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Enhanced vaccine control of epidemics in adaptive networks

Leah B. Shaw
Department of Applied Science, College of William and Mary, Williamsburg, Virginia 23187, USA

Ira B. Schwartz
Code 6792, Nonlinear Systems Dynamics Section, Plasma Physics Division,

US Naval Research Laboratory, Washington, DC 20375, USA
�Received 29 June 2009; revised manuscript received 9 March 2010; published 29 April 2010�

We study vaccine control for disease spread on an adaptive network modeling disease avoidance behavior.
Control is implemented by adding Poisson-distributed vaccination of susceptibles. We show that vaccine
control is much more effective in adaptive networks than in static networks due to feedback interaction
between the adaptive network rewiring and the vaccine application. When compared to extinction rates in static
social networks, we find that the amount of vaccine resources required to sustain similar rates of extinction are
as much as two orders of magnitude lower in adaptive networks.

DOI: 10.1103/PhysRevE.81.046120 PACS number�s�: 89.75.Hc, 87.19.X�

I. INTRODUCTION

Modeling the spread of epidemics on static networks is a
well-developed field, but recent studies have begun to ac-
count for potentially time-varying network topologies. In
particular, people may adjust their social behavior in re-
sponse to the threat of an epidemic. Both a susceptible-
infected-susceptible �SIS� model �1� and susceptible-
infected-recovered-susceptible �SIRS� model �2� have been
studied on an adaptive network in which noninfected nodes
rewire their links adaptively away from infected neighbors
and toward other noninfected nodes. Such adaptation typi-
cally increases the epidemic threshold and reduces the num-
ber of infectious cases, and new disease dynamics and bi-
furcations are observed. Similar results are seen when the
nodes reconnect to randomly selected nodes elsewhere in the
network �3,4�. Because vaccines are available for many dis-
eases, it is desirable to examine the interplay between adap-
tively fluctuating social contacts and vaccination of suscep-
tible individuals.

Almost all diseases exhibit randomness resulting in ob-
served fluctuations, as in �5–10�. As diseases evolve in large
populations, there is the possibility of finite time extinction
�10–15�. Extinction occurs where the number of infectives
becomes so small that there is insufficient transmission to
keep the disease in its endemic state �16–18�. Fluctuations
cause the disease-free equilibrium �DFE� to be reached in a
finite time. Such an extinction process occurs even when the
DFE is unstable. Populations based upon adaptive networks
further complicate the problem, since social dynamical situ-
ations, such as disease avoidance strategies, can cause the
endemic and DFE to be bistable �2�.

A major characteristic of fluctuation-induced extinction in
stochastic models for globally connected large populations is
the extinction rate. Viewing disease fade-out as coming from
systems far from thermal equilibrium, finite population ex-
tinction rate laws have been derived in SIS �15,19� and SIR
�20� models. In contrast to vaccine strategies which stabilize
the DFE �21–26�, periodic pulsed vaccination was general-
ized to a random Poisson strategy, which exponentially en-
hances the rate of extinction �27�.

Other vaccine strategies have been examined in a variety
of static network geometries. Targeting of high degree nodes
is widely recognized as more effective than random vaccina-
tion, including in scale-free networks �28,29�, small world
networks �30�, and more realistic social network geometries
�31�. Because targeting the highest degree nodes requires full
knowledge of the network geometry, other strategies based
on local knowledge have been developed. For example, vac-
cinating a random acquaintance of a randomly selected node
tends to favor high degree nodes and is again more effective
than random vaccination �32�. When vaccine is very limited,
outbreaks can be minimized by fragmenting the network via
a graph partitioning strategy which requires less vaccine than
targeting high degree nodes �33�.

Here we will use a random vaccination strategy and find
that in conjunction with adaptive rewiring, it is extremely
effective. Section II introduces our basic SIS model with
vaccination and a corresponding mean-field theory, Sec. III
presents results for endemic states and epidemic extinction,
Sec. IV shows that the introduction of a recovered node class
does not qualitatively alter our results, and Sec. V concludes.

II. SIV MODEL

We create a model by modifying an SIS model �1�, adding
a vaccinated class �V�. Individuals are connected in a net-
work, with noninfected nodes rewiring adaptively to reduce
connections with infected nodes.

The transition probabilities are as follows. A susceptible
node becomes infected with rate pNI,nbr, where NI,nbr is its
number of infected neighbors. An infected node recovers �to
susceptible� with rate r. Motivated by national immunization
days �34�, vaccination occurs in Poisson-distributed pulses
with frequency �, and each pulse vaccinates a fraction A of
the susceptible nodes. We assume that the vaccine is not
permanent, so a vaccinated node becomes susceptible again
with rate q, the resusceptibility rate.

While the epidemic spreads, the network is rewired
adaptively. Rewiring rather than link cutting is considered
because we focus on the long term epidemic behavior.
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Although an outbreak could transiently decrease network
connectivity in a real social network, long term reductions in
average connectivity are unrealistic and difficult to maintain.
Because the vaccine wears off, we assume that vaccinated
nodes are uncertain of their infection status and thus rewire
in the same way as susceptibles. If a link connects a nonin-
fected node to an infected node, that link is rewired with rate
w to connect the noninfected node to another randomly se-
lected noninfected node. Self links and multiple links be-
tween nodes are excluded.

We simulate the full adaptive network via Monte Carlo
simulation in a similar fashion to �2�. Vaccination events
occur with average rate �, and in each event ANS suscep-
tibles are selected randomly for vaccination, where NS is the
total number of susceptibles. Results are presented here for
N=104 nodes and K=105 links.

We have developed a mean-field theory for the dynamics
of nodes and links following �1,2�. PA denotes the probabil-
ity of a node to be in state X, where X is either S, I, or V. PXY
denotes the probability that a randomly selected link con-
nects a node in state X to a node in state Y. If we assume that
the vaccine pulses are applied at the mean frequency � and
vaccinate a fraction A of the susceptible population, we ob-
tain the following set of deterministic differential equations
for the nodes:

ṖS = rPI − p K
N PSI − �APS + qPV,

ṖI = p K
N PSI − rPI,

ṖV = �APS − qPV,

and for the links:

ṖSS = rPSI − 2p K
N

PSSPSI

PS
− ��2A − A2�PSS + qPSV + w

PS

PS+PV
PSI,

ṖSI = 2p K
N

PSSPSI

PS
− p�PSI + K

N

PSI
2

PS
� − rPSI + 2rPII

+ qPIV − �APSI − wPSI,

ṖSV = rPIV − p K
N

PSIPSV

PS
+ 2qPVV − qPSV − �APSV

+ 2�A�1 − A�PSS + w
PV

PS+PV
PSI + w

PS

PS+PV
PIV,

ṖII = p�PSI + K
N

PSI
2

PS
� − 2rPII,

ṖIV = p K
N

PSIPSV

PS
− rPIV − qPIV + �APSI − wPIV,

ṖVV = �APSV − 2qPVV + �A2PSS + w
PV

PS+PV
PIV.

Vaccination terms that are second order in the pulse ampli-
tude A appear in the link equations because each pulse can
vaccinate multiple susceptibles, so a fraction A2 of the SS
links are converted directly to VV links, while a fraction
2A�1−A� of them become SV links. The stochasticity of
the vaccine pulses can be incorporated in the mean field
by replacing the average pulse frequency � by a Poisson-

distributed stochastic variable ��t� with the appropriate av-
erage frequency and vaccination amplitude.

III. SIV RESULTS

Sample time series are shown in Fig. 1 for a run in which
the epidemic became extinct. Because we use proportional
vaccination, as vaccination begins to lower the number of
infectives and the number of susceptibles increases, subse-
quent vaccine pulses vaccinate a larger number of nodes.

We studied the longtime behavior for the case of longer
lived endemic states. The deterministic mean-field model
predicts stable steady-state dynamics for the static network,
even when vaccine is applied. Small regions of oscillatory
behavior have been predicted for the adaptive network with-
out vaccination �1�, and these regions are predicted to be
much larger when vaccination is applied. For the resuscepti-
bility q used here, oscillations are generic �39�.

Figures 2�a�–2�d� compare the dependence of the mean
infective level on the vaccine frequency for static and adap-
tive networks �40�. For the full static �Erdős-Rényi� network
system �Fig. 2�b��, at each vaccine frequency the steady-state
mean infectives were computed over ten network geom-
etries. For the stochastic mean field �Fig. 2�a��, 100 runs
were done to extinction �PI�10−12� and the means of the
time series were computed. The mean field and full model
are in excellent agreement.

For the full system with rewiring �Fig. 2�d��, infectives
were averaged over 8�104 MCS for a single adaptive net-
work for the smaller vaccine frequencies ���0.000 15�, and
error bars are the standard deviation. For larger � values the
oscillations led to rapid die out, so the infectives were in-
stead averaged over 100 runs computed to extinction, where
the vaccine was turned on at time 0. Error bars are the stan-
dard deviation of all the time points. This averaging includes
transients but serves to illustrate the decreasing infective lev-
els and large fluctuations due to oscillations as � is increased.
The stochastic mean field �Fig. 2�c�� was computed as in Fig.
2�a�, and error bars are the standard deviations of the means.
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FIG. 1. Sample time series. �a� Node fractions. Solid gray curve:
infectives; dashed dark gray curve: susceptibles; solid black curve:
vaccinated. “+” symbols indicates times of vaccine pulses. �b�
Average degree by node class. Solid gray curve: infectives;
dashed dark gray curve: susceptibles. p=0.003, r=0.002,
q=0.0002, A=0.1, �=0.0005, and w=0.04.
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The vaccination frequency required to significantly lower the
infected fraction in the adaptive network is much smaller
than for the static network due to the interaction of vaccina-
tion and rewiring. The mean-field model accurately predicts
the order of magnitude of vaccine required and the presence
of oscillations.

Figure 3 shows the dependence of the endemic state life-
time on the vaccine frequency for static �Erdős-Rényi� and
adaptive networks. About two orders of magnitude less vac-
cine is needed in the adaptive case to significantly reduce the
lifetime of the endemic state. For the full system, each point
was obtained by averaging 100 runs for which the initial
condition was the vaccine-free steady state and the vaccine
was turned on at time zero. Mean-field results were obtained
similarly, but the time to extinction was computed using a
threshold for PI of 10−12.

To explain the efficacy of vaccination in the adaptive net-
work, we examine the network structure in more detail, par-
ticularly the degree. Steady-state degree distributions for an
adaptive network with and without vaccination are shown in
Fig. 4. Results without vaccination were obtained similarly
to those in �2�. Results with vaccination were computed like-
wise but averaging over nine runs to obtain better statistics
for the vaccinated nodes which are present at very low levels
�0.6% of the nodes�. As shown in Fig. 4�a�, susceptibles in
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FIG. 2. �Color online� Average infectives versus vaccine frequency � for q=0.0002, r=0.002, p=0.003, A=0.1. �a� Mean field,
w=0. Black and red �gray� curves, respectively, are stable and unstable branches of the deterministic mean field. Symbols are stochastic
mean field. �b� Full system, w=0. Curve is to guide the eyes. �c� Mean field, w=0.04. Blue �dark gray� curve: stable steady state, red
�medium gray� curve: unstable steady state, black curve: stable periodic orbit, green �light gray� curve: unstable periodic orbit for deter-
ministic model. Symbols are stochastic mean field. �d� Full system, w=0.04.
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FIG. 3. Dependence of endemic state average lifetime on vac-
cine frequency �. Black open circles and dashed gray curve are full
system and mean field, respectively, with rewiring �w=0.04�. Black
closed circles and solid gray curve are full system and mean field,
respectively, with no rewiring. p=0.003, r=0.002, q=0.0002, and
A=0.1.
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FIG. 4. Degree distributions from Monte Carlo simulation for
p=0.002, r=0.002, w=0.04. �a� No vaccination. �b� With vaccina-
tion: �=0.00015, A=0.1, q=0.0002. Degree distribution of vacci-
nated nodes is very broad, extending beyond the figure domain,
with an average degree of 579. Solid gray: infectives; dashed: sus-
ceptibles; and solid black: vaccinated.
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the adaptive network have a higher average degree than in-
fectives due to rewiring. This is also apparent at the begin-
ning of the degree time series for susceptibles and infectives
in Fig. 1�b�. Because the susceptibles typically have higher
degree, random vaccination of susceptible nodes favors the
higher degree nodes in the network and is therefore expected
to be effective, as in previous studies of targeted vaccination
�28–30�. For a static network, in contrast, the high degree
nodes are most likely to be infected and thus will rarely be
selected for vaccination.

The vaccination level used in Fig. 4�b� is small enough
that it only slightly lowers the number of infected nodes.
However, when vaccination occurs the rewiring becomes
more effective because of the presence of “safe” nodes to
wire to. The average infective degree is substantially de-
creased, and the susceptible degree is substantially increased.
The vaccinated nodes have a broad degree distribution with a
very high average degree. For the parameter values in Fig.
4�b�, vaccinated nodes participate in links as frequently as
susceptibles, even though there are two orders of magnitude
fewer vaccinated than susceptibles.

IV. SIRV MODEL

To connect more closely with real diseases, for which
recovery from infection often confers a period of immunity,
we have extended our model to an SIRS �susceptible-
infected-recovered-susceptible� model with a vaccinated
class. The SIRS dynamics is modeled as in �2�, with infec-
tion occurring with rate pNI,nbr, recovery with rate r, and
resusceptibility with rate q. As we have described here for
the SIV model, we include Poisson-distributed pulsed vacci-
nation of susceptibles with average rate �, and a fraction A of
the susceptibles are vaccinated in each pulse. Immunity from
vaccination is assumed to wear off with the same rate q as
natural immunity. All links from noninfected to infected
nodes can rewire with rate w, and a noninfected node
chooses its new neighbor at random from all possible nonin-
fected nodes. We performed Monte Carlo simulations for the
SIRV model for a system with N=104 nodes and K=105

links, as described above for the SIV model. Figure 5 shows
the dependence of the mean infective level on the vaccine
frequency for static and adaptive networks. The results in
Fig. 5�a� were computed as in Fig. 2�b�. The results in Fig.
5�b� were computed similarly to Fig. 2�d�, with steady-state
averages for ��0.007 and averages over ten runs computed
to extinction for ��0.007 due to rapid die out. Over an order
of magnitude more vaccine is required to drive the epidemic
to extinction in the static network case.

V. CONCLUSIONS AND DISCUSSION

In summary, we studied the effect of Poisson vaccination
on epidemic spread in an adaptive network. Adaptation
of the network was examined by modeling the response
of individuals in the presence of an epidemic. One of
the main goals was to examine the interplay of rewiring
of the network and probabilistic vaccination strategies in a
new class of adaptive network models which are driven by

non-Gaussian vaccine control methods. The model presented
here extends and improves upon previous studies of homo-
geneous populations as in �27� and other adaptive network
SIS models without vaccine control �1�. When the vaccina-
tion schedule was Poisson distributed, we found vaccination
was far more effective in an adaptive network than a static
one due to the interaction of vaccination and rewiring. Vac-
cine effectiveness was increased by two orders of magnitude
for the parameters chosen for the SIV model and over an
order of magnitude for the SIRV model. The network adap-
tation led to a higher average degree for susceptible nodes,
and random vaccination of susceptibles exploited this hetero-
geneity. Further, the adaptive rewiring became more effec-
tive because of the presence of “safe” vaccinated nodes to
rewire to.

The model classes we considered consisted of diseases in
which there is no immune response �SIS� and diseases which
produce only temporary immunity �SIRS.� Models with no
immunity are suitable for many bacterial infections, such as
meningitis, plague, and venereal diseases, as well as certain
protozoan illnesses, such as malaria and sleeping sickness
�35�. Temporary immunity models such as SIRS are appro-
priate for influenza �36�, syphilis �37�, cholera and typhoid
fever �35�, as well as pertussis �38�. Although not all of the
above diseases currently possess a vaccine, research is ongo-
ing to develop new vaccines. Future model and control varia-
tions might include host-vector modeling, seasonality, quar-
antine, and isolation, thus rendering the model more realistic
for specific diseases.

In our class of SIS and SIRS models, we randomly vac-
cinated a fixed fraction A of the susceptible nodes during
each vaccination event. Information about the network struc-
ture was not required. This corresponds to the case where
vaccine is inexpensive and anyone who is not infected can be
vaccinated. The mean lifetime results indicate how the rate
of epidemic extinction scales with vaccination frequency,
providing information about the amount of vaccine needed.
If the vaccine were in limited supply, it would be desirable to
use some knowledge about the social network structure �such
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FIG. 5. Average infectives versus vaccine frequency � for the
SIRV model with q=0.0016, r=0.002, p=0.003, A=0.1. �SIRS
parameters taken from �2�.� �a� Static network. �b� Adaptive net-
work, w=0.04. Curves are to guide the eyes.
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as the degrees� to target the vaccine more carefully. In that
case, the vaccine pulses might be a fixed number of suscep-
tibles rather than a fixed fraction. However, further study is
needed to determine the optimal vaccination strategy. An-
other extension would be to adjust the rules for link evolu-
tion, such as to relax the assumption that nodes have full
knowledge of others’ disease status �3,4�.
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