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Model sensitivity in holographic superconductors and their deconstructed cousins

Joshua Erlich and Zhen Wang

Department of Physics, High Energy Theory Group, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
(Received 24 June 2013; published 5 August 2013)

Holographic models of superconductors successfully reproduce certain experimental features of high-

temperature superconductors, such as a large gap-to-Tc ratio compared to that of conventional super-

conductors. By deconstructing the extra dimension of these holographic models, similar phenomenology

is described by a class of models defined in the natural dimension of the superconducting system. We

analyze the sensitivity of certain observables in holographic and deconstructed holographic supercon-

ductors to details of the extra-dimensional spacetime. Our results support the notion that certain

quantitative successes of simple models of this type are accidental. However, we also find a certain

universal relationship between superconducting observables.

DOI: 10.1103/PhysRevD.88.035003 PACS numbers: 11.25.Tq

I. INTRODUCTION

Holographic models of nonperturbative physical sys-
tems have been more successful quantitatively than should
have been expected. The most developed applications of
holographic model building are to quantum chromody-
namics (QCD) [1,2], electroweak symmetry breaking [3]
and condensed matter systems, especially superconductors
[4,5]. Arguments based on insensitivity to model details
[6], approximate conformal invariance [7] and decoupling
of high-dimension states and operators [8] have been put
forward in an attempt to understand the unreasonable
effectiveness of some of these models.

Holographic models of 3þ 1-dimensional systems are
4þ 1-dimensional theories in which the behavior of fields
near the boundary of the spacetime, typically anti–de Sitter
(AdS) space, determines the properties of the correspond-
ing lower-dimensional system. However, gauge theories in
more than 3þ 1 dimensions are generally nonrenormaliz-
able. The deconstruction of extra dimensions provides a
gauge-invariant completion of higher-dimensional gauge
theories [9,10]. A deconstructed extra-dimensional model
is a lower-dimensional theory which, below some energy
scale, has an effective description in which one or more
extra dimensions are latticized. Deconstruction is useful
for model building in that it is sometimes possible to
reduce the number of ‘‘lattice sites’’ to just a few while
maintaining the interesting phenomenology of a higher-
dimensional model, yielding a relatively simple model of
the system of interest. For example, in the context of
electroweak symmetry breaking, deconstruction provides
one route to little Higgs models [11]. More recently, this
approach has been used to construct models with some of
the properties of holographic superconductors, albeit de-
fined in the natural dimension of the superconducting
system [12].

Among the successful predictions of holographic mod-
els are certain features of high-temperature superconduc-
tors such as an enhanced ratio of the superconducting

gap (�) to the critical temperature (Tc) [5]. Bottom-up
holographic models of finite-temperature systems typically
begin with an AdS-Schwarzschild or AdS-Reissner-
Nordstrom black hole geometry, the latter taking into
account the backreaction of charge density on the geome-
try. These geometries are chosen mainly for simplicity, but
in holographic models of superconductors derived from
string theory [4], the spacetime geometries may be more
complicated and depend on the fluxes of fields associated
with D-brane configurations. Other geometric backgrounds
in holographic models arise as the induced metric on a
brane embedded in a higher-dimensional spacetime, such
as on the flavor branes in the holographic QCD model of
Sakai and Sugimoto [2], and these induced geometries are
not derived as the solution to Einstein’s equation with a
specified energy-momentum tensor.
It is the goal of this paper to explore the sensitivity of

observables to variations in the details of holographic
models of superconductors and in deconstructed variations
of those models. As such, we consider holographic super-
conductors in generalizations of the 3þ 1-dimensional
AdS-Schwarzschild metric. We find certain generic fea-
tures in the phenomenology of these models, but details
such as the ratio of the superconducting gap to the critical
temperature are sensitive to the model details, which sug-
gests that successful quantitative predictions in prototyp-
ical models are likely accidental. This is not to say that
those models will not prove valuable in explaining the
puzzling properties of unconventional superconductors,
only that quantitative predictions are more model depen-
dent than one might have hoped. It has already been noted
that there are quantitative and even qualitative distinctions
between superconducting models, for example between
those which take into account the backreaction of the
charge density on the metric and those that do not [5].
The work presented here focuses on sensitivity to the extra-
dimensional spacetime, parametrizing the AdS black hole
metric in a particular way in order to quantify the varia-
bility of superconducting observables in a class of
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holographic models and in deconstructed versions of those
models.

A. Holographic superconductors

Here we briefly review the construction of holographic
superconductor models and the calculation of observables
in those models. In a holographic superconductor, a
charged field condenses in an extra-dimensional black
hole background whose Hawking temperature is below
some critical temperature Tc. The temperature of the
lower-dimensional system is identified with the Hawking
temperature of the higher-dimensional black hole [13]. The
charged condensate spontaneously breaks the electromag-
netic U(1) gauge group1 and gives rise to superconducting
phenomenology [5].

In this work we ignore the backreaction of the charge
density on the spacetime geometry, and for now we con-
sider an Abelian Higgs model in a 3þ 1-dimensional
AdS-Schwarzschild spacetime background. This is meant
to describe a system which is superconducting in two
spatial dimensions, e.g. the copper-oxide planes of cuprate
superconductors. We can choose coordinates such that the
lengths are normalized to the AdS scale and the metric has
the form

ds2 ¼ 1

z2

�
fðzÞdt2 � 1

fðzÞ dz
2 � ðdx2 þ dy2Þ

�
; (1.1)

where

fðzÞ ¼ 1� zp

zpH
; (1.2)

with p ¼ 3 corresponding to the 3þ 1-dimensional
AdS-Schwarzschild metric.

With the Euclidean time � � it compactified with pe-
riod 1=T, the Hawking temperature associated with the
modified black hole metric follows from the condition
that there be no conical singularity at the horizon. In the
absence of a conical singularity, if z� is the proper distance
from the horizon z ¼ zH to a nearby point displaced only in
the radial (z) direction and �� is the proper circumference
of the Euclidean-time circle at that fixed radial position,
then 2�z� ¼ ��. For metrics of the form (1.1), for small
proper displacements from the horizon,

2�z� ¼ 2�
Z zH

zH�"

dz

z
ffiffiffiffiffiffiffiffiffi
fðzÞp ¼

Z zH

zH�"

dz

zH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðzH � zÞf0ðzHÞ

p

¼ 4�
ffiffiffi
"

p

zH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�f0ðzHÞ

p ; (1.3)

�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzH � "Þp
zH � "

1

T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�f0ðzHÞ
p

zH

ffiffiffi
"

p
T

; (1.4)

and with fðzÞ given by Eq. (1.2), the Hawking temperature
is then

T ¼ � 4�

f0ðzHÞ ¼
p

4�zH
: (1.5)

In the continuum model, observables are independent of
the choice of coordinates. However, away from the con-
tinuum limit, the deconstructed models are sensitive to the
latticization of the extra dimension, which in turn depends
on the coordinate choice. In the continuum model,
the action for the scalar field c and U(1) gauge field AM

(M 2 f0; 1; 2; 3g) is

S¼
Z
d4x

ffiffiffi
g

p �
�1

4
FMNF

MNþjð@M� iAMÞc j2�m2jc j2
�
;

(1.6)

where gMN is the metric defined by Eq. (1.1). For definite-
ness we take m2 ¼ �2 in AdS units, as in Refs. [5,12].
Near the boundary z ¼ 0, the field c has solutions

c ðzÞ � c ð1Þzþ c ð2Þz2: (1.7)

In this model both independent solutions for c ðx; zÞ have
finite action, so the AdS/CFT interpretation of the two
solutions is ambiguous. Here we choose the interpretation

that c ð2Þ is the condensate of the Cooper-pair operator,

while c ð1Þ would then be the external source for that

operator, which we assume vanishes. Hence, c ð1Þ ¼ 0 is
a boundary condition for the solutions of interest.
The bulk U(1) gauge field, AM, is dual to the electric

current and the background electromagnetic field. In order
to allow for nonvanishing chemical potential and charge
density, we consider solutions in which the time compo-
nent, A0, is nonvanishing. The equations of motion have
solutions for which A0 behaves near the boundary as

A0 ��� �z; (1.8)

where� is the coefficient of the non-normalizable solution
and is identified with the chemical potential, which is a
source for �, the charge density.
The phenomenology of the model is determined

by fixing the temperature T as it appears in the AdS
black hole metric, solving the coupled equations of motion
for c and AM subject to the ultraviolet (i.e. z ¼ 0) bound-

ary conditions c ð1Þ ¼ 0, A0ð0Þ ¼ �, and the infrared (i.e.
z ! zH) boundary conditions A0ðzHÞ ¼ 0 and
f0ðzHÞzHc 0ðzHÞ ¼ m2c ðzHÞ. The last condition follows
from the equations of motion, but is enforced as a regular-
ity condition on the numerical solutions. The Cooper-pair
condensate hO2i and background charge density are then

determined by c ð2Þ [cf. Eq. (1.7)] and � [cf. Eq. (1.8)],
respectively. Varying the temperature T then allows for a

1To be precise, the U(1) gauge invariance of the holographic
model corresponds to a global U(1) symmetry of the lower-
dimensional system. However, as argued in Ref. [5], this global
U(1) can be weakly gauged in order to determine some aspects
of the dynamics of the corresponding superconducting system.
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determination of the phase structure of the model, as
hO2i ¼ 0 for T > Tc.

To analyze the frequency-dependent conductivity we fix
the background for c and instead solve the equations of
motion for AM in a background with Aa ¼ e�i!t"aAðzÞ,
a 2 f1; 2g, corresponding to a uniform oscillating back-
ground electric field Ea ¼ @0Aajz!0, polarized in the "a
direction. Solutions are chosen to be ingoing at the horizon
in order to enforce the causal behavior of the current two-

point function [14]. The solution for Aa � Að0Þ
a þ Jaz as

z ! 0 then determines the electric current Jað!Þ, from
which the conductivity � ¼ Ja=Ea follows. A generic
feature of superconductors is the existence of a frequency
gap !g below which there are no modes available to excite

and generate a current, so that �ð!Þ ¼ 0 for !<!g for

T ¼ 0. For nonvanishing temperature, even as ! ! 0 the
current may be nonvanishing, where for small enough

temperature �ð! ! 0Þ / exp��=T , where � is the super-
conducting gap. From the weakly coupled BCS theory, we
would expect� � !g=2, which also appears to be satisfied

in the original model of Ref. [5].

B. Deconstructed holographic superconductors

We will study a class of models, based on the models of
Ref. [12], in which the extra dimension of the holographic
superconductor is deconstructed. Models with certain sim-
ilarities to these were also considered in Ref. [15]. The
higher-dimensional U(1) gauge theory is replaced by a
Uð1ÞN gauge theory in one fewer dimension, where
N ! 1 in the continuum limit. Scalar link fields charged
under ‘‘neighboring’’ pairs of U(1) gauge groups are ar-
ranged to have prescribed expectation values, breaking the
Uð1ÞN gauge group in such a way that the resulting action is
that of the latticized higher-dimensional theory. The mas-
sive gauge fields replace the Kaluza-Klein modes in the
continuum model. The fluctuations of the link fields do not
correspond to degrees of freedom in the continuum theory,
so we assume that they are heavy compared to the scales of
interest in our analysis and disregard them in our analysis.

Expanding the fields in components, the action of the
holographic model is

S ¼
Z

d4x

�
1

2
F2
0z þ

1

2fðzÞF
2
0a �

fðzÞ
2

F2
za � 1

4
F2
ab

þ 1

z2fðzÞ j@0c � iA0c j2 � fðzÞ
z2

j@zc � iAzc j2

� 1

z2
j@ic � iAic j2 � 1

z4
m2jc j2

�
; (1.9)

where the lowercase latin indices a, b are summed over the
x and y coordinates. We now latticize the spacetime in one
dimension by replacing the z coordinate by a discrete set of
N points,

zj ¼
�
�þðj� 1Þa for j¼ 1; . . . ;N� 1;

�þðN� 2Þaþ aH for j¼N;
(1.10)

where zN ¼ zH, a is the lattice spacing in z coordinates,
and � is a UV cutoff. The Lagrangian for the deconstructed
theory is of the form

L ¼ XN�1

j¼2

�
� 1

4
ðF��ÞjðF��Þj þ ZjjD�c jj2

�

þ XN�1

j¼1

½jD��jj2 � ZjVj�; (1.11)

where Vj is the scalar potential for link field �j, and the

coefficients Zj and metric factors gj�� by which indices are

contracted vary with lattice position j. The parameters in
the model may be chosen (see Ref. [12] for more details)
such that the effective theory below the scale set by the link
fields is given by the Lagrangian

L ¼ XN�1

j¼1

aj

�
1

2
ð	0

jÞ2 �
fj
2
ðA0

ajÞ2 �
fj

z2j
jc 0

jj2
�

þ XN�1

j¼2

aj

�
1

2fj
ðF0aÞ2j �

1

4
ðFabÞ2j

�

þ XN�1

j¼2

aj

�
1

z2jfj
j@0c j � i	jc jj2

� 1

z2j
j@ac j � iAajc jj2 � 1

z4j
m2jc jj2

�
; (1.12)

where 	j � A0
j , fj � fðzjÞ, and the primes correspond to

discretized derivatives, for example

	0
j �

	jþ1 �	j

a
: (1.13)

The U(1) gauge group at the first lattice site (the UV
boundary site) is identified with the electromagnetic gauge
group. Solutions to the equations of motion with discre-
tized versions of the boundary conditions on the fields c
and AM allow for the calculation of observables by analogy
with the holographic analysis in the continuummodel [12].
In the case of a small number of lattice sites there is no
a priori reason to expect phenomenology similar to that of
the continuum model. Indeed, we find a significant devia-
tion from the predictions of the continuum model, though
certain qualitative features remain. More complete details
of these computations are presented below.

II. RESULTS

To consider the sensitivity of observables to the
spacetime geometry, we allow the power p in Eq. (1.2) to
deviate from its value p ¼ 3 corresponding to the
AdS-Schwarzschild spacetime. For generic p the metric
is not a solution to Einstein’s equations with a prescribed
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energy-momentum tensor. However, the initial choice of
AdS-Schwarzschild geometry was made for simplicity and
is equally arbitrary, and we can imagine either fluxes of
fields that would give rise to the requisite energy-
momentum tensor, or we can imagine that the class of
spacetimes described here corresponds to the induced met-
ric on a brane embedded in a particular higher-dimensional
spacetime. The goal here is to parametrize a class of
deviations from the prototypical spacetime in order to
analyze the sensitivity of observables to the detailed form
of the spacetime metric. Our particular choice of parame-
trized metric is mostly arbitrary, though the class of space-
times considered here remains asymptotically AdS near the
boundary at z ¼ 0.

We first analyze the continuum theory for p ¼ 3, 3.5 and
4. In our numerics, we cut off the spacetime in the UV at
z ¼ 10�4 and near the horizon at z ¼ zH � 10�5. We
impose the boundary conditions discussed previously,
and we fix � ¼ 1, which by a scaling relation in the model

also fixes Tc / �1=2 [5]. The superconducting condensate
and the real part of the conductivity are plotted in Fig. 1.
The delta function in the real part of the conductivity may
be inferred from a pole in the imaginary part (not shown in

the figure) by the Kramers-Kronig relation for the
conductivity.
At low temperature the conductivity features a sharp gap

below which the real part of the conductivity nearly van-
ishes. At the gap frequency, Reð�Þ displays a step-function
type behavior, while Imð�Þ has a sharp local minimum.
Even at larger temperatures, we define the gap frequency
!g as the location of the local minimum of Imð�Þ. In
Fig. 2, we plot the conductivity with respect to frequency

scaled in units of
ffiffiffiffiffiffiffiffiffiffihO2i

p
. Note that the three plots are nearly

identical. In particular, the ratio!g=
ffiffiffiffiffiffiffiffiffiffihO2i

p
at the minimum

of Imð�Þ is nearly independent of p in this range. However,
as we will see there are important quantitative distinctions
at small !.
It was noted in the original model of Ref. [5] that the

gap-to-Tc ratio is larger in the holographic model than in
the weakly coupled BCS theory, in rough quantitative
agreement with experimental results in high-temperature
superconductors. The normal component of the DC con-
ductivity is defined as nn � lim !!0Re½�ð!Þ�. For low
enough temperatures, we find that

nn � e��=T; (2.1)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FIG. 1. The condensate hO2i and the real part of conductivity �, at T=Tc ¼ 0:5, for the continuum theory. Solid, dashed and dotted
curves have p ¼ 3, 3.5 and 4, respectively. The arrow indicates a Dirac delta function. The critical temperature Tc in units of �1=2 for
p ¼ 3, 3.5 and 4 are 0.119, 0.135 and 0.153, respectively.

0.0 0.5 1.0 1.5 2.0
0.5

0.0

0.5

1.0

0.5

0.0
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1.0

0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

FIG. 2. The conductivity at T=Tc ¼ 0:5 for the continuum model with different values of p in the metric. The solid lines are the real
part of the conductivity and the dashed are the imaginary part. The p values for plots from left to right are 3, 3.5 and 4, respectively.
The delta function in the real part at ! ¼ 0 is not shown. Note the similarity of the three plots.
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in which � ¼ Cp

ffiffiffiffiffiffiffiffiffiffihO2i
p

, for some constant Cp. The coef-

ficient � in the exponent is the superconducting energy
gap. In order to compare with !g found previously, we fit

our data for a range of T=Tc around 0.5, which gives a good
exponential fit for nn in that range, with relatively large
�=T > 6. The results are summarized in Table I.

We next examine the deconstructed model with p ¼ 3,
3.5 and 4 for N 2 f5; 10; 100; 1000g. We generally set the
UV cutoff at z ¼ � ¼ 1, except for the case N ¼ 1000, for
which we set � ¼ 0:1 to better match the continuum
model. The lattice spacing at the horizon is fixed at aH ¼
10�5, decoupled from the lattice spacing in the bulk which
varies as the horizon moves with temperature. We again
use a scaling relation to set � ¼ 1 so that Tc is fixed. As
discussed in Ref. [12], we have the following discretized
version of the boundary conditions:

	0
1 ¼ �� ¼ �1; c ð1Þ ¼ 0;

	N ¼ 0; and c 0
N�1 ¼

2

3zN
c N;

(2.2)

where the primes are discretized derivatives as in
Eq. (1.13). Electromagnetism is defined as the U(1) inter-
action at the UV boundary site, i.e. the lattice site closest to
z ¼ 0. We find solutions for which the x component of the
bulk gauge fields oscillate while the other components do
not fluctuate,

AxiðtÞ ¼ e�i!tAxi; (2.3)

where on the right-hand side of Eq. (2.3) Axi is time
independent. The conductivity � ¼ Jx1=Ex1 is found to be
given by a discretized version of the holographic calcula-
tion for � in the continuum model,

� ¼ � if1ðAx2 � Ax1Þ=a
!Ax1

: (2.4)

To obtain reasonable phenomenology we find that an
ingoing-wave-type boundary condition is necessary even
in the deconstructed models. Due to the behavior of the
metric near the horizon, we find it beneficial to impose a
discretized version of the ingoing-wave boundary condi-
tion a bit away from the horizon in order to better mimic
the continuum solutions. In particular, we impose the
frequency-dependent boundary condition of Ref. [12],

AxN�n ¼ 1 and AxN�n�1 ¼ 1� i!a

fN�n�1

: (2.5)

The shift into the bulk, given by n, is chosen to be n ¼ 20,
10, 2 and 2 for N ¼ 1000, 100, 10 and 5, respectively. In
Fig. 3 we plot the condensate and the real part of the
conductivity for p ¼ 3. It was suggested in Ref. [12] that
the large resonances in the conductivity may correspond to
exciton-polariton resonances due to the broken U(1) gauge
groups in the model. The p ¼ 3:5 and 4 cases are qualita-
tively similar, and some examples are given in Fig. 4. The
critcal temperatures at which the condensate starts to form
are listed in Table II.
To further analyze observables in the deconstructed

models we mimic the analysis of the continuum model. It
can be seen directly from the locations of the minimum of

Imð�Þ in Fig. 4 that !g=
ffiffiffiffiffiffiffiffiffiffihO2i

p
� 1, but its value is not

sensitive to p in the range examined, even in the five-site
model. The relation (2.1) continues to be well satisfied and
defines the gap � as in the continuum model. The pole in

TABLE I. Observables for the continuum theory, at T=Tc ¼
0:5.

p 3.0 3.5 4.0ffiffiffiffiffiffiffi
hO2i

p
Tc

8.28 7.29 6.49

�ffiffiffiffiffiffiffi
hO2i

p 0.50 0.54 0.59

!gffiffiffiffiffiffiffi
hO2i

p 0.97 0.98 0.98

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

0 10 20 30 40
0.0

0.5

1.0

1.5

FIG. 3. The condensate hO2i and the real part of the conductivity for the deconstructed model for p ¼ 3 and T=Tc ¼ 0:5. The solid
curves correspond to N ¼ 1000 lattice sites. The dashed curves, in order from top to bottom near the origin in the left-hand plot and
from bottom to top in the right-hand plot correspond to N ¼ 100, 10 and 5, respectively. The arrow indicates a Dirac delta function
from the DC superconductivity.
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the imaginary part of the conductivity is manifest in Fig. 4,
and is related to the delta function in the real part via a
Kramers-Kronig relation. The results for observables are
listed in Table III.

III. CONCLUSIONS

We have analyzed the dependence of the charged con-
densate and the complex conductivity on the form of the
black hole metric in holographic superconductors and in
deconstructed versions of those models. We found that
certain model predictions are relatively insensitive to the
details of the spacetime. For example, the approximate
relation between the gap frequency and the superconduct-
ing condensate,

!g

. ffiffiffiffiffiffiffiffiffiffi
hO2i

q
¼ 1; (3.1)
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FIG. 4. The conductivity at T=Tc ¼ 0:5 for the deconstructed model. The solid lines are the real part of conductivity, the dashed are
imaginary. The p values for plots from left to right are 3, 3.5 and 4, respectively. The rows of plots from top to bottom correspond to
N ¼ 1000, 100, 10 and 5, respectively.

TABLE II. Critical temperatures in units of �1=2.

N 1000 100 10 5

p ¼ 3 0.118 0.104 0.094 0.079

Tc 3.5 0.134 0.118 0.107 0.090

4 0.151 0.132 0.121 0.101
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persists while the metric is varied in the continuum model.
In the deconstructed model this ratio differs from 1, but
remains insensitive to the deconstructed metric. On the
other hand, we have seen relatively strong dependence of
other observables on the details of the metric, such as the
ratio of the superconducting gap � to Tc. Furthermore, in
deconstructed models we found that this ratio can be sig-
nificantly smaller than in the continuum model. The model

sensitivity supports the conclusion that the quantitative
success of the simplest holographic models of supercon-
ductors is accidental. However, qualitative features of these
and related models continue to suggest the possibility of
explaining some of the unusual properties of unconven-
tional superconductors. For example, in addition to a large
gap, related models describe a strange metallic phase [16]
in which the resistivity does not vary like T2 as in the
Fermi-liquid description of metals. In an effort to make
contact with physical systems, it remains important to
continue to investigate which aspects of the holographic
models and their deconstructed cousins are responsible for
the nonconventional behavior of the superconductors de-
scribed by these models.
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