
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

12-13-2018 

Intensive oyster aquaculture can reduce disease impacts on Intensive oyster aquaculture can reduce disease impacts on 

sympatric wild oysters sympatric wild oysters 

Tal Ben-Horin 

Colleen Burge 

David Bushek 

Maya Groner 

Dina Proestou 

See next page for additional authors 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Aquaculture and Fisheries Commons 

Recommended Citation Recommended Citation 
Ben-Horin, Tal; Burge, Colleen; Bushek, David; Groner, Maya; Proestou, Dina; Huey, Lauren; Bidegain, Gorka; 
and Carnegie, Ryan, Intensive oyster aquaculture can reduce disease impacts on sympatric wild oysters 
(2018). Aquaculture Environment Interactions, 10, 557-567. 
10.3354/aei00290 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


Authors Authors 
Tal Ben-Horin, Colleen Burge, David Bushek, Maya Groner, Dina Proestou, Lauren Huey, Gorka Bidegain, 
and Ryan Carnegie 

This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1236 

https://scholarworks.wm.edu/vimsarticles/1236


AQUACULTURE ENVIRONMENT INTERACTIONS
Aquacult Environ Interact

Vol. 10: 557–567, 2018
https://doi.org/10.3354/aei00290

Published December 13

INTRODUCTION

Disease spread from fish and shellfish farms to
sympatric fish and shellfish in the wild is a significant
and contentious threat to coastal marine ecosystems
(Harvell et al. 1999, Lafferty et al. 2015, Tompkins et

al. 2015). Examples such as sea lice spreading from
salmon farms to wild salmon migrating out to sea
(Krkošek et al. 2005, Costello 2009) and the dis-
charge of the Rickettsia-like parasite that causes
abalone withering syndrome in the effluent of shore-
based abalone farms (Lafferty & Ben-Horin 2013)
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ABSTRACT: Risks associated with disease spread from fish and shellfish farming have plagued
the growth and public perception of aquaculture worldwide. However, by processing nutrients
and organic material from the water column, the culture of many suspension-feeding bivalves has
been proposed as a novel solution toward mitigating problems facing coastal water quality,
including the removal of disease-causing parasites. Here we developed and simulated an epi-
demiological model describing sympatric oyster Crassostrea virginica populations in aqua culture
and the wild impacted by the protozoan parasite Perkinsus marinus. Our model captured the indi-
rect interaction between wild and cultured populations that occurs through sharing water-borne
P. marinus transmission stages, and we hypothesized that oyster aquaculture can enhance wild
oyster populations through reduced parasitism as long as cultured oysters are harvested prior to
spreading disease. We found that the density of oysters in aquaculture, which is commonly
thought to lead to the spread of disease through farms and out to nearby populations in the wild,
has only indirect effects on P. marinus transmission through its interaction with the rate of aqua-
culture harvests. Sufficient aquaculture harvest, which varies with the susceptibility of farmed
oysters to P. marinus infection and their lifespan once infected, reduces disease by diluting para-
sites in the environment. Our modeling results offer new insights toward the broader epidemio-
logical implications of oyster aquaculture and effective disease management.
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have brought environmental groups, aquaculture
and fishing industries, recreational fishing lobbies,
government agencies, and scientists into direct con-
flict. Even as advances in aquaculture biosecurity
continue to minimize disease impacts, particularly
the spread of nonnative pathogens (Pali  et al. 2015,
Carnegie et al. 2016), it has become increasingly
clear that aquaculture fundamentally changes the
ecological dynamics of endemic parasites (Krkošek
et al. 2005, Mikkelsen et al. 2009, Burge et al. 2016).
This occurs from the logistical necessity for open-
water nursery systems such as sea cages and net
pens to grow many cultured species up to market
size, which provides the water-borne infective stages
of many marine parasites with access to an influx of
new susceptible hosts. Because sites that support
aquaculture are frequently occupied by or near
wild conspecifics or related taxa that share disease-
 causing parasites, an understanding of the broad epi-
demiological consequences of aquaculture will pro-
vide a starting point for conflict resolution at its
interface with wild populations.

Interactions between oyster Crassostrea virginica
aquaculture and wild oyster reefs present a unique
case study for examining the directionality of disease
spread across this interface. Wild oyster reefs were
once a dominant feature of estuaries along the US
Atlantic and Gulf of Mexico coasts, but have mostly
declined due to overharvest and impacts from intro-
duced and naturally occurring diseases (Beck et al.
2011, Zu Ermgassen et al. 2012). Disease controls on
abundance, combined with the expansion of the USA
oyster aquaculture industry in the wake of wild fish-
ery declines (Knapp & Rubino 2016), have since
caused wild oysters to be outnumbered by their cul-
tured conspecifics across much of this range. Beyond
their commercial appeal, aquaculture, and, more re -
cently, restoration activities have also been em -
ployed to supplement the ecological services pro-
vided by wild oyster reefs, including the removal of
nutrients and organic material from the water col-
umn through the suspension feeding of oysters (Coen
et al. 2007, Beck et al. 2011, Grabowski et al. 2012,
Dillon et al. 2015, Humphries et al. 2016). It is also
through suspension feeding that oysters are exposed
to the water-borne stages of many disease-causing
parasites, including the agent of dermo disease,
Perkinsus marinus (Ray 1954, Allam et al. 2013, Ben-
Horin et al. 2015). Dermo disease was first identified
in the Gulf of Mexico in the 1940s (Mackin et al.
1950), and disease impacts appear to have intensified
and shifted northward since the mid-1980s (Bushek
& Allen 1996, Ford & Chintala 2006). Cultured oys-

ters also experience heavy losses from disease (Dé -
gremont et al. 2015a, Lafferty et al. 2015, Pernet et al.
2016); however, selective breeding has resulted in
cultured lines with increased survival in areas where
P. marinus is present (Dégremont et al. 2015b, Proes -
tou et al. 2016). More recent work focused on charac-
terizing and quantifying the response of C. virginica
to P. marinus in laboratory-controlled experiments
suggests that the susceptibility of oysters to P. mari-
nus infection and survival rates once infected with P.
marinus are distinct traits that vary among cultured
oysters with different genetic backgrounds (Chintala
et al. 2002, Ben-Horin et al. 2018). How these traits
co-vary in wild and cultured oysters and across en -
vironmental gradients remains a topic of active re -
search interest. Nevertheless, because P. marinus
infections are chronic, with mortality often occurring
3 yr or more after initial infection (Powell et al. 2008),
aquaculturists can hedge against uncertain disease
risks by harvesting cultured oysters prior to the man-
ifestation of disease-induced mortalities and further
spread of P. marinus through farms and out to wild
populations nearby. With evidence accumulating
that oysters in culture remove phytoplankton and
organic material from the water at rates comparable
to wild populations (Dillon et al. 2015, Humphries et
al. 2016), this raises the novel hypothesis that cul-
tured oysters, if harvested before disease peaks, can
reduce P. marinus concentrations in the water col-
umn and therefore alleviate the impact of dermo dis-
ease on sympatric wild populations.

Here we developed and simulated an epidemio -
logical model that captured the indirect interaction
through shared parasitism between sympatric oyster
populations occurring in aquaculture and the wild.
We hypothesized that oyster aquaculture can en -
hance wild oyster populations through reduced para-
sitism, so long as cultured oysters are harvested prior
to spreading disease to wild populations. We tested
this hypothesis by examining how the (1) density,
(2) harvest rate, and (3) susceptibility of farmed oys-
ters to P. marinus infection and lifespan, once in -
fected, impacted the density of sympatric wild  oyster
populations. 

METHODS

Susceptible-Infected-Parasite model

To explore how aquaculture influences disease
dynamics in systems where cultured oysters interact
with wild oyster populations through shared water-
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borne parasites, we generalized the Susceptible-
Infected-Parasite (SIP) model of Bidegain et al.
(2017), separating a wild host population into suscep-
tible (Sw) and infected (Iw) classes (Fig. 1). In this
model, parasite stages (P) are released from the
infected class into a local volume of water immedi-
ately surrounding the wild population (1 m3), both
through the continuous shedding of parasite stages
and a larger release upon mortality. Parasite stages
are inactivated and/or grazed by consumers (e.g.
heterotrophic microzooplankton and benthic sus -
pension feeders other than oysters) at the per capita
rate ι. Parasites stages are also exported from the
local volume of water at the per capita rate γ and
imported at the constant rate Γ. The local volume of
water is filtered by susceptible and infected hosts at
the constant per capita rate ϕw, leading to the host
and parasite density-dependent removal of parasite
stages from the water column. New infections occur
in susceptible hosts from the parasites that are fil-
tered out of the water at the per parasite rate of host
susceptibility μw.

Farming oysters adds new susceptible host classes
(Sf) at the constant stocking density per annum π,
and, as with the wild population, the farmed oysters
filter parasite stages from the same volume of water
at the constant per capita rate ϕf (Fig. 1). Since oys-
ters used for aquaculture production often undergo
selection for resistance to parasitic infection and
increased survival in areas where Perkinsus marinus

is present (Frank-Lawale et al. 2014, Dégremont et
al. 2015a, Proestou et al. 2016, Ben-Horin et al. 2018),
we therefore varied the rate of infection with a per-
parasite rate of host susceptibility specific to the
farmed population (μf). As with the wild population,
infected oysters on the farm release parasite stages
into the volume of water that can then be filtered by
both the wild and farmed populations.

Natural mortality acts on all susceptible and in -
fected classes by the per capita base rate δ, and we
supplemented this base rate in the wild population
with the density-dependent loss term c, which in -
creased post-settlement mortality with increasing
oyster density, fixing the carrying capacity of the
wild population in the absence of disease at (b − δ)/c.
Conceivably, aquaculture activities such as cleaning
and sorting reduce or eliminate post-settlement
 density-dependent sources of mortality at all but the
highest population densities for aquaculture produc-
tion, and we therefore did not include a density-
dependent loss term in the farmed population. Har-
vest of the farmed population occurs at the per capita
rate σ, where σ−1 represents the mean time to farmed
oyster harvest. Disease increases mortality in the
wild and farmed infected classes by the additive
rates vw and vf, therefore (δ + vw)−1 and (δ + vf)−1 re -
present the mean expectation of life once wild and
farmed oysters are infected with P. marinus in the
absence of any harvest. We varied the disease mor-
tality rate in farmed oysters (vf) to account for selec-
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Fig. 1. The interactions between susceptible and infected host classes and water-borne parasite stages in (A) a wild oyster pop-
ulation in the absence of aquaculture and (B) when wild and culture populations are sympatric. The dashed line demonstrates 

the export and import of parasite stages between the local populations. See Table 1 for definition of parameters
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tion for increased survival in cultured stocks faced
with disease. The coupled set of ordinary differential
equations takes the form:

(1)

(2)

(3)

(4)

(5)

The total populations in the wild and farm are rep-
resented by Nw and Nf, where Nw = Sw + Iw and Nf = Sf

+ If. Here, t represents time in years, b is the
maximum birth rate per animal per year, ρ is the pro-
portional reduction in reproduction in infected classes,
θ is the number of parasites released from infected
hosts upon mortality, and s is the per host shedding
rate of infectious parasite stages into the environment.

We numerically simulated Eqs. (1) to (5) to explore
how the scale of aquaculture, the rate of harvest, and
the susceptibility of farmed oysters to P. marinus
infection and survival once infected impacted con-
centrations of P. marinus in the water column and the
density of wild oyster populations. We parameterized
the model from relevant laboratory and field data
investigating the oyster−P. marinus system. Detailed
information concerning the parameters used in the
model are presented in Table 1. We first simulated
the model for σ = 0:1 yr−1 and π = 10 oysters m−2 (low
seeding density) and π = 1000 oysters m−2 (high seed-
ing density) over t = 1000 yr, using initial population
densities of Sw,0 = 10 oysters m−2, Sf,0 = 0 oysters m−2,
Iw,0 = 10 oysters m−2, If,0 = 0 oysters m−2, and P0 = 100
parasites m−3 (Scenario 1). For each σ and π combina-
tion, we obtained the concentration of P. marinus in
the environment and the density of the wild oyster
population. We then simulated 3 additional scenarios
that followed the criteria of the previous model simu-
lation but varied the susceptibility of farmed oysters
to P. marinus infection and survival once infected. In
Scenario 2, we simulated the model planting oysters
on the farm with decreased susceptibility to infection
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Term Units Definition Value Source

State variablesa

S (Sw & Sf) oysters m−2 Density of susceptible wild (w) and farmed (f) hosts
I (Iw & If) oysters m−2 Density of infected hosts
P parasites m−3 Concentration of parasites in the environment

Parameters
b yr−1 Maximum birth rate of hosts 0.73 Powell et al. (2009)
ρ – Relative fecundity of infected hosts 0.5 Paynter (1996)
δ yr−1 Natural mortality rate of hosts 0.11 Powell et al. (2009)
μw oysters parasite−1 Per-parasite host susceptibility (wild population) 0.0002 Chu & Volety (1997)
μf oysters parasite−1 Per-parasite host susceptibility (farmed population) varies
vw yr−1 Disease mortality rate (wild population) 0.29 Bushek et al. (2012)
vf yr−1 Disease mortality rate (farmed population) varies
ϕw m3 oyster−1 yr−1 Host filtration rate (wild population) 30.0 Riisgård (1988)
ϕf m3 oyster−1 yr−1 Host filtration rate (farmed population) variesb

c m3 oyster−1 Density dependent parameter 0.002067 Powell et al. (2009), 
Powell et al. (2012)

θ parasites oyster−1 Parasites released from infected oysters upon death 10000 Diamond (2012)
s yr−1 Shedding rate of parasite from infected hosts 2550 Bushek et al. (2002)
π oysters yr−1 Aquaculture seeding rate varies
ι yr−1 Inactivation and loss rate of free-living parasites 52.0 Soudant et al. (2005)
σ yr−1 Aquaculture harvest rate varies

aHost (oyster) populations reflect a density (in oysters m−2) on the benthos. The parasite population reflects a concentra-
tion in the water column

bThe farmed population is harvested and therefore ‘younger’ and ‘smaller’ than the population in the wild. As bivalve
filtration rates scale with body size and therefore age, ϕf declined with the aquaculture harvest rate σ according to the
exponential decay function ϕf = 35.79e−1.33σ

Table 1. State variables and parameters used in the epidemiological model
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with P. marinus. Scenario 3 planted oysters with in -
creased survivorship given infection, and Scenario 4
planted oysters with decreased susceptibility and in -
creased survivorship. For each scenario we again ob -
tained the equilibrium concentration of P. marinus in
the environment and the density of the wild oyster
population for each parameter combination. 

RESULTS

Analytical solutions to the SIP model

We first evaluated the impact of aquaculture on
wild oyster populations from the equilibrium solu-
tions for total density (N*) and infection prevalence
(i*) of the wild and farmed populations, where Sw =
(1 − iw)Nw and Iw = iwNw, and Sf = (1 − if)Nf and If =
ifNf. After some transformations (see the Supplement
at www. int-res. com/ articles/ suppl/ q010 p557 _ supp.
pdf), we calculated the density of the wild population
at the endemic disease equilibrium (Nw):

(6)
where

(7)

The ratio Ω in the denominator of Eq. (7) describes
the proportional change in the equilibrium preva-
lence of infection in the farmed population relative to 

the population in the wild (i.e. ). This solution 

provided 3 important insights into the potential im -
pact of aquaculture on wild populations when para-
sites are shared: (1) the term at the right of Eq. (6)
(bρ − b − vw) will always be negative because ρ ≤ 1;
therefore, activities that increase the prevalence of
infection in wild populations (i*w) will, as expected,
drive down population density; (2) since n*ƒ increases
with increasing stocking density of farmed oysters
(π), the effects of increasing stocking densities in
aquaculture on i*w, and hence N*w, are neutral; and (3)
increasing the harvest rate of farmed oysters will
decrease i*w.

We then evaluated how aquaculture influences
disease dynamics at the interface of cultured and
wild populations. We assumed that the export of par-
asite stages from the local volume of water was bal-
anced by parasites imported (Γ = γP ), which would
approximate cases of extensive aquaculture and at
the immediate interface of cultured and wild popula-
tions. Using the next-generation matrix approach of

Diekmann et al. (2010) to define the parasite’s basic
reproductive number at the disease-free equilibrium
(R0) for the population at the farm (R0,f; Sf ≈ Nf, If = 0,
p = 0; see the Supplement), we found the condition
for disease persistence:

(8)

We interpreted R0,f as the product of (1) the prob -
ability that infectious parasite stages contact hosts be-
fore they die (a function that saturates with host den-
sity μfϕfNf /(ι + ϕfNf)) and (2) the number of infectious
stages produced over an infected host’s life ((θ(δ + vf)
+ s)/(δ + vf + σ)). In the case of the farmed population,
R0,f can be used to quantify how aquaculture can am-
plify or dilute disease risks. Increased susceptibility to
Perkinsus marinus infection (μf) in planted oysters in-
creases R0,f by increasing the probability that parasite
stages will induce successful infections. The conse-
quences of variation in the expected lifespan of oys-
ters with P. marinus infection are less straightforward.
The lifetime production of infectious stages reflects a
balance between parasites released by hosts and host
removal through mortality and harvest. While the
benefit of increased survival in cultured populations
is clear (i.e. they carry a parasite load with no adverse
effects on survival), this benefit may come to the
detriment of their wild counterparts. Oysters that sur-
vive with P. marinus infection for longer periods of
time potentially release more parasites into the sur-
rounding water, and the ‘excess’ parasites can be
transmitted to sympatric wild populations. The great-
est disease risk occurs when the planted oysters are
harvested slowly, or not at all (Fig. 2). The latter is the
case with extensive on- bottom oyster planting as well
as with efforts to re store oyster reefs by planting oys-
ters in no-harvest oyster sanctuaries (Coen et al.
2007), and this highlights the need to account for the
direct and indirect consequences associated with the
traits of planted stocks with respect to the goals of
aquaculture or re storation.

Numerical simulations of the SIP model

The introduction of oyster aquaculture in the
model led to changes in both the equilibrium concen-
tration of P. marinus in the environment and the den-
sity of the wild oyster population, for better and for
worse. For Scenario 1, where the density of oysters
stocked each year (π) and the aquaculture harvest
rate (σ) were varied (but wild and cultured oysters
were equally susceptible to infection and disease
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mortality), the threshold between better (i.e. aqua-
culture has a positive effect on wild populations) and
worse (i.e. aquaculture has a negative effect on wild
populations) occurred at a harvest rate of 0.62 yr−1

(mean time to harvest ≈ 19 mo), regardless of the
density oysters were stocked on the farm. Sufficient
harvest of the oysters stocked on the farm (σ >
0.62 yr−1) led to a decrease in environmental concen-
trations of P. marinus (Fig. 3A; left panel), which in
turn led to an increase in the density of the wild oys-
ter population (Fig. 3A; right panel). Increasing the
density of oysters stocked on the farm increased this
benefit, both in terms of the parasites removed from
the environment and the increase in wild population
density. Below the threshold harvest rate of 0.62 yr−1,
the introduction of aquaculture increased water col-
umn concentrations of P. marinus and decreased the

density of wild oysters. Like the effects seen above
this threshold value, increasing the stocking density
of aquaculture increased the magnitude of this effect.
These results mirror the solution to the parasite’s
basic reproductive number for the population at the
farm (Eq. 8), where we found transmission to respond
directly to the aquaculture harvest rate, whereas the
aquaculture stocking density had only indirect ef -
fects on R0 through its effect on Nf. This both supports
and contradicts expectations of the epidemiological
effects of increasing stocking densities in aquacul-
ture, such as the demonstrated increase in parasitic
sea lice in the nearshore waters adjacent to salmon
farms (Jansen et al. 2012). Given our model re -
presentation of the transmission dynamics between
oyster aquaculture and wild oyster populations, in -
creases in the stocking density alone cannot drive the
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Fig. 2. Isoclines showing the threshold for disease emergence (R0,f > 1 to the right of each isocline, see Table 1 for parameter
definitions) as a function of the susceptibility of planted oysters to Perkinsus marinus infection (μf), the expected lifespan of 
planted oysters once infected with P. marinus (1/δ +vf), and the aquaculture harvest rate (A−D). The ‘×’ in each plot indicates
the values of μw and (1/δ +vw) of the wild oyster population. Both with and without harvest, increasing the susceptibility of
planted oysters to P. marinus infection increases the spread of infection from aquaculture. In the absence of harvest, increasing
the lifespan of planted oysters infected with P. marinus leads to a counterintuitive increase in the spread of infection from 
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spread of disease. Instead, the aquaculture stocking
density interacts with other activities, here the har-
vest rate, to drive the dynamics of disease at the
interface of aquaculture and wild populations.

Varying the susceptibility of planted oysters to P.
marinus infection and survivorship of oysters in fected
with P. marinus further modified disease dynamics. In
line with our prediction from the relationship be tween
susceptibility to P. marinus infection and R0,f, decreas-
ing the susceptibility of the planted stock to P.
marinus infection led to further decreases in the equi-
librium concentrations of P. marinus in the water col-
umn (Fig. 3B; left panel), and in turn increased in the
density of wild oysters (Fig. 3B; right panel). The
threshold harvest rate where aquaculture tran si -

tioned from exerting a negative effect on wild popula-
tions to a positive one decreased with decreased sus-
ceptibility to P. marinus infection, occurring when σ =
0.20 yr−1 (mean time to harvest = 5 yr) in Scenario 2.
Oysters less susceptible to infection with P. marinus
can therefore remain on the farm longer without
spreading disease to wild populations. Increases in
the survival of planted oysters infected with P.
marinus (Scenario 3) were less straightforward. When
the aquaculture harvest rate was sufficiently high (σ >
0.44 yr−1; mean time to harvest < 15 mo), increasing
the survival of planted oysters infected with P.
marinus had a slightly positive effect on the wild oys-
ter population, decreasing parasite concentrations in
the environment (Fig. 3C; left panel) and increasing
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D. Scenario 4: Cultured oysters are less susceptible and live longer with infection
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Fig. 3. Equilibrium concentration of Perkinsus marinus in the environment (left column) and the density of wild oyster popula-
tions (oysters m−2) as a function of the aquaculture harvest rate (σ). Solid lines: aquaculture planting rate (π) of 10 oysters m−2

yr−1; dashed lines: planting rate of 1000 oysters m−2 yr−1; horizontal dotted lines: the equilibrium concentration of P. marinus in
the environment and density of the wild oyster population in the absence of aquaculture; vertical dotted lines: the threshold
values of the aquaculture harvest rate that lead to a decrease in parasite concentrations in the  environment and an increase in
the density of the wild oyster population. For the simulated Scenarios 1 to 4, increasing the aquaculture harvest rate increased 

the density of the wild oyster population
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wild population densities (Fig. 3C; right panel). When
the aquaculture harvest rate was low, farmed oysters
remained in the water for longer periods of time and
increases in the survival rate of the planted stock
were met with in creases in environmental parasite
concentrations and decreases in the density of the
wild oyster population. In fact, when the planted stock
was not harves ted, increases in the expected lifespan
with P. marinus infection in the planted stock led to a
relative increase in parasite concentrations in the en-
vironment, and a relative decrease in the density of
the wild oyster population when compared to Sce-
nario 1. The interactive effects of varying the harvest
rate and survival of the planted stock on parasite
concen trations in the environment and the density of
wild oysters mirrored our previous finding demon-
strating R0,f to respond directly to the aquaculture har-
vest rate. Increasing the lifespan of planted oysters
 in fected with P. marinus increased the lifetime pro-
duction of parasite stages, and therefore, amplified
R0,f when the aquaculture harvest rate was low. In the
 solutions to the model, increasing survival similarly
led to an increase in environmental concentrations of
P. marinus and a decrease in the density of wild oys-
ters. These results underscore the value of under-
standing the consequences of selective breeding for
traits such as susceptibility to parasitic infection and
survival given infection in aquaculture. The goal of
selective breeding is to maximize production in the
face of disease risk. However, our results indicate that
the selection for various traits associated with the per-
formance of aquaculture stocks facing disease can have
widely different outcomes on the dynamics of disease
when outcomes extend to sympatric wild populations.

DISCUSSION

Open-water oyster aquaculture will reduce disease
in sympatric populations when cultured populations
deter disease agents from infecting hosts in the wild,
either by serving as incompetent decoys for parasite
stages (Johnson & Thieltges 2010), or, as demon-
strated here, when serving as hosts themselves so
long as they are harvested before disease peaks. The
rate at which cultured populations are harvested is
therefore critically important and leads to different
disease outcomes with increases in the stocking den-
sity of aquaculture. In salmon aquaculture, for exam-
ple, increases in the aquaculture stocking density
appear to amplify levels of parasitic sea lice in the
nearshore waters adjacent to farms (Jansen et al.
2012). However, in the case of salmon, aquaculture

fundamentally changes the transmission dynamics of
sea lice. The logistical necessity to confine farmed
adult salmon within nearshore sea cages held in the
same location for extended periods of time leads to a
magnification in sea louse transmission that gener-
ally increases with increasing densities of salmon
farms (Costello 2006, Jansen et al. 2012). The culture
of oysters and other bivalves similarly occurs in open-
water sea cages, but the transmission dynamics of
parasites such as Perkinsus marinus are relatively
unchanged whether oyster populations are in culture
or in the wild (Burreson & Ragone Calvo 1996).
Therefore, increasing oyster densities leads to an in -
crease in both the probability that infectious parasite
stages contact potential hosts as well as an increase
in the removal of parasite stages from the environ-
ment (Eq. 8). This duality leads to idiosyncratic
effects of increasing aquaculture stocking densities
on parasite spread (i.e. R0) and the density of wild
oysters. In our model representation of the  oyster−
P. marinus system, parasite densities in the environ-
ment increased and the density of wild populations
decreased with increases in the stocking density of
aquaculture, but only when the harvest rate of aqua-
culture was low. The opposite occurred when aqua-
culture harvest was sufficiently high, where increas-
ing stocking den sities increased the removal of
parasites from the environment and increased the
density of sympatric wild oysters.

The central role played by the rate of aquaculture
harvests has clear implications for disease manage-
ment. Increasing the duration that cultured oysters
re main in an estuary increases the likelihood of
transmission in addition to the number of parasites
hosts produce. Reductions in the growth rates of cul-
tured oysters, such as those occurring as unintended
trade-offs when selecting for other desirable traits
(Dégremont et al. 2010, 2015b), will tend to increase
disease if oysters are harvested at similar size and
age. While oyster farmers would seldom aim to re -
duce growth rates, they may be faced with choices
that lead to this consequence. For example, growing
oysters on the bottom rather than suspended in cages
would have this effect (Castagna et al. 1996). Simi-
larly, interest from the aquaculture industry in grow-
ing thicker-shelled oysters to improve the market -
ability of half-shell products may lead to slower
growth. The thin shells of fast-growing domesticated
oyster lines fragment easily when opened and are
readily penetrated by boring polydorid worms to the
detriment of product quality and sales (Morse et al.
2015). Oysters genetically selected or manipulated
through culture methods to produce heavier shells to
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mitigate these issues would be likely to grow more
slowly and require a delayed harvest. Furthermore,
the intensive culture of oysters in cages or trays per-
mits the complete harvest of a cohort on some sched-
ule, which can be managed. The extensive culture of
oysters on the seabed free of any containment, a
practice still in wide use, precludes complete harvest,
increasing parasite transmission and its adverse
effects on wild populations at any rate of planting.
Promoting intensive (i.e. contained) oyster culture
and shorter harvest schedules would therefore re -
duce the probability that oyster aquaculture facili-
tates disease in wild populations.

Our results also have direct implications for efforts
to restore wild oysters by stocking wild or recon-
structed reefs with hatchery-produced oysters, a
common practice wherever oyster restoration occurs
(Coen et al. 2007). In this application, planted oysters
are not harvested at all, so the direct benefits to wild
oysters nearby that occurs through increased repro-
duction and recruitment (which may be questionable
in the first place; see Hare et al. 2006) may come with
indirect increases in disease. All restored oyster reefs
eventually develop infection profiles that mirror
those of surrounding natural populations (Mann &
Powell 2007). However, because restored reefs are
not harvested, restoration may lead to a local in -
crease in the equilibrium state of disease, and a
decrease, in turn, in the density of local oyster popu-
lations. This outcome may be more likely if the oys-
ters planted for restoration are selected to survive but
not resist infection. Such an outcome would oppose
the goals of restoration itself, highlighting the need
to consider the direct and indirect consequences
associated with the traits of planted oysters with
respect to the goals of restoration.

Our conclusions are drawn from a model host−
parasite system, and this naturally raises the question
of field testing. Some of the predictions from our
model, such as effects of aquaculture on equilibrial
dynamics in wild oyster populations, are difficult to
test because they simulate interactions between
aqua culture and wild populations for long periods in
the absence of acute disturbance or changes in
human behavior. However, our conclusions offer
testable predictions of the role of aquaculture in driv-
ing the dilution and/or spread of parasites in coastal
waters. Can regularly harvested oyster farms serve
as a sink for disease-causing parasites? Alternatively,
do parasites spread in the absence of harvest (e.g.
oyster restoration sites)? Data on the behavior and
distribution of planktonic parasite stages, including
ecological interactions occurring in the plankton, can

be integrated into Lagrangian particle tracking mod-
els to directly test model predictions in the field. How
oyster aquaculture and restoration activities fit into
the seascape of disease risk within and across estuar-
ies offers a rich area for future research.

The consumption of parasites can dramatically
alter disease dynamics (Civitello et al. 2013, Bidegain
et al. 2016). Using a unique case study where wild
and farmed hosts are also consumers of parasites, we
suggest that oyster aquaculture fundamentally changes
the dynamics of an endemic disease. Aqua culture
can serve either as a source or sink of disease-
causing parasites of wild oyster populations depen -
ding on management variables such as the stocking
density, harvest rate of aquaculture, and traits of the
planted stock. As our case study illustrates, a fuller
accounting of the ecological processes involved in
the interactions between cultured and wild popula-
tions provides a novel framework for predicting dis-
ease outcomes arising from human activities in
coastal marine ecosystems.

Data archive. MATLAB (The MathWorks) scripts simulating
the epi demiological mo del are available at https://zenodo.
org/ record/2004192.
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