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Abstract. In a whole-ecosystem, nutrient addition experiment in the Plum Island Sound Estuary (Mas-
sachusetts), we tested the effects of nitrogen enrichment on the carbon and nitrogen contents, respiration,
and strength of marsh soils. We measured soil shear strength within and across vegetation zones. We found
significantly higher soil percent organic matter, carbon, and nitrogen in the long-term enriched marshes and
higher soil respiration rates with longer duration of enrichment. The soil strength was similar in magnitude
across depths and vegetation zones in the reference creeks, but showed signs of significant nutrient-mediated
alteration in enriched creeks where shear strength at rooting depths of the low marsh–high marsh interface
zone was significantly lower than at the sub-rooting depths or in the creek bank vegetation zone. To more
closely examine the soil strength of the rooting (10–30 cm) and sub-rooting (40–60 cm) depths in the inter-
face and creek bank vegetation zones, we calculated a vertical shear strength differential between these
depths. We found significantly lower differentials in shear strength (rooting depth < sub-rooting depths) in
the enriched creeks and in the interface zones. The discontinuities in the vertical and horizontal shear
strength across the enriched marshes may contribute to observed fracturing and slumping occurring in the
marsh systems. Tide gauge data also showed a pattern of rapid sea level rise for the period of the study, and
changes in plant distribution patterns were indicative of increased flooding. Longer exposure times to nutri-
ent-enriched waters and increased hydraulic energy associated with sea level rise may exacerbate creek bank
sloughing. Additional research is needed, however, to better understand the interactions of nutrient enrich-
ment and sea level rise on soil shear strength and stability of tidal salt marshes.
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INTRODUCTION

Population growth and human activities, espe-
cially along the coast, result in increasing loads of
reactive nitrogen from land to coastal waters (e.g.,
Deegan 2002, Galloway et al. 2004, Howarth and

Marino 2006). Although many marsh studies have
demonstrated enhanced plant growth under
high-nutrient inputs (e.g., Valiela et al. 1975,
Anisfeld and Hill 2012, Fox et al. 2012, Morris
et al. 2013a, b, Wigand et al. 2015, Davis et al.
2017), human wastewater, sewage effluent, and
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agricultural runoff are sometimes implicated as
causes for coastal marsh loss (Turner et al. 2009,
Turner 2011, Deegan et al. 2012, Wigand et al.
2014). One factor that strongly mediates impacts
of nutrient additions on coastal wetland is soil
composition. Belowground salt marsh loss due to
nutrient additions has been reported for some sys-
tems dominated by in situ organic matter (OM)
accumulation (e.g., Valiela et al. 1976, Turner
et al. 2009, Turner 2011, Deegan et al. 2012,
Wigand et al. 2014). In contrast, in marsh systems
dominated by sediment inputs, above- and
belowground productivity and peat buildup can
be enhanced by nutrient subsidies (e.g., Morris
et al. 2013b, Wigand et al. 2015, Davis et al. 2017).

Exacerbating coastal eutrophication are high
rates of relative sea level rise, which are reported
to be 3–4 times greater in the Northeast United
States than the global average (Church and
White 2006, Boon 2012, Sallenger et al. 2012,
Calafat and Chambers 2013). In recent years, sea
level rise is reportedly accelerating and consid-
ered a key factor driving large-scale marsh loss
in some parts of New England (Watson et al.
2014, 2017, Weston 2014, Raposa et al. 2017).
Since both nutrient enrichment and rapid sea
level rise can cause marsh loss (Kirwan and
Megonigal 2013, Watson et al. 2014, Wong et al.
2015), in the present study we consider the possi-
ble effects of increased inundation associated
with accelerated sea level rise to the creek sys-
tems in addition to nutrient treatments in a
whole-ecosystem enrichment experiment.

Nutrient enrichment caused the destabiliza-
tion of salt marshes in a long-term, whole-
ecosystem experiment in the Plum Island Sound
Estuary (Massachusetts), located in the North-
east United States (Deegan et al. 2012). The
marsh response to long-term nitrogen enrich-
ment included significant landscape fracturing
(structural failure resulting in long cracks along
creek banks) and the subsequent slumping of
the marsh into the creek, which was attributed,
in part, to a significant reduction in the below-
ground live biomass and the drag by tidal cur-
rents (Deegan et al. 2012). Belowground roots
and rhizomes in marshes can increase the
strength of soils by providing mechanical rein-
forcement, which is related to the diameter and
density of belowground structures and rooting
depth (Howes et al. 2010). Nutrient enrichment

is proposed to reduce belowground biomass,
increase fine OM, and increase soil decomposi-
tion rates. More decomposed or sapric marsh
soils can reduce soil shear strength, causing
marshes to be more susceptible to erosional pro-
cesses (Swarzenski et al. 2008, Turner et al.
2009, Turner2011).
In this study, which was part of the Plum

Island Sound Estuary enrichment experiment
(Deegan et al. 2012), we examined soil shear
strength, respiration, and nutrient content in the
enriched and reference creeks to better under-
stand possible causes for marsh fracturing and
slumping. We hypothesized that while nutrient
enrichment could cause increased sapric OM,
nitrogen content, and respiration rates in marsh
soils, it might also cause decreased soil shear
strength across the marsh landscape, possibly
due to the previously reported significant reduc-
tion in belowground biomass and associated fib-
ric soils (Deegan et al. 2012) and elevated rates of
belowground OM mineralization associated with
nitrogen processing (Koop-Jackobsen and Giblin
2010). Because sea level rise is known to alter the
extent and frequency of flooding of coastal
marshes and alter plant community structure in
the Northeast United States (e.g., Warren and
Niering 1993, Roman et al. 1997, Donnelly and
Bertness 2001, Raposa et al. 2017), we calculated
yearly tidal flooding patterns for the study per-
iod and plant species cover to examine whether
there were shifts in dominant species toward
those favored by wetter soils. We evaluate the
results of our study within the context of nutrient
enrichment and sea level rise, as well as the ear-
lier reported significant increase in creek bank
fracturing and slumping at the enriched sites
(Deegan et al. 2012).

METHODS

Site description and experimental design
The study was conducted at six first-order

tidal creeks located within the Plum Island Estu-
ary (42°440 N 70°520 W), previously described in
detail (Deegan et al. 2007, 2012, Johnson et al.
2016). Two creeks were fertilized for nine years
(beginning in 2004), one creek for four years (be-
ginning in 2009), and the remaining three creeks
were reference creeks. Hereafter, we will refer
to the nine-year enriched creeks (n = 2) as the
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long-term enriched creeks and the four-year
enriched creek (n = 1) as the short-term enriched
creek. Two reference creeks were paired with the
long-term enriched creeks and studied for 9 yr,
while one reference creek was paired with the
short-term enriched creek and studied for 4 yr.
The ecosystem scale of the experiment necessi-
tated low replication at the creek level.

The creek systems had similar length (300–
500 m), volume (4.1–7.5 9 106 L), landscape
position, and physicochemistry (Deegan et al.
2007, 2012, Johnson et al. 2016). Marsh vegeta-
tion was characteristic of a typical New England
salt marsh with a high marsh (i.e., elevations
above mean high water [MHW]) dominated by
Spartina patens, Distichlis spicata, and stunted
Spartina alterniflora and a low marsh dominated
by tall S. alterniflora, primarily growing along the
creek banks (Johnson et al. 2016). Enriched
creeks received nutrients twice daily via flooding
tides during the growing season (approximately
120 d; 15 May–15 September), over an area of
about 30,000 m2 of marsh per experimental creek
(Deegan et al. 2012). The target concentration for
the water column flooding the enriched marshes
was 70–100 lmol/L NO3 (as NaNO3), which was
10–15 times greater than Plum Island Sound
background levels (Johnson et al. 2016). Initially,
PO4 (as NaH2PO4) was added to target
5–7 lmol/L, approximately achieving a 15:1 Red-
field ratio to avoid secondary phosphorus (P)
limitation; however, P addition was discontinued
after 2010, as earlier dissolved nutrient analyses
indicated that P was naturally in excess (Johnson
et al. 2016).

Soil shear strength
To test whether nutrient enrichment reduces

soil strength, we examined the soil shear strength
of the marsh landscape vertically with depth and
horizontally across vegetation zones (low marsh;
interface between the high and low marsh; high
marsh) of the reference and enriched creeks. The
shear strength of the marsh soils reflects the
resistance to shearing stresses afforded by
the cohesion and frictional resistance of the soil
constituents and is presumed to also be an
indicator of the integrity of the root and soil
matrix in coastal marshes (Turner et al. 2009,
2017, Howes et al. 2010). Shear strength has
also been used as an indicator of marsh soil

decomposition, the less torque that is needed to
shear the soil, the more decomposed that soil is
considered (Swarzenski et al. 2008). A field-vane
shear tester (AMS part 59020, American Falls,
Idaho) similar to the instrument and methods
reported in other marsh studies (Swarzenski
et al. 2008, Turner et al. 2009, Howes et al. 2010,
Turner 2011, Graham and Mendelssohn 2014)
was used to measure the minimum shear
strength in kilopascals (kPa) required to force soil
failure at nine depths, beginning at a depth of
10 cm, and in increments of 10 cm thereafter.
The shear strength values obtained with a field-
vane may overestimate marsh soil strength
because of strain rate, anisotropy within the soil,
and rod friction, but field-vane measures of shear
strength in marsh systems are useful and accept-
able for comparative purposes (e.g., Turner et al.
2009, Howes et al. 2010, Turner 2011, Graham
and Mendelssohn 2014). For statistical analyses,
three depth increments (averaged across 10 cm
intervals) were examined: 10–30, 40–60, and
70–90 cm. Shear strength profiles were only mea-
sured in intact areas of the marsh, not in frac-
tured areas or on clumps of marsh in the creeks.
Vertical profiles of shear strength were carried

out � 2 h of low tide to allow for comparisons of
marsh soil strength at similar tide heights among
sites in August 2012. The soil strength measures
were carried out 9 yr after the initiation of nutri-
ent additions at the long-term enriched and 4 yr
after initiation of nutrient additions at the short-
term enriched sites. Transects at each site were
sampled once. A point along the creek bank was
haphazardly located ca. midway between the
mouth and terminus of each creek. The soil shear
strength transects were oriented perpendicular to
the creek at this point. Additional transects,
~15 m apart, also set perpendicular to the creek
were established on both sides of the first. A total
of four transects were set along each long-term
enriched (n = 2) and reference (n = 2) creeks
with eight transects in the short-term enriched
(n = 1) and paired reference (n = 1) creek.
Three zones on the marsh landscape were sam-

pled along each transect, first in the low marsh
(i.e., creek bank tall S. alterniflora), then at the
interface zone between the tall S. alterniflora and
the high marsh, and, third, in the high marsh
(i.e., dominated by S. patens). The tall S. alterni-
flora occurred in an approximate 2–3 m wide
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zone along the creek bank, and the interface zone
was a narrow (about 1 m in width) band com-
posed of S. alterniflora, S. patens, D. spicata, and
occasionally small patches of the annual Atriplex
patula. Vertical profiles were sampled in the tall
S. alterniflora about 1 m back from the creek
bank edge, in the approximate center of the inter-
face zone, and one meter landward from the
interface zone in the high marsh. Collectively
these providing a total of twelve vertical profiles
of soil strength per long-term enriched and refer-
ence creeks and 24 vertical profiles per short-
term enriched and reference creek.

To more closely examine the soil shear strength
associated with the active rooting (10–30 cm)
and sub-rooting (40–60 cm) depths of marsh
zones with S. alterniflora (Valiela et al. 1976,
Howes et al. 2010, Graham and Mendelssohn
2014), we calculated a vertical shear strength dif-
ferential between these depth intervals for the
creek bank and interface zones. For each location
sampled along the transects in these two zones,
the 10–30 cm depth soil shear strength was sub-
tracted from the 40 to 60 cm soil shear strength
to calculate a vertical differential. We presumed
that the vertical shear strength differential was
associated with the stability of the marsh land-
scape and that marshes with positive or near-
positive shear strength differentials (rooting
depth soil strength ≥ sub-rooting depth soil
strength) would be more resistant to the fractur-
ing phenomenon, first reported in Deegan et al.
(2012). For the horizontal plane, we hypothesized
that low horizontal discontinuities in soil shear
strength would be more resistant to fracturing,
as downslope forces are greater along the inter-
face and creek bank zones.

Soil respiration
To test whether nutrient enrichment causes ele-

vated soil respiration, we measured soil carbon
dioxide (CO2) emissions in 2011 at the long-term
enriched and reference marshes and in 2012 at the
short-term enriched and reference marshes during
summer (July–August), when maximum soil res-
piration rates were expected (Wigand et al. 2009).
At all sites, we measured soil respiration rates
with a Li-Cor (8100) CO2 flux system and dome
using standard methods (e.g., Howes et al. 1985,
Wigand et al. 2009). We placed PVC collars
(10 cm diameter) in bare areas between tall

S. alterniflora culms, near low tide, at least 15 min
before in situ sampling was conducted. The instru-
ment uses an infrared detector to measure changes
in CO2 in the dome during 5-min incubations.
At the long-term enriched and reference sites,

we measured CO2 emissions in the low marsh at
creek bank locations along two transects in each
creek earlier established for the soil shear strength
measures. Five replicates of soil respiration were
sampled about 1 m apart at each location to
account for possible high spatial heterogeneity
and averaged for statistical analyses.
We sampled CO2 emissions at eight creek bank

locations in each short-term enriched and refer-
ence creek to achieve greater coverage of the low
marsh. Creek bank locations were along the
same eight transects established for the soil shear
strength measures.

Soil nutrient content
We analyzed soil OM, percent carbon, and

nitrogen on cores previously collected in 2010
from the long-term enriched and reference creeks
(Deegan et al. 2012, : n = 10 cores per creek or 20
cores per treatment). We sampled soil plugs (not
sieved) at four depths: 0–5, 5–10, 10–20, and 20–
30 cm in each core; ground them with a mortar
and pestle; and analyzed for % C and % N con-
tents on a Carlo Erba NA 1500 NCS elemental
analyzer. We dried a separate soil sample from
each depth at 105°C; these were then ashed at
550°C for 4 h to determine the percent soil OM
using loss-on-ignition methods (Heiri et al.
1999). We did not measure soil nutrient content
in the short-term enriched creeks.

Sea level rise and plant cover
Using NOAA tide gauge data, we calculated

yearly tidal flooding patterns for 2002–2011, a
time-period spanning before and during the
present study. Monthly water level data were
downloaded from the NOAA COOPS Web
site (http://tidesandcurrents.noaa.gov) for tide
gauges south (Boston, Massachusetts) and north
(Portland, Maine) of the Plum Island Estuary.
Summer (May–September) MHW (m above sta-
tion datum) and mean sea level (MSL, m above
station datum) at Boston and Portland were plot-
ted for 2002–2011.
Another indicator of sea level rise and increas-

ing inundation is the composition of the high
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marsh plant community, with more frequently
flooded marsh soils associated with a decline in
dominance of S. patens with a concomitant
increase in D. spicata cover, and in the low
marsh, an increase in cover of S. alterniflora (War-
ren and Niering 1993, Roman et al. 1997, Raposa
et al. 2017). Therefore, relationships of plant spe-
cies cover in the high and low marsh of the com-
bined long-term reference and enriched creeks
over the time period of the study were examined
for the aforementioned vegetation patterns of
change associated with increasing inundation.

To assess the vegetation in the long-term
enriched and reference marshes, visual cover
estimates, previously reported (Johnson et al.
2016), were made for all plant species in July
(2004–2009 and 2011) within contiguous 1-m2

plots along six transects, three each for all
enriched and reference creeks. Transects were set
normal to creek banks and extended 1–4 m
down to the lower limit of S. alterniflora and 45–
50 m back, onto the high marsh Deegan et al.
2007, Johnson et al. 2016). Percent cover was
determined for S. patens and D. spicata (mean of
all plots of the high marsh of each transect) and
tall S. alterniflora (mean of all low and high
marsh plots along each transect) for each year
(2004–2009 and 2011). We do not report the vege-
tation patterns in the short-term enriched and
reference creeks.

Data analysis
We used linear mixed effects models to analyze

the effects of nutrient enrichment, vegetation
zone, and depth (when indicated) on soil shear
strength; vertical shear strength differentials; and
soil C, N, and C:N ratios. We specified enrichment
treatment, vegetation zone, and depth as fixed
effects, and site pairs (short- and long-term
enrichment treatments and their respective refer-
ences) as random effects in the models to account
for non-independence of sampling (e.g., shear
strength measurements at different depths at the
same location; different vegetation zone locations
along the same transect) where necessary. To test
for effects of nutrient enrichment on soil respira-
tion while accounting for measurements per-
formed during different years, we specified
nutrient levels (enriched, reference) as a fixed
effect and blocked sites by long-term or short-
term pair (specified as a random effect). For the

long-term enriched and reference creeks, we aver-
aged replicates (n = 5) of soil respiration at sam-
pling locations (n = 2 per creek or 4 per
treatment) for statistical analyses. We performed
t-tests before pooling long-term enrichment or ref-
erence treatments to ensure no differences were
present by chance. To confirm that assumptions
of homoscedasticity and normality were met, we
examined residual plots. To obtain P-values to
assess significance of the effect of enrichment
treatment, vegetation zone, and depth on soil
metrics, we performed likelihood ratio tests of full
models against models with the fixed effect of
interest removed. To test for interactive effects of
treatment, vegetation zone, and depth on soil
metrics, we compared models with and without
an interaction term using likelihood ratio tests.
We used the lme4 package for the linear mixed
effects analyses and regression analyses of plant
species cover data to examine for significant pat-
terns of change over years (R Development Core
Team 2012). We performed all statistical analyses
in R and interpreted significant differences at
a = 0.05 (R Development Core Team 2012).

RESULTS

Soil shear strength and respiration
Soil shear strength of the long-term enriched

creeks at the 10–30 cm depth in the interface
zone was significantly lower than the soil
strength at the 40–60 and 70–90 cm depth inter-
vals of the interface and high marsh zones
(v228 = 48.0, P = 0.01; Table 1; Fig. 1). The highest
soil shear strength values were measured at
depth intervals of 40–60 cm and 70–90 cm in the
interface and high marsh zones in the long-term
enriched creeks (Table 1; Fig. 1). In contrast, the
soil strength was similar in magnitude across
depths and vegetation zones at the reference
creeks (Table 1).
In both the enriched and reference creeks, there

was a trend of lower soil shear strength in the low
marsh zone compared with the interface and high
marsh zones (v22 = 5.53, P = 0.06; Table 1; Fig. 1),
significant at the 40–60 cm depth (vegetation
zone 9 depth interaction; low marsh < inter-
face ≤ high marsh; v24 = 11.28, P = 0.02; Table 1).
A main effect of depth revealed that the 10–30 cm
depth was significantly lower than the 70–90 cm
depth (v22 = 8.55, P = 0.01).
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When enrichment duration (short- and long-
term) was included in models, the shear strength
vertical differential of the interface vegetation
(�4.1 � 2.7 kPa; rooting zone shear strength <
sub-root shear strength) was significantly lower
than that of the creek bank (2.3 � 0.98 kPa,
v21 = 7.25, P = 0.007). In addition, there was a
trend of lower vertical shear strength differentials
with enrichment (v23 = 7.26, P = 0.06, Fig. 2).
There was no significant interaction between
nutrient enrichment and marsh vegetation zone
(v23 = 4.81, P = 0.19). However, if the short- and
long-term enrichment treatments are pooled
(to form two treatment groups: enriched and
non-enriched), there are significant enrichment

(v21 = 6.3, P = 0.01) and vegetation zone (v21 = 7.1,
P = 0.007; interface < creek bank) effects, although
there was no statistically significant interaction
between nutrient enrichment and vegetation
(v21 = 2.6, P = 0.10). The vertical shear strength dif-
ferential of the combined enrichment treatments
was �3.93 � 1.70 kPa and significantly lower
than the combined reference differential, which
was 2.17 � 1.76 kPa.
Nutrient enrichment had significant effects on

soil respiration. The long-term enriched creeks
had 27% greater soil respiration (4.02 � 1.05
lmol�m�2�s�1) than the short-term enriched
creek (2.94 � 1.05 lmol�m�2�s�1) and over
55% greater soil respiration than the short-term

Table 1. Soil shear strength (kPa) measurements (units � SE) for reference and enrichment at 10 cm increments
from 10 to 90 cm depths, and means (reported in boldface) of the 10–30, 40–60, and 70–90 cm depth intervals
across creek bank, interface, and high marsh vegetation zones.

Parameters

Depth (cm)

10 20 30 40 50 60 70 80 90

Short-term reference
Creek bank 19.3 � 2.6 25.8 � 5.4 25.5 � 2.5 24.5 � 2.9 21.7 � 2.7 20.2 � 3.6 22.0 � 4.6 27.5 � 4.0 34.8 � 5.7

23.5 � 3.5 22.2 � 3.1 28.1 � 4.8
Interface 37.8 � 7.6 23.5 � 1.8 23.3 � 1.5 23.3 � 1.7 26.3 � 2.8 27.5 � 1.6 27.5 � 2.1 29.0 � 2.8 31.3 � 4.2

28.2 � 3.6 25.7 � 2.0 29.3 � 3.0
High marsh 28.0 � 5.0 24.8 � 4.6 24.0 � 3.6 21.5 � 3.7 21.0 � 2.3 22.0 � 3.3 25.3 � 2.0 22.8 � 2.9 23.8 � 3.7

25.6 � 4.4 21.5 � 3.0 23.9 � 2.9
Long-term reference
Creek bank 22.3 � 4.6 26.5 � 6.2 23.8 � 3.8 17.5 � 2.3 20.0 � 3.4 18.0 � 3.7 19.3 � 3.2 22.8 � 5.3 24.3 � 4.9

24.2 � 4.9 18.5 � 3.1 22.1 � 4.5
Interface 25.0 � 3.0 21.3 � 2.7 21.8 � 2.3 21.0 � 2.1 25.5 � 2.6 24.0 � 2.6 23.8 � 2.0 28.0 � 2.4 30.0 � 3.3

24.8 � 2.6 24.1 � 2.1 27.3 � 3.2
High marsh 25.8 � 2.1 25.8 � 3.6 23.0 � 2.0 23.1 � 2.4 23.4 � 1.8 25.8 � 2.1 28.0 � 3.0 27.0 � 3.0 27.0 � 3.6

22.7 � 2.7 23.5 � 2.5 27.3 � 2.6
Short-term enrichment
Creek bank 19.0 � 2.2 24.5 � 2.7 26.3 � 3.5 22.5 � 2.9 22.1 � 2.5 20.8 � 4.3 25.4 � 4.7 29.3 � 4.1 29.5 � 5.4

23.3 � 2.8 21.8 � 3.2 28.0 � 4.7
Interface 18.0 � 1.7 18.6 � 1.9 19.4 � 3.3 20.3 � 3.5 23.8 � 4.3 30.5 � 1.9 27.8 � 3.6 24.8 � 3.8 27.5 � 3.8

18.7 � 2.3 24.8 � 3.2 26.7 � 3.8
High marsh 31.3 � 7.8 25.1 � 3.1 27.3 � 2.5 30.3 � 1.4 27.4 � 4.6 21.5 � 2.8 22.8 � 4.6 18.6 � 3.1 22.5 � 2.9

27.9 � 4.5 26.4 � 1.9 21.2 � 3.5
Long-term enrichment
Creek bank 18.8 � 4.0 27.3 � 4.0 24.0 � 3.5 22.5 � 3.3 24.2 � 3.1 21.0 � 4.2 21.5 � 3.5 21.5 � 3.5 25.5 � 2.7

23.3 � 3.8 22.6 � 3.6 22.8 � 3.3
Interface 19.0 � 2.0 17.8 � 2.0 19.8 � 1.5 27.3 � 1.2 30.5 � 2.7 34.0 � 2.1 31.8 � 2.5 31.2 � 2.9 34.0 � 2.7

18.8 � 1.8 30.6 � 2.0 32.3 � 2.7
High marsh 19.9 � 1.8 22.5 � 1.9 32.0 � 3.1 29.3 � 1.9 30.5 � 2.1 31.8 � 2.2 33.3 � 3.6 29.0 � 3.1 30.8 � 3.1

24.8 � 2.2 30.5 � 2.1 31.0 � 3.3

Notes: Abbreviations are creek bank, creek bank tall Spartina alterniflora; high marsh, Spartina patens-dominated high marsh;
interface, mixed S. alterniflora, S. patens, and Distichlis spicata vegetation between creek bank and high marsh. Mean shear
strengths for zones were calculated across sampling locations (n = 8 per treatment). Mean 30 cm depth interval shear strengths
were calculated by averaging 10 cm depth measurements (10–30, 40–60, 70–90 cm) for each.
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reference creek (1.74 � 0.24 lmol�m�2�s�1) and
long-term reference creeks (1.77 � 0.30 lmol�
m�2�s�1) (v23 = 16.03, P = 0.001; Fig. 3). The trend
toward intermediate values at the short-term
enriched creek suggests that these shifts reveal
soil changes over time in response to nutrient
enrichment.

Soil nutrient content
The long-term enriched marsh had significantly

greater mean soil OM (16.4%� 0.59) than the long-
term reference marsh (14.4% � 0.61; v21 = 5.49,
P = 0.02; Fig. 4A). There was no main effect of
depth or site by depth interaction on soil OM. Simi-
larly, the long-term enrichment marsh had signifi-
cantly higher soil % C (6.9% � 0.24 enriched vs.
6.0% � 0.21 reference; v21 = 19.52, P < 0.001) and

soil % N (0.53% � 0.01 enriched vs. 0.47% � 0.02
reference; v21 = 13.1, P = 0.0002; Fig. 4B, C) than
the long-term reference marsh, maintaining similar
C:N molar ratios between treatments (15.08 � 0.24
enriched and 14.89 � 0.33 reference). There was no
main effect of depth or site by depth interaction on
soil % N or % C.

Sea level rise and plant cover
The sea level data for this coastal area sug-

gested a pattern of rapid sea level rise for the per-
iod of the present study (Fig. 5). From 2003 to
2011 the Boston, Massachusetts (~40 km to the
south) summer yearly MHW increased 12.3 cm
and the mean yearly sea level (MSL) by 9.2 cm,
and for Portland, Maine (ca. 115 km to the north)
MHW increased by 12.6 cm and MSL by 9.3 cm.

Fig. 1. Visual representation of average shear strengths for high marsh (HM), interface, and creek bank (CB)
vegetation zones at depth intervals of 10–30, 40–60, and 70–90 cm for the short- and long-term enrichment and
reference creeks.
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Previously, Johnson et al. (2016) reported that
there were no significant effects of long-term
nutrient enrichment or year on the percent cover
of tall Spartina alterniflora; however, in the present
study by combining the data of the long-term

enriched and reference creeks, we found a signifi-
cant relationship of increasing cover of tall
S. alterniflora (F = 17.876, P = 0.001) over time
(2004–2011; Fig. 6A). In addition, significant rela-
tionships of increasing cover of Distichlis spicata
(F = 6.096, P = 0.03) and decreasing cover of Spar-
tina patens (F = 7.058, P = 0.02) were observed for
the combined long-term enriched and reference
marshes (Fig. 6B, C). Along with the sea level
data for this coastal area, the species cover data
suggest that the Plum Island experimental sites
were receiving greater levels of tidal flooding and
increased tidal creek volumes over the period of
this study.

DISCUSSION

Marsh fracturing and subsequent slumping of
vegetation into creeks in nutrient-enriched
systems may in part be attributed to discontinu-
ities in the vertical (w/depth) and horizontal
(among vegetation zones) soil shear strength. The

Fig. 2. Vertical shear strength differentials for short- and long-term reference (A, C) and enriched (B, D) sites at
creek bank and interface (between tall Spartina alterniflora and high marsh) vegetation zones. Positive means
indicate stronger root zone (10–30 cm depth) shear strengths than sub-root zone (40–60 cm depth) soil, while
negative means indicate the opposite pattern.

Fig. 3. Soil respiration rates for short- and long-term
reference and nutrient-enriched sites. Standard error
bars are shown. Letters represent results of Tukey
HSD tests. Bars sharing the same letter are not signifi-
cantly different.
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relatively lower soil shear strength in the root
zone (10–30 cm depth) compared to sub-rooting
depths in the interface vegetation of the long-term
enriched systems may contribute to the fracturing
and sliding of vegetated peat into the creek
(Table 1; Fig. 1). In contrast, in the reference
creeks the soil shear strength was more similar
across the marsh landscape and there was no sig-
nificant difference in soil strength between depths
or vegetation zones. The soil strength of the root-
ing depth (10–30 cm) in the interface and creek
bank zones was equal to or greater than the
sub-rooting depths (40–60 cm; 70–90 cm) in the
reference systems (Table 1). Production of roots
and rhizomes was about 30 % greater in the
reference creeks (Deegan et al. 2012: 579, � 60 vs

387 � 64 g/m2) and probably account for the pos-
itive or near-positive vertical differentials in the
interface and creek bank zones in the reference
creek systems (Fig. 2).
In a 13-yr nutrient enrichment experiment

(surface broadcast of N-P-K fertilizer) of an oligo-
haline marsh located along the Tchefuncte River
(Louisiana), a significant loss of root biomass, an
increase in soil shear strength, and a sevenfold
increase in shallow subsidence were reported
(Graham and Mendelssohn 2014). The increase
in shallow subsidence was attributed to reduced
root biomass in the surface soils and the increase
in soil strength to more resistant root structures
and increased rooting depths (Graham and Men-
delssohn 2014). In the Louisiana study, the

Fig. 4. Soil percent organic matter (A), percent carbon (B), and percent nitrogen (C) from the long-term refer-
ence (dashed line) and enriched (solid line) sites. Standard error bars are shown.
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shallow subsidence was apparently balanced by
enhanced accretion rates (Graham and Men-
delssohn 2014). In coastal areas where there are
low sediment supplies such as the Plum Island
Sound Estuary (suspended sediment concentra-
tion: about 3 mg/L), marshes exposed to acceler-
ated sea level rise may have accretion deficits
(Kirwan et al. 2010, Weston 2014).

Unlike many fertilization studies that surface
broadcast or bury ammonium-based fertilizer
into experimental plots, in this study nutrients
were delivered as dissolved nitrate in the incom-
ing tidal waters to the creek ecosystems, which
provided for realistic nutrient loading levels
(Johnson et al. 2016). We reported the highest
soil strengths at sub-rooting depths (40–60 cm;
70–90 cm) and approximately 40% lower soil
strengths at shallow depths (10–30 cm) in the

interface zone of the long-term enriched marshes
(Table 1), which represented a significant discon-
tinuity in vertical shear strength. Longer expo-
sure time of nutrients in the interface vegetation
zone relative to the high marsh may have acceler-
ated microbial decomposition, reduced root
development, and contributed to fracturing and
sloughing of peat into the creek.
The interface vegetation zone, primarily com-

posed of Spartina alterniflora, Spartina patens, and

Fig. 5. Summer (May–September) mean high water
(MHW, m above station datum) and mean sea level
(MSL, m above station datum) at Boston and Portland.
Period of vegetation sampling for the TIDE nutrient
enrichment experiment (2003–2011; Deegan et al.
2012) is indicated by horizontal arrow.

Fig. 6. Cover changes in the dominant high marsh
grasses, Spartina patens, Distichlis spicata, and tall,
Spartina alterniflora from 2004 to 2011. Combined nutri-
ent-enriched and reference creek data demonstrate
significant increases in tall S. alterniflora and D. spicata
with a coincident decrease in S. patens (S. alterniflora
graph after Johnson et al. 2016).
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Distichlis spicata, is the area on the landscape
where the low marsh zone dominated by
S. alterniflora transitions into the high marsh
zone dominated by S. patens. The root zone of
S. patens is described as an extensive, interwoven
network of fine and coarse roots, maximizing
biomass at shallow depths (about 4–8 cm; Con-
nor and Chmura 2000), and the plant is able to
develop aquatic roots that form into a fibrous
network just above the existing marsh surface
(Nyman et al. 2006). Spartina patens is sensitive to
increased levels of nutrients and to the extent
and frequency of inundation (Gleason and Zie-
man 1981, Emery et al. 2001, Nyman et al. 2006,
Watson et al. 2016). Therefore, S. patens may be
susceptible to increased inundation associated
with rapid sea level rise in the nutrient-enriched
interface zone. In contrast, S. alterniflora, the
dominant plant in the low marsh, has extensive
horizontal, large-diameter rhizomes and exten-
sive, deep-dwelling (0–30 cm) active roots with
well-developed aerenchyma tissue, along with
metabolic adaptations, which together allow col-
onization at low elevation levels and provide tol-
erance to anoxic soil conditions (Gleason and
Zieman 1981, Mendelssohn et al. 1981). How-
ever, reduced redox potentials and increased sul-
fide accumulations are associated with increased
soil waterlogging, as might have occurred in the
interface zone, which could reduce the growth of
S. alterniflora (Mendelssohn and McKee 1988).

Increases in the soil % OM may be attributed
to increases in biomass of benthic algae, bacteria,
and other microbes in the long-term enriched
creeks (Pascal and Fleeger 2013, Pascal et al.
2013), and/or to a loss of mineral material in the
highly decomposed and eroding enriched marsh
soils. The mean dry bulk density (0–35 cm) of the
long-term enriched marsh soils (n = 20 cores;
0.44 � 0.012 g/cm3) was significantly lower than
that of the reference creeks (n = 20 cores;
0.48 � 0.012 g/cm3; R. S. Warren, unpublished
data, two-tailed t-test, t = 2.151, P = 0.033). The
increase in the soil % C, N, and OM may con-
tribute to the reported increases in microbial
decomposition and denitrification rates (Koop-
Jackobsen and Giblin 2010, Deegan et al. 2012)
and soil respiration rates (this study) in the long-
term enriched creek systems.

Generally, highly decomposed peat and decay-
ing roots in the soil column will reduce soil

strength (Swarzenski et al. 2008, Huat et al.
2009). The more sapric marsh soils in the long-
term enriched marshes had higher water content
and increased fine OM particulates, which may
have reduced the frictional shear strength of the
soils and increased fracturing with the rise and
fall of the tides, resulting in shear failure of chan-
nel banks (Deegan et al. 2012).
The observed patterns of increasing tall S. al-

terniflora and D. spicata cover and decreasing
cover of S. patens in both the long-term enriched
and reference marshes (Fig. 6) support the hypo-
thesis that accelerated sea level rise was increas-
ing inundation of the Plum Island Sound
marshes during our study. At least two factors
suggest that increased inundation of sediment-
poor water was an important driver of tidal creek
bank failure. First, we found a trend toward
reduced shear strength in the creek bank in com-
parison with the interface and high marsh zones,
in both the enriched and reference systems. This
may in part be attributed to higher water content
of the frequently flooded creek bank soils, a fac-
tor that has likely increased over time with
increased inundation associated with sea level
rise. Second, studies of hydraulic geometry have
suggested that increased inundation enlarges
tidal channel prism volumes, which force shifts
in channel dimensions to accommodate larger
water volumes and may contribute to destabi-
lization of the channel bank (Friedrichs 1995,
D’Alpaos et al. 2010). Furthermore, in the
enriched marshes the increase in inundation
would increase the nutrient exposure time of
the creek bank, stimulating decomposition pro-
cesses, which could exacerbate the adverse effect
of nutrient addition alone, possibly contributing
to marsh fracturing and slumping.
The long-term enriched marsh displayed signifi-

cantly higher creek bank fracturing and slumping
compared to the reference marsh, in terms of frac-
ture density (3 vs. 1 per 50 m), the percent of creek
bank with fractures (30 vs. 7%), and fracture
length (15 vs. 3 m; Deegan et al. 2012). It is an
open question whether observed creek bank frac-
turing and slumping in the reference marshes were
occurring at natural rates or at an accelerated rate
due to rapid sea level rise and associated increases
in inundation (Roman et al. 1997). At creek bank
slumping locations in the long-term reference
marsh, we measured a mean soil respiration rate
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of 2.43 � 0.23 lmol�m�2�s�1 (n = 5), a 27%
increase in respiration rate compared with the
mean long-term reference marsh rate (Fig. 3) and
similar in magnitude to the short-term enriched
marsh rate (2.94 � 1.05 lmol�m�2�s�1; n = 8).
Increased soil respiration rates at slumping areas
may also reflect an increase in marsh surface area
exposed to air during the ebbing tide, fueling
aerobic decomposition.

Results in this present study argue that discon-
tinuities in vertical (with depth) and horizontal
(across vegetation zones) soil strength likely con-
tributed to the channel bank failures that have
been observed in nutrient-enriched systems. Tide
gauge data revealed a pattern of rapid sea level
rise for the period of the study, and changes in
plant distribution patterns suggested increased
inundation over time at both the enriched and
reference sites. Longer exposure times to nutri-
ent-enriched waters and increased hydraulic
energy associated with sea level rise may have
exacerbated creek bank fracturing and slumping.
The combined effects of coastal eutrophication
and accelerated sea level rise may help drive
marsh losses in many coastal areas worldwide
where nitrogen loads and sea levels are both ris-
ing. The results of this study strongly support
that additional research is needed to better
understand the interactions of nutrient enrich-
ment and sea level rise on marsh soil strength
and stability.
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