

explanations may be less effective. I therefore examined the mechanisms and patterns 

associated with Allee effects in the queen conch as a model system for investigating 

Allee effects in heavily exploited species.

I designed a manipulative field experiment to test whether an Allee effect due to low 

encounter rate was the sole mechanism for the lack of queen conch reproduction at low 

population density, and if not, to distinguish between competing mechanisms (Table 1). 

First, I selected sites of high (» 5 0  per ha) and low (<50 per ha) adult conch density to 

meet the density criteria for an Allee effect (Stoner and Ray-Culp 2000). I then 

transplanted mature conch between sites of high and low population density, with 

controls, placing the conch in enclosures at high density. The conch were deemed to be 

mature when they had a shell lip thicker than 5 mm (Egan 1985). Although I could not 

employ low-density enclosures because they would have had to have been 2000 m2 to 

enclose a minimum of 10 conch, the use of high-density enclosures, along with other 

corroborating data (see below) permitted us to distinguish between several alternative 

hypotheses (Table 1).
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If the observed pattern of low reproductive activity in conch (Stoner and Ray-Culp 2000) 

was indeed due purely to an Allee effect mediated by reduced encounter rates with 

potential mates, I would expect equally high reproductive activity in all enclosures, 

regardless of treatment, since conch inside all the enclosures would be at high density. 

This was therefore our null hypothesis (Table 1: Ho). An effect of host-site density (high 

reproductive activity in conch transplanted to high-density sites) would imply that these 

sites have an environmental trigger for reproduction that attracts reproductive conch, and 

which the low-density sites lack (Table 1: H a i). An effect of source-site density (high 

reproductive activity in conch transplanted from  high-density sites) would be explained 

by a site-mediated factor that controls both reproductive activity and density, such as site- 

specific differences in conch age, growth, condition (habitat quality), or reproductive 

status (e.g., if conch migrate between reproductive (high-density) and feeding (low- 

density) sites; Table 1: Hm^).

To distinguish site-specific differences that might control conch density and 

reproduction, as well as to ensure that all conch used in the experiment were 

reproductively competent, I assessed shell morphology, conch condition, and 

reproductive status at each site (Stoner and Sandt 1992, Stoner and Schwarte 1994). If 

conch were migrating freely between sites (Table 1: Hm), I expected no significant 

morphological differences between sites. If there were site-specific reproductive output 

controlled by differences in habitat quality (Table 1: Ha4), I would expect differences in 

conch condition index and in the allocation of resources to reproductive and somatic 

tissue.
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Finally, I developed a stage-based matrix population model (Caswell 2000) for queen 

conch to estimate the population-level consequences of Allee and non-Allee mechanisms 

underlying the patterns in reproductive activity.

METHODS 

Site characteristics and surveys

I conducted the experiments at four sites near Lee Stocking Island, Exuma Cays,

Bahamas (Fig. 2). Two sites had high densities of mature conch (Rainbow Gardens:

1,140 per ha, Bock Cay: 963 per ha) and two sites had low densities (Children’s Bay Cay 

(CBC): 19.1 per ha, Shark Rock: 21.2 per ha). Low density was defined as less than 50 

mature conch per ha, the proposed lower limit for reproductive activity (Fig. 1; Stoner 

and Ray-Culp 2000). Shark Rock had a total conch density of 127 per ha, but most were 

immature; the other three sites only had mature conch. I measured conch density in 25 m 

x 1 m transects (Rainbow) or circles of radius 10 m, covering a total area of not less than 

1,000 m2. The habitat at all four sites was moderately dense seagrass with strong tidal 

currents. Shark Rock and CBC ranged in depth from 2-4 m, Rainbow 3.5-4 m, and Bock 

7-9 m. I surveyed the low-density sites extensively while searching for mature conch, and 

observed no evidence of reproductive activity (e.g., mating, egg masses). Mating was 

very commonly observed at the high-density sites, but only quantified at Bock Cay, 

where 11 out of 121 animals (9.1%) were engaged in reproductive activity during the 

survey. Levels of reproductive activity at Rainbow were similar.
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Experimental design

I collected 64 conch haphazardly from each site and randomly allocated them to one of 

four groups: two control treatments and two translocation treatments. Conch were tagged 

and placed in an enclosure either back at the same site (control) or translocated to a 

paired site (Rainbow-CBC, Bock-Shark). Each enclosure (6 m diam., 28.3 m2 area) 

contained 16 conch, yielding a conch density of 5,654 per ha. Enclosures were made of 

20-25 cm Vexar strips supported by PVC, and retained most of the conch while not 

visibly altering the habitat. I conducted the experiment twice, once from 22-31 July 2001 

(Experiment I) and again from 2-14 August 2001 (Experiment II). Procedures were 

similar in both experiments.

While the experiment was running, I checked enclosures daily or twice daily, using either 

snorkel or SCUBA, and recorded the tag numbers of conch involved in reproductive 

activity (Stoner and Ray-Culp 2000), which included: (i) copulation (a pair of conch lined 

up with the front of the male shell covering the back of the female shell, male extending 

the penis into the female mantle cavity) and (ii) pairing (a pair of conch lined up as for 

copulation but without the male penis extended). I also recorded the number of conch in 

each cage so that results would not be biased by escape from the enclosures, although the 

escape rate was low (an average of ~2 from each cage during each experiment). No 

external conch ever broke into the enclosures.

I checked enclosures at the Rainbow-CBC site pair 14 times during Experiment I and 17 

times during Experiment II, and at the Bock-Shark site pair 7 times during Experiment I
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and 9 times during Experiment II. I calculated a reproductive index (number of matings 

(pairing or copulation) per observation per conch) for each enclosure so that results could 

be compared across all enclosures, sites and experiments.

Morphological data

At the end of Experiment II, I haphazardly collected four conch from each enclosure (i.e. 

N=16 for each site), determined their gender, and measured their shell features (length, 

weight and lip thickness). I assessed their condition using the ratios of flesh wet 

weight:shell length (Ray and Stoner 1995, Stoner and Sandt 1991) and flesh wet 

weight:shell weight. I froze and subsequently dissected and weighed gonad samples to 

estimate allocation of resources to reproductive vs. somatic tissue (ratio of gonad wet 

weight to flesh wet weight). I used gonad colour as an indicator of reproductive status in 

males (orange = producing sperm; Reed 1995).

Data analysis

Reproductive activity: Reproductive index (RI) was calculated as follows:

_ observed copulations and pairings
mean no. conch in enclosure x no. observations on enclosure

In an analysis of variance model, RI was the dependent variable, and Source site and 

Host site were fixed factors. To account for the effect of location (= system) and 

experimental period, I included System and Time as fixed factors with two levels
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corresponding to the two pairs of sites (system 1 = Rainbow / Children’s Bay Cay; 

system 2 = Bock Cay / Shark Rock) and the two experimental periods.

Since mating activity was recorded by conch tag number, I also had a record of individual 

matings. I was therefore able to determine if the pattern of matings was driven by a few 

active individuals, and if there was evidence for mate choice. I compared the distribution 

of matings in each of the 32 enclosures (4 replicates x 4 sites x 2 experiments) to a 

Poisson distribution, using a J? test, to assess whether the distribution of mating activity 

among individuals was random, uniform (a higher number of individuals involved in 

fewer mating each), or clumped (a few individuals accounting for most of the matings) 

(Zar 1999). In 8 cases, could not be calculated because there were too few matings in 

the enclosure.

To test whether there were significant changes in reproductive activity over the course of 

the experiment, I divided each experiment into two week-long periods. I tested the 

distribution of mating against a Poisson distribution to check if it was random, and then 

compared the mean rate of matings in the two time periods using a test (Zar 1999). In 

this case, I had to combine replicate enclosures and experiments to have an adequate 

sample size, and even then only 4 of 8 site pairs could be analysed.

Sex ratio: I compared the sex ratio of the subsample from each site using a binomial 

distribution with p  = 0.5, which would be expected for a random sample of a 1:1 sex 

ratio. I also compared individual sites and high vs. low density sites using J? tests.
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Morphological data: I analysed morphological measurements (shell length and weight, lip 

thickness, flesh weight:shell weight ratio, and gonad weight:flesh weight ratio) using an 

analysis of variance model with Source density, System and Sex as fixed factors. I used 

Student-Newman-Keuls (SNK) pairwise comparisons to compare levels of a factor within 

each level of another factor when there were interaction effects (Underwood 1997).

Modelling

I used a population matrix projection model (Caswell 2000) with density-dependent 

reproduction to compare population trajectories with and without Allee effects, and with 

delayed functional maturity. The model has a juvenile stage and a series of adult stages 

(Fig. 3, Table 3). Individuals move through the stages at each time step (= 1 yr), spending 

a fixed number of years as a juvenile (Jl: Fig. 3, Tp Table 3) and one year each in adult 

stages 1 and 2. Individuals accumulate in adult stage 3, dying at a rate determined by 

adult mortality and exploitation of adult stage 3 (Table 3). Hence, the model is 

appropriate for long-lived iteroparous species. Reproduction is negatively density 

dependent across all densities except in the Allee model, where it is positively density 

dependent at low density, with the strength of positive density dependence being fixed by 

the Allee factor 5 (Myers et al. 1995, Stoner and Ray-Culp 2000).

The equation for density-dependent reproduction used in the model is as follows (Table 

3):

A  ̂ Areproductive output at time t = aNAt' /(I + f}NAt)
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where NA; is the density of the adult stage at time t and a is the maximum reproductive 

output without Allee effects; for description of 8 and (3 see below.

The exponent 8 is an index of the Allee effect (Myers et al. 1995). For simple negative 

density-dependent reproduction, 8=1. In this case the reproduction equation collapses to 

o/I+PNa/, where reproductive output tends to a maximum of a  as NA tends to 0, and 

tends to 0 as NA gets large. Increasing 8 gives a curve that looks similar at high values of 

Na but causes it to drop back to 0 as NA tends to 0, as would an Allee effect (Fig. 4).

Parameter P sets the slope of the curve. In this heuristic model P was set such that the 

slope was over appropriate values of NA, so that the model equilibrated at reasonable 

population values (a=1000, p=0.01).

I ran the model in four ways (Table 3):

• Model “nulll”: All adult stages reproduce (D=l), all adult stages are fished (Fi=F2), 

and there are no Allee effects (8=1).

• Model “null2”: Only adults in stage 3 reproduce (D=0), only adults in stage 3 are 

fished (Fi=0), no Allee effects (8=1).

• Model “rep”: Only adults in stage 3 reproduce, but all adults are fished, no Allee 

effects.
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• Model “Allee”: All adults reproduce and are fished (as in nulll), but reproduction is 

subject to different strengths of Allee effect (8=1 -  no Allee effect; 8=3 -  

intermediate Allee effect; 8=5 -  strong Allee effect).

Unlike the other models, the Allee model took Na in values of density rather than 

population size, necessitating a change in parameterisation ((3=45). In the Allee model, all 

adult stages reproduce and Fi=F2, as in model nulll. Because of the differences in model 

structure and parameters, it is not directly comparable to the straightforward negative 

density-dependent models. I therefore examined the influence of Allee effects by 

comparing (3=3 (intermediate Allee effect) and 8=5 (strong Allee effect) (Stoner and Ray- 

Culp 2000) with 8=1 (null model of no Allee effect).

The models were run for 200 time steps, by which time they had all reached an 

equilibrium population size for each stage. They were run over a range of F values, and 

the equilibrium adult population size plotted against F. The initial population size did not 

affect the equilibrium population size for models ‘nulll’, ‘null2’ and ‘rep’. All runs were 

started with 1000 individuals in each stage (N a=3000). In the case of the Allee model, the 

area of each stage was set at 1000 units and the density of each stage at 1 (giving the 

same initial population size). The initial density affected the equilibrium population size, 

but did not alter the dynamics significantly (i.e. the value of F at which the models 

reached extinction).
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RESULTS

In all analyses of variance, variances were either not significantly heterogeneous 

(Levene’s test), or the null hypothesis for the F test was rejected at an a  value lower than 

that used to test for homogeneity of variance (Underwood 1997). Hence, transformations 

were not required.

Matings and reproductive index

Mating activity in each enclosure for the two experiments is shown in Table 2.

The interaction effect between Source site density and Host site density was significant 

(ANOVA, P = 0.017), precluding singular conclusions about the main effects. When 

analysed within treatment combinations (SNK tests, a  = 0.05), the reproductive index 

(RI) was higher for conch from high-density source sites than for conch from low-density 

source sites, irrespective of host site (Fig. 5). In addition, the RI for conch from high- 

density source sites returned to high-density host sites was higher than the RI for conch 

translocated to low-density host sites. The RI values of conch translocated from low- 

density source sites did not differ, irrespective of host-site density.

There was also a significant System x Host site density interaction effect (ANOVA, P = 

0.042), because the effect of Host site density was only significant (SNK tests, a =  0.05) 

in one of the systems (Rainbow / Children’s Bay Cay). Hence, the strongest effect upon 

the RI was that of Source site density, such that all enclosures with conch from Source
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sites with high conch densities had high values of the RI, and all those with conch from 

Source sites with low conch densities had lower values of the RI (Fig. 5).

Out of the 24 enclosures for which £  could be calculated, only three had a distribution of 

mating activity between individuals that differed significantly from random, and these 

three were more uniform than random (i.e., more individuals participating in fewer 

matings). The results were therefore not due to a few active individuals, and there was 

little evidence for mate choice or any other mechanism that would create a non-random 

distribution of matings.

When replicates and experiments were combined, none of the Source site x Host site 

combinations had a distribution of individual matings different from random (?£ test, a  = 

0.05). When the data were divided into two week-long time periods there were no 

significant differences in the rate of mating activity between the first and second halves 

of the experiments for the four site pairs that could be tested {J? test, a  = 0.05).

Sex ratio

Conch from one high-density source site (Bock Cay) had a significantly male-biased sex 

ratio (J? test, P = 0.038). The other high-density site (Rainbow) had a slight but non­

significant male bias. Overall, the conch from high-density source sites had a male-biased 

sex ratio (J? test, P = 0.021), whereas conch from low-density sites did not (J? test, P =

0.298). Sex ratios of conch from high- and low-density sites differed significantly (.A2 

test, P  = 0.037).
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Shell morphology and reproductive anatomy

Conch from high-density source sites had significantly thicker lips (ANOVA, P <

0.0005) and shorter shells (ANOVA, P = 0.003) than conch from low-density source sites 

(Fig. 6); there were no significant differences in shell weight (ANOVA, P = 0.452). The 

sexes did not differ significantly in shell characteristics (ANOVA, P = 0.260 (lip), 0.051 

(length), 0.536 (weight)). The main reproductive structures were fully developed in all 

conch (males: verge, prostate gland, testes; females: ovary, uterus). The gonads of all 

males were orange, indicating that they were producing sperm (Reed 1995). N = 16 for 

all sites except Rainbow where N = 14.

Condition and resource allocation to reproduction

The two variants of condition index (flesh weight:shell weight ratio, flesh weight:shell 

length ratio) gave similar results. There was a significant interaction effect between 

Source site density and System (ANOVA, P = 0.004, P = 0.01) and Source site density 

and Sex (ANOVA, P = 0.018, P = 0.007). Flesh weight:shell length ratio also had a 

significant System x Sex interaction (ANOVA, P = 0.047). When analysed within 

treatment combinations (SNK tests, a  = 0.05), conch from one low-density site (Shark 

Rock) were in significantly better condition than conch from the other three sites 

according to both indices (Fig. 7). There were no significant differences in the ratio of 

gonad to somatic tissue by source density, site or sex, and no interaction effects 

(ANOVA, P »  0.05 for all effects).
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Modelling

In negative density-dependent models (Fig. 8: nulll and null2, Fig. 9: 8=1) equilibrium 

population size declined in a log-linear fashion with increasing mortality from 

exploitation (F). By contrast, equilibrium population size under either delayed 

reproduction (Fig. 8: rep) or Allee effects (Fig. 9: 8=3 and 8=5) declined in a log-linear 

manner with increasing F at low values of F, but then rapidly collapsed to extinction at 

moderate values of F. In the case of the Allee models (Fig. 9), increasing the value of 8 

did not affect the dynamics at low values of F, but it reduced the critical value at which 

the population collapsed to extinction. A strong Allee effect (Fig. 9: 8=5) and heavy 

exploitation prior to the age of maturity (Fig. 8: rep) had comparable, drastic effects on 

extinction probability under exploitation.

DISCUSSION

The major finding of this investigation is that the lack of reproductive activity in queen 

conch at low population density could be due not just to an attenuation in encounter rate 

with potential mates (i.e. a classic Allee effect -  Stoner and Ray-Culp 2000), but also to 

other processes associated with low population density. A diminished encounter rate at 

low density may have a significant effect on reproduction in conch. Although 

reproductive activity was never observed in the low-density sites in the field (Stoner and 

Ray-Culp 2000, this study), there was some reproductive activity in conch from the low- 

density sites when translocated into the high density enclosures (Fig. 5). However, the 

significant differences in reproductive activity of conch held in various experimental
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treatments at high density indicate that there are additional significant processes acting on 

reproductive activity that compound the Allee effect in encounter rates (Table 1). The 

decline in reproductive activity associated with low adult conch density also seems to 

involve more subtle mechanisms related to age and reproductive behaviour.

The findings also indicate that an observed correlation between density or population size 

and some measure of fitness cannot be used exclusively as evidence for an Allee effect, 

which implies a causal relationship between population density and fitness (Courchamp 

et al. 1999, Stephens et al. 1999). Density and fitness may be related to a third causal 

factor, so that although mean fitness may decline in areas of low population density, it 

may nonetheless not be an Allee effect. A correlation between density and some measure 

of fitness has been used in many empirical studies of Allee effects to infer a causal 

relationship (e.g., Lamont et al. 1993, Shepherd and Brown 1993, Clutton-Brock et al. 

1999, Stoner and Ray-Culp 2000). In many cases, experimental tests of Allee effects are 

impractical (e.g. for protected species), but this study shows that the results of 

observational studies need to be interpreted with care.

I should note that this study was carried out in a different habitat to that of Stoner and 

Ray-Culp (2000), although in the same geographical location. They reported very little 

reproductive activity in conch populations in shallow seagrass beds, and concentrated on 

conch in deeper (>10 m) sand habitats. In contrast, in surveys for appropriate sites for this 

experiment, I found the highest densities of conch and rates of reproductive activity in the 

two high density seagrass sites (Rainbow and Bock Cay), and therefore decided to focus
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on this environment. It is therefore possible that the results of Stoner and Ray-Culp have 

a different explanation to our results.

Our findings did not support the hypothesis that the reduction in queen conch 

reproductive activity (at least in these seagrass beds) was due exclusively to an Allee 

effect mediated by a reduced encounter rate at low population density. Various 

alternative hypotheses exist (Table 1). Two factors argue against the hypothesis that 

habitat quality in the low-density sites was poor (Table 1: Ha4); (1) condition indices at 

low-density sites were comparable to high-density sites or higher and (2) the periodic 

occurrence of high densities of juveniles at both the low density sites (Marshall 1992,

Ray and Stoner 1995, pers. obs.). Morphological differences between conch at the 

different sites allowed us to reject the hypothesis of free migration between high- and 

low-density sites (Table 1: Ha2).

Morphological differences could be ontogenetic, or could arise as a response to 

differential predation. There is some evidence that juvenile conch respond to predation by 

thickening shells, since hatchery reared conch have thinner shells and higher mortality 

from predation (Ray et al. 1994). However, there is no evidence for this in adults. The 

main adult predators are tulip snails (Fasciolaria tulipa), nurse sharks (Ginglymostoma 

cirratum) and rays of various species, of which only the shark and rays crush the shells. 

These predators are wide ranging and I saw no evidence for differences in their density 

between the sites. The most likely explanation for the morphological differences between 

high and low-density sites is that the adult conch at the low-density sites were younger 

(Stoner and Schwarte 1994) and not all as functionally mature (Egan 1985). A difference
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in the ages of morphological and functional maturity has been observed in the queen 

conch (Egan 1985) and other gastropods (e.g., abalone; Shepherd and Brown 1993), 

which tend to allocate an increasing proportion of resources to reproduction as they age 

(Yonge and Thompson 1976), or in other invertebrates such as lobsters and crabs 

(Lipcius 1985).

Late maturity will evolve in species with deterministic growth if reproduction is costly 

for future reproductive output or survival and if mortality is low (Roff 1992, Bulmer 

1994). There is no direct information about the cost of reproduction in queen conch 

relative to their size. However, females produce several large egg masses over the course 

of a reproductive season, each containing -400,000 eggs (Stoner et al. 1992), while 

males produce apyrene (anucleate) sperm as well as DNA-bearing sperm. (The increase 

in sperm volume through the production of apyrene sperm is thought to play a role in 

sperm competition; Silberglied et al. 1984; Wedell 2001). Both sperm and eggs are 

energy rich (Reed 1995). There is also a cost to aggregation, at least in juveniles (Stoner 

and Ray 1993). Therefore it is possible that reproduction is energetically costly in queen 

conch relative to other gastropods.

Delayed functional maturity is an integral, evolved life-history component. Allee effects, 

in contrast, are either selectively neutral, if conditions of low density rarely or never 

occur, or function as the cost component of a cost-benefit trade-off if they are a corollary 

of some trait that improves fitness at intermediate or high density. I therefore presumed 

that delayed functional maturity and Allee effects might have different effects on the 

population dynamics. Although simulated populations in the delayed maturity model and
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the Allee model fared worse than those in the null models, both the delayed functional 

maturity model (model “rep” in Fig. 8) and the Allee effect model (models “5=3” and 

“5=5” in Fig. 9) affected population dynamics in a strikingly similar way, increasing 

vulnerability to exploitation and causing extinction at significantly lower values of 

mortality than the null models. Both exhibited threshold effects, with a rapid decline in 

the equilibrium population size to extinction above a critical value or small critical range 

of additional mortality. If anything, the effects of exploitation before the age of functional 

maturity were more severe than even the most severe Allee effects.

From the perspective of queen conch conservation, our results are potentially disturbing 

since the basis of management in many areas, including the Bahamas, is a ban on the 

exploitation of conch until they have reached morphological maturity, as indicated by the 

presence of a “well-formed” flaring lip. Our experimental findings suggest that young 

adult queen conch, which are legally exploited, may not be functionally mature even at 

lip thickness values up to 11 mm (Fig. 6). Hence, a large fraction of the population of 

queen conch may be subject to exploitation before reproducing. This situation was 

modelled as the “rep” treatment in our simulations, with delayed reproduction and 

immediate exploitation of adults that do not reproduce. In this case, moderate levels of 

fishing mortality led to non-linear collapses in equilibrium population size, indicating that 

this species may be much more vulnerable to exploitation and population collapse than 

previously thought. In fact, population collapses have been common in heavily exploited 

queen conch populations (Berg and Olsen 1989). Moreover, the likelihood of restoration
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success may be diminished substantially by a combination of Allee effects and delayed 

functional maturity.
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TABLES

Table 1

Expected level of reproductive activity from each translocation given alternative 
mechanisms associated with low population density. All conch were at high density in 
enclosures. There were four treatments: (1) conch from high density source sites 
translocated to enclosures in low density host sites (high-low); (2) control: conch from 
high density source sites put back into enclosures at the same site (high-high); (3) conch 
from low density source sites translocated to high density host sites (low-high) and (4) 
control (low-low).

Allee
effect?

Mechanism Translocation 

(Source site density -  Host site density) 

high-high high-low low-high low-low

Ho Yes Encounter rate high high high high

HAi No Environmental trigger 
for reproduction

high low high low

H a2 No Seasonal reproductive 
migration into 
spawning sites

high high low low

H as No Functionally mature 
conch in high density 
areas; immature in low 
density areas

high high low low

H a4 No Poor condition in low 
density areas

high high low low
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Table 2

Incidents of mating (copulation and pairing) in each treatment for the two experiments. 
Note that for logistical reasons the CBC-Rainbow system was checked more frequency 
during each experiment so that higher numbers of observed matings in that system reflect 
this. I calculated the reproductive index as an estimate of reproductive activity which is 
unbiased by numbers of checks as well as by the few escapes.

Source site Host site Matings 
Experiment I

Matings 
Experiment II

CBC CBC 3 0

CBC Rainbow 2 6

Rainbow Rainbow 16 25

Rainbow CBC 4 2

Shark Rock Shark Rock 3 2

Shark Rock Bock Cay 2 0

Bock Cay Bock Cay 7 8

Bock Cay Shark Rock 3 11
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Table 3

Generalised transition matrix for population model. Ti=time to physiological maturity 
(time spent as juvenile), Mi=juvenile mortality, Ma=adult mortality, Fi=mortality due to 
exploitation in adult stages 1 and 2, F2=mortality due to exploitation in adult stage 3, 
NAt=total number of adults at time t and a, (3 and 8 are parameters for the density 
dependent equation. The parameter D fixes delayed reproduction (D=0, adult stages 1 and 
2 do not reproduce) vs. immediate reproduction (D=l, all adult stages reproduce). Values 
of Tj, Mi and Ma were fixed to be approximately appropriate for queen conch, although 
since the model is heuristic and comparative, and values were equal across all models, 
they do not affect the results. In the case presented here, Ti=3, Mi=2 and Ma=0.5.

Juvenile Adult 1 Adult 2 Adult 3

Juvenile (1 -1 /T i) • e'Mi D • oNa/ 8'^ D • aNAt(5'1} (xN a / 5^

l+PNAt8 l+PNAt8 l+PNAt8

Adult 1 1/Tj •
- l/2(Mi+Ma+Fl)

0 0 0

Adult 2 0
g -(Ma+Fl)

0 0

Adult 3 0 0 g -l/2(2Ma+Fl+F2) g -(Ma+F2)
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FIGURES

Fig. 1
Relationship between per capita reproductive activity and adult queen conch density in 
the Exuma Cays, Bahamas (adapted from Stoner and Ray-Culp 2000).
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Fig. 2 

Map of sites in the Exuma Cays, Bahamas. 
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Fig. 3

Life-cycle diagram for the queen conch population matrix projection model. The life 
cycle is composed of a juvenile stage (Jl), and three adult stages (A1-A3). The transition 
probabilities (5) reflect growth and survival to the next stage (Table 3), including 
retention of some fraction of juveniles in the juvenile stage (Sji.ji) and adults in the last 
adult stage (Aj). Reproductive contributions of each adult stage are indicated as F; to Fj.

J1 —► A1 —► A2 -► A3

I t S j i -A1 $A1

®J1-J1
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Fig. 4
The effect of the exponent 8 in the density-dependent equation for reproductive output.
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Fig. 5

Mean reproductive indices for each combination of Source site density and Host site 
density. Treatment combinations that did not differ significantly (Student-Newman-Keuls 
pairwise comparisons) share the same letter. Error bars are one standard deviation.
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Fig. 6

Lip thickness (mm) and shell length (cm) for subsampled conch from high and low 
density sites.
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Fig. 7

Ratio of flesh wet weight (g) to shell weight (g) (condition index), by site and sex. Sites 
B and R are high density sites, sites C and S are low density sites.
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Fig. 8

Equilibrium adult population size vs. exploitation mortality (F) in model runs (see 
Appendix). In model nulll all adults reproduce and all adults are exploited; in model 
null2, adult stages 1 and 2 do not reproduce and are not exploited; in model rep, adult 
stages 1 and 2 do not reproduce but are exploited (delayed functional maturity model). 
The model is heuristic and only comparative values of population size and F are 
meaningful.
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Fig. 9

Equilibrium adult population size vs. exploitation mortality (F) in Allee model runs (see 
Appendix). Allee models are similar to model nulll (see Fig. 8) but with an Allee effect 
in reproduction at low density. The value of 5 indicates the strength of the Allee effect; 
5=1 -  no Allee effect; 5=3 - intermediate effect, 5=5 - strong effect (Stoner and Ray-Culp 
2000). The model is heuristic and only comparative values of population size and F are 
meaningful.
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ABSTRACT

An Allee effect is positive density dependence in individual fitness at low density, and 

may result in thresholds below which populations are not viable. It is well known that 

some types of predator-prey interactions are unstable; this is partly because predators can 

cause Allee effects in prey populations. I use a series of simple heuristic models to 

develop a theoretical framework for predator-driven Allee effects. Predators can create an 

Allee effect if they have a Type II functional response without a Type m  aggregative or 

numerical response, or vice versa. In addition, predation must be the main driver of prey 

dynamics, and prey must have little spatial or temporal refuge from predation. I present 

several unrecognised examples of predation-driven Allee effects from the literature, the 

majority of which come from systems that have been perturbed by exploitation or 

introduced predators. Unlike most mechanisms for Allee effects studied to date, this 

mechanism does not arise from the specifics of prey life history, but from a general 

ecological process, which makes it difficult for managers to predict and prepare for.
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INTRODUCTION

The Allee effect

In classical steady-state population models such as the logistic model, the per capita 

population growth rate is highest at low population size or density (negative density 

dependence). However, individual fitness can be compromised at low density, such that 

per capita population growth rate may be reduced at low population size or density 

(positive density dependence). If the population growth rate declines below replacement 

levels, this can result in a critical threshold below which the population will become 

extinct (Courchamp et al. 1999, Stephens and Sutherland 1999). This positive density 

dependence at low population size or density is termed an Allee effect, after the 

pioneering ecologist Warder Clyde Allee (Allee 1931). An Allee effect can be a function 

of population size or density (or both), depending on the mechanism.

A key feature of an Allee effect is positive density dependence in the per capita 

population growth rate at low density, rather than at any other point in the relationship 

between population growth rate and population density. From a conservation perspective, 

this is the most critical consequence of an Allee effect - its potential to drive a population 

to extinction by reducing per capita population growth rate to negative values as density 

declines to low levels.

Above, I frame conceptual mechanisms for the Allee effect in terms of individual fitness, 

but define the Allee effect in terms of population growth rate. Numerous density- 

dependent and density-independent factors affect fitness; population growth rate will
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therefore not always react predictably to changes in one component of fitness with 

density. Hence, any particular component Allee effect (positive density dependence in 

one component of fitness such as reproductive output) will not inevitably produce a 

demographic Allee effect (positive density dependence in the population growth rate; 

sensu Stephens et al. 1999; see Levitan 1991 for an example). Whether a component 

Allee effect creates a demographic Allee effect depends on the trade-offs between 

positive and negative density dependence due to various component effects. Thus, a 

component Allee effect will create a demographic Allee effect and drive a population to 

extinction only if that component of fitness is an important control of population 

dynamics at low density.

Component Allee effects: reproduction vs. survival

Individual fitness has, broadly, two components that can interact with population density; 

reproductive output and survival probability. Though reproductive output (which includes 

fecundity, reproductive lifespan and age at maturity) and survival probability will 

typically vary with habitat features, age and life-history stage, each may also have 

various density-dependent relationships in different traits or stages.

Empirical studies of Allee effects have largely focused on positive density dependence in 

reproductive output, such as cooperative breeding in mammals (Clutton-Brock et al.

1999, Courchamp and Macdonald 2001), broadcast spawning in marine invertebrates 

(Levitan 1991, Levitan and Young 1995, Baker and Tyler 2001), pollination in plants 

(Lamont et al. 1993, Widen 1993, Hackney and McGraw 2001) and mating in species
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with low mobility or small home ranges (Kuussaaii et al. 1998, Stoner and Ray-Culp 

2000). Allee effects driven by reproduction are consequently fairly well accepted in the 

literature, and in some cases reproduction has become part of the definition of an Allee 

effect (e.g. Pulliam and Dunning 1997). The focus on specific reproductive traits that are 

likely to provide mechanisms for Allee effects has left many conservation biologists with 

the idea that Allee effects are generally confined to species with a limited range of life 

histories. Here I focus on Allee effects in survival probability caused by predation. This is 

a more general ecological mechanism that may be applicable over a range of species with 

different life history traits.

The predator functional response and the Allee effect

In a predator-prey relationship, predators react to prey density in three interrelated ways:

1. Individual predators change their feeding rates in response to changes in prey density 

(the functional response);

2. Predators aggregate at patches of high prey density (the aggregative response);

3. Predator population size varies as a function of prey availability (the numerical 

response).

The predator functional response is often seen by modellers as a simple mechanism for 

creating an Allee effect (Scheiber in press, Frank and Brickman 2001). Conversely, it is 

often overlooked as a mechanism by empiricists and conservation biologists. In this paper 

I lay out the theoretical basis for Allee effects driven by predator functional response.
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Using simple, heuristic models, I show how some types of predator functional response 

create an Allee effect, while other types do not. I also show that the functional response 

interacts with the numerical and aggregative response, and what combinations of each 

can create an Allee effect. I then use this theoretical foundation as a basis for a search for 

examples of predation-driven Allee effects in the empirical literature.

MODELS 

Functional response model

The functional response defines the rate of prey consumption for a given number or 

density of predators, as a function of prey density (Holling 1959). The per capita 

functional response can also be interpreted (given appropriate parameterisation) as the 

probability of a prey individual being consumed by a predator as a function of prey 

density, and is calculated by dividing the functional response by the prey density. A prey 

individual’s probability of not being consumed (prey survival probability) is (1 -  the per 

capita functional response).

After the pioneering work of Holling (1959), predator-prey theory traditionally defines 

three types of functional response: linear (Type I or Lotka-Volterra), hyperbolic (Type II) 

and sigmoid (Type HI). Other types of functional response are possible; these 

characteristically alter predator-prey dynamics only at high density (Arditi 1982, Crawley 

1992, Sabelis 1992) or they incorporate aggregative and numerical responses (ratio- 

dependent functional responses; Arditi and Ginzburg 1989, Hanski 1991), which I 

discuss separately. The functional response may also be defined in terms of the overall or
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mean functional response of a predator guild, which can also be measured and defined as 

Type I, Type II, Type DI etc. (Seitz et al. 2001). For the purposes of this heuristic model 

it does not make any difference whether I regard the predators as one species or several, 

as long as their overall responses can be defined.

Type I (linear) functional response: In a Type I functional response, prey consumption 

rate per predator initially increases linearly with prey density, before reaching a 

maximum. The Type I functional response is considered a realistic model mainly for 

passive predators such as filter feeders and web-spinning spiders, although it may be 

more widespread (Arditi 1982).

I model a Type I functional response as follows (Fig. 1A):

y = a N  for N  < iVcrit

y = a  Went for N  > Ncrit

where y  = rate of prey consumption per predator, N  = prey density, Nait = prey density 

where predator consumption rate reaches maximum, a = coefficient.

Corresponding prey survival probability for a given density of predators, as a result of 

predation with a Type I functional response (assuming appropriate coefficient y such that 

0 < p<  1; Fig. IB):

p  = 1 - y for N  < lVcrit

p=  1 -  (ylVcrit / N) for A > iVcrit
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Type II (hyperbolic! functional response: In a Type It functional response, predator 

feeding rate rises hyperbolically to an asymptote as prey density increases. This is 

probably the most common type of functional response found in field studies, for a large 

range of vertebrate, invertebrate and herbivore-plant predator-prey systems (Arditi 1982, 

Begon et al. 1996).

I model a Type II functional response as follows (simplified from Holling 1959; Fig. 1C): 

y = aN I (1+p/V)

Corresponding prey survival probability for a given density of predators, as a result of 

predation with a Type II functional response (with appropriate parameterisation; Fig.

ID):

p = l -  [l / (l + yAO]

Type HI ('sigmoid') functional response: A Type HI functional response is similar to a 

Type II for high prey densities, but the slope of the curve is maximised at intermediate 

rather than low prey density. This can arise from “prey switching”, whereby predators 

with more than one prey species target only the more abundant species.

A Type III functional response can be modelled as follows (Fig. IE):

y = clN 2
l + $ N 2
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Corresponding prey survival probability for a given density of predators, as a result of 

predation with a Type HI functional response (Fig. IF):

p  = 1 -  [iV / (1 + yN2)]

Functional and aggregative response model

Next I consider the net effect of a Type II functional response with various forms of 

aggregative response. The functional response model above assumes a linear aggregative 

response, i.e. that predator numbers per prey are constant across the full range of prey 

density. However, I can incorporate other aggregative responses into the model in exactly 

an analogous way a functional response: i) constant predator numbers (no aggregative 

response); ii) constant predator to prey ratio, i.e. a linear (Type I) aggregative response; 

iii) asymptotic (Type II) aggregative response; and iv) sigmoid (Type HI) aggregative 

response. The total probability that a prey individual will be killed by a predator is the 

per capita functional response (the probability that an individual predator will kill that 

prey individual as a function of prey density) multiplied by the number of predators 

encountered by that prey individual as a function of prey density (the per capita 

aggregative response).

Corresponding prey survival probability ip) with a Type II functional response and the 

various aggregative responses are:

Constant predator numbers (no aggregative response): p = 1 -  I / N (l + yN)

Linear numerical response: p = 1 — 1 / ( 1 +  yN)
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“Type EL” numerical response: p = l - l / ( l  + 8iV)(l + yN)

“Type m ” numerical response: p  = 1 -  N /  [(1 + SiV2)(l + yAO]

where 5 is the coefficient for the aggregative response and y is the coefficient of the 

functional response.

Fig. 2. shows prey survival probability as a function of prey density with a Type II 

functional response and the above types of numerical response.

Adding predator density to the functional response model

I can also extend the functional response model to look at prey survival probability as a 

function of both prey and predator density. Prey encounter probability (p(enc)) as a 

function of predator density can be modelled as a simple hyperbolic curve:

p(enc) = 8P / (1 + SP) where P  = predator density

The per capita functional response (in this case, a Type II functional response) is the 

probability that an individual prey will be consumed if it encounters a predator as a 

function of prey density (p(con|enc)):

p(con|enc) = 8 /1  + yN where N  = prey density

The total probability of a prey individual being consumed by a predator is the product of 

the probability that the prey individual will encounter a predator and the probability that 

the prey will be consumed if it is encountered:
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p(con) = p(con|enc). p(enc)

with corresponding prey survival probability (Fig. 3):

1 -  p(con|enc). p(enc) = 1 -  5yP / (1 + 8P)(1 + yN)

MODEL RESULTS 

Functional response model

For an Allee effect, prey survival probability should be positively density dependent at 

the low density end of the range, all the way to the origin. Positive density dependence in 

prey survival probability is indicated by a positive slope in the relationship between prey 

survival probability and prey density (Figs. IB, ID and IF).

The Type I functional response is positively density dependent above Ncrit, but density 

independent below Ncrit. Hence this functional response does not cause an Allee effect 

(Fig. IB).

For a Type II functional response, the slope of the curve is positive across the entire 

range of prey density, and the slope is steepest close to the origin. Hence (all else being 

equal), prey fitness due to predation is always positively density dependent with a Type II 

functional response. Furthermore, fitness declines most strongly with density when 

density is low. Hence the Type 13 functional response has the potential to create a 

deterministic Allee effect in prey population dynamics (Fig. ID).
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Like a Type I functional response, a Type IQ functional response results in positive 

density dependence in prey fitness at high prey density but not at low prey density. In 

fact, prey fitness increases as density declines at low density. This means that a Type IQ 

response can potentially keep prey at a low stable equilibrium corresponding to the 

minimum in the graph above (sometimes called a “predator pit”). Therefore, this 

functional response does not have the potential, a priori, to create an Allee effect (Fig. 

IF).

Functional and aggregative response model

The Allee effect generated by a Type Q functional response is cancelled out by a Type IQ 

aggregative response. However, with other types of functional response, or with constant 

predator density, the Allee effect is maintained (Fig. 2). This also applies in reverse; a 

Type Q aggregative or numerical response can create an Allee effect that is mitigated by 

a Type QI functional response, but maintained by other types of functional response. A 

Type Q functional response with constant predator numbers creates the strongest Allee 

effect, followed by a Type Q response with a Type I aggregative response, followed by 

two Type Q responses.

Adding predator density to the functional response model

Prey survival probability depends mainly on predator density (P) at low prey density, and 

mainly on prey density (N) at high predator density (Fig. 3). The true relative importance 

of prey and predator density depends to some extent on the coefficients (here set to be 

equal), but this model implies that dynamics at low prey density will be dominated by
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changes in predator numbers rather than prey numbers, i.e. the aggregative or numerical 

rather than the functional response. Thus the shape and strength of the numerical or 

aggregative response is likely to be important in determining the strength of the predator- 

driven Allee effect.

DISCUSSION 

Functional response and the Allee effect

The Type II functional response shows strong positive density dependence at low 

population density (Fig. ID; Hassell and May 1973, Murdoch 1973, Hassell 1978).

Hence the Type II functional response can create a component Allee effect in predation 

mortality. Other functional response curves are either negatively density dependent or 

density independent at low prey density, and will therefore not cause an Allee effect. 

However, depending on the prey density range over which the Type I and Type HI 

functional responses operate, they may suppress prey to low density or population size 

where a population may be vulnerable to extinction due to environmental or demographic 

stochasticity (a “predator pit”). There is an ongoing debate about whether demographic 

stochasticity should be considered an Allee effect -  it is not a density dependent process 

perse, but the extinction probability associated with it is density dependent (Lande 1998, 

Dennis 2002, Levitan and McGovern in press). If so, all three main types of functional 

response have the potential to cause Allee effects. However, in this paper I focus on 

deterministic Allee effects, which can be caused only by a Type II functional response.
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Predator-prey models incorporating a Type II functional response normally have unstable 

prey dynamics (Hassell and May 1973, Murdoch 1973, May 1974, Oaten and Murdoch 

1975, Hassell 1978, Crawley 1992) and can cause critical population or patch size effects 

in prey (Sinclair et al. 1998, Cantrell et al. 2001). However, the association between 

functional response and Allee effects in prey is rarely made in empirical studies, the 

predator-prey literature and general ecological texts. Conversely, some modelling studies 

suggest a Type II predator functional response as one of the simplest mechanisms for 

generating an Allee effect (e.g. Schreiber in press). I would like to make the link between 

conservation biologists working on Allee effects, and the extensive predator-prey 

modelling literature. From a conservation perspective, it is critical to realise that 

predation has the potential to create an Allee effect in prey dynamics, without recourse to 

specific traits in the prey life history.

Numerical or aggregative response

A Type III predator aggregative or numerical response has the potential to eliminate the 

Allee effect caused by a Type II functional response (Fig. 2). Likewise, a Type III 

functional response can stabilise dynamics with a Type II aggregative or numerical 

response. However, if either response is Type II, and neither is Type HI, a component 

Allee effect in prey mortality from predation is the result. (Constant predator numbers 

regardless of prey density, in combination with a Type I functional response, or 

conversely constant predators per prey with a constant predator feeding rate regardless of
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prey density would also create an Allee effect. The former might be relevant, for 

example, in sessile filter feeders such as corals, but I don’t consider it further here.)

Given the importance of predator density at low prey density (Fig. 3), the form of the 

aggregative or numerical response is likely to be very important in determining the 

presence and strength of a predator-driven Allee effect. Unfortunately, the form of the 

aggregative or numerical response is rarely, if ever, quantified in empirical studies. 

Presumably, a Type IE aggregative response would result when predators actively avoid 

areas of low prey density as well as actively seeking out areas of high prey density, and 

would be unlikely where predators interfere with each other, are territorial or agonistic 

(Roger and Hassell 1974, Perkins-Visser et al. 1996, Rohner and Krebs 1998, Clark et al. 

1999). A Type IH numerical response would result if predators suffered elevated levels or 

mortality or reproductive failure below a critical prey density, and would be less likely in 

predators with alternative prey.

Our model is very simplified, notably in that it focuses on an aggregative rather than a 

numerical response for predators. Aggregative and numerical responses operate on 

different time-scales, and predators may have both, with each taking a different form. The 

relative strengths of the functional, aggregative and numerical response is also likely to 

be important in determining the presence and strength of an Allee effect. A weak Type m  

aggregative response may not be enough to stabilise prey dynamics with a very strong 

Type II functional response (and vice versa). However, the model gives a useful 

overview of where predator-driven Allee effects are likely to occur. Since the shape and 

strength of responses are variable in space and time (Morgan et al. 1987, Hanski 1991,
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Fauchauld et al. 2000, Johnstone and Norris 2000) and difficult to measure, a more 

complicated model may not be justified.

The conclusions from this model correspond well to those from more specific predator- 

prey models. In a Lotka-Volterra predator-prey system (linear functional response), 

aggregation is generally destabilising unless it is accelerating, i.e. there are 

disproportionate numbers of predators in dense patches (Murdoch and Stewart-Oaten 

1989). This corresponds to a Type m  aggregative response. In a review of predator-prey 

models, Murdoch (1994) concludes that the stabilising effect of predator aggregation in 

systems with overlapping generations is open to question. This makes sense since the 

form of the response (i.e. the specifics of a given model) is critical to prey dynamics.

Prey distribution

Prey can have three types of distribution: random, uniform and clumped. For a random 

distribution, functional and aggregative responses are both relevant. As the distribution 

becomes more uniform, there is less scope for an aggregative response, so a functional 

response-driven Allee effect potentially becomes more important. As the distribution 

becomes more clumped, a higher proportion of prey is living at high density, so the 

functional response becomes less relevant and the aggregative response more important. 

An Allee effect driven by a Type II aggregative or numerical response might be possible 

in this situation. For extremely aggregated distributions (such as schooling fish), 

predators can respond to prey population size or density both within aggregations and
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between aggregations. I don’t consider this possibility further here, except to note that the 

situation for highly aggregated prey is potentially complicated.

Other factors that may eliminate Allee effects

Prey population size: Perhaps the simplest mechanism for dealing with the Allee effect is 

prey population size; if the prey population is large or dense, and stable, it is never in the 

part of the curve where Allee effects are important. Instead it is likely to be regulated by 

other density-dependent factors such as intraspecific competition. The Allee effect could 

still be “latent” in the prey population, and could manifest itself if population size or 

density were reduced (e.g. through overexploitation or habitat loss). This predator 

avoidance strategy is sometimes called the “dilution effect” (Inman and Krebs 1987).

Spatial heterogeneity: The literature on the effect of spatial heterogeneity on predator- 

prey relationships is substantial (Hassell 1984, Comins and Hassell 1987, Kareiva 1987, 

Latto and Hassell 1988, Taylor 1990, Hawkins et al. 1993, Murdoch 1994, Cosner et al. 

1999, Takagi 1999, McCauley et al. 2000), and can only be summarised briefly here. In 

general, spatial heterogeneity in predator or prey distribution is a stabilising force, 

although there are exceptions (Kareiva 1987, see below).

It was recognised early on that a spatial refuge from predation can stabilise predator-prey 

systems (Gause 1934, Connell 1970, Hassell 1978, Murdoch et al. 1996 and references 

therein), although field experiments have yielded equivocal results (Murdoch et al. 1996). 

A Type II functional response with a fixed number of prey in a spatial refuge will cross 

the x-axis to the right of the origin (Fig. 4). In terms of prey dynamics this yields results
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that are generally indistinguishable from a Type III functional response, with a stable 

prey equilibrium at low density, depending on refuge size and dispersal rates. In models, 

refuges can stabilise populations if they protect either a fixed proportion of the prey 

population or a fixed number of prey, depending on the predator-prey model (Hassell 

1978, Murdoch et al. 1996), with their effectiveness depending mainly on the rates of 

prey dispersal between the refuge and vulnerable habitats (Takagi 1999).

A prey metapopulation structure (prey subpopulations connected by dispersal) also seems 

to reduce the likelihood of an Allee effect in models (Taylor 1990, de Roos et al. 1998, 

Hanski 1999, Frank and Brickman 2000, 2001) and in practice (McCauley et al. 2000, 

but see also Murdoch et al. 1996). The crucial characteristic for metapopulation stability 

is that the dynamics of prey subpopulations are not synchronous, such that individual 

subpopulations which have declined to low density and are suffering from the Allee 

effect have a high probability of being “rescued” (brought back above the critical Allee 

threshold) by immigration from neighbouring patches that are at high density (Taylor 

1990, McCauley et al. 2000). However, a metapopulation can also suffer an “Allee 

effect” in that it may require a critical number of subpopulations to remain viable, so 

populations with a metapopulation structure are certainly not immune from threshold 

effects analogous to Allee effects (Courchamp et al. 2000, Frank and Brickman 2000, 

2001).

Habitat fragmentation and the attendant population subdivision may be either beneficial 

or detrimental to the metapopulation. McCauley et al. (2000) showed that a series of 

connected prey subpopulations in fragmented habitats had more stable dynamics than a
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homogeneous environment. Habitat fragmentation can also disrupt a predator aggregative 

response and effectively turn a metapopulation into a series of separate populations, both 

of which make the Allee effect more likely to lead the metapopulation to extinction 

(Kareiva 1987). Thus the scale of fragmentation relative to the scale of the prey and 

predator populations and the dispersal abilities of the prey are critical for patchiness to 

provide protection from the Allee effect.

Theoretical framework

There is a set of characteristics that are necessary for a predator-prey system to be 

susceptible to predator-driven Allee effects.

1. A Type H predator functional or aggregative/numerical response, without a Type III 

response in the other.

2. Predation must be a key driver of prey dynamics. In this model, our dependent 

variable is prey survival due to predation. This is only one component of fitness. If 

predation is not the major constraint on survival, positive density dependence in this 

component may not translate into positive density dependence in the population 

growth rate -  a demographic Allee effect.

3. No spatial or temporal refuge from predation for prey.

How likely are these conditions to be met in natural systems? The Type II functional 

response seems to be the most common (Arditi 1982, Begon et al. 1996) for generalist 

and specialist predators (Murdoch 1969, Murdoch and Oaten 1975, Katz 1985, Sinclair et
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al. 1998, Johnstone and Norris 2000). Generalist predators, or even predators with two 

main prey species, need not show any numerical or aggregative response to a given prey 

species (Katz 1985, Cappuccino 1987, Sinclair et al. 1998).

In addition, prey as well as predator life history plays a role in determining the functional 

response. Some predator avoidance strategies, such as crypsis and refuges, are more 

effective at low density, and predators on prey with these strategies are likely to have a 

Type III functional response. The same predators on prey species with passive, non­

density dependent predation avoidance strategies such as armouring, spines or 

aposematic colouring are likely to have a Type H functional response (Cappuccino 1987, 

Rangeley and Kramer 1998, Jeschke and Tollrian 2000, Seitz et al. 2001). Many of these 

prey species may take advantage of positive density dependence and use weight of 

numbers as an anti-predator strategy (the dilution effect).

I have also discussed other mechanisms that mitigate Allee effects or their consequences 

in these systems. In fact, given that the predator-prey systems I observe in natural 

systems are stable in evolutionary time, it is unlikely that prey have come under frequent 

serious threat of extinction from predator-driven Allee effects. It therefore seems likely 

that most natural predator-prey systems have some (or several) stabilising mechanisms 

that reduce or eliminate predator-driven Allee effects, even if the stabilising mechanism 

remains unexplained (Murdoch et al. 1996). Thus a fourth criterion for predator-driven 

Allee effects is probably that the system is perturbed in some way.
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Empirical evidence for predator-driven Allee effects

I searched the literature for examples of predator-driven Allee effects. I looked for both 

component Allee effects in survival and demographic Allee effects. In order to show a 

predation-driven component Allee effect, I need to find data that show that prey in sparse 

or small populations have higher mortality than in dense or large populations and that this 

increase in mortality at low density is due to predation. To show a predation-driven 

demographic Allee effect I need to show that predation causes a lower population growth 

rate or higher extinction risk for small or sparse populations.

Hence I required data on predation rates, prey dynamics and (if possible) predator 

functional response across a range of prey densities. I reviewed over 100 published 

predator-prey studies. I did not find enough information to do a true meta-analysis, since 

in most papers data were not available across a large enough range of prey densities to 

decide whether an Allee effect was operating or not. I simply searched for examples of 

studies that show, or strongly suggest, predator-driven Allee effects. These are discussed 

below according to the type of evidence that they provide. Interestingly, none of the 

papers discussed below, which provide evidence for predation-driven Allee effects, 

mention the phrase “Allee effect” anywhere.

1. Critical population size below which the prey goes extinct due to predation.

Sinclair et al. (1998) present a clear example of a predator-driven demographic Allee 

effect in a study of small populations of Australian native marsupials suffering predation 

due to introduced predators. Under predation, black-footed rock wallabies (Petrogale
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lateralis) had a threshold population size of 5-10 below which population went extinct. 

When foxes were removed there was no such threshold and populations stabilised. 

Sinclair and Pech (1996) also give an example of a wildebeest (Connochaetes taurinus) 

population that is periodically cut off from the larger population by flooding and 

extirpated by lions (Panthera led), while the larger population is stable.

2. Higher per capita predation rate as population size decreases to low density, with 

demographic consequences

Sinclair et al. (1998) have two examples of accelerating population decline due to 

predation; the eastern barred bandicoot (Perameles gunnii) and the quokka (Setonix 

brachyurus), where per capita predation rates increased as population size declined. 

Reintroduced populations all eventually went extinct due to predation. Analysis of 

predation rates indicates an Allee threshold (switch from negative to positive population 

growth rate) of about 100-150 animals for the quokka.

Seabird colonies are a good example of large population size and density as a predator 

avoidance strategy. Several species suffer higher per capita predation rates in smaller 

colonies (Gilchrist 1999 and references therein, Cuthbert 2002). Cuthbert (2002) showed 

that larger colonies of Hutton’s and sooty shearwaters (Pujfinus huttoni, P. griseus) are 

thriving, with low predation rates, while mortality increases exponentially as colony size 

decreases. Small colonies suffer high predation rates and are declining, with some 

colonies having already gone extinct. Again, introduced predators are implicated (feral 

pigs, Sus scrofa, and stoats, Mustela erminea), with pigs reducing colony size below the
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Allee threshold for Type II predation by stoats. Stoats are limited by over-winter survival 

and territoriality, which overrides any numerical response to shearwater numbers. In this 

case, the Allee threshold for stoat predation appears to be around 600 breeding pairs. 

Likewise, small, sparse thick-billed murre (Uria lomvia) colonies experience higher 

predation rates from gulls than large, dense colonies, and the latter are increasing in size 

while the former are declining. Smaller, sparser colonies were reduced from higher 

density by hunting (Gilchrist 1999).

Predatory mergansers (Mergus merganser) take a higher proportion of migratory salmon 

in years when the population is smaller (Wood 1987). Human “predators” have also been 

shown to have a Type II functional response and a limited numerical response in 

commercial, recreational and artisanal fisheries (Peterman 1980, Rose and Kulka 1999, 

Post et al. 2002). Due to fish aggregative behaviour and fishers’ knowledge, fish do not 

usually become more difficult to catch as population size declines, and catchability may 

increase. Numerical and aggregative responses are limited by i) travel time, ii) investment 

in expensive equipment, iii) economics, which dictates that prices rise with rarity and iv) 

reduced expectations of catches as stocks decline (the “sliding baseline” phenomenon). 

Thus fishing can cause a “predation”-driven Allee effect in fish stocks, which can lead to 

stock collapses (Rose and Kulka 1999, Post et al. 2002).

(There has been a great deal of discussion of demographic Allee effects, or 

“depensation”, in the fisheries literature (e.g. Myers et al. 1995, Frank and Brickman 

2000, 2001). Generally, the emphasis is not on the mechanism for Allee effects, but 

rather whether they might explain the fact that stocks reduced to low density by
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overexploitation often fail to recover as fast as demographic theory predicts. Since 

exploitation rates (“predation” by humans) have usually been reduced in such stocks by 

cuts in quota or fishing moratoria, the above argument does not apply to this situation.)

3. Type II predation holds prey at low density with low or negative population 

growth rate, or results in the extirpation o f a population.

The demographic consequences of Type II predation can be difficult to distinguish from 

the consequences of Type HI predation if the latter leads to population decline to a low 

density “predator pit” or extinction from other consequences of small population size 

(demographic stochasticity, inbreeding depression, etc.). It is not clear that this is an 

Allee effect per se, so I only admit the above scenario as evidence of predator-driven 

Allee effects when the predator functional response is known to be Type II. I also need 

evidence that predation has increasingly severe effects on the prey population as density 

declines.

Blue crabs (Callinectes sapidus) have a Type II functional response to the soft-shelled 

clam (Mya arenaria) in mud, but a Type in  response in sand (Lipcius and Hines 1986, 

Eggleston et al. 1992, Seitz et al. 2001). Their aggregative response is limited by 

agonism (Perkins-Visser et al. 1996, Clark et al. 1999). In Chesapeake Bay, Mya settles 

in both habitats and is abundant in sand year round, but declines to extinction in mud 

each summer due to blue crab predation (Eggleston et al. 1992, Seitz et al. 2001). The 

baltic clam (Macoma balthica), on the other hand, persists in both habitats and is usually 

more abundant in mud than sand, despite being the main prey item for blue crabs. Crabs
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show a Type III functional response to this species in both habitats. Hence Mya seems to 

suffer a predator-driven Allee effect in mud habitats, although not in sand; this is a good 

example where the overall system is stabilised by a habitat refuge and metapopulation 

dynamics.

Predation is the main factor dictating the survival of juvenile abalone, Haliotis spp. 

(Shepherd 1997, Mayfield and Branch 2000, Rogers-Bennett and Pearse 2001). In south 

Australia, predation by the wrasse Notolabrus tetricus is the main source of natural 

mortality for the population. Notolabrus is a generalist predator with a Type II functional 

response on abalone (Shepherd and Clarkson 2001). In South Africa, rock lobsters play 

the same role, particularly since a commercial fishery for sea urchins has removed a 

spatial refuge for juvenile abalone under the urchin spine canopy (Mayfield and Branch 

2000). Hence a predator-driven Allee effect is a hypothesis for the fishing-induced 

collapse of many abalone stocks worldwide (Shepherd et al. 1992), although reproductive 

Allee effects (Shepherd and Brown 1993, see Chapter 1) and the short scale of larval 

dispersal (Tegner 1993) may also be important.

CONCLUSIONS 

Predator-driven Allee effects in disturbed ecosystems

The requirements for a predator-driven Allee effect can easily be met in predator-prey 

systems. However, there are several common mechanisms by which prey may avoid an 

Allee effect (and there are likely to be others, some as yet untested; Murdoch et al. 1996). 

There are, of course, other complexities that can be added to our simple conceptual
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model. Functional and aggregative response in a given predator-prey system can vary 

with prey and predator size (Eggleston 1990a,b), predator sex (Eggleston 1990b), 

temperature (Eggleston 1990c), habitat (Lipcius and Hines 1986, Eggleston et al. 1992, 

Johnstone and Norris 2000), predator density (Arditi and Ginzburg 1989), the presence of 

other prey species (Chesson 1989) and the spatial scale of data collection (Morgan et al. 

1987, Hanski 1991, Ives et al. 1993, Fauchauld and Erikstad 2002), among other things. 

And all predator-prey relationships obviously take place in a multispecies context, as one 

component of many interactions within and between trophic levels, and as part of a 

variable and stochastic physical environment. It is not unreasonable to assume that some 

stabilising mechanism will operate in most predator-prey relationships in natural systems, 

given that they must have been, to an extent, stable in evolutionary time.

Despite these various complicating factors, I believe that predator-driven Allee effects are 

potentially relevant. Humans are disrupting most natural ecosystems, and are potentially 

removing many of the stabilising factors in predator prey relationships. It is striking that 

in more than two-thirds of the empirical examples that I present above, human 

intervention is important in the system. Furthermore, in the examples where it is not 

important, the overall system is stable despite Allee effects. In the other examples, the 

original population size of the prey has been drastically reduced by fishing, hunting or 

introduced predators, such that stabilising factors have been removed and the predator- 

driven Allee effect comes into operation.

I suggest that most types of anthropogenic disturbances to natural systems have the 

potential to destabilise natural predator-prey interactions and create an Allee effect in
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prey populations, including i) reduction in population size, ii) habitat insularisation and 

fragmentation, iii) large scale disturbance and iv) enhancement of generalist predators.

Reduction in population size: Perhaps the most straightforward impact that humans have 

had on many species is a large decrease in their population size. A large, dense 

population is a defence against predation in itself. Prey species for whom the dilution 

effect is the main defence are likely to have predators which show a Type II functional 

response, since the prey probably have density-independent rather than negatively 

density-dependent anti-predator strategies (Jeschke and Tollrian 2000, Seitz et al. 2001). 

Good examples might be seabird colonies, large ungulates and non-cryptic invertebrates 

-  not species that have traditionally been considered likely candidates for Allee effects.

Generally, top predators have been most affected by reduction in population size, thus 

reducing the impact of predation on the prey population even if the prey population is 

also being reduced in size (a human-induced “numerical response”). However, this 

doesn’t apply if the top predator in the system is humans, as it is in exploited ecosystems. 

I have discussed above how (for example) fishers act as Type II predators with limited 

numerical or aggregative response (Post et al. 2002). Thus increasing rates of population 

decline with decreasing population size, and thresholds below which populations collapse 

abruptly should be considered plausible trajectories for exploited populations, rather than 

an outcome that takes conservationists and managers by surprise.

Habitat fragmentation and isolation: By contrast with marine systems, which suffer most 

from straightforward exploitation, the most critical conservation issue in terrestrial
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systems is insularisation of populations through the loss and fragmentation of natural 

habitat (Myers 1997). As I discuss above, prey subpopulations may suffer Allee effects 

but the overall metapopulation can nonetheless be stable, due to dispersal between 

subpopulations (Taylor 1990, de Roos et al. 1998, Hanski 1999, McCauley et a l 2000, 

Frank and Brickman 2000, 2001). For stability, the metapopulation system may require a 

spatial scale much larger than that of both predator and prey organisms (Kareiva and 

Wennergren 1995). Thus, fragmentation and insularisation has the potential to disrupt 

metapopulation structure and isolate individual subpopulations, which then have the 

potential to suffer from Allee effects (e.g. Kareiva 1987).

A potential example of predator-driven Allee effects mediated by habitat fragmentation is 

the situation where habitat fragments are in a matrix of human-altered habitat such as 

agricultural land. Generalist predators may “commute” into habitat patches from the 

surrounding matrix. Nonetheless, their population size is regulated by resources from the 

matrix rather than the habitat patches (i.e. they have no numerical response to prey in the 

habitat fragments). Under these circumstances, predation rates in a given patch are 

strongly related to patch size (or, more specifically, perimeter: area ratio; Angelstam 

1986, Pasitschniak-Arts and Messier 1995). Models of this process show that a Type II 

functional response leads to a critical patch size below which prey go extinct -  i.e. an 

Allee effect in prey (Cantrell et al. 2001).

Allee effects are not necessarily apparent in the dynamics of spatially structured 

populations unless data are collected at the spatial scale of the subpopulation rather than 

the metapopulation (Frank and Brickman 2000, 2001). Even then, the demographic
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consequences of component Allee effects due to predation will be eliminated by 

immigration while the metapopulation structure is intact. Even a small amount of 

connectivity between subpopulations may be sufficient to reduce extinction risk for each 

subpopulation significantly (Hill et al. 2002), so conservationists are likely to miss seeing 

potential Allee effects until the subpopulation is isolated, by which time it may be too 

late.

Large-scale disturbance: The definition of “large-scale” is relative to the scale of the prey 

population or metapopulation; such disturbances could include pollution, disease and 

climate change. Evidence for the destabilisation of predator-prey interactions by such 

large-scale disturbances is hard to find, but climate change has been shown to affect 

predator tendency to switch between prey types (functional response; Chown and Smith 

1993), predator numerical response (Mckone et al. 1998), prey reaction to predators 

(Awmack et al. 1997) and prey trade-offs between microhabitat use and predation risk 

(Martin 2001).

A particularly important large-scale impact in aquatic systems is nutrient enrichment. In 

model ecosystems, enrichment can destabilise predator-prey interactions by increasing 

prey carrying capacity and thus reducing the strength of competitive negative density 

dependence in prey relative to positive density dependence caused by predation -  the so- 

called “paradox of enrichment” (McCauley and Murdoch 1990, Persson et al. 2001). 

Essentially, this is another case of revealing latent predator-induced Allee effects in the 

system, by shifting the Allee threshold to a higher prey population density. Evidence for 

this in practice is equivocal (McCauley and Murdoch 1990, Persson et al. 2001).
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However, the idea of predator-driven Allee effects in vulnerable prey species might help 

to clarify some of the ecosystem changes associated with eutrophication (Persson et al. 

2001).

Introduced species: Several of the examples discussed above involve introduced 

generalist predators, which have wreaked havoc on indigenous faunas worldwide (Drake 

et al. 1989). In our examples, introduced predators act in concert with hunting and habitat 

destruction, which reduce populations below the Allee threshold. In reality, predation 

rates from introduced predators have often driven vulnerable prey to extinction in a 

density-independent manner. However, there may sometimes be a threshold population 

size above which prey can resist introduced predators (Sinclair et al. 1998, Gilchrist 

1999, Cuthbert 2002).

Predicting predator-driven Allee effects in evolutionary time

One of the conclusions that I emphasise in this paper is that Allee effects do not 

necessarily arise as a consequence of specific life history characteristics of a given 

species. Instead, they arise naturally out of general ecological processes such as 

predation. However, the life history of the prey population should still to some extent be 

a predictor of the likelihood of Allee effects in general. It is an old idea that species 

evolve in response to historic population densities (MacArthur 1962, Mueller 1997). 

Species whose populations are naturally small or sparse (either chronically or 

periodically) should therefore evolve some resistance to Allee effects, which might
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manifest itself in the life history (low mortality, bet-hedging) or the ecology (density 

dependent anti-predation strategies, high dispersal rates).

On the other hand, populations of prey species that are naturally large and stable may not 

be resistant to becoming rare. So Allee effects of any kind should (paradoxically) be 

intrinsically more likely in populations that are “naturally” (in the absence of direct or 

indirect human intervention) large and stable, because they have not had the opportunity 

to evolve any resistance to rarity, whether that be low density or small population size. 

This argument is related to the old argument about r- vs. K- selection (MacArthur 1962). 

Certainly so-called AT-selected species with naturally stable populations and low intrinsic 

rates of population increase might be expected to suffer from Allee effects if their 

populations are reduced, whether it results from predation or other factors. However, 

many of the examples presented above are from species that are not considered strongly 

Tf-selected (e.g. various fish species, marine molluscs, colonial seabirds), so the idea of 

“resistance to rarity” is broader than the idea of AT-selection. The idea is supported 

empirically by selection experiments on Drosophila melanogaster, where populations 

raised at consistent high density show a reduction in population growth rate at low 

density (Mueller 1997). Note also that the models presented in Chapter 2 indicate that 

Allee effects will be hard to find in the field in AT-selected species.

The argument can be extended to predator-prey systems in the sense that predators on 

large, stable prey populations are not under strong selection pressure for prey switching, 

while prey in large stable populations are not under strong selection pressure for 

developing (for example) spatial refuges from predation or other density-dependent
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predator avoidance tactics. Thus predator-prey systems that have not historically 

experienced low prey density may lack behavioural or ecological mechanisms to avoid a 

predator-driven Allee effect. There is, as far as I know, no empirical evidence for or 

against this idea.

Final thoughts

Perhaps due to their name, Allee effects have until recently been treated in the ecological 

literature almost as a curiosity (Dennis 2002). Our hope in writing this paper is twofold. 

Firstly, I would like to encourage those who work empirically on Allee effects to look 

beyond systems such as broadcast spawners and cooperative breeders. Allee effects need 

not be driven by peculiarities in a species life history, but rather are a general statement 

of positive density dependence in prey dynamics at low density that can therefore be 

generated by general ecological processes such as predation. Secondly, I am trying to 

integrate some of the large body of theory on positive density dependence and stability in 

ecological interactions into work on Allee effects and practical conservation.

Predator-driven Allee effects are not quite the same conceptually as “standard” Allee 

effects driven by some feature of prey life history, in that they are not an intrinsic part of 

prey dynamics that are inevitable in all prey populations. A prey species may suffer 

predation-induced Allee effects in some places or times but not others (for example, 

predator-driven prey cycles could be regarded as temporary predator-driven Allee 

effects). I do not want to overstate the case for predator-driven Allee effects; not all, or 

even most, predator-prey systems are likely to suffer from Allee effects, and
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anthropogenic change may often reduce rather than increase predation pressure 

(Tomiatojc et al. 1984, Dayton et al. 1998, Laurance et al. 2002). Nonetheless, predator- 

driven Allee effects provide an extinction mechanism that is potentially applicable in 

scenarios in which conservationists are involved: heavily impacted or exploited 

populations, or populations in fragmented habitats, for example.

Allee effects due to factors such as broadcast spawning or cooperative breeding are, in 

principle, relatively easy to predict. Unfortunately, this is not the case with predator- 

driven Allee effects. However, if predation by generalist predators is important in driving 

prey population dynamics ecologists might be able to infer that an Allee effect is a risk if 

the system is disrupted by exploitation or habitat loss. In general, I believe that, to apply 

the precautionary principle, conservation biologists should expect non-linear and 

threshold effects in exploited or degraded populations.

Finally, predator-driven Allee effects may provide a new concept (or at least, a new view 

on an old concept) that is helpful in clarifying issues such as ecosystem response to 

anthropogenic disturbance (pollution, eutrophication, fragmentation). Ecosystems can be 

regarded (to some extent) as a series of interconnected predator-prey relationships with 

different types of stabilising factors; and in fact such a modelling framework may not be 

invalid even in systems which are on the face of it much more complicated (Murdoch et 

al. 2002). Some systems, such as rangelands, lakes and coral reefs, have shown abrupt 

transitions to alternative stable states, with predation by herbivores or fish as important 

mediating factors (Noy-Meir 1975, Scheffer et al. 2001). Allee effects predict thresholds
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and non-linear population dynamics and may provide a link between population, 

predator-prey and ecosystem dynamics in these cases.
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FIGURES

Fig. 1

The three major types of functional response, and the corresponding prey survival 
probability curve. The Type I functional response (Fig. 1 A) and Type El functional 
response (Fig. IE) create prey survival curves which are positively density dependent 
only at high density (Figs. IB, IF). The Type E functional response (Fig. 1C) creates a 
survival curve with maximum positive density dependence at low density, i.e. an Allee 
effect (Fig. ID).
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Fig. 1A

Type I functional response
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Fig. IB
Prey survival probability as a result of predation with a Type I functional response.
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Fig. 1C

Type II functional response.
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Fig. IE

Type IH functional response.

a)
n
co
5a
£3
(0coo
1_o
CO
■a

< u

a.

Prey density (N)

Fig. IF

Prey survival probability with a Type III functional response.
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Fig. 2

Different types of numerical / aggregative response combined with a Type II functional 
response (8 = y = 1).
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Fig. 3
Contours of equal prey survival probability as a function of prey numbers (N) and 
predator numbers (P) (8 = y = 1).
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Fig. 4

A Type II functional response with a spatial refuge.
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