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INTRODUCTION

Oysters and the reefs they form are ecologically
and economically valuable habitats. However, 85%
of oyster reefs have been lost globally due to over-
harvesting, pollution and disease (Burreson et al.
2000, Lotze et al. 2006, Beck et al. 2011). Restoration
of these ecosystems has been proposed to recover the
lost fishery and provide additional ecosystem serv-
ices (Officer et al. 1982, Cerco & Noel 2007, Beck et
al. 2011, Grabowski et al. 2012). Oysters can alter a
variety of ecosystem processes through suspension
feeding, including the biogeochemical cycling of nu -
trients and water quality. Oysters filter large amounts
of particulate matter from the water column, reduc-
ing phytoplankton and seston biomass (Grizzle et al.
2008). While a portion of this material is assimilated

into oyster biomass (Carmichael et al. 2012), the un -
digested (pseudo-feces) and the unassimilated por-
tions (feces) are transferred to the sediments as
biodeposits (Newell & Jordan 1983). The transforma-
tion and transfer of material modifies conditions in
the surrounding sediments and can affect biogeo-
chemical processes, including denitrification (Newell
et al. 2002, 2005, Porter et al. 2004, Piehler & Smyth
2011, Smyth et al. 2013).

Denitrification is the microbially mediated reduc-
tion of biologically available nitrate to largely inert
N2 gas. Denitrification has been identified as an im -
portant removal mechanism for nitrogen in estuaries
(Seitzinger 1988, Nixon et al. 1995). Rates of deni -
trification are influenced by a variety of envi ron mental
factors, including oxygen concentration, availability
of nitrate and the quality and quantity of organic
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matter (Cornwell et al. 1999, Fulweiler et al. 2013).
Oyster reefs are considered ‘hot spots’ for de ni tri -
fication, often having higher rates of denitrification
compared to areas without reefs (Piehler & Smyth
2011, Kellogg et al. 2013, Smyth et al. 2013). The con-
centration of organic-rich biodeposits on aerobic sed-
iments coupled with the physical structure of the reef
and reef-associated organisms contribute to the high
rates of denitrification associated with oyster reef
ecosystems. However, the contribution of an individ-
ual oyster to enhanced N2 production remains
unclear.

Oysters affect denitrification by changing oxygen
concentrations and modifying carbon and/or nitrate
availability. These changes may be attributable di-
rectly to the individual oyster or indirectly as the
 oyster modifies resources and conditions in the sedi-
ment. Oysters, like other bivalves, can directly affect
O2 concentrations in the water through respiration
(Gelda et al. 2001), and indirectly through the in -
creased oxygen demand associated with reminera li -
za tion of organic-rich biodeposits (Bruesewitz et al.
2008). Oysters may alleviate nitrate limitation for
denitrification by increasing rates of nitrification —
the conversion of NH4

+ to NO3
−. Oysters increase am-

monium directly through excretion and indirectly
through remineralization of biodeposits (Dame et al.
1984, Lavrentyev et al. 2000, Newell et al. 2005). Fur-
thermore, oysters and oyster reefs provide habitat for
nitrifying bacteria. The shell and tissue of bi valves
may harbor nitrifying bacteria and contribute to the
enhancement of nitrification activity (Welsh & Cas-
tadelli 2004). Additionally, selective grazing by bi-
valves can remove bactivorous protozoa that other-
wise consume nitrifying bacteria, a mechanism which
has been linked to increased rates of nitrification
(Lavrentyev et al. 2000).

The production and accumulation of oyster bio -
deposits can also increase denitrifi cation. Biodeposits
are a source of labile organic  matter, which acts as
the electron donor during denitrification. When bio -
deposits settle on aerobic sediments, nitrogen re -
moval can be stimulated through in crea sed coupled
nitrification−denitrification (Ne well et al. 2005). How-
ever, organic matter deposition can change sediment
oxygen penetration depth and minimize the zone
where nitrification can occur. Thus, organic matter
loading can diminish coupled nitrification− deni tri -
fication, but enhance direct denitrification when ni -
trate is available in the overlying water (Caffrey et al.
1993, Cornwell et al. 1999). Organic matter deposi-
tion may also shift dominant nitrogen reactions in the
sediments from nitrogen fixation to denitrification

(Fulweiler et al. 2008). Inputs of organic matter from
oysters may, therefore, suppress nitrogen fixation
and enhance denitrification. However, in organic-
rich systems additional organic matter deposition
from the oysters may exacerbate re duced conditions,
resulting in sulfide accumulation (Tenore & Dunstan
1973, Azandégbé et al. 2012) and increased anoxic
microzones (Kemp et al. 1990) that can inhibit nitrifi-
cation (Joye & Hollibaugh 1995) and subsequently
reduce rates of denitrification.

Previous studies designed to examine the effect of
the eastern oyster Crassostrea virginica on nitrogen
transformations have focused on adjacent sediments
(Piehler & Smyth 2011, Smyth et al. 2013), mimicked
oyster-mediated biodeposition (Newell et al. 2002),
or sampled the whole oyster reef community, includ-
ing oysters and associated biota (Kellogg et al. 2013).
We conducted a microcosm experiment to examine
the direct effects of an individual C. virginica on
nitrogen dynamics. We hypothesized that the inclu-
sion of C. virginica in the microcosm would enhance
denitrification by providing organic matter, remov-
ing oxygen and increasing availability of NH4

+ for
coupled nitrification−denitrification. Individual oys-
ters are the basic building block of oyster reefs, and
measuring how an oyster alters nitrogen processes is
an important step in understanding the mechanisms
through which oyster reefs alter nutrient dynamics.

MATERIALS AND METHODS

Sample collection

The experiment was conducted in microcosms
(clear polycarbonate 6.4 cm diameter × 30 cm length)
that contained a live oyster (Crassostrea virginica),
sediment, or a live oyster + sediment and incubated
in a continuous-flow system. C. virginica were
 collected from Calico Creek, North Carolina, USA
(34° 43.40’ N, 76° 41.55’ W), at low tide and stored in
saltwater flow-through tanks for 3 d. Prior to the start
of the incubation, the outside shell of each C. vir-
ginica was scrubbed with a brush to remove algae
and biofilms, allowing for the impacts of the oyster to
be isolated. Average shell height (longest distance
from umbo to opposite shell margin) in our experi-
ment was 9.34 ± 0.45 cm, and the average weight of
oyster tissue was 1.0 ± 2.5 g.

Sediment samples (17 cm depth) were collected by
hand on 4 August 2009 during low tide from an inter-
tidal flat suitable for oyster reef restoration in Bogue
Sound, North Carolina. Sediment samples were col-
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lected from within a 1 m2 area of the intertidal flat.
Sediments in this area have a similar grain size (171.5
± 0.62 μm) and percentage of sediment organic mat-
ter (0.6 ± 0.02; A.R. Smyth unpubl. data). In addition,
sound water (130 l) was collected for use in the con-
tinuous-flow incubation. Surface water temperature,
salinity and dissolved oxygen were measured prior to
sample collection (YSI 600 Series Sonde and Model
650 data logger, Yellow Springs Instruments).

Benthic flux incubations

Immediately after collection of sediment and water,
all microcosm chambers were submerged in a water
bath in an environmental chamber (Bally) set to in
situ temperature (24.7°C). Microcosms were ran-
domly assigned a treatment (oyster, sediment, oyster
+ sediment), and each treatment was replicated 3
times. Any visible invertebrates were carefully re -
moved from the microcosms. Microcosms were  sea led
with a gas-tight lid equipped with an inflow and an
outflow port and incubated in a continuous-flow sys-
tem, where a peristaltic pump connects the micro-
cosms to the reservoir water. An additional micro-
cosm that contained only water was incubated as a
control for a total of 10 microcosms. The potential for
replication was limited due to logistical constraints
but was at or above levels seen in similar studies
(Anderson et al. 2003, Nizzoli et al. 2007, Fulweiler &
Nixon 2009, Eyre et al. 2011). Aerated, unfiltered
water was constantly passed through each micro-
cosm at a flow rate of 2.0 ml min−1, which gave a turn-
over time of approximately 3 h. After an initial 20 h
acclimation period in the dark, microcosms were
incubated for an additional 24 h in a 10 h dark:14 h
light cycle. A light intensity of approximately 50 μE
was maintained using dual-spectrum compact fluo-
rescent lights. Oxygen in the reservoir water was
monitored throughout the incubation with a YSI
sonde and remained at about 6 mg l−1, slightly lower
than the dissolved oxygen concentration in Bogue
Sound when the water was collected (7.02 mg l−1). All
C. virginica were alive at the conclusion of the exper-
iment. Upon completion of the experiment sediment
cores were again inspected for invertebrates, but
none were visible.

Samples for dissolved gas and nutrient analysis
were collected from the outflow port of each micro-
cosm in sample vials. A bypass line that flowed
directly into a sample vial, collected at the same time,
was used to determine the concentration of dissolved
constituents entering the microcosm. Samples for

dissolved gas analysis were collected twice during
the dark period and twice during the light period for
each microcosm and averaged to give a microcosm-
specific value. Samples for nutrient analysis were
collected once in the dark and once in the light. Dis-
solved gas measurements were collected twice to
ensure that each microcosm was at steady state (O2

concentration in the outflow of each microcosm did
not change over time). Nutrient samples were col-
lected after steady state had been established.

N2, O2 and Ar were measured using a Balzers
Prisma QME 200 quadruple mass spectrometer
(MIMS; Pfeiffer Vacuum), and concentrations of N2

and O2 were determined using the ratio with Ar
(Kana et al. 1994, Ensign et al. 2008). MIMS samples
were processed immediately after collection. Sam-
ples for nutrient analysis were filtered through What-
man GF/F filters (25 mm diameter, 0.7 μm nominal
pore size), and the filtrate was analyzed for nitrate +
nitrite (reported as NOx) and ammonium (NH4

+) with
a Lachat Quick-Chem 8000 (Lachat Instruments)
automated ion analyzer (detection limits: 0.04 μM
NOx, 0.18 μM NH4

+).
Flux calculations were based on the assumption of

steady-state conditions and a well-mixed water col-
umn in each microcosm (Miller-Way & Twilley 1996).
Fluxes were calculated using the following equation:

where J is the flux in μmol m–2 h–1, [ioutflow] and [iinflow]
are the concentrations (μM) of any dissolved con-
stituent leaving (ioutflow) and entering (iinflow) the core,
respectively, F is the peristaltic pump flow rate (m3

h−1) and A is the surface area of the core (m2) (Kana
et al. 1998, Lavrentyev et al. 2000, McCarthy & Gard-
ner 2003, Ensign et al. 2008). A positive flux indicates
production in excess of demand, and a negative flux
is a demand in excess of production within the micro-
cosm. The N2/Ar technique results in a net N2 flux
(gross denitrification−gross nitrogen fixation); a posi-
tive N2 flux, therefore, indicates that denitrification
dominates the net N2 flux, while negative N2 fluxes
indicate that nitrogen fixation dominates the N2 flux.
Fluxes were corrected for activity in the water col-
umn and conditions in the microcosms by subtracting
changes observed in the water blank control from
those observed in the microcosm treatments. Daily
fluxes for each microcosm were calculated as the
light flux multiplied by time in the light (14 h) plus
the dark flux multiplied by time in the dark (10 h)
(Anderson et al. 2003, Nizzoli et al. 2006). For con -
sistency, daily fluxes were divided by 24 h and

J i i
F
A

= ⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦( ) ×outflow inflow
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expressed per hour. Daily fluxes from each micro-
cosm were averaged for each treatment to calculate
mean values and their standard error (n = 3). Net dis-
solved inorganic nitrogen fluxes (DIN) were calcu-
lated as the sum of NH4

+ and NOx fluxes minus the
N2 flux.

Statistical analysis

Differences in daily fluxes (light flux multiplied by
time in the light plus the dark flux multiplied by time
in the dark) between treatments for N2, O2, NOx,
NH4

+ and net DIN were tested with a 1-way analysis
of variance (ANOVA). When the 1-way ANOVA was
significant, Tukey-Kramer post hoc tests were used
to determine which treatments had different fluxes.
All analyses were considered significant at the p <
0.05 level. Assumptions of normality and homogene-
ity were tested using Shapiro-Wilks and Levene’s
tests, respectively. Data were transformed when
 necessary. Statistical analyses were performed using
R 2.13.1 (R Foundation for Statistical Computing
2011).

RESULTS

Daily O2 fluxes ranged from 94.38 ± 55.32 μmol
O2 m−2 h−1 in the sediment treatment to −6023 ±
647.3 μmol O2 m−2 h−1 in the oyster treatment (Table 1).
O2 fluxes were significantly greater from the sedi-
ment compared to the oyster and oyster + sediment
treatments. Oyster respiration likely contributed to
O2 demand.

There was an efflux of N2 from the oyster and oys-
ter + sediment treatments and an uptake of N2 from
the sediment treatment (Fig. 1), indicating that the
sediment treatment had net nitrogen fixation, while
the oyster and oyster + sediment treatments had net

denitrification. Daily N2 fluxes differed significantly
be tween the treatments (p < 0.05), with the oyster
treatment having significantly higher N2 fluxes (more
positive) than the oyster + sediment and sediment
treatments. Daily N2 fluxes were greater in the oyster
+ sediment treatment than in the sediment treatment.

There was uptake of NOx for the oyster treatment
and sediment treatment, but an efflux was measured
from the oyster + sediment treatment, although it was
not significantly different (Fig. 1; p = 0.18). Unlike
NOx fluxes, daily NH4

+ fluxes were distinctive among
treatments (p < 0.05). There was an efflux of NH4

+

from the oyster and oyster + sediment treatments; the
NH4

+ flux was negligible for the sediment treatment
(Fig. 1). Daily NH4

+ production was similar in the oys-
ter and oyster + sediment treatments (p = 0.38) and
significantly higher in both treatments compared to
the sediment. Net DIN fluxes were positive and simi-
lar for all treatments (Fig. 2), indicating that all treat-
ments were a net source of inorganic nitrogen to the
overlying water.

26

Treatment Daily oxygen flux

Sedimenta 94.38 ± 55.32
Oysterb −6022.92 ± 647.26
Oyster + Sedimentb −4174.45 ± 1256.55

Table 1. Mean ± SE daily oxygen fluxes (μmol O2 m–2 h–1) for
each treatment (n = 3). A negative flux indicates that there
was a demand for O2 from the microcosms, and a positive
flux indicates that the microcosm was a source of O2 to the
overlying water. Treatments with the same letter indicate 

means that are not significantly different from each other
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Fig. 1. Daily fluxes of N2, NOx and NH4
+ for each treatment

calculated from the sum of light and dark fluxes multiplied
by the hours of the light and dark periods. Fluxes were cor-
rected by subtraction of the water blank (procedural con-
trol). Error bars represent 1 standard error for 3 replicates.
Treatments with the same letter indicate means that are not
significantly different from each other. A positive flux indi-
cates that the microcosm was a source to the overlying water
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Oyster-mediated denitrification (N2 production)
accounted for an average of 41.5% of the total DIN
efflux, ranging from 35% from the oyster + sediment
microcosm to 48% from the oyster-only microcosm.

DISCUSSION

Our understanding of the processes through which
Crassostrea virginica alters estuarine nitrogen dyna -
mics is developing. The fundamentals of a mechanis-
tic understanding are built by measuring the impact
of individual oysters on nutrient processing. Recent
studies have used in situ incubation chambers to
examine the benthic fluxes associated with the whole
oyster reef community (Kellogg et al. 2013) or contin-
uous flow incubations using oyster reef sediments
(Piehler & Smyth 2011, Smyth et al. 2013). These
incubations make it difficult to isolate changes in
fluxes resulting from oysters. Results from our exper-
iment suggest that C. virginica alone can contribute
to N2 production. C. virginica in microcosm incuba-
tions allowed us to capture the direct effects of the
oyster on biogeochemical processes.

Rates of N2 production from the oyster + sediment
treatment were similar to those found in previous
studies from oyster reef sediments but lower than
rates from whole community incubations (Piehler &
Smyth 2011, Kellogg et al. 2013). This difference sug-
gests that only a portion of the high rates of denitrifi-
cation found from whole reef community experi-
ments are attributable to an oyster. However, the use
of sediments from a site suitable for restoration rather
than oyster reef sediments does not account for the

effects of the reef-associated community. We found
the highest rates of N2 production from a microcosm
with Crassostrea virginica alone, which indicates
that denitrification is associated with the animal
itself. Denitrifying bacteria have previously been
found in the guts of oysters (Pujalte et al. 1999). Dif-
ferences between the oyster and oyster + sediment
treatments are attributable to processes occurring in
the sediment, which include competition for avail-
able nutrients and diffusion into the pore space.

This study focused on assessing the impact of
Crassostrea virginica on nutrient dynamics. We
hypothesized that the inclusion of C. virginica in the
microcosm would enhance N2 production (denitrifi-
cation) by supplying organic matter, removing oxy-
gen and increasing availability of NH4

+ for coupled
nitrification−denitrification. C. virginica-mediated de -
nitrification accounted for 48% of the total DIN efflux
in the oyster microcosms and 35% in the oyster +
sediment microcosms. We found that denitrification
dominated the net N2 flux when C. virginica was
present and that when C. virginica was absent the N2

fluxes were dominated by nitrogen fixation. The
change from N2 production to demand suggests that
the presence of C. virginica shifts the dominant nitro-
gen cycling pathway from nitrogen fixation to deni-
trification, likely through increased NH4

+ availability.
However, the net DIN flux was not different among
treatments because of the magnitude of nitrogen fix-
ation in the sediment-only treatment. Nitrogen fixa-
tion is a source of new nitrogen, while NH4

+ produc-
tion from C. virginica is a recycling of particulate
nitrogen in phytoplankton back to the water column
(Dame et al. 1985).

Crassostrea virginica biodeposits contain signifi-
cant amounts of organic carbon, nitrogen and ex -
tractable ammonium that can supply resources to the
microbial community (Haven & Morales-Alamo 1966,
Grenz et al. 1990, Giles & Pilditch 2006, Higgins et
al. 2013). The eastern oyster produces about 1.33 to
16.8 mg C per gram of oyster tissue d−1 as biodeposits
(Haven & Morales-Alamo 1966, Higgins et al. 2013).
Given the turnover time in our incubation and the
clearance rates of an oyster, we estimate that 2.66 ±
6.65 to 33.6 ± 84 mg of particulate C was retained
within the microcosm as a result of filtration. The
bulk of the carbon and nitrogen in the biodeposits
could be used for heterotrophic metabolism leading
to anoxic micro-zones and conditions favorable for
denitrification. Biodeposits have been associated with
denitrifying bacteria and enhanced denitrification
(Grenz et al. 1990, Azandégbé et al. 2012); however,
N2  production rates from individual C. virginica were
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higher than rates associated with the bio deposits
alone (Higgins et al. 2013) and removed a large per-
centage of nitrogen compared to experiments where
pelletized phytoplankton were used to mimic biode-
posits (Newell et al. 2002).

Quantifying the effects of Crassostrea virginica on
ecosystem function is challenging, given the method-
ological difficulty in measuring denitrification and
the complexity of the reef ecosystems. Our results
agree with previous studies which concluded that
oyster-mediated denitrification occurs through cou-
pling between nitrification stimulated by biodeposi-
tion and ammonium production from the oysters
(Boucher & Boucher-Rodoni 1988, Newell et al. 2002,
Piehler & Smyth 2011, Smyth et al. 2013). Nitrate/
nitrite fluxes were low and directed into the micro-
cosm for the oyster and sediment treatments, while
there was low production from the oyster + sediment
treatment. In the oyster treatment, the nitrate/nitrite
demand was not enough to support the rate of N2

production measured. This could have resulted from
nitrifying bacteria on the shell or within the tissue of
the oyster, as has been found with other filter-feeding
bivalves (Welsh & Castadelli 2004). If nitrifying bac-
teria associated with oysters are responsible for
increased nitrate supply, this would also be  present
in the oyster + sediment treatment. Oyster presence
has stimulated nitrification in sediments (Boucher &
Boucher-Rodoni 1988), and high rates of NOx pro-
duction within oyster reefs also suggest that oysters
have high rates of nitrification (Kellogg et al. 2013).
The low production of NOx from the oyster + sedi-
ment treatment coupled with the positive N2 flux,
and low ambient nitrate/nitrite concentration sug-
gest that sediment nitrification was promoted in the
presence of C. virginica.

The shift detected between nitrogen fixation in the
sediment treatment to denitrification with Crassos -
trea virginica is likely the result of the combination of
an increase in ammonium supply and high-quality
organic matter. When ammonium is high and there is
ample supply of labile organic matter, denitrification
tends to dominate the net N2 flux; when ammonium
is low and organic matter is recalcitrant, nitrogen fix-
ation tends to dominate (Fulweiler et al. 2013). The
sediments used in this experiment had low sediment
organic matter, and the inclusion of C. virginica,
which was an organic matter addition, increased the
recycling of nitrogen through remineralization (as
indicated by the high rates of ammonium produc-
tion). The combination of these effects decreased the
need for the fixation of new nitrogen. In a recent
study, Atkinson et al. (2013) found an increase in

abundance of N-fixing blue-green algae when mus-
sels were not present and an increase in abundance
of diatoms when mussels were included, implying
that the presence of mussels can elevate nitrogen
limitation. Our results indicate that C. virginica may
have the same effect, and that the increase in ammo-
nium associated with C. virginica alleviates N limita-
tion and reduces the need for fixation of new nitro-
gen. However, if there was ample supply of nitrogen
in the water column these effects may not be as
apparent.

While continuous-flow microcosms provide insight
into the effects of Crassostrea virginica on nutrient
dynamics, extrapolating these data to oyster reef eco-
systems is problematic. For example, the density of
bivalves has been shown to affect nutrient fluxes
across the sediment−water interface (Nizzoli et al.
2007, Green et al. 2012). The results presented here
do not take into account any density-dependent
interactions. Additionally, the use of cleaned oysters
reduced the effects of any shell-attached organisms.
In the natural environment, tide, density, light, water
depth, salinity, ambient nutrient concentration, tem-
perature and reef structure will influence the denitri-
fication associated with C. virginica and the reefs
they form. It is possible that continuous-flow micro-
cosms overestimate the rates of denitrification associ-
ated with C. virginica. For instance, the increase in
O2 demand from C. virginica combined with minimal
competition for available nutrients from native ben-
thic organisms and the accumulation of organic ma -
terial could increase denitrification. However, con-
tinuous-flow incubations likely reduce this potential
bias as compared to batch incubations, which do not
have any water circulation. While the current study
used sediments suitable for oyster reef restoration,
the addition of oysters to oyster reef sediments would
likely provide a realistic representation of the nitro-
gen fluxes associated with the bivalve ecosystems,
because it combines the effects of the oyster reef sed-
iment community with activity directly associated
with the oyster and the oyster shell.

This study contributes to the growing body of evi-
dence that Crassostrea virginica can enhance de -
nitrification (Newell et al. 2002, Piehler & Smyth
2011, Kellogg et al. 2013, Smyth et al. 2013). We
found that in the absence of C. virginica, sediments
were a net source of reactive nitrogen through nitro-
gen fixation, whereas the addition of oysters in crea -
ses organic matter deposition, alleviating carbon
 limitation and increasing denitrification. While
C. vir ginica caused a shift in N2 processes, the lack of
differences in the net DIN flux between treatments
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suggests that all treatments affected the pool of nitro-
gen equally. Thus, restoration is not likely to add
additional nitrogen and will provide the valuable
ecosystem service of nitrogen removal. This study
provides early insight into the effects of C. virginica
on nitrogen biogeochemistry upon which future
research on bivalve impacts on nutrient removal can
build.
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