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This paper is a survey of the basics of the theory of two projections.

It contains in particular the theorem by Halmos on two orthogonal

projections and Roch, Silbermann, Gohberg, and Krupnik’s theorem

on two idempotents in Banach algebras. These two theorems,which

deliver the desired results usually very quickly and comfortably,

are missing or wrongly cited in many recent publications on the

topic, The paper is intended as a gentle guide to the field. The basic

theorems are precisely stated, some of them are accompanied by

full proofs, others not, but precise references are given in each case,

and many examples illustrate how to work with the theorems.
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1. Halmos and Afriat

Throughout this paper, H is a complex separable Hilbert space. We denote by B(H) the C∗-algebra
of all bounded linear operators on H. Let P and Q be two bounded orthogonal projections on H. Thus,

P = P2 = P∗ and Q = Q2 = Q∗. The ranges of P and Q will be denoted by L and N, respectively. The

sets L andN are closed subspaces ofH. Given a closed subspace K ofH, we denote by K⊥ its orthogonal

complement and by PK the orthogonal projection ofH onto K . In this terminology, P = PL andQ = PN .

In general, (L ∩N)⊕ (L ∩N⊥) is a proper closed subspace of L. We therefore have

L = (L ∩ N)⊕ (L ∩ N⊥)⊕ M0,

with some closed subspace M0 of L. Analogously,

L⊥ = (L⊥ ∩ N)⊕ (L⊥ ∩ N⊥)⊕ M1,

with some closed subspace M1 of L⊥. Letting

M00 = L ∩ N, M01 = L ∩ N⊥, M10 = L⊥ ∩ N, M11 = L⊥ ∩ N⊥,

we obtain the orthogonal decomposition

H = M00 ⊕ M01 ⊕ M10 ⊕ M11 ⊕ M0 ⊕ M1. (1)

Given four complex numbers αjk , we use the abbreviation

(α00,α01,α10,α11) = α00IM00
⊕ α01IM01

⊕ α10IM10
⊕ α11IM11

, (2)

where IK denotes the identity operator on K . In the case where Mjk = {0}, we may take an arbitrary

value for αjk and we may alternatively assume that the corresponding term in (2) is absent. To be

absolutely precise, on definingΛ = {(j, k) : Mjk /= {0}}, we have

(α00,α01,α10,α11) = ⊕
(j,k)∈Λ

αjkIMjk
.

Clearly, ifM0 = M1 = {0}, we get the orthogonal sumH = M00 ⊕ M01 ⊕ M10 ⊕ M11 and accordingly

P and Q may be written as

P = (1, 1, 0, 0), Q = (1, 0, 1, 0). (3)

The following is usually referred to as Halmos’ two projections theorem and sometimes also as

the CS decomposition of two projections (see Remark 1.4 below). It provides us with a canonical

representation for P and Q in the orthogonal sum (1) in the case where M0 or M1 are nontrivial. For

real numbers α and β , we write αI � A�βI if A is selfadjoint and α(x, x)�(Ax, x)�β(x, x) for all x in

the underlying Hilbert space. As usual, we denote the kernel (= null space) and range (= image) of an

operator A by Ker A and Ran A, respectively.

Theorem 1.1 (Halmos) . If one of the spaces M0 andM1 is nontrivial, then these two spaces have the same

dimension and there exist a unitary operator R : M1 → M0 and selfadjoint operators S and C of M0 into

itself such that 0� S � I, 0� C � I, S2 + C2 = I, Ker S = Ker C = {0}, and
P = (1, 1, 0, 0)⊕

(
I 0

0 R∗
)(

I 0

0 0

)(
I 0

0 R

)
, (4)

Q = (1, 0, 1, 0)⊕
(
I 0

0 R∗
)(

C2 CS

CS S2

)(
I 0

0 R

)
. (5)

Here is Halmos’ proof from [57]. We use the abbreviation M := M0 ⊕ M1. Each of the five spaces

M00,M01,M10,M11,M is invariant under both P and Q , and hence we may write
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P = (1, 1, 0, 0)⊕ P|M, Q = (1, 0, 1, 0)⊕ Q |M, (6)

where | denotes restriction to an invariant subspace. The restrictions P|M andQ |Mmaybe represented

by 2 × 2 operator matrices according to the decomposition M = M0 ⊕ M1. It is clear that the matrix

representation for P|M is

P|M =
(
I 0

0 0

)
. (7)

For Q |M we can write

Q |M =
(
B E

E∗ D

)
, (8)

with selfadjoint operators B and D. Letting L0 and N0 denote the ranges of the restrictions P|M and

Q |M, that is, L0 = PM and N0 = QM, and taking orthogonal complements inM, we have

L0 ∩ N0 = {0}, L0 ∩ N⊥
0 = {0}, L⊥0 ∩ N0 = {0}, L⊥0 ∩ N⊥

0 = {0}. (9)

Indeed, suppose, for example, y ∈ L0 ∩ N0. Then y ∈ L0 = M0 and hence y ∈ L and y ⊥ L ∩ N. On the

other hand, y ∈ N0 and therefore y = Qz = PNz for some z ∈ M, which implies that y ∈ N. Thus, y ∈
L ∩ N and y ∈ L ∩ N⊥, which is only possible for y = 0. This shows that L0 ∩ N0 = {0}. The remaining

three equalities can be proved similarly.

We now return to the spaces L and N and claim that if

L ∩ N = {0}, L ∩ N⊥ = {0}, L⊥ ∩ N = {0}, L⊥ ∩ N⊥ = {0}, (10)

then the spaces L, L⊥,N,N⊥ aremutually isomorphic, L ∼= L⊥ ∼= N ∼= N⊥. This is clear if all four spaces

are infinite-dimensional. Soassumeat leastoneof them, say L, hasfinitedimension.Then thedirect sum

L � N is closed, and since (L � N)⊥ = L⊥ ∩ N⊥ = {0}, it follows that L � N = H. As also L ⊕ L⊥ =
H, we conclude that L⊥ ∼= N. The direct sum L � N⊥ is also closed and (L � N⊥)⊥ = L⊥ ∩ N = {0},
whence L � N⊥ = H. This in conjunction with the equalities L ⊕ L⊥ = H and N ⊕ N⊥ = H implies

that L⊥ ∼= N⊥ and L ∼= N, as desired. The argument is completely analogous if one of the spaces

L⊥,N,N⊥ is finite-dimensional.

By virtue of (6) and (9) we may assume from the very beginning that (10) is valid. As shown in the

previous paragraph, then M0 = L andM1 = L⊥ are isomorphic. The operators B, E,D in (8) are

B = PQP|L = PLPNPL|L = (I − PLPN⊥PL)|L, (11)

E = PQ(I − P)|L⊥ = PLPNPL⊥|L⊥,

E∗ = (I − P)QP|L = PL⊥PNPL|L,
D = (I − P)(I − Q)(I − P)|L⊥ = PL⊥PN⊥PL⊥|L⊥. (12)

We claim that Ker E = Ker E∗ = {0}. So let Ey = 0 for some y ∈ L⊥. Then PNPL⊥y ∈ L⊥, and since at

the same time PNPL⊥y ∈ N, we see from (10) that PNPL⊥y = 0. This implies that PL⊥y ∈ N⊥, and as

PL⊥y is also in L⊥, we infer again from (10) that PL⊥y = 0. Consequently, y ∈ L ∩ L⊥ and thus y = 0. It

can be shown analogously that Ker E∗ = {0}. Since E and E∗ have trivial kernels, the partial isometry

W : L → L⊥ in the polar decomposition E∗ = WA is in fact unitary. Then R = W∗ : L⊥ → L is also

unitary. We get(
I 0

0 R

)
(Q |M)

(
I 0

0 R∗
)

=
(

B ER∗
RE∗ RDR∗

)
.

By (11) and (12), 0� B � I and 0� RDR∗ � I. Hence B = C2 and RDR∗ = S2 with 0� C � I and 0� S � I.

Since ER∗ = A and RE∗ = A, it follows that(
I 0

0 R

)
(Q |M)

(
I 0

0 R∗
)

=
(
C2 A

A S2

)
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and the equality (Q |M)2 = Q |M yields that

C4 + A2 = C2, C2A + AS2 = A, A2 + S4 = S2. (13)

The first of these equalities gives A = C
√

I − C2 (note that A� 0). This implies that A commuteswith C

and hence the second equality in (13) shows that A(C2 + S2 − I) = 0. Since Ker A = Ker (ER∗) = {0},
it results that C2 + S2 − I = 0 and A = C

√
I − C2 = CS. Finally, from the first and third equations in

(13) we conclude that if y is in Ker C or Ker S, then A2y = 0. As Ker A = {0}, this can only happen if

y = 0. Thus, Ker C = Ker S = {0}. This completes the proof.

The operators S and C are called the operator sine and cosine of the pair (M0,M1). This terminology

was introduced in [72]. Denoting S2 by H we immediately get

Q = (1, 0, 1, 0)⊕
(
I 0

0 R∗
)(

I − H
√

H(I − H)√
H(I − H) H

)(
I 0

0 R

)
, (14)

whereas the substitution C2 = H leads to

Q = (1, 0, 1, 0)⊕
(
I 0

0 R∗
)(

H
√

H(I − H)√
H(I − H) I − H

)(
I 0

0 R

)
. (15)

In part of the literature one sees (14) and in the other part authors work with (15). We agreed upon

taking (14) throughout the rest of the paper. In terms of H, Theorem 1.1 reads as follows.

Theorem 1.2 (Halmos) .WehaveM0 /= {0} ⇐⇒ M1 /= {0}, and if one of these spaces is nontrivial, then
P = (1, 1, 0, 0)⊕ U∗

(
I 0

0 0

)
U, (16)

Q = (1, 0, 1, 0)⊕ U∗
(
I − H W

W H

)
U, (17)

where U = diag (I, R), W = √
H(I − H), R : M1 → M0 is a unitary operator and H : M0 → M0 is a

selfadjoint operator such that 0�H � I and Ker H = Ker (I − H) = {0}.
Remark 1.3 (Historical) . Theorem 1.1 in almost exactly the form cited here appeared first in Halmos’

paper [57] and nowhere before. The name “Halmos’ two projections theorem” is nowadays in common

use. A special argument justifying this name is that, in our opinion, Halmos’ paper [57] in unrivalled

in its extremely lucid exposition of the matter. However, other authors had the theorem or were very

close to it independently of Halmos and even before him.

In 1948, Krein, Krasnoselski, and Milman [72] showed that M0 and M1 have the same dimension

and called the operators S and C defined by

S2 = P(I − Q)|L, C2 = (I − P)Q |L⊥,

the operator sine and operator cosine of the pair (L,N). Clearly, P(I − Q)|L and (I − P)Q |L⊥ are up to

unitary equivalence equal to

IL∩N⊥ ⊕ S2 = IL∩N⊥ ⊕ H, IL⊥∩N ⊕ C2 = IL⊥∩N ⊕ (I − H),

respectively, with S and C as in Theorem 1.1 and H as in Theorem 1.2.

Dixmier [34] andDavis [26] alsohad results likeTheorems1.1 and1.2. They considered theoperators

t := (P − Q)2, s := PQP + (I − P)(I − Q)(I − P),

which will make their debut in this guide in Example 4.5. Dixmier used the notation t =: B2, s =: A2,

while Davis wrote t =: S, s =: C and referred to S and C as the separation and closedness operators,

respectively. Clearly, Dixmier’s B2 and A2 and Davis’ S and C are just Krein, Krasnoselski, and Milman

S2 and C2. Theorem 6.2 of Davis’ paper [26] from 1958 may be restated as follows.
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The spacesM0 and M1 have the same dimension, and if these spaces are nontrivial, then

P = (1, 1, 0, 0)⊕ V∗
(

F −√
F(I − F)

−√
F(I − F) I − F

)
V ,

Q = (1, 0, 1, 0)⊕ V∗
(

F
√

F(I − F)√
F(I − F) I − F

)
V ,

with some unitary operator V : M0 ⊕ M1 → M0 ⊕ M0 and some selfadjoint operator F : M0 → M0

such that 0� F � I/2 and Ker F = Ker (I/2 − F) = {0}.
The theorem also holds with 0� F � I/2 and Ker F = Ker (I/2 − F) = {0} replaced by I/2� F � I

and Ker (I/2 − F) = Ker (I − F) = {0}. Davis’ theorem is almost Theorem 1.2, but in different lan-

guage. Indeed, let

H = 4F(I − F), Z =
( √

F −√
I − F

−√
I − F −√

F

)
.

The operator H has the properties listed in Theorem 1.2, and Z = Z∗ = Z−1. A straightforward com-

putation yields(
F −√

F(I − F)

−√
F(I − F) I − F

)
= Z

(
I 0

0 0

)
Z ,

(
F

√
F(I − F)√

F(I − F) I − F

)
= Z

(
I − H

√
H(I − H)√

H(I − H) H

)
Z.

Consequently, Davis’ theorem yields that

P = (1, 1, 0, 0)⊕ V∗Z
(
I 0

0 0

)
ZV ,

Q = (1, 0, 1, 0)⊕ V∗Z
(

I − H
√

H(I − H)√
H(I − H) H

)
ZV ,

which coincides with Theorem 1.2, the only difference being that the unitary operator U = ZV is not

guaranteed to be of the form diag(I, R).
We shouldmention thatDavis [26] also proved that ifH is a selfadjoint operator onM0 and0�H � I,

then there exist orthogonal projections P and Q on M0 ⊕ M0 such that(
H 0

0 H

)
= PQP + (I − P)(I − Q)(I − P).

To do this, he put

P =
(
I 0

0 0

)
, Q =

(
H

√
H(I − H)√

H(I − H) I − H

)
,

attributing this construction to Michael and referring to [100,89]. In [100], one finds a reference to

Halmos’ 1950 paper [56] for the construction by Michael.

Davis and Kahan’s paper [27] also contains several kinds of two projections theorems. Their paper

was received by the editors on December 9, 1968 and hence they could not have known of Halmos’

paper [57] then. However, Davis and Kahan refer to Jordan [62], Dixmier [34,35], Krein, Krasnoselski,

and Milman [72], Sz-Nagy [100], Afriat [1], Kato [65] and also mention Seidel [93], Suschowk [98],

Vitner [104], and Zassenhaus [108].

Inhis paper [81] (whichwas receivedby the editors onNovember1, 1966), Pedersen statedTheorem

1.2 in the language of representation theory and described the C∗-algebra generated by P and Q . He

already then obtained what will become Theorem 4.7 later in this survey. Giles and Kummer [48] also
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had Theorem 1.2 in slightly disguised form and derived a description of theW∗-algebra generated by

P and Q (see Theorem 7.1 later in this survey). Note that the Halmos paper [57] and the Giles/Kummer

paper [48] were received by the editors on April 7, 1969 and April 14, 1969, respectively. We also want

to mention the papers [14,15] by Behncke. He knew of Halmos’ paper [57] and gave a very short proof

of the theorem using group representation theory in [15].

Remark 1.4 (The connection with the CS decomposition). The following is a special case of what is

usually called the CS decomposition; see, for example, [27,53,79,97].

If F ∈ C2r×2r is a unitarymatrix, then there exist unitarymatricesU1,U2, V1, V2 ∈ Cr×r and commuting

Hermitian matrices C0, S0 ∈ Cr×r such that 0� C0 � I, 0� S0 � I, C2
0 + S20 = I,

F =
(
U1 0

0 U2

)(
C0 S0−S0 C0

)(
V1 0

0 V2

)
. (18)

The finite-dimensional version of Theorem1.1 can be derived from the CS decomposition as follows.

We start as in Halmos’ proof quoted above. It suffices to consider P|M and Q |M. We think of M as the

column space C2r and freely identify operators on M with 2r × 2r matrices. In particular, we may

assume that P|M and Q |M are given by the matrices (7) and (8), the blocks of these matrices being

r × r. We know fromHalmos’ proof that rank (Q |M) = r (because dimN0 = dim L0 = r) and that E is

nonsingular (becauseKer E = {0}). Let F = (F1 F2) ∈ C2r×2r be aunitarymatrixwhosefirst r columns,

constituting the 2r × r matrix F1, span the range of Q |M. We then have the decomposition (18),

(F1 F2) =
(

U1C0V1 U1S0V2−U2S0V1 U2C0V2

)
.

Since Q |M = F1F
∗
1 , it follows that

Q |M =
(

U1C0V1−U2S0V1

) (
V∗
1 C0U

∗
1 −V∗

1 S0U
∗
2

)

=
(
I 0

0 −U2U
∗
1

)(
(U1C0U

∗
1 )(U1C0U

∗
1 ) (U1C0U

∗
1 )(U1S0U

∗
1 )

(U1C0U
∗
1 )(U1S0U

∗
1 ) (U1S0U

∗
1 )(U1S0U

∗
1 )

)(
I 0

0 −U1U
∗
2

)

=
(
I 0

0 R∗
)(

C2 CS

CS S2

)(
I 0

0 R

)
,

with R = −U2U
∗
1 , C = U1C0U

∗
1 , S = U1S0U

∗
1 . As E = CSR is nonsingular, so also are C and S. This

completes the proof.

Proposition 1.5. We have M0 = M1 = {0} if and only if PQ = QP.

The “only if” part is trivial, since the two operators (3) obviously commute. To get the “if portion”,

assume PQ = QP butM0 /= {0}. Theorem 1.2 then gives

0 = PQ − QP

= (0, 0, 0, 0)⊕ U∗
[(

I 0

0 0

)(
I − H W

W H

)
−
(
I − H W

W H

)(
I 0

0 0

)]
U

= (0, 0, 0, 0)⊕ U∗
(

0 W

−W 0

)
U.

It follows that W = 0 and thus H(I − H) = W2 = 0, which is impossible because H and I − H are

injective. This proves Proposition 1.5.

We do not define H in case M0 = M1 = {0}. Equivalently, in the case where M0 = M1 = {0} we

interpret (16) and (17) as (3). Note that U is unitary and that 0�W � I with KerW = Ker (I − W) =
{0}. In particular, the spectra σ(H) and σ(W) are both subsets of [0, 1].
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Now letΠ ∈ B(H) be an arbitrary (not necessarily orthogonal) projection,Π = Π2. Such projec-

tionsarecalledskeworoblique. TheclosedsubspacesL := RanΠ andN := KerΠ arecomplementary,

that is, L ∩ N = {0} and L + N = H. It follows also that L⊥ ∩ N⊥ = (L + N)⊥ = {0}. Let P = PL and

Q = PN be the orthogonal projections onto L and N, respectively.

Proposition 1.6 (Afriat). If L = RanΠ andN = KerΠ for some skew projectionΠ , then ‖PQ‖ < 1 and

Π = (I − PQ)−1P(I − PQ).

This result is from Afriat’s paper [1]. Proposition 1.6 is not of the depth of Theorems 1.1 and 1.2, but

it is a key result in work with skew projections. Here is a proof of Proposition 1.6. The result is trivial

ifΠ is the zero operator. So assumeΠ /= 0. If x ∈ L is a unit vector, then x ∈ RanΠ , Qx ∈ KerΠ , and

hence

1 = ‖x‖ = ‖Πx −ΠQx‖ � ‖Π‖ ‖x − Qx‖,
which gives

1/‖Π‖2 � inf
x∈L,‖x‖=1

‖x − Qx‖2 = inf
x∈L,‖x‖=1

(1 − ‖Qx‖2) = 1 − sup
x∈L,‖x‖=1

‖Qx‖2

= 1 − sup
x∈L,‖x‖ � 1

‖Qx‖2 = 1 − sup
u∈H,‖u‖ � 1

‖QPu‖2 = 1 − ‖QP‖2

and since ‖PQ‖ = ‖(PQ)∗‖ = ‖QP‖, it follows that ‖PQ‖ < 1. The last inequality implies that I − PQ

is invertible, and we are left to prove that (I − PQ)Π = P(I − PQ). Every u ∈ H can be written as

u = x + y with x = Πu ∈ L and y = (I −Π)u ∈ N. This yields

(I − PQ)Πu = (I − PQ)x = x − PQx

and

P(I − PQ)u = P(x + y)− PQ(x + y) = Px + Py − PQx − Py = x − PQx,

that is, (I − PQ)Π = P(I − PQ).
Representing P and Q by (16) an (17) we obtain the following representation forΠ .

Corollary 1.7. Let L = RanΠ and N = KerΠ for some skew projectionΠ. If M0 = {0}, thenΠ = IL∩N⊥
is simply the orthogonal projection onto L ∩ N⊥, while if M0 /= {0}, then H is invertible and

Π = IL∩N⊥ ⊕ U∗
(
I −H−1W

0 0

)
U.

Indeed, we have

I = (1, 1, 1, 1)⊕ U∗
(
I 0

0 I

)
U, PQ = (1, 0, 0, 0)⊕ U∗

(
I − H W

0 0

)
U

and hence

I − PQ = (0, 1, 1, 1)⊕ U∗
(
H −W

0 I

)
U. (19)

Since L ∩ N = L⊥ ∩ N⊥ = {0}, we may replace (0, 1, 1, 1) by IL∩N⊥ ⊕ IL⊥∩N . The operator H is invert-

ible together with I − PQ . The entries of the 2 × 2 matrix on the right of (19) commute and therefore

this matrix can be inverted as in the scalar case. What results is that

(I − PQ)−1 = IL∩N⊥ ⊕ IL⊥∩N ⊕ U∗
(
H−1 H−1W

0 I

)
U.
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Proposition 1.6 therefore yields

Π = IL∩N⊥ ⊕ U∗
(
H−1 H−1W

0 I

)(
I 0

0 0

)(
H −W

0 I

)
U,

which instantly gives the asserted formula.

The reader is referred to Galántai’s book [45] for numerous results on orthogonal and skew projec-

tions, ranging from elementary observations up to rather sophisticated properties and, in particular,

for various representations of skew projections.

Weremark that several representations that canbe found in the literaturearenothingbutHalmos’ or

Afriat’s formulas in disguise. For example, Groß [54] showed that if P andQ are orthogonal projections

on Cn, then

PQ = V∗
⎛
⎝T X 0

0 0 0

0 0 I

⎞
⎠ V , (20)

where V is unitary, T is diagonal with all diagonal entries in (0, 1), and XX∗ = T(I − T). This is the

same as the formula

PQ = (1, 0, 0, 0)⊕ U∗
(
I − H W

0 0

)
U,

which is immediate from Theorem 1.2. The last formula even implies that the X in (20) may be chosen

to be a Hermitian diagonal matrix.

2. Wedin, Doković, and Jordan

We begin by citing two versions of the theorems of the previous section in the case of finite-

dimensional spaces. Thus, letH = Cn with a natural number n.We freely identify operators on Cn with

their matrices in the standard basis. Let P and Q be two orthogonal projections on Cn (= Hermitian

and idempotent matrices). The trivial case where M0 = M1 = {0} may be excluded. Thus, let r :=
dimM0 = dimM1 � 1. Since H is an Hermitian r × r matrix with all eigenvalues in (0, 1), we have

H = S∗diag (μ1, . . . ,μr)S, (21)

with a unitary matrix S and 0 < μ1 � · · · �μr < 1. Evidently, μ1, . . . ,μr are just the eigenvalues of

H labeled in nondecreasing order and repeated according to their multiplicity. The angles θ1, . . . , θr ∈
(0,π/2) defined by

sin2 θj = μj (j = 1, . . . , r) (22)

are referred to as the principal angles of the pair (M0,M1). The following was established in [106] by

different methods and is called the Wedin canonical form of P and Q .

We denote by det A the usual determinant of a matrix A ∈ Cn×n. Given a 2 × 2 operator matrix

with commuting entries, we define the operator determinant by

Det

(
B C

D E

)
= BE − CD.

The operator matrix is invertible if and only if so is its operator determinant.

Example 2.1 (The sum of two orthogonal projections). By Theorem 1.2,

P + Q − λI = (2 − λ, 1 − λ, 1 − λ,−λ)⊕ U∗
(
2I − H − λI W

W H − λI

)
U,

with

Det

(
2I − H − λI W

W H − λI

)
= (λ2 − 2λ)I + H. (23)
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Consequently,

σ(P + Q) = σ((2, 1, 1, 0)) ∪ {1 ± √
1 − x : x ∈ σ(H)}. (24)

Note that σ((2, 1, 1, 0)) ⊂ {0, 1, 2}. If dimH < ∞, then (21) gives σ(H) = {μ1, . . . ,μr}, and taking

into account (22) we get

σ(P + Q) \ {0, 1, 2} = {1 ± cos θ1, . . . , 1 ± cos θr}.
Thus, at least theoretically the problem of finding the principle angles θ1, . . . , θr simply amounts to

the determination of the eigenvalues of the Hermitian and positive matrix P + Q .

We remark that formula (24) also provides us with a quick solution of the problem considered

by Holland in [59], namely, the construction of orthogonal projections P and Q such that P + Q has

prescribed eigenvalues.

Corollary 2.2 (Wedin). There exists a unitary n × n matrix V such that

VPV∗ = (1, 1, 0, 0)⊕ diag

[(
1 0

0 0

)]r
j=1

,

VQV∗ = (1, 0, 1, 0)⊕ diag

⎡
⎣
⎛
⎝ 1 − μj

√
μj(1 − μj)√

μj(1 − μj) μj

⎞
⎠
⎤
⎦
r

j=1

= (1, 0, 1, 0)⊕ diag

[(
cos2 θj cos θj sin θj

cos θj sin θj sin2 θj

)]r
j=1

.

To see this, put D = diag (μ1, . . . ,μr). Then(
I 0

0 0

)
=
(
S∗ 0

0 S∗
)(

I 0

0 0

)(
S 0

0 S

)
,

(
I − H W

W H

)
=
(
S∗ 0

0 S∗
)(

I − D
√

D(I − D)√
D(I − D) D

)(
S 0

0 S

)

and an obvious choice of a permutation matrix T yields(
I 0

0 0

)
= T∗diag

[(
1 0

0 0

)]r
j=1

T ,

(
I − D

√
D(I − D)√

D(I − D) D

)
= T∗diag

⎡
⎣
⎛
⎝ 1 − μj

√
μj(1 − μj)√

μj(1 − μj) μj

⎞
⎠
⎤
⎦
r

j=1

T .

Since μj = sin2 θj , 1 − μj = cos2 θj ,
√
μj(1 − μj) = cos θj sin θj , we obtain the desired representa-

tions with

V = (1, 1, 1, 1)⊕ T

(
S 0

0 S

)
U

from Theorem 1.2.

Now letΠ be a skew projection on Cn (= an idempotent matrix), L = RanΠ , N = KerΠ , P = PL ,

Q = PN , define μj by (21) and the angles θj by (22). The following representation is from [36], where

it was proved in a completely elementary fashion. It is referred to as the Doković canonical form

ofΠ .
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Corollary 2.3 (Doković) . With the same unitary n × n matrix V as in Corollary 2.2,

VΠV∗ = IL∩N⊥ ⊕ diag

[(
1 −

√
(1 − μj)/μj

0 0

)]r
j=1

,

= IL∩N⊥ ⊕ diag

[(
1 − cot θj

0 0

)]r
j=1

.

This can be derived from Corollary 1.7 in the same way we derived Corollary 2.2 from Theorem 1.2.

Davis begins his paper [26] as follows. “A pair of non-trivial linear subspaces of Euclidean 3-space,

whose dimensionalities are known, form a geometrical figure which is determined up to Euclidean

congruence by the non-obtuse angle between them – single number between 0 and π/2.” In a sense,

the whole two projections business since Jordan’s 1875 paper [62] has its origin in the endeavor to

get an understanding of the corresponding picture in higher dimensions. We here confine ourselves

to complex separable Hilbert spaces H, and in this context we have the following definitions.

Let (L1,N1) and (L2,N2) be two pairs of closed subspaces of H and denote by

P1 = PL1 , Q1 = PN1
, P2 = PL2 , Q2 = PN2

,

the associate orthogonal projections. If the pairs are formed by complementary subspaces, we letΠ1

and Π2 stand for the projections of H onto L1 and L2 parallel to N1 and N2, respectively. The pairs

(L1,N1) and (L2,N2) are said to be unitarily equivalent if there exists a unitary operator V : H → H
such that VL1 = L2 and VN1 = N2. The pairs (P1,Q1) and (P2,Q2) are called unitarily equivalent if

P2 = VP1V
∗ and Q2 = VQ1V

∗ for some unitary operator V : H → H. Finally,Π1 andΠ2 are unitarily

equivalent by definition if there is a unitary operator V : H → H such that Π2 = VΠ1V
∗. Note that

instead of unitary equivalence one frequently also speaks of unitary similarity or simply of congru-

ence. The following proposition reveals that all these notions are one and the same thing in different

disguise.

Proposition 2.4. Let V : H → H be a unitary operator. Then the following are equivalent:
(i) VL1 = L2 and VN1 = N2,

(ii) P2 = VP1V
∗ and Q2 = VQ1V

∗.
If the pairs (L1,N1) and (L2,N2) are constituted by complementary subspaces, then (i) and (ii) are also

equivalent to the equality

(iii) Π2 = VΠ1V
∗.

This can be shown as follows. If K1 and K2 are closed subspaces of H, then

K2 = VK1 ⇐⇒ PK2 = VPK1V
∗ (25)

because VPK1V
∗ is obviously an orthogonal projection and its range is VK1. The equivalence of (i) and

(ii) is immediate from (25). To see that (i) and (iii) are equivalent, note that VΠ1V
∗ is a projectionwith

range VL1 and kernel VN1. That’s all.

Now let H = Cn. For i = 1, 2, we put


i = dim(Li ∩ Ni), ki = dim(Li ∩ N⊥
i ),


⊥i = dim(L⊥i ∩ Ni), k⊥
i = dim(L⊥i ∩ N⊥

i ),

M
(i)
0 = Li � ((Li ∩ Ni)⊕ (Li ∩ N⊥

i )), M
(i)
1 = L⊥i � ((L⊥i ∩ Ni)⊕ (L⊥i ∩ N⊥

i )),

ri = dimM
(i)
0 = dimM

(i)
1
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andwedenoteby0 < θ
(i)
1 � · · · � θ(i)ri < π/2 theprincipal anglesof thepair (M

(i)
0 ,M

(i)
1 ). The following

theorem is the n-dimensional version of Davis’ introductory sentence cited above. This theorem is

basically due to Jordan [62].

Theorem 2.5 (Jordan). The pairs (L1,N1) and (L2,N2) are unitarily equivalent if and only if 
1 = 
2,

k1 = k2, 

⊥
1 = 
⊥2 , k⊥

1 = k⊥
2 , r1 = r2, and the principal angles 0 < θ

(1)
1 � · · · � θ(1)r1 < π/2 coincide

with the principal angles 0 < θ
(2)
1 � · · · � θ(2)r2 < π/2.

The “if” portion follows easily from Corollary 2.2 and Proposition 2.4: the corollary shows that

V1P1V
∗
1 = V2P2V

∗
2 and V1Q1V

∗
1 = V2Q2V

∗
2 with unitary matrices V1, V2, whence P2 = VP1V

∗ and

Q2 = VQ1V
∗withV = V∗

2 V1, and theproposition thengivesVL1 = L2 andVN1 = N2. Toprove the“only

if” part, suppose (L1,N1) and (L2,N2) are unitarily equivalent. Then, by Proposition 2.4, P2 = VP1V
∗

and Q2 = VQ1V
∗ with some unitary matrix V . It follows that P2 + Q2 = V(P1 + Q1)V

∗, and therefore

P1 + Q1 and P2 + Q2 must have the same collection of eigenvalues. From Example 2.1 we deduce that

r1 = r2 =: r,θ(1)j = θ
(2)
j for 1� j � r,
1 = 
2 (multiplicityof theeigenvalue2),k⊥

1 = k⊥
2 (multiplicity

of the eigenvalue 0), and k1 + 
⊥1 + r = k2 + 
⊥2 + r (multiplicity of the eigenvalue 0). Since P1
and P2 must also have the same eigenvalues, Corollary 2.2 implies that 
1 + k1 + r = 
2 + k2 + r

(multiplicity of the eigenvalue 1). Consequently, k1 = k2 and 
⊥1 = 
⊥2 , which completes the proof.

The (infinite-dimensional) Hilbert space analogue of Theorem 2.5 is in [26]. It characterizes unitary

equivalence in terms of the dimensions of the four spaces L ∩ N, L ∩ N⊥, L⊥ ∩ N, L⊥ ∩ N⊥, and the

spectral decomposition of the operator H.

Remark 2.6. In the literature, the principal angles are usually defined as follows, that is, in a fashion

different from ours. Suppose m := dim L � dimN. The first principal angle ϕ1 is defined by

cosϕ1 = max{|(x, y)| : x ∈ L, ‖x‖ = 1, y ∈ N, ‖y‖ = 1}.
Assume the maximum is attained at x1 and y1, that is, cosϕ1 = |(x1, y1)|. The second principal angle

ϕ2 is then given by

cosϕ2 = max{|(x, y)| : x ∈ L, x ⊥ x1, ‖x‖ = 1, y ∈ N, y ⊥ y1, ‖y‖ = 1}
and if cosϕ2 = |(x2, y2)|, the next principal angle ϕ3 is the angle whose cosine is the maximum of

{|(x, y)| : x ∈ L, x ⊥ x1, x ⊥ x2, ‖x‖ = 1, y ∈ N, y ⊥ y1, y ⊥ y2, ‖y‖ = 1},
and so on. At stepm + 1 we meet the requirement

x ∈ L, x ⊥ x1, . . . , x ⊥ xm, ‖x‖ = 1,

which cannot be fulfilled. Thus, the procedure stops at themth step and yields them principal angles

0�ϕ1 �ϕ2 � · · · �ϕm �π/2.

Note that in the preceding recursive definition the equalities ‖x‖ = 1 and ‖y‖ = 1 can everywhere be

replaced by the inequalities ‖x‖ � 1 and ‖y‖ � 1without changing the result. The connection between

the angles just defined and our principal angles

0 < θ1 � · · · � θr < π/2

is that our θ ’s are just the ϕ’s lying in (0,π/2) or, equivalently, the ϕ’s whose cosines are neither 0 nor

1. To be more precise, let 
 = dim(L ∩ N) and k = dim(L ∩ N⊥). Since
L = (L ∩ N)⊕ (L ∩ N⊥)⊕ M0,

we havem = 
+ k + r. One can show (see, for instance, [17]) that

ϕ1 = · · · = ϕ
 = 0, ϕ
+1 = θ1, . . . ,ϕ
+r = θr , ϕ
+r+1 = · · · = ϕ
+r+k = π

2
.
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In terms of the principal angles ϕj , Theorem 2.5 reads as follows. Letm1 = dim L1 � dimN1 andm2 =
dim L2 � dimN2. The pairs (L1,N1) and L2,N2) are unitarily equivalent if and only if m1 = m2 =: m
and ϕ

(1)
j = ϕ

(2)
j for 1� j �m.

In connection with the topic of this section, we recommend Galántai’s book [45] and his recent

article [46], which contain all results of this section along with many references to original works

on principal angles. In [46], Galántai actually starts with the definition of the principal angles as in

Remark 2.6 and uses the resulting characterizations of the relative positions of subspaces to derive

Wedin’s representation and subsequently Halmos’ two projection theorem (in finite dimensions) and

Doković’s canonical form. We here proceed in the reverse direction: we deduce Wedin and Doković

from Halmos and not vice versa. We also want to mention that Rakočević and Wimmer [85] proved a

min–max characterization of the principal angles, namely,

cosϕj = min
U

max
x,y

|(x, y)| (j = 1, . . . ,m),

theminimum over all subspacesU ⊂ L of dimension j − 1 and themaximum over x ∈ L ∩ U⊥, y ∈ N,

‖x‖ = 1, ‖y‖ = 1.

3. Some simple consequences

In a sense, Theorem 1.2 does for geometry involving two subspaces or operator theory connected

with two orthogonal projections the same as analytical geometry does for Euclidean geometry: after

expressing everything in terms of the operator H (the “coordinates”), we are left with more or less

straightforward computations. It is the purpose of this section to demonstrate this strategy by several

concrete problems.

Suppose P and Q are orthogonal projections on H with the ranges L and N, respectively. Let f (p, q)
be a polynomial in two non-commuting variables p and q of the form

f (p, q) = f00 + f11p + f21pq + f31pqp + f41pqpq + f51pqpqp + · · ·
+ f12q + f22qp + f32qpq + f42qpqp + f52qpqpq + · · · (26)

Then

f (P,Q) = f00I + f11P + f21PQ + f31PQP + f41PQPQ + f51PQPQP + · · ·
+ f12Q + f22QP + f32QPQ + f42QPQP + f52QPQPQ + · · ·

and Theorem 1.2 shows that f (P,Q)may be written as

(α00,α01,α10,α11)⊕ U∗
(
ϕ00(H) ϕ01(H)
ϕ10(H) ϕ11(H)

)
U. (27)

The operator (α00,α01,α10,α11) is invertible on M00 ⊕ M01 ⊕ M10 ⊕ M11 if and only if αjk /= 0 for

Mjk /= {0}, and the norm of this operator is max |αjk|, the maximum over the (j, k)withMjk /= {0}.
Since the operators ϕjk(H) commute, the matrix in (27) is invertible if and only if so is its operator

determinant

Det

(
ϕ00(H) ϕ01(H)
ϕ10(H) ϕ11(H)

)
:= ϕ00(H)ϕ11(H)− ϕ01(H)ϕ10(H),

which is in turn equivalent to the condition

det

(
ϕ00(x) ϕ01(x)
ϕ10(x) ϕ11(x)

)
/= 0 for all x ∈ σ(H).

In this way one can compute the spectrum of f (P,Q). One can also determine the spectrum of

f (P,Q)f (P,Q)∗ and thus the singular values and in particular the norm of f (P,Q).
To exclude the permanent distinction between the cases M0 = {0} and M0 /= {0}, we make the

following convention. If M0 /= {0}, we denote by min σ(H) the minimum of the set σ(H), while in
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the case M0 = {0} (where H is not defined), we define min σ(H) := 1. With this convention,

min σ(H) > 0 if and only if M0 = {0} or ifM0 /= {0} and H is invertible.

Example 3.1 (Duncan and Taylor). We have ‖P + Q‖ = 1 + ‖PQ‖ unless P = Q = 0.

To see this, suppose first thatM0 = {0}. Then P = (1, 1, 0, 0) andQ = (1, 0, 1, 0) and thus P + Q =
(2, 1, 1, 0) and PQ = (1, 0, 0, 0). This implies that ‖P + Q‖ = 1 + ‖PQ‖ = 2 if L ∩ N /= {0}. So let

L ∩ N = {0}. Then PQ is the zero operator and hence 1 + ‖PQ‖ = 1. If L ∩ N⊥ and L⊥ ∩ N would be

{0}, then P and Q would be the zero operators, which case is excluded. Therefore one of the spaces

L ∩ N⊥ and L⊥ ∩ N is nontrivial, which gives ‖P + Q‖ = 1. This completes the proof in the casewhere

M0 = {0}.
AssumeM0 /= {0}. Then P and Q may be written as in Theorem 1.2. It follows that

(PQ)(PQ)∗ = PQP = (1, 0, 0, 0)⊕ U∗
(
I − H 0

0 0

)
U. (28)

Since ‖PQ‖2 = ‖(PQ)(PQ)∗‖ and ‖I − H‖ � 1, we get

‖PQ‖ =
{
1 if L ∩ N /= {0},√‖I − H‖ if L ∩ N = {0}.

On the other hand, from (24) we see that the norm of the selfadjoint operator P + Q is

‖P + Q‖ =
{
2 if L ∩ N /= {0},
1 + √

1 − min σ(H) if L ∩ N = {0}.
As, obviously, ‖I − H‖ = 1 − min σ(H), this completes the proof.

The equality of this example was first established by Duncan and Taylor [39]. An algebraic proof of

it is in Vidav’s paper [103].

Example 3.2 (Closedness of the sumof two subspaces). The sum L + N of two closed subspaces ofH is

closed if and only if min σ(H) > 0. In different but equivalent terms, this was stated without proof by

Krein, Krasnoselski, and Milman in [72]. A full proof was first published by Ljance [76]. Here is a proof

that is based on Theorem 1.2. The first part of this proof, until the equality L + N = Ran (P + Q)1/2,
is due to Anderson and Schreiber [4].

The assertion is trivial if M0 = {0}, in which case

L + N = (L ∩ N)⊕ (L ∩ N⊥)⊕ (L⊥ ∩ N).

So supposeM0 /= {0}. On H ⊕ H, let

A :=
(
P −Q

0 0

)
and hence AA∗ =

(
P + Q 0

0 0

)
.

It is well known that Ran A = Ran (AA∗)1/2 for every Hilbert space operator A. Since

Ran A = (Ran P + RanQ)⊕ {0}, Ran (AA∗)1/2 = Ran (P + Q)1/2 ⊕ {0},
we conclude that

L + N = Ran P + RanQ = Ran (P + Q)1/2.

Consequently, L + N is closed if and only if (P + Q)1/2 has closed range. But the range of an arbitrary

Hilbert space operator B is closed if and only if

σ(BB∗) ⊂ {0} ∪ [ε2,∞) (29)

for some ε > 0 (see, e.g. [20, Theorem 4.21]). With B = (P + Q)1/2, we deduce from Theorem 1.2 that

BB∗ = B2 = P + Q = (2, 1, 1, 0)⊕ U∗
(
2I − H W

W H

)
U
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and thus

σ(BB∗) = σ((2, 1, 1, 0)) ∪ σ
((

2I − H W

W H

))
. (30)

The spectrum of (2, 1, 1, 0) is contained in {0, 1, 2}, and formula (23) implies that the spectrum of the

matrix in (30) is {1 ± √
1 − x : x ∈ σ(H)}. If min σ(H) > 0, this set is bounded away from zero and

thus (29) holds. However, if min σ(H) = 0, then 0 is a cluster point of H (since it isn’t an eigenvalue)

and therefore (29) cannot be true. This completes the proof.

Example 3.3 (Theminimal angle between two subspaces). Suppose L /= {0} and N /= {0}, or equiv-
alently, P /= 0 and Q /= 0. The minimal angle θmin(L,N) between L and N is the angle in [0,π/2] that
is given by

sin θmin(L,N) := inf
x∈L,‖x‖=1

dist(x,N) = inf
x∈L,‖x‖=1

√
1 − ‖Qx‖2.

This definition goes back to Dixmier [35]. An argument we employed to prove Proposition 1.6 shows

that

sin2 θmin(L,N) = 1 − ‖QP‖2 = 1 − ‖PQ‖2 = sin2 θmin(N, L). (31)

In Example 3.1 we observed that

‖PQ‖2 =
{
1 if L ∩ N /= {0},
1 − min σ(H) if L ∩ N = {0}.

Consequently,

1 − ‖PQ‖2 =
{
0 if L ∩ N /= {0},
min σ(H) if L ∩ N = {0}.

Now let dimH = n < ∞ and put dim(L ∩ N) = 
, dimM0 = r. From (28) we get

σ((PQ)(PQ)∗) = σ((1, 0, 0, 0)) ∪ σ(diag (I − H, 0)).

Thus, PQ has 
 times the singular value 1, n − 
− r times the singular value 0, and the remaining r

singular values are
√

1 − μj = cos θj (j = 1, . . . , r).

Example 3.4 (Ljance’s formula). Let Π be a skew projection and suppose Π /= 0 and Π /= I. Put

L = RanΠ , N = KerΠ and P = PL , Q = PN . By Proposition 1.6, ‖PQ‖ < 1. Example 3.3 therefore

reveals that sin θmin(L,N) > 0 and min σ(H) > 0. Ljance [76] showed that

‖Π‖ = 1

sin θmin(L,N)
= 1√

1 − ‖PQ‖2
= 1√

min σ(H)
.

This follows easily from Corollary 1.7. Indeed, assume first thatM0 /= {0}. Then the corollary gives

Π Π∗ = IL∩N⊥ ⊕ U∗
(
I −H−1W

0 0

)(
I 0

−H−1W 0

)
U

= IL∩N⊥ ⊕ U∗
(
H−1 0

0 0

)
U.

The norm of IL∩N⊥ is at most 1 and ‖H−1‖ = 1/min σ(H)� 1. Thus ‖Π‖2 = 1/min σ(H). On the

other hand, if M0 = {0}, then L ∩ N⊥ = L /= {0} and hence Π Π∗ = ‖IL∩N⊥‖ = 1. As we made the

convention to put min σ(H) = 1 in the case M0 = {0}, we get again ‖Π‖2 = 1/min σ(H).
Since Ran (I −Π) = N and Ker (I − P) = L, Ljance’s formula applied to I −Π yields ‖I −Π‖2 =

1/(1 − ‖QP‖2). From (31) we therefore obtain that ‖Π‖ = ‖I −Π‖. We will say more about this

identity in Example 5.8.



1426 A. Böttcher, I.M. Spitkovsky / Linear Algebra and its Applications 432 (2010) 1412–1459

In the casewhere ‖ · ‖ is an arbitrary unitarily invariantmatrix norm in Cn with a symmetric gauge

function, the norm ‖Π‖ is computed in [45, Proposition 2.55].

Example 3.5 (Themaximal angle between two subspaces).Again suppose L /= {0} andN /= {0}. The
maximal angle θmax(L,N) between L and N of H was introduced in [72] and is defined as the angle in

[0,π/2] given by

sin θmax(L,N) = sup
x∈L,‖x‖=1

dist(x,N) = sup
x∈L,‖x‖=1

√
1 − ‖Qx‖2.

We have

sin θmax(L,N)= sup
x∈L,‖x‖=1

‖(I − Q)x‖ = sup
x∈L,‖x‖ � 1

‖(I − Q)x‖
= sup

u∈H,‖u‖ � 1

‖(I − Q)Pu‖ = ‖(I − Q)P‖ = ‖P − QP‖ = ‖P − PQ‖.

Using Theorem 1.2 one can show as in the previous examples that

‖P − PQ‖2 = max(‖(0, 1, 0, 0)‖, ‖H‖)
and that, analogously,

sin θmax(N, L) = ‖Q − PQ‖, ‖Q − PQ‖2 = max(‖(0, 0, 1, 0)‖, ‖H‖).
In the same vein,

‖P − Q‖2 = max(‖(0, 1, 1, 0)‖, ‖H‖).
(In these formulas, ‖H‖ is absent if M0 = {0}.) Consequently,

max(sin θmax(L,N), sin θmax(N, L)) = ‖P − Q‖. (32)

Example 3.6 (Complementary subspaces). Two closed subspaces L and N of H are complementary if

and only if L ∩ N = {0}, L⊥ ∩ N⊥ = {0}, andmin σ(H) > 0. The “only if” part follows from Corollary

1.7 and the “if” portion is an immediate consequence of Example 3.2.

The following was shown by Ipsen and Meyer [61] for dimH < ∞ using different methods and

independently by Buckholtz [23] for general H, also without employing Halmos’ two projections

theorem.

Two closed subspaces L and N of H are complementary if and only if P − Q is invertible. In that case the

norm of the projectionΠ of H onto L parallel to N is given by

‖Π‖ = ‖(P − Q)−1‖.
Using Theorem 1.2, this can be shown as follows. We have

P − Q = (0, 1,−1, 0)⊕ U∗
(

H −W

−W −H

)
U (33)

and hence P − Q is invertible if and only if L ∩ N = {0}, L⊥ ∩ N⊥ = {0}, and
Det

(
H −W

−W −H

)
= −H

is invertible. The last requirement is equivalent to saying that min σ(H) > 0. This proves the first part

of the assertion. The norm equality is trivial forM0 = {0}. So assumeM0 /= {0}. If P − Q is invertible,

we get from (33) that

(P − Q)−1 = (0, 1,−1, 0)⊕ U∗
(

I −H−1W

−H−1W −I

)
U (34)
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and since

Det

(
I − λI −H−1W

−H−1W −I − λI

)
= λ2I − H−1,

the norm of the selfadjoint operator matrix on the right of (34) is

max{|λ| : λ2 ∈ σ(H−1)} = 1√
min σ(H)

.

Because min σ(H) < 1, we obtain that

‖(P − Q)−1‖ = max

(
‖(0, 1,−1, 0)‖, 1√

min σ(H)

)
= 1√

min σ(H)
,

which in conjunction with Example 3.4 yields the equality ‖Π‖ = ‖(P − Q)−1‖.
Example 3.7 (The gap between two subspaces). The number (32) is referred to as the gap between

L and N and will be denoted by δ(L,N). This notion was introduced by Krein and Krasnoselski in [71].

Letting δ(L,N) := ‖PL − PN‖ we may extend the definition of δ(L,N) also to the case where one of

the spaces L and N is trivial. Obviously, δ is a metric on the set of all closed subspaces of H.

If δ(L,N) < 1, then P and Q are unitarily equivalent and, in particular, dim L = dimN.

Thiswas established independently by Sz-Nagy [99], Krein, Krasnoselski, andMilman [72], andKato

[63] (see also [65, I. § 4. Section6 and I. § 6. Section8]). Proofs are also in thebooks [45,51]. Aproof based

on Theorem 1.2 is as follows. We have representation (33) for P − Q , and if δ(L,N) = ‖P − Q‖ < 1,

then 1 and−1 in (0, 1,−1, 0)must be absent (which happens if and only if L ∩ N⊥ = L⊥ ∩ N = {0}).
Put

V = (1, 1, 1, 1)⊕ U∗
(√

I − H −√
H√

H
√

I − H

)
U.

It can be checked straightforwardly that V is unitary and that Q = VPV∗ (note that (1, 1, 0, 0) =
(1, 0, 1, 0)). From (25) we infer that N = VL. This completes the proof.

Here is a simple application of the concepts of the gap and the minimal angle.

SupposedimH < ∞and let L /= {0}andN /= {0}be complementary subspaces ofH. If N′ is a subspace
of H such that

δ(N,N′) < sin θmin(L,N),

then L and N′ are also complementary.

This is a special case of a result by Berkson [16]. See also [51, Theorem 13.1.3]. The following simple

proof is from Schumacher’s paper [92]. Let δ(N,N′) < 1. We have just shown that then N and N′ have
the same dimension. It therefore suffices to prove that L ∩ N′ = {0}. Assume the contrary, that is,

assume there is a z0 ∈ L ∩ N′ with ‖z0‖ = 1. We then obtain

sin θmin(L,N)= sin θmin(N, L) = inf
x∈N,‖x‖=1

inf
z∈L

‖x − z‖
� inf

x∈N,‖x‖=1
‖x − z0‖ � sup

z∈N′ ,‖z‖=1

inf
x∈N,‖x‖=1

‖x − z‖

� sup
z∈N′ ,‖z‖=1

inf
x∈N

‖x − z‖ = sin θmax(N
′,N)� δ(N′,N) = δ(N,N′),

which is a contradiction.

The previous result is of interest in connectionwith controller robustness, for example. Schumacher

[92] associates a family L(s) andN(s) (s in the closed right half-plane) of subspaceswith a system R and

the controller Q . The feedback loop (R,Q) turns out to be stable and well-posed if and only if all pairs
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(L(s),N(s)) are complementary and a certainmatrix function has no zeros. Considering a perturbation

R′ of the system, the questionwhether the feed-back loop (R′,Q) is still stable andwell-posed includes

the problem of whether all pairs (L′(s),N(s)) remain complementary. From what was shown above,

we know that this can be guaranteed if δ(L′(s), L(s)) < sin θmin(L(s),N(s)) for all s.
In the above proof, we basically showed that if δ(N,N′) < sin θmin(L,N), then dim(L ∩ N′) < 1.

Letm = min(dim L, dimN) and define the principal angles 0�ϕ1 � · · · �ϕm �π/2 as in Remark 2.6.

Wimmer [107] showed that if 1� k �m and δ(N,N′) < sinϕk , then dim(L ∩ N′) < k. He also proved

that this is no longer true with sinϕk replaced by a smaller number.

Example 3.8 (The spherical gap between two subspaces). Given a closed subspace K /= {0} of H, we

denote by SK the unit sphere of K , that is, SK = {y ∈ K : ‖y‖ = 1}. If x ∈ H, then

dist(x, SK) =
√

‖x‖2 + 1 − 2‖PKx‖. (35)

Indeed, this is obvious for x ∈ K⊥, while if x /∈ K⊥, we have, for every y ∈ SK ,

‖x − y‖2 = ‖x‖2 + 1 − 2 Re (x, y) = ‖x‖2 + 1 − 2 Re (PKx, y)� ‖x‖2 + 1 − 2 ‖PKx‖
and equality is attained if and only if y = PKx/‖PKx‖.

Now let L /= {0} and N /= {0} be two closed subspaces of H. Recall that the gap between L and N is

the number

δ(L,N) = max

(
sup
x∈SL

dist(x,N), sup
y∈SN

dist(y, L)

)
. (36)

The spherical gap between L and N was introduced by Gohberg and Markus [52] and is defined by

δ̃(L,N) = max

(
sup
x∈SL

dist(x, SN), sup
y∈SN

dist(y, SL)

)
. (37)

The connection between (36) and (37) is

δ̃(L,N) =
√
2 − 2

√
1 − δ(L,N)2. (38)

To see this, note that ‖PNx‖ =
√
1 − dist(x,N)2 for x ∈ SL , which in conjunctionwith (35) implies that

dist(x, SN) =
√
2 − 2‖PNx‖ =

√
2 − 2

√
1 − dist(x,N)2. (39)

Since sup{dist(x,N)2 : x ∈ SL} = sin2 θmax(L,N) by definition, equality (39) immediately gives

sup
x∈SL

dist(x, SN) =
√
2 − 2

√
1 − sin2 θmax(L,N).

Switching the roles of L and N we obtain

sup
y∈SN

dist(y, SL) =
√
2 − 2

√
1 − sin2 θmax(N, L).

Inserting the last two equalities in (37) and taking into account that the gap is defined by (32) we

arrive at (38).

Why do we need the spherical gap? It turns out that both (36) and (37) are metrics on the set of all

closed subspaces of a Hilbert space, but that (36) is in general no longer ametric on the set of all closed

subspaces of a Banach space (because the triangle inequality need not hold), whereas (37) remains a

metric in the Banach space setting; see [51,52,65, IV. § 2. Section 1]). Note that in order to speak of

metrics, we have to extend (36) and (37) to the case where L = {0} or N = {0}. For the gap (36), this

was done in Example 3.7 via the equality δ(L,N) = ‖PL − PN‖, which is equivalent to letting

δ(L, {0}) = δ({0},N) = 1 (L /= {0},N /= {0}), δ({0}, {0}) = 0.
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In the case of the spherical gap one may put

δ̃(L, {0}) = δ̃({0},N) = δ0 (L /= {0},N /= {0}), δ̃({0}, {0}) = 0,

where δ0 is any positive real number.

Formula (38) was proved by Nakamoto [78] under the assumption that L and N are graphs of

operators A and B in B(H). This proof is based on explicit expressions of δ(L,N) (derived in [77]) and

δ̃(L,N) (obtained in [78]) in terms of A and B. We have not seen (38) for general closed subspaces L

and N in the literature.

Example 3.9 (von Neumann’s formula). Consider the orthogonal projection PL∩N of H onto L ∩ N.

Evidently,

PL∩N = (1, 0, 0, 0)⊕ U∗
(
0 0

0 0

)
U.

On the other hand, von Neumann’s formula [105] says that

PL∩Nv = lim
n→∞(PQ)

nv for every v ∈ H.

Theorem 1.2 implies that

(PQ)n = (1, 0, 0, 0)⊕ U∗
(
Kn Kn−1W

0 0

)
U,

with K = I − H. Since K is selfadjoint with σ(K) ⊂ [0, 1] and 1 not in the point spectrum, the powers

Kn converge strongly (= pointwise) to zero. This follows easily from the spectral decomposition of K . A

proof avoiding the spectral decomposition is due to Práger [84] and can also be found in [45, Theorem

7.119]. Von Neumann’s formula is clearly a straightforward consequence of the fact that Kn converges

strongly to zero. Inserting the above representations in (PL∩N − (PQ)n)(PL∩N − (PQ)n)∗ we get

‖PL∩N − (PQ)n‖2 =
∥∥∥∥
(
K2n−1 0

0 0

)∥∥∥∥ = ‖K2n−1‖.
Thus, if max σ(K) = 1 − min σ(H) < 1 (which is always the case for dimH < ∞), then the norm

‖PL∩N − (PQ)n‖ goes to zero exponentially fast. This was probably first observed by Aronszajn [5].We

refer to the papers [31,32] and the book [33] by Deutsch and to Galántai’s book [45] for more on this

issue.

Notice also that if P and Q commute, then (PQ)n = PQ coincides with PL∩N for all n� 1.

Example 3.10 (The Friedrichs angle between two subspaces). The Friedrichs angle between L andN,

introduced in [44], is the angle θF(L,N) ∈ [0,π/2] whose cosine is

sup{|(x, y)| : x ∈ L ∩ (L ∩ N)⊥, y ∈ N ∩ (L ∩ N)⊥, ‖x‖ = 1, ‖y‖ = 1}.
It is easily seen that this is equal to

sup{|(PL∩(L∩N)⊥u, PN∩(L∩N)⊥v)| : u, v ∈ H, ‖u‖ � 1, ‖v‖ � 1} = ‖PL∩(L∩N)⊥PN∩(L∩N)⊥‖.
We obviously have

PL∩N = (1, 0, 0, 0)⊕ U∗
(
0 0

0 0

)
U, I = (1, 1, 1, 1)⊕ U∗

(
I 0

0 I

)
U,

P(L∩N)⊥ = I − PL∩N = (0, 1, 1, 1)⊕ U∗
(
I 0

0 I

)
U.

This implies that P = PL and Q = PN commute with P(L∩N)⊥ and that therefore

PL∩(L∩N)⊥ = PLP(L∩N)⊥ = (0, 1, 0, 0)⊕ U∗
(
I 0

0 0

)
U,
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PN∩(L∩N)⊥ = PNP(L∩N)⊥ = (0, 0, 1, 0)⊕ U∗
(
I − H W

W H

)
U,

which gives

PL∩(L∩N)⊥PN∩(L∩N)⊥ = (0, 0, 0, 0)⊕ U∗
(
I − H W

0 0

)
U. (40)

Computing PQ − PL∩N we obtain the same right-hand side as in (40). This proves that

cos θF(L,N) = ‖PQ − PL∩N‖ =
√

‖I − H‖ =
√
1 − min σ(H),

again with the convention to put min σ(H) = 1 and ‖I − H‖ = 0 ifM0 = {0}.
Example 3.11 (Approximating the projection onto the sum of two subspaces). Let L and N be two

closed subspaces of H and suppose that L ∩ N /= {0} and that L + N is also closed. Put P = PL and

Q = PN . One is interested in the best approximation of the orthogonal projection PL+N by a linear

combination of the orthogonal projections P, Q , and PL∩N . In [58] (and also in [37]) it is shown that if

α,β , γ ∈ C, then

‖αP + βQ + γ PL∩N − PL+N‖ � cos θF(L,N)

and that equality is achieved for α = β = 1 and γ = −1. The inequality can be shown as follows. As

cos θF(L,N) = 0 ifM0 = {0}, we may assume that M0 /= {0}. Since
PL∩N = (1, 0, 0, 0)⊕ U∗

(
0 0

0 0

)
U, PL+N = (1, 1, 1, 0)⊕ U∗

(
I 0

0 I

)
U,

the operator αP + βQ + γ PL∩N − PL+N is

(α + β − 1,α − 1,β − 1, 0)⊕ U∗
(
(α + β − 1)I − βH βW

βW βH − I

)
U.

The norm of the 2 × 2 matrix is

max
x∈σ(H)

∥∥∥∥∥
(
α + β − 1 − βx β

√
x(1 − x)

β
√

x(1 − x) βx − 1

)∥∥∥∥∥ =: max
x∈σ(H) ‖A(x)‖.

Decomposing α and β into real and imaginary parts, we get A(x) = B(x)+ iC(x)with real symmetric

matrices B(x) and C(x). It follows that ‖A(x)‖ � ‖B(x)‖. Wemay therefore assume from the beginning

thatα andβ are real and that, consequently,A(x) is a real symmetricmatrix. The eigenvalues ofA(x) are

λ1,2(x) = α + β − 2 ±
√
(α − β)2 + 4αβ(1 − x)

2

and the maximum of [λ1(x)]2 and [λ2(x)]2 equals

(α + β − 2)2 + 2|α + β − 2|
√
(α − β)2 + 4αβ(1 − x)+ (α − β)2 + 4αβ(1 − x)

4
.

It is quite elementary to show that this is never smaller than 1 − x, the only “critical” case beingα > 0,

β > 0, α + β < 2, where, however, the estimate√
(α − β)2 + 4αβ(1 − x) =

√
(α + β)2 − 4αβx �(α + β)

(
1 − 4αβx

(α + β)2

)

leads to the desired result. In summary,

max
x∈σ(H) ‖A(x)‖ � max

x∈σ(H)
√

1 − x =
√
1 − min σ(H)

and from Example 3.10 we know that 1 − min σ(H) = cos2 θF(L,N).
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Example 3.12 (The Feldman–Krupnik–Markus formulas). LetΠ be a skew projection and suppose

Π /= 0 and Π /= I. Put L = RanΠ , N = KerΠ and P = PL , Q = PN . In [40], Feldman, Krupnik, and

Markus computed the norms ‖f (Π ,Π∗)‖ for various polynomials f in terms of the norm of only Π .

The simplest of their formulas says that if α,β ∈ C, then

‖αΠ + β(I −Π)‖ = w+ + w−
2

, w± :=
√
(|α| ± |β|)2 + |α − β|2(‖Π‖2 − 1).

One of the proofs goes as follows. The case M0 = {0} is trivial. So letM0 /= {0}. By Corollary 1.7,

Π = IL∩N⊥ ⊕ U∗
(
I −H−1W

0 0

)
U, I −Π = IL⊥∩N ⊕ U∗

(
0 H−1W

0 I

)
U,

whence

αΠ + β(I −Π) = αIL∩N⊥ + βIL⊥∩N ⊕ U∗
(
αI (β − α)H−1W

0 βI

)
U.

It follows that (αΠ + β(I −Π))(αΠ + β(I −Π))∗ equals

|α|2IL∩N⊥ ⊕ |β|2IL⊥∩N ⊕ U∗
(|α|2I + |β − α|2X2 β(β − α)X

β(β − α)X |β|2I
)
U, (41)

with X := H−1W . Since

Det

(|α|2I + |β − α|2X2 − λI β(β − α)X

β(β − α)X |β|2I − λI

)

= λ2I − λ(|α|2 + |β|2 + |α − β|2X2)+ |α|2|β|2I,
the norm of the 2 × 2 matrix in (41) is

max{|λ| : λ2 − λ(|α|2 + |β|2 + |α − β|2x2)+ |α|2|β|2 = 0 for some x ∈ σ(H)}.
This is

|α|2 + |β|2 + |α − β|2x20 +
√
(|α|2 + |β|2 + |α − β|2x20)2 − 4|α|2|β|2

2

with x0 = max σ(X). The identity

b + √
c

2
=
⎛
⎜⎝
√
b + √

b2 − c +
√
b − √

b2 − c

2

⎞
⎟⎠

2

,

therefore shows that the norm of the 2 × 2 matrix in (41) equals

g(x0) := 1

4

(√
(|α| + |β|)2 + |α − β|2x20 +

√
(|α| − |β|)2 + |α − β|2x20

)2
.

Clearly,

g(x0)�
1

4
(|α| + |β| + ||α| − |β||)2 = max(|α|2, |β|2).

Consequently, from (41) we see that ‖αΠ + β(I −Π)‖2 is

max

(∥∥∥|α|2IL∩N⊥
∥∥∥2 , ∥∥∥|β|2IL⊥∩N

∥∥∥2 , g(x0)
)

= g(x0).
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Finally, from Example 3.4 we know that

x20 = max σ(X2) = max σ(H−1 − I) = 1

min σ(H)
− 1 = ‖Π‖2 − 1.

This completes the proof.

Example 3.13 (Unitary equivalence of skew projections). Due to Proposition 2.4 and Theorem 2.5,

one can decide whether two skew projections are unitarily equivalent by computing the principal

angles. As this requires the determination of eigenvalues, one is interested in “elementary verifiable”

criteria. One such criterion was given by Doković [36], who used Corollary 2.3 to prove that ifΠ1 and

Π2 are two projections on a finite-dimensional Hilbert space of dimension n, then Π1 and Π2 are

unitarily equivalent if and only if

trΠ1 = trΠ2 and tr (Π1Π
∗
1 )

j = tr (Π2Π
∗
2 )

j for 1� j �[n/2], (42)

where [n/2] denotes the integral part of n/2. With the help of Corollary 1.7, the proof is as follows.

It is clear that (42) is necessary for unitary equivalence. To prove the sufficiency, put Li = RanΠi,

Ni = KerΠi, ki = dim(Li ∩ N⊥
i ) (i = 1, 2), and denote by r1 and r2 the dimensions of the spaces M0

on which the operators H1 and H2 act. From Corollary 1.7 we immediately see that trΠi = ki + ri.

Thus, k1 + r1 = k2 + r2. Since also k1 + 2r1 = n and k2 + 2r2 = n, it follows that k1 = k2 =: k and

r1 = r2 =: r. Corollary 1.7 also yields that

ΠiΠ
∗
i = ILi∩N⊥

i
⊕ U∗

(
H

−1
i 0

0 0

)
U,

that is, tr (ΠiΠ
∗
i )

j = k + tr (H
−j
i ). Consequently, tr (H

−j
1 ) = tr (H

−j
2 ) for 1� j � r. But if the r first

power sums of the r inverse eigenvalues ofH1 andH2 coincide, then, by Newton’s identities, so do also

the symmetric functions andhence the characteristic polynomials. It follows thatσ(H1) = σ(H2), and
as H1 and H2 are selfadjoint, this implies H1 and H2 and thus alsoΠ1 andΠ2 are unitarily equivalent.

Example 3.14 (Unitaryequivalenceofpairsoforthogonalprojections).Againsuppose thatdimH =
n < ∞ and let P1, P2,Q1,Q2 be orthogonal projections on H. In [2], Al’pin and Ikramov showed that

the pairs (P1,Q1) and (P2,Q2) are unitarily equivalent if and only if one of the following two equivalent

conditions is satisfied:

(i) tr P1 = tr P2, tr Q1 = tr Q2, P1Q1 and P2Q2 have the same singular values,

(ii) tr P1 = tr P2, tr Q1 = tr Q2, tr (P1Q1)
j = tr (P2Q2)

j for 1� j � n.

The necessity of the conditions is clear. Let us prove their sufficiency. For i = 1, 2, we put


i = dim(Li ∩ Ni), ki = dim(Li ∩ N⊥
i ),


⊥i = dim(L⊥i ∩ Ni), k⊥
i = dim(L⊥i ∩ N⊥

i )

and denote by ri the dimension of the space M0 associated with the operator Hi. Assume first that (i)

holds. Using Theorem 1.2 to represent (PiQi)(PiQi)
∗ we obtain that PiQi has 
i times the singular value

1, n − 
i − ri times the singular value 0, and that the remaining ri singular values are 1 − σ(Hi). Thus,

1 = 
2 =: 
, r1 = r2 =: r, andσ(H1) = σ(H2), implying thatH1 andH2 are unitarily equivalent. The

equalities tr P1 = tr P2 and tr Q1 = tr Q2 yield that k1 = k2 =: k and 
⊥1 = 
⊥2 =: 
⊥, respectively.

Since 
+ k + 
⊥ + k⊥
i + 2r = n, we finally obtain that k⊥

1 = k⊥
2 . This proves the desired unitary

equivalence. Now assume (ii) is valid. From Theorem 1.2 it is readily seen that

tr (PiQi)
j = 
i + tr (I − Hi)

j = tr (PiQiPi)
j = tr ((PiQi)(PiQi)

∗)j

Thus, for 1� j � n, the traces of ((PiQi)(PiQi)
∗)j coincide, which via Newton implies that the singular

values of PiQi are the same. We therefore arrive at condition (ii).
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4. The C∗-algebra generated by two orthogonal projections

Let P and Q be two bounded orthogonal projection on H with the ranges L and N, respectively. We

denote by C∗(P,Q) the smallest closed subalgebra of B(H) which contains I, P,Q . Since P and Q are

selfadjoint, C∗(P,Q) is a C∗-algebra. Note that alternatively we may define C∗(P,Q) as the closure in

B(H) of the set {f (P,Q)}where f ranges over all polynomials of the form (26). If dimH < ∞, we need

not pass to the closure, because then C∗(P,Q) is simply the set of all polynomials f (P,Q).
If M0 = {0}, then C∗(P,Q) is the set of all operators (α00,α01,α10,α11) with αjk ∈ C and thus

isometrically isomorphic to the C∗-algebra of all complex diagonal matrices of order |Λ| � 4. The

following theorem is essentially due to Pedersen [81]. It was independently established (in exactly the

form it is cited here) in [102].

Theorem 4.1. Let M0 /= {0}. Then C∗(P,Q) consists exactly of the operators of the form

A = (α00,α01,α10,α11)⊕ U∗
(
ϕ00(H) ϕ01(H)
ϕ10(H) ϕ11(H)

)
U, (43)

where ϕ00,ϕ01,ϕ10,ϕ11 are arbitrary continuous complex-valued functions on σ(H) satisfying the follow-

ing additional constraints:
if 0 ∈ σ(H) then ϕ01(0) = ϕ10(0) = 0,

if 0 ∈ σ(H) and M00 /= {0} then ϕ00(0) = α00,

if 0 ∈ σ(H) and M11 /= {0} then ϕ11(0) = α11,

if 1 ∈ σ(H) then ϕ01(1) = ϕ10(1) = 0,

if 1 ∈ σ(H) and M01 /= {0} then ϕ00(1) = α01,

if 1 ∈ σ(H) and M10 /= {0} then ϕ11(1) = α10.

Example 4.2. The projection PL∩N belongs to C∗(P,Q) if and only if one of the following conditions is

satisfied:

(a) L ∩ N = {0},
(b) (L ∩ N)⊕ (L ∩ N⊥) = L,

(c) (L ∩ N)⊕ (L ∩ N⊥) /= L and H is invertible.

This can be seen as follows. If (a) holds then PL∩N = 0 ∈ C∗(P,Q). If (b) is valid, we haveM0 = {0}
and hence

PL∩N = (1, 0, 0, 0) = (1, 1, 0, 0) · (1, 0, 1, 0) = PQ ∈ C∗(P,Q).
In case (c) is true, Theorem 4.1 shows that

PL∩N = (1, 0, 0, 0)⊕ U∗
(
0 0

0 0

)
U (44)

is in C∗(P,Q). Conversely, assume PL∩N belongs to C∗(P,Q) but neither (a) nor (b) are in force. Then

M00 /= {0} and M0 /= {0}. We have again (44), and if H would not be invertible, 0 ∈ σ(H), Theorem
4.1 would imply that 1 = α00 = ϕ00(0) = 0, which is impossible. Thus, H must be invertible and

therefore (c) must be true.

Since C∗(P,Q) is a C∗-subalgebra of B(H), the invertibility of an operator A ∈ C∗(P,Q) in B(H) is
equivalent to its invertibility in C∗(P,Q). For A of the form (43), we define

ΦA(x) =
(
ϕ00(x) ϕ01(x)
ϕ10(x) ϕ11(x)

)
, x ∈ σ(H).

Proposition 4.3. An operator A in the C∗-algebra C∗(P,Q) of the form (43) is invertible if and only if

detΦA(x) /= 0 for all x ∈ σ(H) and αjk /= 0 whenever Mjk /= {0}.
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This follows from the fact that ΦA(H) is invertible if and only if so is its operator determinant

(note that the entries of ΦA(H) commute), which in turn happens if and only if detΦA(x) /= 0 for all

x ∈ σ(H).
Our next concern is to rephrase Proposition 4.3 in a language that avoids the use ofH. This language

will allowus topass from invertibility criteria inC∗(P,Q) to thedescriptionof theC∗-algebra generated
by two selfadjoint idempotents (Theorems 4.6 and 4.7) and afterwards even to an invertibility criterion

in the Banach algebra generated by two arbitrary idempotents (Section 6). The following example is a

first step towards thisobjective. It reveals that thespectrumof theoperatorP + 2Q is able todistinguish

the nontrivial subspaces among Mjk .

Example 4.4. We have

0 ∈ σ(P + 2Q) ⇐⇒ M11 /= {0} or 0 ∈ σ(H),
1 ∈ σ(P + 2Q) ⇐⇒ M01 /= {0} or 1 ∈ σ(H),
2 ∈ σ(P + 2Q) ⇐⇒ M10 /= {0} or 1 ∈ σ(H),
3 ∈ σ(P + 2Q) ⇐⇒ M00 /= {0} or 0 ∈ σ(H).

Indeed, from Theorem 1.2 we obtain that

P + 2Q = (3, 1, 2, 0)⊕ U∗
(

3I − 2H 2
√

H(I − H)

2
√

H(I − H) 2H

)
U

and since

det

(
3 − 2x − λ 2

√
x(1 − x)

2
√

x(1 − x) 2x − λ

)
= 2x − 3λ+ λ2,

the assertion is almost immediate from Proposition 4.3.

Example 4.5. Put

t = (P − Q)2, s = PQP + (I − P)(I − Q)(I − P).

Once again by Theorem 1.2,

t = (0, 1, 1, 0)⊕ U∗
(
H 0

0 H

)
U, s = (1, 0, 0, 1)⊕ U∗

(
I − H 0

0 I − H

)
U

and hence

σ(t) = σ((0, 1, 1, 0)) ∪ σ(H), σ(s) = σ((1, 0, 0, 1)) ∪ (1 − σ(H)).

We may therefore replace σ(H) \ {0, 1} (which equals σ(H) if dimH < ∞) by σ(t) \ {0, 1} or (1 −
σ(s)) \ {0, 1} and thus by the spectra of objects that no longer involve H explicitly. For example, the

condition detΦA(x) /= 0 for x ∈ σ(H) \ {0, 1} is equivalent to the condition

detΦA(x) /= 0 for all x ∈ σ(t) \ {0, 1} (45)

and also equivalent to the condition

detΦA(1 − x) /= 0 for all x ∈ σ(s) \ {0, 1}. (46)

The operator H has disappeared in (45) and (46). Finally, since 0 and 1 cannot be isolated points of

σ(H) (as otherwise they were eigenvalues), we arrive at the conclusion that 0 ∈ σ(H) ⇐⇒ 0 is a

cluster point of σ(t)⇐⇒ 1 is a cluster point of σ(s). Analogously, 1 ∈ σ(H)⇐⇒ 1 is a cluster point

of σ(t)⇐⇒ 0 is a cluster point of σ(s). Note that a point z ∈ C is referred to as a cluster point of a set

E ⊂ C if for every ε > 0 the disk {ζ ∈ C : |ζ − z| < ε} contains infinitely many points of E.

We now pass to abstract C∗-algebras. Suppose A is a complex C∗-algebra with unit element e

and p, q ∈ A are two selfadjoint idempotents, p2 = p = p∗ and q2 = q = q∗. We define C∗(p, q) as
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the smallest closed subalgebra of A which contains e, p, q. Since C∗(p, q) is a C∗-subalgebra of A, the

spectrum of an element a ∈ C∗(p, q) in C∗(p, q) is the same as the spectrum in A. We therefore simply

write σ(a) for the spectrum of a. Put t = (p − q)2.

Theorem 4.6.

(a) The spectrum σ(t) is a subset of [0, 1].
(b) For each point x ∈ σ(t) \ {0, 1} the map Fx : {e, p, q} → C2×2 given by

Fx(e) =
(
1 0

0 1

)
, Fx(p) =

(
1 0

0 0

)
, Fx(q) =

(
1 − x

√
x(1 − x)√

x(1 − x) x

)
,

where
√

x(1 − x) denotes the positive square root of x(1 − x), extends to a continuous C∗-algebra
homomorphism of C∗(p, q) to C2×2.

(c) For each λ ∈ σ(p + 2q) ∩ {0, 1, 2, 3} the map Gλ : {e, p, q} → C given by Gλ(e) = 1 and

G0(p) = 0, G0(q) = 0, G1(p) = 1, G1(q) = 0,

G2(p) = 0, G2(q) = 1, G3(p) = 0, G3(q) = 1

extends to a continuous algebra homomorphism of C∗(p, q) to C.
(d) An element a ∈ C∗(p, q) is invertible if and only if det Fx(A) /= 0 for all x ∈ σ(t) \ {0, 1} and

Gλ(a) /= 0 for all λ ∈ σ(p + 2q) ∩ {0, 1, 2, 3}.
Using the Gelfand–Naimark theorem, one can derive this theorem from Theorem 4.1, Proposition

4.3, and Examples 4.4 and 4.5.

Given a set K ⊂ C with the usual topology, we let C(K) and C2×2(K) be the C∗-algebra of all

continuous functions f : K → C and f : K → C2×2, respectively. For a subset M of K , we denote by

C
2×2
M (K) the C∗-subalgebra of the C∗-algebra C2×2(K) that consists of all matrix functions in C2×2(K)

which are diagonal matrices at the points of M.

Theorem 4.7. The C∗-algebra C∗(p, q) is (isometrically) isomorphic to

C2×2(σ (t) \ {0, 1})⊕ C(σ (p + 2q) ∩ {0, 1, 2, 3})
if neither 0 nor 1 is a cluster point of σ(t), to

C
2×2
{0} (σ (t) \ {1})⊕ C(σ (p + 2q) ∩ {1, 2})

if 0 is a cluster point of σ(t) but 1 is not, to

C
2×2
{1} (σ (t) \ {0})⊕ C(σ (p + 2q) ∩ {0, 3})

if 1 is a cluster point of σ(t) but 0 is not, and to

C
2×2
{0,1}(σ (t))

if both 0 and 1 are cluster points of σ(t). The C∗-algebra isomorphism is the corresponding restriction of

the map Ψ = Ψ2 ⊕ Ψ1 given by

(Ψ2(a))(x) =
⎧⎪⎨
⎪⎩
Fx(a) if x ∈ σ(t) \ {0, 1},
diag (G3(a), G0(a)) if x = 0,

diag (G1(a), G2(a)) if x = 1

and

(Ψ1(a))(λ) = Gλ(a) if λ ∈ σ(p + 2q) ∩ {0, 1, 2, 3}.
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Theorems4.6 and4.7 are essentially already in [81,102]. In the form they are stated here,we learned

them from [74]. Full proofs are also contained in [91]. Here is a simple application of Theorem 4.7 to a

linear algebra problem.

Corollary 4.8. Suppose dimH < ∞. Then dim C∗(P,Q) = 4d + η where d is the number of distinct

principal angles among θ1, . . . , θr and η is the number of nontrivial subspaces among L ∩ N, L ∩ N⊥,

L⊥ ∩ N, L⊥ ∩ N⊥.

Indeed, if dimH < ∞, then σ(t) is a finite subset of [0, 1] and hence Theorem 4.7 implies that

C∗(P,Q) is isomorphic to

C2×2(σ (t) \ {0, 1})⊕ C(σ (P + 2Q) ∩ {0, 1, 2, 3}).
We know from (21) and Example 4.4 that

σ(t) \ {0, 1} = σ(H) \ {0, 1} = σ(H) = {μ1, . . . ,μr}.
Thus, σ(t) \ {0, 1} contains exactly d distinct points and hence dim C2×2(σ (t) \ {0, 1}) = 4d. Since 0

and 1 are not in σ(H), Example 4.4 tells us that

0 ∈ σ(P + 2Q) ⇐⇒ M11 /= {0}, 1 ∈ σ(P + 2Q) ⇐⇒ M01 /= {0},
2 ∈ σ(P + 2Q) ⇐⇒ M10 /= {0}, 3 ∈ σ(P + 2Q) ⇐⇒ M00 /= {0}.

This shows that dim C(σ (P + 2Q) ∩ {0, 1, 2, 3}) = η.

5. The C∗-algebra generated by one skew projection

Let Π ∈ B(H) be a projection, Π2 = Π . As the cases Π = 0 and Π = I are trivial, we assume

throughout this section thatΠ /= 0 andΠ /= I. (Note that, for example, the equality ‖Π‖ = ‖I −Π‖
is true if and only if Π /∈ {0, I}.) We put L = RanΠ , N = KerΠ , P = PL , Q = PN . Note that L and N

are complementary closed subspaces and that in particular L ∩ N = L⊥ ∩ N⊥ = {0}. By Corollary 1.7,

the operator H is invertible ifM0 /= {0}. We denote by C∗(Π) the smallest closed subalgebra of B(H)
which contains I,Π ,Π∗. Equivalently, C∗(Π) is the smallest C∗-subalgebra of B(H)which contains I

andΠ . Clearly, C∗(Π) coincideswith the closure inB(H) of the set of all polynomials f (Π ,Π∗)where

f is as in (26). If dimH < ∞, the set of these polynomials is already closed and hence is C∗(Π). The
following theorem is from [95] (and was also discovered in [74]).

Theorem 5.1. We have C∗(Π) = C∗(P,Q).

This can be seen as follows. Proposition 1.6 implies that C∗(Π) ⊂ C∗(P,Q). To get equality, we

must show that P and Q are in C∗(Π). By Corollary 1.7,

Π = IL∩N⊥ ⊕ U∗
(
I −H−1W

0 0

)
U.

The operator

Π † := IL∩N⊥ ⊕ U∗
(

H 0

−W 0

)
U

is readily seen to satisfy

Π Π †Π = Π , Π †Π Π † = Π †, (Π Π †)∗ = Π Π †, (Π †Π)∗ = Π †Π

and hence to be the Moore–Penrose inverse of Π . But if an operator in a C∗-subalgebra of

B(H) is Moore–Penrose invertible, then the Moore–Penrose inverse automatically belongs to the
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C∗-subalgebra (see, for example, [20, Corollary 4.22]). Thus,Π † ∈ C∗(Π). It follows that P = Π Π † is

also in C∗(Π). Analogously, Q = (I −Π)(I −Π)† ∈ C∗(Π).

Corollary 5.2 (Doković). If dimH < ∞, then dim C∗(Π) = 4d + ε where d is the number of distinct

principal angles among θ1, . . . , θr and ε is the number of nontrivial subspaces among L ∩ N⊥ and L⊥ ∩ N.

This follows from Theorem 5.1 and Corollary 4.8. In [36], Doković proved Corollary 5.2 in a straight-

forward way, using Corollary 2.3. (Note that the algebra considered in [36] is the algebra generated by

solely Π and Π∗, that is, I is not included in the generating elements. Therefore the ε in [36] is 1 if

L⊥ ∩ N /= {0} and 0 if L⊥ ∩ N = {0}.)
Theorem 5.1 in conjunction with Corollary 1.7 and Proposition 4.3 allows us to study invertibility

and norms of operators in C∗(Π). We already demonstrated this in Example 3.12. Here is another

result from [40] that can be derived in this way.

Example 5.3 (Feldman, Krupnik, Markus). If α,β , γ ∈ C, then

‖αI + βΠ + γΠ∗‖ =
√

r + s − √
r − s

2
,

where

r = |α|2 + |α + β + γ |2 + (|β|2 + |γ |2)(‖Π‖2 − 1),

s = 2|α(α + β + γ )− βγ (‖Π‖2 − 1)|.
To tacklemore complicated cases one has to employmore heavymachinery. Let f (p, q) be a polynomial

of the form (26). Put

Πz =
(
1 z

0 0

)
, Π∗

z =
(
1 0

z̄ 0

)
(z ∈ C).

It is not difficult to verify that

f (Πz ,Π
∗
z ) =

(
A11(|z|2) A12(|z|2)z
A21(|z|2)z̄ A22(|z|2)

)
,

where the Ajk ’s are polynomials in one variable. We then define

r(x) = |A11(x)|2 + |A22(x)|2 + (|A12(x)|2 + |A21(x)|2)x,
s(x) = 2 |A11(x)A22(x)− x A12(x)A21(x)|,
ψ(x) =

√
r(x)+ s(x)+ √

r(x)− s(x)

2
;

note that, obviously, r(x)� s(x) for all x � 0.

Theorem 5.4 (Feldman,Krupnik,Markus). IfdimH = 2or ifψ : [0,∞) → [0,∞) is non-decreasing,
then

‖f (Π ,Π∗)‖ = ψ(‖Π‖2 − 1).

A proof is in [40]. The following examples are also from this paper.

Example 5.5. Let us do Example 5.3 using Theorem 5.4. Thus, f (p, q) = α + βp + γ q and hence

f (Πz ,Π
∗
z ) =

(
α 0

0 α

)
+ β

(
1 z

0 0

)
+ γ

(
1 0

z̄ 0

)
=
(
α + β + γ βz

γ z̄ α

)
,
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A11(x) = α + β + γ , A12(x) = β , A21(x) = γ , A22(x) = α,

r(x) = |α + β + γ |2 + |α|2 + (|β|2 + |γ |2)x,
s(x) = 2 |(α + β + γ )α − βγ x|,

ψ(x) =
√

r(x)+ s(x)+ √
r(x)− s(x)

2
.

One can show that ψ is non-decreasing. Theorem 5.4 is therefore applicable and the result coincides

with that of Example 5.3.

Example 5.6. We have

‖Π Π∗Π +Π∗Π Π∗‖ = ‖Π‖2(1 + ‖Π‖),
‖Π Π∗Π −Π∗Π Π∗‖ = ‖Π‖2

√
‖Π‖2 − 1.

In the first case, f (p, q) = pqp + qpq,

f (Πz ,Π
∗
z ) =

(
2(1 + |z|2) (1 + |z|2)z
(1 + |z|2)z̄ 0

)
,

A11(x) = 2(1 + x), A12(x) = 1 + x, A21(x) = 1 + x, A22(x) = 0,

r(x) = (4 + 2x)(1 + x)2, s(x) = 2x(1 + x)2,

ψ(x) = (1 + x)(1 + √
1 + x)

and in the second case, f (p, q) = pqp − qpq,

f (Πz ,Π
∗
z ) =

(
0 (1 + |z|2)z

−(1 + |z|2)z̄ 0

)
,

A11(x) = 0, A12(x) = 1 + x, A21(x) = −1 − x, A22(x) = 0,

r(x) = 2x(1 + x)2, s(x) = 2x(1 + x)2, ψ(x) = (1 + x)
√

x.

In both cases the functionψ is non-decreasing and Theorem 5.4 yields the asserted formulas.

Example 5.7. Let f (p, q) = (p − q)2 + 1. Then

f (Πz ,Π
∗
z ) =

(
1 − |z|2 0

0 1 − |z|2
)

and hence

A11(x) = 1 − x, A12(x) = 0, A21(x) = 0, A22(x) = 1 − x,

r(x) = 2|1 − x|2, s(x) = 2|1 − x|2, ψ(x) = |1 − x|.
The functionψ is not monotonous and the equality f (Π ,Π∗) = ψ(‖Π‖2 − 1) is in general not true.

Indeed, taking

Π =
⎛
⎝1 0 1

0 1 0

0 0 0

⎞
⎠ ∈ B(C3),

we get
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f (Π ,Π∗) =
⎛
⎝0 0 0

0 1 0

0 0 0

⎞
⎠ , Π Π∗ =

⎛
⎝2 0 0

0 1 0

0 0 0

⎞
⎠ ,

which implies that ‖f (Π ,Π∗)‖ = 1 although ‖Π‖ = √
2, that is,ψ(‖Π‖2 − 1) = ψ(1) = 0.

Example 5.8. We already observed in Example 3.4 that ‖Π‖ = ‖I −Π‖. Clearly, Example 3.12 pro-

vides us with another proof of this equality. We refer the reader to Szyld’s article [101] for the history

and many more proofs of the identity ‖Π‖ = ‖I −Π‖. We learned in particular from [101] that the

identity was within a five-year period independently discovered by three authors: Del Pasqua [28],

Ljance [76], Kato [64]. Feldman, Krupnik, and Markus paper [40] contains a very elementary proof. It

is based on the orthogonal decomposition H = RanΠ ⊕ (RanΠ)⊥, in which the projectionsΠ and

I −Π are given by operator matrices of the form

Π =
(
I A

0 0

)
, I −Π =

(
0 −A

0 −I

)
.

It follows that

Π Π∗ =
(
I + AA∗ 0

0 0

)
, (I −Π)∗(I −Π) =

(
0 0

0 I + A∗A
)

and thus

‖Π‖2 = ‖Π Π∗‖ = ‖I + AA∗‖ = 1 + max σ(AA∗) = 1 + ‖A‖2,

‖I −Π‖2 = ‖(I −Π)∗(I −Π)‖ = ‖I + A∗A‖ = 1 + max σ(A∗A) = 1 + ‖A‖2,

which immediately gives the equality ‖Π‖ = ‖I −Π‖. This proof was also communicated to Szyld

by G. Corach and is one of the many proofs listed in [101].

Note that Examples 3.12 and 5.3 imply the equalities

‖αΠ + β(I −Π)‖=‖βΠ + α(I −Π)‖,
‖αI + βΠ + γΠ∗‖=‖αI + γΠ + βΠ∗‖ = ‖αI + β(I −Π)+ γ (I −Π)∗‖

=‖αI + γ (I −Π)+ β(I −Π)∗‖,
which generalize the identity ‖Π‖ = ‖I −Π‖ significantly. Finally, in [40] it is also shown that

‖f (Π ,Π∗)‖ = ‖f (Π∗,Π)‖ for every polynomial f (p, q)

Example 5.9 (Gerisch). Years before Feldman, Krupnik, and Markus [40], nice formulas for the norms

of certain operators in C∗(Π) were established by Gerisch [47]. Let Π be a skew projection on H
with range L and kernelN, and put P = PL and Q = PN . Let further ReΠ = (Π +Π∗)/2 and ImΠ =
(Π −Π∗)/(2i) be the real and imaginary parts (= Hermitian components) of Π . Suppose Π /= 0.

Gerisch proved that

‖ReΠ‖ = ‖Π‖ + 1

2
, ‖ImΠ‖ =

√
‖Π‖2 − 1

2
.

Replacing in the second identityΠ by I −Π and taking into account that Im (I −Π) = −ImΠ , we

get one more proof of the formula ‖Π‖ = ‖I −Π‖. Here are examples of other identities derived by

Gerisch:

‖2Π − I‖ = ‖Re (2Π − I)‖ + ‖Im (2Π − I)‖ = ‖Π‖ +
√

‖Π‖2 − 1,

‖Π∗Π −Π Π∗‖ = ‖Π‖
√

‖Π‖2 − 1, ‖Π∗Π +Π Π∗‖ = ‖Π‖(‖Π‖ + 1)

and denoting by δ := ‖P − Q‖ the gap between L and N, one also has
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‖Reπ‖ = 1 + √
1 − δ2

2
√

1 − δ2
, ‖ImΠ‖ = δ

2
√

1 − δ2
.

The equality ‖2π − I‖ = ‖Π‖ +
√

‖Π‖2 − 1 was earlier obtained in [94, Lemma 2 on p. 236]. We

learned from [47] that for dimH < ∞ it is actually due to Householder and Carpenter [60].

6. Roch, Silbermann, Gohberg, and Krupnik

The undoubtedly greatest achievement in the two projections business since Halmos’ two projec-

tions theorem is the extension of that theorem to the case of two idempotents in Banach algebras. This

was done by Roch and Silbermann [90] and Gohberg and Krupnik [49,50].

Let A be a complex Banach algebra with unit e and let p and q be two idempotents of A, that

is, elements satisfying p2 = p and q2 = q. We denote by B(p, q) the smallest closed subalgebra of A
which contains e, p, q. Equivalently, B(p, q) is the closure inA of the set {f (p, q)}where f ranges over all

polynomials of the form (26). Given a ∈ B(p, q), we denote by σA(a) the spectrum of a in A. As usual,

we put t = (p − q)2.

Theorem 6.1 (Roch, Silbermann, Gohberg, Krupnik).

(a) For each point x ∈ σA(t) the map Fx : {e, p, q} → C2×2 given by

Fx(e) =
(
1 0

0 1

)
, Fx(p) =

(
1 0

0 0

)
, Fx(q) =

(
1 − x

√
x(1 − x)√

x(1 − x) x

)
,

where
√

x(1 − x) denotes any number the square of which equals x(1 − x), extends to a continuous
algebra homomorphism of B(p, q) to C2×2.

(b) For each λ ∈ σA(p + 2q) ∩ {0, 1, 2, 3} the map Gλ : {e, p, q} → C given by Gλ(e) = 1 and

G0(p) = 0, G0(q) = 0, G1(p) = 1, G1(q) = 0,

G2(p) = 0, G2(q) = 1, G3(p) = 1, G3(q) = 1

extends to a continuous algebra homomorphism of B(p, q) to C.
(c) An element a ∈ B(p, q) is invertible in A if and only if det Fx(a) /= 0 for all x ∈ σA(t) \ {0, 1}

and Gλ(a) /= 0 for all λ ∈ σA(p + 2q) ∩ {0, 1, 2, 3}.
We remark that the theorem remains literally true after replacing the matrix for Fx(q) by(

1 − x x

1 − x x

)
.

To see this, note that if x ∈ C \ {0, 1}, then(
1 − x

√
x(1 − x)√

x(1 − x) x

)
= D

(
1 − x x

1 − x x

)
D−1

with

D = diag

⎛
⎝ 4

√
1 − x

x
, 4

√
x

1 − x

⎞
⎠ .

Secondly, the theorem holds with t = (p − q)2 replaced by s = pqp + (e − p)(e − q)(e − p) and the

matrix for Fx(q) replaced by(
x

√
x(1 − x)√

x(1 − x) 1 − x

)
.
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This follows from the identity s = e − t. We also emphasize that the theorem is of course valid in

the case where A = B(p, q). In that minimal case of a surrounding algebra spectra become maximal.

In particular, we always have σA(t) ⊂ σB(p,q)(t) and σA(p + 2q) ⊂ σB(p,q)(p + 2q). The following

supplement to Theorem 6.1 is frequently useful.

Theorem 6.2 (Roch and Silbermann).

(a) If 0 and 1 do not belong to σA(t), then

σA(p + 2q) ∩ {0, 1, 2, 3} = �.

(b) If 0 and 1 are cluster points of σA(t) then (bad message)

σA(p + 2q) ∩ {0, 1, 2, 3} = {0, 1, 2, 3},
but (good message) the maps Fx introduced in Theorem 6.1 extend to continuous algebra homomor-

phisms of B(p, q) to C2×2 for all x ∈ σA(t), and an element a ∈ B(p, q) is invertible in A if and only

if det Fx(a) /= 0 for all x ∈ σA(t).

Theorem6.1was essentially established in [90] and then completed in [49,50]. In fact, [90] contains

exactly Theorem 6.2. Full proofs can also be found in [18,19,91].

The main motivation for the search for theorems like Theorems 6.1 and 6.2 came from singular

integral operators, and the applications of the theorems to algebras of singular integral operators

are dominating in [90,49,50,18,19,91]. Here are a few very simple applications of Theorem 6.1 which

are mainly motivated by the recent linear algebra literature. In the following examples, p and q are

idempotents in a complex Banach algebra A and invertibility always means invertibility in A.

Example 6.3. Let

L0(p, q) = {αp + βq : α ∈ C,β ∈ C,α /= 0,β /= 0,α + β /= 0}.
Then either all elements of L0(p, q) are invertible or none of them are invertible.

This can be proved as follows. Let a = αp + βq ∈ L0(p, q). For x ∈ σA(a) \ {0, 1} we have

det Fx(a) = det

(
α + β(1 − x) β

√
x(1 − x)

β
√

x(1 − x) βx

)
= αβx /= 0

and for λ ∈ σA(p + 2q) ∩ {1, 2, 3} we get

G1(a) = α /= 0, G2(a) = β /= 0, G3(a) = α + β /= 0.

Thus, thematter is decided by solely G0. If 0 /∈ σA(p + 2q), then every a in L0(p, q) is invertible, while

if 0 ∈ σA(p + 2q), we obtain that G0(a) = 0 for all a ∈ L0(p, q), which means that no element of

L0(p, q) is invertible. That’s it.
The result of this example was first established in [7] in the case where p and q are idempotents

in A = B(Cn), then proved in [38] under the assumption that p and q are skew projections on Hilbert

space, that is, A = B(H), and in [69] for skew projections on Banach spaces, A = B(X).

Example 6.4. Put b = p + 2q. Then

p + q is invertible ⇐⇒ b is invertible,

p − q is invertible ⇐⇒ b, b − 3e are invertible,

e − p + q is invertible ⇐⇒ b − e is invertible,

e − p − q is invertible ⇐⇒ b − e, b − 2e are invertible,

e − pq is invertible ⇐⇒ b − 3e is invertible,

pq + qp is invertible ⇐⇒ b, b − e, b − 2e are invertible,

pq − qp is invertible ⇐⇒ b, b − e, b − 2e, b − 3e are invertible.



1442 A. Böttcher, I.M. Spitkovsky / Linear Algebra and its Applications 432 (2010) 1412–1459

Furthermore, the elements p + q + pq, p + q − pq, p − q + pq, p − q − pq, b are all simultaneously

invertible or simultaneously not invertible. Finally,

p + pq + qp is invertible ⇐⇒ p + pq − qp is invertible

⇐⇒ b, b − 2e are invertible.

To see this notice that

det Fx(p − q) = det

(
x −√

x(1 − x)

−√
x(1 − x) −x

)
= −x,

which is nonzero for x ∈ σA(t) \ {0, 1}. The values of Gλ(p − q) are 0, 1,−1, 0, respectively, if 0, 1, 2, 3

is in σA(b). Hence, by Theorem 6.1, p − q is invertible if and only if 0 and 3 are not in the spectrum

of b. The remaining cases can be checked analogously: the determinant of Fx does not vanish outside

{0, 1} and therefore invertibility is determined by the four values of Gλ. This completes the proof.

Combining the above equivalences we arrive at conclusions such as

p − q is invertible ⇐⇒ p + q, e − pq are invertible

⇐⇒ p + q − pq, e − pq are invertible,

pq − qp is invertible ⇐⇒ p − q, e − p − q are invertible

⇐⇒ pq + pq, e − pq are invertible

⇐⇒ pq + pq, p − q are invertible,

pq + qp is invertible ⇐⇒ p + q, e − p − q are invertible

⇐⇒ p + pq + qp, e − p + q are invertible.

These equivalences were derived by different methods in [7,55,70] for A = B(Cn) and in [66,67] in a

general ring theoretic setting.

Example 6.5. Another result along these lines is that if σA(t) \ {0, 1} is contained in the open unit

disk, then

p − q is invertible ⇐⇒ �(p + q − e) < 1,

where � denotes the spectral radius. To see this, put a = p + q − e and note first that

det Fx(a − μe) = μ2 − (1 − x) /= 0 for x ∈ σA(t) \ {0, 1} and |μ| � 1.

If λ ∈ σA(p + 2q), then Gλ(a − μe) equals 1 + μ,μ,μ,μ− 1 for λ = 0, 1, 2, 3, respectively. Thus, if

p − q is invertible and hence 0 and 3 do not belong to σA(p + 2q), then Gλ(a − μe) /= 0 for |μ| � 1,

which implies that �(a) < 1. Conversely, if �(a) < 1, then a − μe is invertible forμ = ±1 and hence

0 and 3 cannot be in σA(p + 2q), implying that p − q is invertible.

If A is a C∗-algebra and p and q are two selfadjoint idempotents of A, then σA(t) \ {0, 1} is a

subset of (0, 1) (because, by Example 4.5, we may assume that σA(t) \ {0, 1} = σ(H) \ {0, 1} for

some selfadjoint operator H with spectrum in [0, 1]) and �(p + q − e) is equal to ‖p + q − e‖. Thus,
for selfadjoint idempotents in C∗-algebras we arrive at the equivalence

p − q is invertible ⇐⇒ ‖p + q − e‖ < 1.

ForA = B(H), the last equivalencewas established in [22]. In the casewhereA is the Calkin algebra

B(H)/K(H), itwasderived in [68]. See also [45, Theorem7.90]. These authors employeddifferent tools.

Example 6.6. We have

σ(pq) \ {0, 1} = {(1 − μ)2 : μ ∈ σ(p + q) \ {0, 1, 2}}
= {1 − μ2 : μ ∈ σ(p − q) \ {−1, 0, 1}}.
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One proof goes as follows. Let ν ∈ σ(pq) \ {0, 1}. Then ν /∈ {0, 1} and pq − νe is not invertible. The
possible values of Gλ(pq − νe) are −ν and 1 − ν and hence different from zero. It follows that there

must be an x ∈ σ(t) \ {0, 1} such that

det Fx(pq − νe) = det

(
1 − x − ν

√
x(1 − x)

0 −ν
)

= ν(1 − x − ν) = 0. (47)

Consequently, ν = 1 − x for some x ∈ σ(t) \ {0, 1}. Let μ ∈ C be any number satisfying μ2 − 2μ+
x = 0. Then ν = (1 − μ)2. Since x /∈ {0, 1}, we necessarily have μ /∈ {0, 1, 2}. As

det Fx(p + q − μe) = det

(
2 − x − μ −√

x(1 − x)

−√
x(1 − x) x − μ

)
= μ2 − 2μ+ x, (48)

we see that Fx(p + q − μe) is not invertible. Thus, μ ∈ σ(p + q). This proves that

σ(pq) \ {0, 1} ⊂ {(1 − μ)2 : μ ∈ σ(p + q) \ {0, 1, 2}}.
Conversely, take μ ∈ σ(p + q) \ {0, 1, 2}} and put ν = (1 − μ)2. Clearly, ν /∈ {0, 1}. The values that

may be assumed by Gλ(p + q − μe) are −μ, 1 − μ, 2 − μ and thus nonzero. From (48) we therefore

obtain that there is an x ∈ σ(t) \ {0, 1} such that μ2 − 2μ+ x = 0. This implies that ν = 1 − x.

Using (47) we arrive at the conclusion that det Fx(pq − νe) = 0, which shows that ν ∈ σ(pq). In
summary,

{(1 − μ)2 : μ ∈ σ(p + q) \ {0, 1, 2}} ⊂ σ(pq) \ {0, 1},
which completes the proof of the first of the asserted equalities. The second can be proved analogously.

The two equalities of this example were established by different methods in paper [12].

7. TheW∗-algebra generated by two orthogonal projections

A C∗-subalgebra W of B(H) is called aW∗-algebra (or a von Neumann algebra) if it is closed under

strong convergence, that is, if An ∈ W and Any → Ay for all y ∈ H imply that A ∈ W . Let P and Q be

two orthogonal projections in B(H)with the ranges L and N, respectively. We denote byW∗(P,Q) the
smallestW∗-subalgebra of B(H)which contains I, P,Q . IfM0 = {0}, thenW∗(P,Q) = C∗(P,Q) is the
algebra of all operators of the form (α00,α01,α10,α11)with αjk ∈ C. Thus, letM0 /= {0}.

The selfadjoint operator H induces a spectral measure μ on the real line with values in B(H).
The support of this measure is σ(H) and thus contained in [0, 1]. The sets of measure zero are the

sets E ⊂ [0, 1] for which the corresponding spectral projection χE(H) is the zero operator. Here χE is

the characteristic function of E, that is, χE(x) = 1 for x ∈ E and χE(x) = 0 for x /∈ E. We denote by

L∞(σ (H)) the complex-valued functions ϕ on σ(H) for which the preimage of every Borel subset of

C is μ-measurable and which are essentially bounded. Two functions in L∞(σ (H)) will be identified

if they differ on a set of μ-measure zero only.

Theorem 7.1 (Giles and Kummer). The W∗-algebra W∗(P,Q) is the set of all operators of the form

A = (α00,α01,α10,α11)⊕ U∗
(
ϕ00(H) ϕ01(H)
ϕ10(H) ϕ11(H)

)
U, (49)

where αjk are arbitrary complex numbers and ϕjk are arbitrary functions in L∞(σ (H)).

This theorem is proved in [48]. We confine ourselves to the following. For a subset A of B(H), the
commutant A′ is defined as the set of all operators T ∈ B(H) such that TA = AT for all A ∈ A. The

commutant of A′ is denoted by A′′. It is well known that if A is invariant under passage to adjoints,

then the smallestW∗-subalgebra of B(H)which contains A coincides with A′′. Thus, the theorem can

be proved by showing that the operators (49) just constitute A′′ for A := {P,Q}.
A function ϕ ∈ L∞(σ (H)) is said to be separated from zero on a μ-measurable set E if there is an

ε > 0 such that |ϕ| � ε almost everywhere on E. Throughout the rest of this section we suppose that

A is given by (49). Recall thatΦA is defined as
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ΦA(x) =
(
ϕ00(x) ϕ01(x)
ϕ10(x) ϕ11(x)

)
, x ∈ σ(H). (50)

Proposition 7.2. An operator A ∈ W∗(P,Q) is invertible if and only if detΦA is separated from zero on

σ(H) and αjk /= 0 whenever Mjk /= {0}. In that case DetΦA(H) is invertible and

A−1 =
⎛
⎝ ⊕

Mjk /={0}
α−1
jk IMjk

⎞
⎠

⊕ U∗
(
(DetΦA(H))

−1 0

0 (DetΦA(H))
−1

)(
ϕ11(H) −ϕ01(H)−ϕ10(H) ϕ01(H)

)
U.

Indeed, the entries of thematrixΦA(H) commute and hence the invertibility ofΦA(H) is equivalent
to the invertibility of DetΦA(H). The last operator is invertible if and only if detΦA is separated from

zero on σ(H).

Example 7.3. In Example 4.2, we found necessary and sufficient conditions for PL∩N to be in C∗(P,Q).
Theorem 7.1 with α00 = 1, α01 = α10 = α11 = 0, ϕ00 = ϕ01 = ϕ10 = ϕ11 = 0 reveals that PL∩N is

always inW∗(P,Q). In fact, this also follows from von Neumann’s formula cited in Example 3.9, which

identifies PL∩N as the strong limit of (PQ)n.

Example 7.4. Employing Theorem 7.1 it is easy to identify the idempotents in W∗(P,Q). Indeed, an
operator A ∈ W∗(P,Q) satisfies A2 = A if and only if αjk ∈ {0, 1} whenever Mjk /= {0} and Φ2

A = ΦA

onσ(H) providedM0 /= {0}. For x ∈ σ(H), we haveΦA(x)
2 = ΦA(x) if and only if one of the following

is satisfied:

(a) ϕ00(x) = ϕ01(x) = ϕ10(x) = ϕ11(x) = 0,

(b) ϕ00(x) = ϕ11(x) = 1 and ϕ01(x) = ϕ10(x) = 0,

(c) ϕ00(x)+ ϕ11(x) = 1 and ϕ00(x)ϕ11(x) = ϕ01(x)ϕ10(x).

In [58, Theorem 1, 37], the authors considered the operator A = αP + βQ + γ PL∩N under the

assumption that L ∩ N /= 0. Suppose first that M0 /= {0}. Then
A = (α + β + γ ,α,β , 0)⊕ U∗

(
(α + β)I − βH βW

βW βH

)
U.

Since 0 and 1 are not in the point spectrum of H, there exists a point x ∈ σ(H) ∩ (0, 1). For this point
x,

ϕ00(x) = α + β − βx, ϕ01(x) = ϕ10(x) =
√
x(1 − x), ϕ11(x) = βx

and hence (a) holds if and only if (α,β) = (0, 0), (b) cannot be fulfilled, and (c) is valid if and only if

(α,β) = (0, 1) or (α,β) = (1, 0). Consequently,A2 = A in exactly the six caseswhere (α,β , γ ) equals

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1,−1), (1, 0, 0), (1, 0,−1).

If M0 = {0} (⇐⇒ PQ = QP), we obtain that A2 = A if and only if α + β + γ ∈ {0, 1}, α ∈ {0, 1} for
L ∩ N⊥ /= {0}, and β ∈ {0, 1} for L⊥ ∩ N /= {0}. We remark that Theorem 1 of [58] is incorrect (but

apparently not used in the rest of the paper).

Our next concern is the description of the kernel and range of operators in W∗(P,Q).
For r ∈ {0, 1, 2}, let Δr be the set of all x ∈ σ(H) for which the rank of ΦA(x) equals r. As ΦA is

defined only almost everywhere, the sets Δ0,Δ1,Δ2 are also specified up to null sets only. We may

assume that they are chosen so that they are mutually disjoint and that their union is σ(H).
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Recall that χE stands for the characteristic function of E. The range of the operator χΔr
(H) (r =

0, 1, 2), Mr := χΔr
(H)M0, is called the spectral subspace of H corresponding to Δr . The spaces Mr

are invariant subspaces of A and M0 = M0 ⊕ M1 ⊕ M2. Let Hr be the restriction of H to Mr . Thus,

H = H0 ⊕ H1 ⊕ H2. IfΔr = �, we define Mr = {0} and Hr = 0. Finally, for r = 0, 1, 2, put

Ar =
(
ϕ00(Hr) ϕ01(Hr)
ϕ10(Hr) ϕ11(Hr)

)
.

The operator Ar acts on Mr ⊕ Mr . Recall thatΛ denotes the pairs (j, k) for whichMjk /= {0}. We may

now write

H =
⎛
⎝ ⊕
(j,k)∈Λ

Mjk

⎞
⎠⊕ U∗ [(M0 ⊕ M0)⊕ (M1 ⊕ M1)⊕ (M2 ⊕ M2)]

and accordingly

A =
⎛
⎝ ⊕
(j,k)∈Λ

αjkIMjk

⎞
⎠⊕ U∗(A0 ⊕ A1 ⊕ A2)U.

For x ∈ [0, 1], we define

ϕ(x) = |ϕ00(x)|2 + |ϕ01(x)|2 + |ϕ10(x)|2 + |ϕ11(x)|2 (51)

and for x ∈ Δ1, we put

χ0(x) =
√√√√ |ϕ00(x)|2 + |ϕ10(x)|2

ϕ(x)
, χ1(x) =

√√√√ |ϕ01(x)|2 + |ϕ11(x)|2
ϕ(x)

.

Note that χ2
0 + χ2

1 = 1 onΔ1. Further, for x ∈ [0, 1], let
η(x) = ϕ00(x) ϕ01(x)+ ϕ10(x) ϕ11(x),

θ(x) = η(x)

|η(x)| if η(x) /= 0, θ(x) = 1 if η(x) = 0.

Finally, for x ∈ Δ1, we define

ψ0(x) =
√√√√ |ϕ00(x)|2 + |ϕ01(x)|2

ϕ(x)
, ψ1(x) =

√√√√ |ϕ10(x)|2 + |ϕ11(x)|2
ϕ(x)

,

ζ(x) = ϕ00(x)ϕ10(x)+ ϕ01(x)ϕ11(x),

τ(x) = ζ(x)

|ζ(x)| if ζ(x) /= 0, τ(x) = 1 if ζ(x) = 0.

The following theorem is from [95].

Theorem 7.5. The kernel of A equals

Ker A =
⎛
⎝ ⊕
(j,k)∈Λ,αjk /=0

Mjk

⎞
⎠⊕ U∗

[
(M0 ⊕ M0)⊕

(
θ(H1)χ1(H1)−χ0(H1)

)
M1

]

and the closure of the range is

Ran A =
⎛
⎝ ⊕
(j,k)∈Λ,αjk /=0

Mjk

⎞
⎠⊕ U∗

[(
τ(H1)ψ1(H1)
ψ0(H1)

)
M1 ⊕ (M2 ⊕ M2)

]
.
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The defect numbers α(B) and β(B) of an operator B ∈ B(H) are defined by

α(B) = dimKer B, β(B) = dimKer B∗ = dim(H/Ran B).

Theorem 7.5 and minor additional arguments imply the following.

Corollary 7.6. We have

α(A) = β(A) =
⎛
⎝ ⊕
(j,k)∈Λ,αjk /=0

dimMjk

⎞
⎠+ 2 dimM0 + dimM1.

An operator is said to be normally solvable if its range is closed.

Theorem 7.7. An operator A ∈ W∗(P,Q) is normally solvable if and only if ϕ is separated from zero onΔ1

and detΦA is separated from zero onΔ2.

An operator B ∈ B(H) is called semi-Fredholm if it is normally solvable and at least one of the

numbers α(B) and β(B) is finite. The index of a semi-Fredholm operator is defined as Ind B = α(B)−
β(B). An operator B is normally solvable and bothα(B) andβ(B) are finite if and only if B is a Fredholm

operator, that is, if and only if B is invertible modulo compact operators.

Theorem 7.8. For A to be semi-Fredholm it is necessary and sufficient that

(a) dimMjk < ∞ whenever Mjk /= {0} and αjk = 0,

(b) dim Ker DetΦA(H) < ∞,

(c) 0 is not a cluster point of σ(DetΦA(H)).

If conditions (a)–(c) are satisfied, then A is Fredholm and Ind A = 0.

Theorem 7.9. Let ϕ(x) and ω(x) be the squared Frobenius norm and determinant ofΦA(x), respectively,
that is, define ϕ(x) by (51) and putω(x) = ϕ00(x)ϕ11(x)− ϕ01(x)ϕ10(x). Then for every A ∈ W∗(P,Q),

‖A‖ = max

⎛
⎜⎜⎝ max
(j,k)∈Λ |αjk|, max

x∈σ(H)

√√√√ϕ(x)+
√
ϕ(x)2 − 4|ω(x)|2

2

⎞
⎟⎟⎠ .

Corollary 7.6 and Theorems 7.7 and 7.8 were established in [102] for operators in C∗(P,Q) and in

[95] for operators inW∗(P,Q). Theorem 7.9 is from [95].

8. Moore–Penrose inversion

An operator A ∈ B(H) is said to be Moore–Penrose invertible if there exists an operator B ∈ B(H)
such that

ABA = A, BAB = B, (AB)∗ = AB, (BA)∗ = BA.

Such an operator B exists if and only if A is normally solvable. In that case B is unique, denoted by A†,

and called the Moore–Penrose inverse of A. Note that AA† and A†A are the orthogonal projections onto

Ran A and Ran A∗, respectively.
In the case where H = Cn, we may think of A as a matrix. If A = USV with S = diag (s1, . . . , sn) is

the singular value decomposition, then A† = V∗S†U∗ where S† is the diagonal matrix diag (s
†
1, . . . , s

†
n)

and s
†
j = 1/sj for sj /= 0 and 0† = 0.
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Let P,Q ∈ B(H) be two orthogonal projections and A be an operator inW∗(P,Q). IfM0 /= {0}, then
Theorem 7.7 tells us that A is Moore–Penrose invertible if and only if ϕ and detΦA are separated from

zero onΔ1 andΔ2, respectively.

Theorem 8.1. Let M0 /= {0}. If ϕ|Δ1 and detΦA|Δ2 are separated from zero, then

A† =
⎛
⎝ ⊕
(j,k)∈Λ

α
†
jkIMjk

⎞
⎠⊕ U∗(B0 ⊕ B1 ⊕ B2)U,

where α
†
jk is 1/αjk for αjk /= 0 and 0 for αjk = 0, B0 is the zero operator on M0 ⊕ M0, B1 is the operator

on M1 ⊕ M1 that is given by

B1 =
(
(ϕ(H1))

−1 0

0 (ϕ(H1))
−1

)(
ϕ00(H1) ϕ10(H1)
ϕ01(H1) ϕ11(H1)

)

and B2 acts on M2 ⊕ M2 and is defined by

B2 =
(
(DetΦA(H2))

−1 0

0 (DetΦA(H2))
−1

)(
ϕ11(H2) −ϕ01(H2)−ϕ10(H2) ϕ01(H2)

)
.

This theorem was established in [95].

The operators P and Q themselves are obviously Moore–Penrose invertible and P† = P, Q † = Q .

Here are some more interesting examples. Recall that min σ(H) is just the minimum of σ(H) ifM0 /={0} and that min σ(H) := 1 ifM0 = {0}.
Example 8.2. The operator P − Q is Moore–Penrose invertible if and only ifmin σ(H) > 0. In that case

(P − Q)† = (0, 1,−1, 0)⊕ U∗
(

I −H−1W

−H−1W I

)
U.

This can be seen as follows. If M0 = {0}, we have P − Q = (0, 1,−1, 0) and the Moore–Penrose

inverse is the operator itself. So assumeM0 /= {0}. Then, by Theorem 1.2,

P − Q = (0, 1,−1, 0)⊕ U∗
(

H −W

−W −H

)
U (52)

and it follows that

detΦA(x) = −x, ϕ(x) = x(1 − x),

Δ0 = {0} ∩ σ(H), Δ1 = �, Δ2 = (0, 1] ∩ σ(H).

By Theorem 7.7, P − Q is Moore–Penrose invertible if and only if x is separated from zero onΔ2, which

happens if and only if σ(H) ⊂ {0} ∪ [ε, 1) for some ε > 0. Since 0 cannot be an isolated point of σ(H)
(recall that 0 is not an eigenvalue of H), we arrive at the conclusion that P − Q is Moore–Penrose

invertible if and only if H is invertible. In that case we deduce from Theorem 8.1 that

(P − Q)† = (0, 1,−1, 0)⊕ U∗
(−H−1 0

0 −H−1

)(−H W

W H

)
U, (53)

which is equivalent to the asserted formula.

Example 8.3. Let A = αP + βQ with α /= 0, β /= 0, α + β /= 0. Then A is Moore–Penrose invertible if

and only ifmin σ(H) > 0, in which case
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A† =
(

1

α + β
,
1

α
,
1

β
, 0

)
⊕ 1

αβ
U∗
(

βI −βH−1W

−βH−1W (α + β)H−1 − I

)
U.

This is evident for M0 = {0}. Suppose M0 /= {0}. Then
A = (α + β ,α,β , 0)⊕ U∗

(
(α + β)I − βH βW

βW βH

)
U (54)

and consequently,

detΦA(x) = αβx, ϕ(x) = (α − β − βx)2 + β2x2 + 2β2x(1 − x),

Δ0 = �, Δ1 = {0} ∩ σ(H), Δ2 = (0, 1] ∩ σ(H).
We therefore obtain as in Example 8.2 that A is Moore–Penrose invertible if and only if H is invertible.

Theorem 1.1 then yields that A† is(
1

α + β
,
1

α
,
1

β
, 0

)
⊕ U∗ 1

αβ

(
H−1 0

0 H−1

)(
βH −βW

−βW (α + β)I − H

)
U (55)

as desired.

Example 8.4. The operator P + Q is Moore–Penrose invertible if and only if the space L + N := Ran P +
RanQ is closed, and in that case L + N = Ran (P + Q) and

PL∩N = 2P(P + Q)†Q , PL+N = (P + Q)(P + Q)†.

Indeed, from Example 8.3 we deduce that P + Q is Moore–Penrose invertible if and only if

min σ(H) > 0, and Example 3.2 tells us that min σ(H) > 0 if and only if L + N is closed. To prove

the remaining assertions, we may assume that M0 /= {0}. Example 8.3 yields

(P + Q)† = (1/2, 1, 1, 0)⊕ U∗
(

I −H−1W

−H−1W 2H−1 − I

)
U,

which implies that

2P(P + Q)†Q = (1, 0, 0, 0)⊕ U∗
(
0 0

0 0

)
U = PL∩N

and

(P + Q)(P + Q)† = (1, 1, 1, 0)⊕ U∗
(
I 0

0 I

)
U = PL+N .

As (P + Q)(P + Q)† is the orthogonal projection onto the space Ran (P + Q), we finally obtain that

L + N = Ran (P + Q). This completes the proof.

By means of different methods, the formula PL∩N = 2P(P + Q)†Q was established by Anderson

and Duffin [3] for matrices and by Anderson and Schreiber [4] for Hilbert space operators. Paper [82]

contains more formulas of this type for the projections PL∩N and PL+M in the case where dimH < ∞.

We also remark that

P + Q − PL+N = (1, 0, 0, 0)⊕ U∗
(
I − H W

W H − I

)
U

and that the spectrum of the operator matrix on the right is {±√
1 − x : x ∈ σ(H)}. This shows that

‖P + Q − PL+N‖ =
{
1 if L ∩ N /= {0},√

1 − min σ(H) if L ∩ N = {0}.
Comparing the last formula with the formula for ‖PQ‖ established in Example 3.1, we obtain that

‖P + Q − PL+N‖ = ‖PQ‖, which was derived in [11] for dimH < ∞ in a different way.
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The following theorem is also proved in [95].

Theorem 8.5. Let f (p, q) be a polynomial of the form (26). The operator A = f (P,Q) is Moore–Penrose

invertible if and only if M0 = {0} or if M0 /= {0} and one of the following conditions is satisfied:
(a) detΦA does not vanish at the cluster points of σ(H),
(b) detΦA is identically zero and ϕ is nonzero at the cluster points of σ(H),
(c) both detΦA and ϕ are identically zero.

Example 8.6. Consider the operator

E = PL∩N + PL⊥∩N⊥ + (P − Q)2.

This operator is the identity operator forM0 = {0} and has the representation

E = (1, 1, 1, 1)⊕ U∗
((

I 0

0 0

)
−
(
I − H W

W H

))2
U

= (1, 1, 1, 1)⊕ U∗
(
H 0

0 H

)
U

for M0 /= {0}. From Theorem 7.1 it easily follows E ∈ W∗(P,Q). Suppose M0 /= {0}. From the repre-

sentation of E we infer that E is invertible if and only if H is invertible, in which case

E−1 = (1, 1, 1, 1)⊕ U∗
(
H−1 0

0 H−1

)
U.

Combining this insightwith Example 8.2we obtain that P − Q is Moore–Penrose invertible if and only

if E is invertible and that then, by (52) and (53),

(P − Q)† = E−1(P − Q). (56)

Analogously, for A as in Example 8.3, we see that A isMoore–Penrose invertible exactly if E is invertible.

Since

1

αβ
E−1 [α(I − P)+ β(I − Q)]

=
(
0,

1

α
,
1

β
,
1

α
+ 1

β

)
⊕ 1

αβ
U∗
(
H−1 0

0 H−1

)(
βH −βW

−βW (α + β)I − H

)
U,

we obtain from (54) and (55) that if E is invertible, then

A† = 1

α + β
PL∩N −

(
1

α
+ 1

β

)
PL⊥∩N⊥ + 1

αβ
E−1 [α(I − P)+ β(I − Q)] . (57)

Formulas (56) and (57) express theMoore–Penrose inverses in terms of explicit operators inW∗(P,Q).
The operator H is no longer present in these formulas.

9. Drazin inversion

An operator A ∈ B(H) is said to be Drazin invertible if the sequences {Ker Aj}∞j=0 and {Ran Aj}∞j=0

stabilize. In that case there is a smallest non-negative integer k such that KerAk = Ker Ak+1 and

Ran Ak = Ran Ak+1, and the Drazin inverse of A is the uniquely determined operator B ∈ B(H) satis-
fying

Ak+1B = Ak , BAB = B, AB = BA. (58)
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We denote the Drazin inverse of A by AD and refer to k as the Drazin index of A (which should not be

confused with the index Ind A := α(A)− β(A) of a semi-Fredholm operator A).

Let H = Cn and accordingly A be a matrix and let A = CJC−1 be the Jordan canonical form of

A. Then J = diag (J1, . . . , Jm) with Jordan blocks J
. The Drazin inverse is AD = CJDC−1 where JD =
diag (JD1 , . . . , J

D
m) and JD
 = J

−1

 if J
 is nonsingular and JD
 = 0 if J
 is singular. The Drazin index of A is

the maximal k for which there is a singular k × k Jordan block.

Now let A ∈ W∗(P,Q) be as in Theorem 7.1, define ΦA by (50), and let ϕ be the function (51).

Recall the definitions of the sets Δ0, Δ1, Δ2 and of the associated spectral spaces Mr and operators

Hr = H|Mr (r = 0, 1, 2) in Section 7. We now have to stratify the spectrum σ(H) further. We put

Δ10 = {x ∈ Δ1 : trΦA(x) = 0}, Δ11 = {x ∈ Δ1 : trΦA(x) /= 0}
denote by M10 and M11 the corresponding spectral subspaces of H, and let H10 and H11 stand for the

restrictions of H to M10 and M11, respectively.

If M0 = {0} and accordingly A = (α00,α01,α10,α11), then the Drazin index is 0 or 1 and AD =
(α

†
00,α

†
01,α

†
10,α

†
11). So suppose M0 /= {0}.

Theorem 9.1. An operator A ∈ W∗(P,Q) is Drazin invertible if and only if detΦA is separated from zero

onΔ2 and trΦA is separated from zero onΔ11. In that case the Drazin index of A is at most 2 and

AD =
⎛
⎝ ⊕
(j,k)∈Λ

α
†
jkIMjk

⎞
⎠⊕ U∗(B0 ⊕ C10 ⊕ C11 ⊕ B2)U,

where α
†
jk , B0, B1 are as in Theorem 8.1, C10 is the zero operator on M10 ⊕ M10, and C11 is the operator on

M11 ⊕ M11 given by

C11 =
(
(trΦA(H11))

−1 0

0 (trΦA(H11))
−1

)(
ϕ00(H11) ϕ01(H11)

ϕ10(H11) ϕ11(H11)

)
.

A more careful analysis reveals that the Drazin index of A is 2 exactly if M10 /= {0} and that it

equals 0 (which is equivalent to usual invertibility) if and only if αjk /= 0 whenever Mjk /= {0} and

M0 = M1 = {0}. In all other cases when AD exists, it does so with Drazin index 1.

Example 9.2. There exist operators in C∗(P,Q) which are Moore–Penrose invertible but not Drazin

invertible.

To see this, suppose the point 1/2 is a cluster point of σ(H) and put A = 2PQ − P. Then

A = (1,−1, 0, 0)⊕ U∗
(
I − 2H 2W

0 0

)
U

and we have

ΦA(x) =
(
1 − 2x 2

√
x(1 − x)

0 0

)
, detΦA(x) = 0, Δ2 = �,

ϕ(x) = 1, Δ1 = σ(H), Δ0 = �,

trΦA(x) = 1 − 2x, Δ10 = {1/2} ∩ σ(H), Δ11 = σ(H) \ {1/2}.
Since Δ2 = � and ϕ|Δ1 is separated from zero, the operator A is Moore–Penrose invertible and

Theorem 8.1 yields that

A† = (1,−1, 0, 0)⊕ U∗
(
I − 2H 0

2W 0

)
U = 2QP − P.

On the other hand, as trΦA is not separated from zero onΔ11, the operator A is not Drazin invertible.
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Example 9.3. There exist operators in C∗(P,Q) which are Drazin invertible but not Moore–Penrose

invertible.

Indeed, suppose 0 or 1 is a cluster point of σ(H) and let A be the operator√
PQP(I − Q)P −

√
(I − P)Q(I − P)(I − Q)(I − P)− PQ(I − P)+ (I − P)QP.

From Theorem 1.2 we infer that

A = (0, 0, 0, 0)⊕ U∗
(
W −W

W −W

)
U.

The operator is clearly in C∗(P,Q). We have

ΦA(x) =
(√

x(1 − x) −√
x(1 − x)√

x(1 − x) −√
x(1 − x)

)
, detΦA(x) = 0, Δ2 = �,

ϕ(x) = 4x(1 − x), Δ1 = (0, 1) ∩ σ(H), Δ0 = {0, 1} ∩ σ(H)
trΦA(x) = 0, Δ11 = �, Δ10 = (0, 1) ∩ σ(H).

Sinceϕ|Δ1 is not separated fromzero, the operator is notMoore–Penrose invertible. However, because

Δ2 = � andΔ11 = �, the operator is Drazin invertible due to Theorem9.1. The same theoremshows

that AD is the zero operator and that the Drazin index is 1.

Theorem 9.4. An operator A ∈ W∗(P,Q) is both Moore–Penrose and Drazin invertible if and only if

detΦA|Δ2, ϕ|Δ1, and trΦA|Δ11 are separated from zero. In that case A† = AD if and only if M10 = {0}
andΦA|Δ1 is normal, that is,ΦAΦ

∗
A = Φ∗

AΦA almost everywhere onΔ1.

Example 9.5. A linear combination A = αP + βQ (α,β ∈ C) is Drazin invertible if and only if it isMoore–

Penrose invertible, and in this case A† = AD.

This can be proved as follows. The Drazin and Moore–Penrose inverses of 0, P,Q are the operators

themselves. If A = P − Q , then, by Example 8.2, Δ1 = Δ10 = Δ11 = �. It follows that both Drazin

and Moore–Penrose invertibility are equivalent to the requirement that detΦA|Δ2 is separated from

zero. Theorem 9.4 implies that then A† = AD. Now let A = αP + βQ with αβ(α + β) /= 0. From

Example 8.3 we know that

ΦA(x) =
(
α + β − βx β

√
x(1 − x)

β
√

x(1 − x) βx

)
,

whenceΔ10 = � andΔ11 = {0} ∩ σ(H). Since trΦA(0) = α + β /= 0 is separated from zero on {0},
Example 8.3 and Theorem 9.1 show that Moore–Penrose and Drazin invertibility of A are equivalent.

Finally, as M10={0} andΦA(0) is normal, we deduce from Theorem 9.4 that A† = AD.

Example 9.6. For the operator PQ , both Drazin and Moore–Penrose invertibility are equivalent to the

condition that either M0 = {0} or M0 /= {0} and I − H is invertible. If M0 = {0}, then (PQ)† = (PQ)D =
PQ, while if M0 /= {0} and I − H is invertible, we have

(PQ)† = (1, 0, 0, 0)⊕ U∗
(
(I − H)−1 0

0 (I − H)−1

)(
I − H 0

W 0

)
U,

(PQ)D = (1, 0, 0, 0)⊕ U∗
(
(I − H)−2 0

0 (I − H)−2

)(
I − H W

0 0

)
U.

In particular, (PQ)† /= (PQ)D whenever M0 /= {0} and 1 /∈ σ(H).
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Here is a proof. The caseM0 = {0} is trivial. So let M0 /= {0}. We have

ΦPQ (x) =
(
1 − x

√
x(1 − x)

0 0

)
, detΦPQ (x) = 0, Δ2 = �,

ϕ(x) = 1 − x, Δ1 = σ(H) \ {1}, Δ0 = {1} ∩ σ(H),
trΦPQ (x) = 1 − x, Δ11 = σ(H) \ {1}, Δ10 = �.

By Theorems 7.7 and 9.1, PQ isMoore–Penrose andDrazin invertible, respectively, if and only if 1 − x is

separated from zero onΔ1 andΔ11. Thus, bothMoore–Penrose and Drazin invertibility are equivalent

to the condition that 1 is not a cluster point ofH. As 1 is not in the point spectrumofH, it is not a cluster

point of σ(H) if and only if I − H is invertible. Theorems 8.1 and 9.1 now yield the explicit expressions

for (PQ)† and (PQ)D quoted above. From these expressions we see that (PQ)† /= (PQ)D. Incidentally,
the last conclusion can also be drawn from Theorem 9.4 becauseΔ11 \ {0, 1} = σ(H) \ {0, 1} cannot
be empty andΦPQ is not normal for x /∈ {0, 1}.
Theorem 9.7. Let f (p, q) be a polynomial of the form (26). The operator A = f (P,Q) is Drazin invertible

if and only if M0 = {0} or if M0 /= {0} and one of the following holds:
(a) detΦA does not vanish at the cluster points of σ(H),
(b) detΦA is identically zero and trΦA is nonzero at the cluster points of σ(H),
(c) both detΦA and trΦA are identically zero.

Clearly, the criteria established in Examples 9.5 and 9.6 can also be derived using Theorem 9.7

instead of Theorem 9.1.

Example 9.8. SupposeM0 /= {0}. The operator

F = PL∩N⊥ + PL⊥∩N + PQP + (I − P)(I − Q)(I − P)

has the representation

F = (1, 1, 1, 1)⊕ U∗
(
I − H 0

0 I − H

)
U

and is invertible if and only if so is I − H. A straightforward computation using the representations for

(PQ)† and (PQ)D in Example 9.6 gives

(PQ)† = F−1QP, (PQ)D = F−2PQ .

In these two formulas, the operator H has disappeared and been replaced by an explicit operator

F ∈ W∗(P,Q).
Proceeding as in Example 9.6, one can show without difficulty that if A is one of the operators PQ ,

PQP, PQPQ , PQPQP,…, then A is Moore–Penrose invertible if and only if it is Drazin invertible and that

this is in turn equivalent to the invertibility of F . If F is invertible, then for every integer m� 1,

((PQ)m)† = F−mQP, ((PQ)m)D = F−m−1PQ ,

((PQ)mP)† = ((PQ)mP)D = F−m−1PQP.

In this section we follow [21]. Drazin invertibility and Drazin inverses of several special operators

werepreviously studiedandconstructed inDeng’spapers [29,30]. In fact, thepapersbyDengmotivated

us to look for a single theorem (which eventually became Theorem 9.1) that implied all the special

results known so far.
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10. Commuting idempotents

Let A be an algebra with unit e over a field K and let p1, . . . , pn ∈ A be commuting idempotents.

Thus p2j = pj and pjpk = pkpj for all j and k.We denote byB (which should not be confusedwithB(H))
the smallest subalgebra of A which contains the unit e and the idempotents p1, . . . , pn. Clearly, B is

the set of all linear combinations∑
γε1,...,εnp

ε1
1 . . . p

εn
n (εj ∈ {0, 1}, γε1,...,εn ∈ K).

Consider the 2n products b1 · · · bn in which each bj is either pj or e − pj and denote these products

(in any order) by π0,π1, . . . ,πN . Thus, N = 2n − 1. For example, if n = 2 and p := p1, q := p2, then

B is just the set of all linear combinations

γ00e + γ10p + γ01q + γ11pq (59)

and we may put

π0 = (e − p)(e − q), π1 = p(e − q), π2 = q(e − p), π3 = pq (60)

(the labeling of the πk ’s being unessential). It is easily seen that π2
j = πj for all j and πjπk = 0 for

j /= k. Moreover, we have e = π0 + π1 + . . .+ πN and hence it is impossible that πk = 0 for all k

unless A = {0}, which trivial case may be excluded. Put

D = {k ∈ {0, 1, . . . ,N} : πk /= 0},
let d be the number of elements in D, and denote by C(D) the algebra of all functions α : D → K

with pointwise operations. We write the elements of C(D) in the form {αk}k∈D. The algebra C(D) is

obviously isomorphic to the algebra of all diagonalmatrices inKd×d. The following proposition reveals

the simple structure of B.

Proposition 10.1. The map Ψ : C(D) → B, {αk}k∈D �→ ∑
k∈D αkπk is an algebra isomorphism.

Indeed, it is clear that Ψ is linear, and since also

∑
k∈D

αkβkπk =
⎛
⎝∑

k∈D

αkπk

⎞
⎠
⎛
⎝∑

j∈D

βjπj

⎞
⎠ ,

it follows that Ψ is an algebra homomorphism. The map Ψ is injective because if
∑

k∈D αkπk = 0,

multiplication of this equality by πj (j ∈ D) gives αjπj = 0 and αj = 0. Finally, Ψ is surjective since

every a ∈ B may be written as

a = a(π0 + π1 + · · · + πN) = ∑
k∈D

aπk

and aπk is easily seen to be a scalar multiple of πk .

The next proposition, which can be proved by standard arguments, shows that nothing spectacular

happens when passing from the “non-closed” setting to Banach algebras.

Proposition 10.2. If A is a Banach algebra over K = C, then the following hold.

(a) The closure of B in A is B itself.
(b) The maximal ideal space of the commutative Banach algebra B may be identified with D with the

discrete topology and the Gelfand map Γ : B → C(D) is the inverse of the algebraic isomorphism

Ψ introduced in Proposition 10.1,

Γ

⎛
⎝∑

k∈D

αkπk

⎞
⎠ = {αk}k∈D.

The Gelfand transform is in particular bijective.
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(c) An element a ∈ B is invertible in A if and only if it is invertible in B, which is in turn equivalent to

the invertibility of Γ a in C(D).

Example 10.3. This example is motivated by results of [10]. An element a ∈ B is said to be generalized

invertible in B if there exists a b ∈ B such that a2b = a. Writing a = ∑k∈D αkπk and b = ∑k∈D βkπk ,

the equation a2b = a is equivalent to the scalar equations αk(αkβk − 1) = 0 for k ∈ D. This shows

that every a ∈ B is generalized invertible inB. If, for instance, n = 2 and notation is as in (59) and (60),

then

p + q = π1 + π2 + 2π3

and b = ∑k∈D βkπk is a generalized inverse of p + q if and only if one of the following eight conditions

is satisfied:

(1) β1 = 1,β2 = 1,β3 = 1/2, (2) β1 = 1,β2 = 1,π3 = 0,

(3) β1 = 1,β3 = 1/2,π2 = 0 (4) β1 = 1,π2 = 0,π3 = 0,

(5) β2 = 1,β3 = 1/2,π1 = 0 (6) β2 = 1,π1 = 0,π3 = 0,

(7) β3 = 1/2,π1 = 0,π2 = 0 (8) π1 = 0,π2 = 0,π3 = 0.

If p /= 0 and q /= 0, then the three conditions (4), (6), (8) are never satisfied and we are therefore left

with the remaining five conditions. Transforming these into the coordinates γjk in (59) we get the

result that was established in [10] for two commuting projections on Cn.

Example 10.4. The following result was established in [6].

Let A be an algebra with identity element e /= 0 over a field K, let p and q be two different and nonzero

(not necessarily commuting) idempotents in A, and let α /= 0 and β /= 0 be two scalars in K. Define

π0,π1,π2,π3 by (60). Then the element αp + βq is idempotent if and only if one of the following holds:

(i) pq /= qp, (p − q)2 = 0, α + β = 1,

(ii) pq = qp, π1 = 0, α = −1, β = 1,

(iii)pq = qp, π2 = 0, α = 1, β = −1,

(iv)pq = qp, π3 = 0, α = 1, β = 1.

This can be proved as follows. The equation (αp + βq)2 = αp + βq is equivalent to the equation

α(α − 1)p + αβ(pq + qp)+ β(β − 1)q = 0. (61)

Multiplying (61) by p from the left and from the right and taking the difference of the two results we

obtain β(α + β − 1)(pq − qp) = 0. Thus, if αp + βq is an idempotent and pq /= qp, then necessarily

α + β = 1. Inserting β = 1 − α in (61) we get α(α − 1)(p + q − pq − qp) = 0, which is the same

as (p − q)2 = 0 (note that α /= 0 and α = 1 − β /= 1). This proves that if pq /= qp, then αp + βq is

an idempotent if and only if (p − q)2 = 0 and α + β = 1.

So suppose pq = qp. Since p = π1 + π3, q = π2 + π3, pq = qp = π3, Eq. (61) can be written in

the equivalent form

α(α − 1)π1 + β(β − 1)π2 + (α + β)(α + β − 1)π3 = 0 (62)

and the rest is done by Proposition 10.1. If π3 = 0, then π1 = p /= 0 and π2 = q /= 0 and hence (62)

holds if and only if α = 1 and β = 1. Thus, let π3 /= 0. Since π1 = p − pq and π2 = q − pq, we have

π1 /= π2. Consequently, ifπ1 = 0, thenπ2 /= 0 and it follows that (62) is true if and only if β = 1 and

α + β = 0, while if π2 = 0 and therefore π1 /= 0, we conclude that (62) is valid if and only if α = 1

and α + β = 0. Finally, (62) never holds with nonzero α,β if π1 /= 0, π2 /= 0, π3 /= 0.

We remark that case (i) cannot occur if p and q are selfadjoint idempotents (or orthogonal projec-

tions on some Hilbert space).
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Now assume that H is a complex separable Hilbert space of dimension at least 2. Let f (p, q) be a

polynomial of the form (26). There exist such polynomials with the property that if P and Q are two

orthogonal projections in B(H) and f (P,Q) = 0, then necessarily PQ = QP. For instance

pq − qp, p + q − 1, p − q, 1

are such polynomials. (In the last case the equality f (P,Q) = 0 cannot be fulfilled, but we use the

convention that a void set of operators is commutative.) Less trivial examples are the polynomials

(p − q)2 = p + q − pq − qp, pq + qp, pqpqp − pqp.

We say that a polynomial f is enforcing commutativity on H if it has the following property: if

P,Q ∈ B(H) are any orthogonal projections and f (P,Q) = 0, then PQ = QP. Equivalently, f is en-

forcing commutativity if and only if f (P,Q) /= 0 for every pair (P,Q) of non-commuting orthogonal

projections in B(H). And in still other terms, f is not enforcing commutativity if and only if there exist

two orthogonal projections P,Q ∈ B(H) such that f (P,Q) = 0 and PQ /= QP.

We associate with the polynomial f (p, q) the four polynomials

ϕ1(x) = f11 + f31x + f51x
2 + · · · , ϕ2(x) = f21 + f41x + f61x

2 + · · · ,
ϕ3(x) = f12 + f32x + f52x

2 + · · · , ϕ4(x) = f22 + f42x + f62x
2 + · · ·

and then define another set of four polynomials by

ψ00(x) = f00 + ϕ1(x)+ x[ϕ2(x)+ ϕ3(x)+ ϕ4(x)],
ψ01(x) = ϕ2(x)+ ϕ3(x),

ψ10(x) = ϕ3(x)+ ϕ4(x),

ψ11(x)) = f00 + (1 − x)ϕ3(x).

The following theorem is the main result of [96].

Theorem 10.5. The following are equivalent:
(i) f is enforcing commutativity,

(ii) the polynomialsψ00,ψ01,ψ10,ψ11 have no common zero in (0, 1).
If f00 = 0, then (ii) is equivalent to the condition

(iii) the polynomials ϕ1,ϕ2,ϕ3,ϕ4 have no common zero in (0, 1).

Example 10.6. If P,Q ∈ B(H) are two orthogonal projections and PQ + QP = 0, then PQ = QP.

Indeed, we have f (p, q) = pq + qp, f00 = 0, and sinceϕ1(x) = 0,ϕ2(x) = 1,ϕ3(x) = 0,ϕ4(x) = 1

have no common zero in (0, 1), the polynomial f enforces commutativity.

Example 10.7. Let P,Q ∈ B(H) be two orthogonal projections. If two of the operators

I, P, Q , PQ , QP, PQP, QPQ , PQPQ , QPQP, PQPQP, QPQPQ , . . .

coincide, then

PQ = QP = PQP = QPQ = PQPQ = QPQP = PQPQP = · · ·
To see this, let S = {p, q, pq, qp, pqp, qpq, . . .}. If f is a polynomial in S , then three of the associated

polynomials ϕ1(x),ϕ2(x),ϕ3(x),ϕ4(x) are identically zero and one is xn for some n� 0. Thus, if f1, f2 ∈
S , then one of the polynomials ϕ1(x),ϕ2(x),ϕ3(x),ϕ4(x) associated with f1 − f2 is ±xn or xn − xm

with n /= m. This polynomial has no zeros in (0, 1) and hence f1 − f2 enforces commutativity. We are

left with 1 − f for f ∈ S . Let ϕ1(x),ϕ2(x),ϕ3(x),ϕ4(x) be the polynomials that are associated with f .

If ϕ3 is identically zero, then the polynomial ψ11(x) is identically 1 and thus has no zeros in (0, 1).
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If ϕ3 is not identically zero, then ϕ3(x) = xn and ϕ1 = ϕ2 = ϕ4 = 0 identically. This implies that

ψ01(x) equals −xn and is therefore nonzero in (0, 1). In either case it follows that 1 − f is enforcing

commutativity.

Remark 10.8 (Quantum-mechanical interpretation).LetP andQ beorthogonalprojections. Example

10.7 shows in particular that

PQP = QPQ �⇒ PQ = QP. (63)

We may think of the selfadjoint operators P and Q as observables in a quantum-mechanical system.

The equality PQ = QP means that P and Q are commensurable, that is, they can be measured simul-

taneously. The selfadjoint operator PQP is also an observable. The expected value of PQP when the

system is in state ϕ is (ϕ, PQPϕ) = (Pϕ,QPϕ). Thus, PQP determines the conditional probability of Q

under the condition that P is given. Clearly, QPQ may be interpreted in an analogous fashion as the

probability of P, given Q . Rehder [86] writes that in this light “it comes as no surprise that PQP = QPQ

should imply PQ = QP.Mathematically speaking, however, the implication seems curious: (63)means

that for PQ = QP it is sufficient that PQ has the same value for Px as QP has for Qx, for all x ∈ H. In

other words, (63) permits an implication from the equality of positive selfadjoint operators PQP and

QPQ to the equality of prima facie more general operators PQ and QP. Putting A = PQ , A∗ = QP, (63)

may be restated as: A = A∗ is equivalent to AA∗ = A∗A, i.e., for A = PQ selfadjointness and normality

are the same”.

It was moreover pointed out in [86,87] that the implication (63) is a special case of the Fuglede–

Putnam theorem. This theorem says that if A, B, T are in B(H) and A and B are normal, then AT = TB

implies A∗T = TB∗. Taking A = PQ , B = QP, T = P yields (63).

We also learned from [86,87] that the selfadjoint operator

J(P,Q) := QP(I − Q)+ (I − Q)PQ = PQ + QP − 2QPQ

is the observable which defines Mittelstaedt’s probability of interference: the probability of interfer-

enceofP andQ for the system in stateϕ is (ϕ, J(P,Q)ϕ). For f (p, q) = pq + qp − 2qpqwehave f00 = 0,

ϕ1(x) = 0, ϕ2(x) = 1, ϕ3(x) = −2x, ϕ4(x) = 1, and hence Theorem 10.5 gives the implication

J(P,Q) = 0 �⇒ PQ = QP, (64)

which was by different methods already proved in [86,87], too. Physically speaking this means that

absence of interference implies commensurability, which is again not a surprise.

To our knowledge, the implications (63) and (64) are due to Rehder [86,87]. The statement of

Example 10.7 alongwith a very short purely C∗-algebraic proof is in the one-pager [24]. In [88], Rehder

proved the following generalization: if A and B are selfadjoint and A� 0 or B � 0, then

AB2A = BA2B �⇒ AB = BA.

In other words, if AB is normal, it is automatically selfadjoint. It is also shown in [88] that this is not

true if the positivity hypothesis is dropped.

Papers [8–10] containExamples10.6and10.7andsomemorecomplicatedparticular commutativity

enforcing polynomials in the case where H = Cn.

11. Concluding remarks

There are many more topics on two projections we could embark on. We leave the matter with a

few remarks on the problem of what happens if we have more than two idempotents. As shown in

Section 10, things are trivial in case the idempotents commute pairwise. Already in 1955, Davis [25]

discovered that there exist three orthogonal projections on H such that the smallest W∗-subalgebra
of B(H) which contains the identity and these three projections is all of B(H). In other words, B(H)
is always generated by three projections in the sense of W∗-algebras. Different proofs of this result

(and another proof of Halmos’ theorem) are in Behncke’s papers [14,15]. It is clear that a Banach

algebra that is generated in the sense of Banach algebras by a finite number of elements must be
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separable, that is, must have a countable dense subset. In [18], it is shown that every separable Banach

algebra is isomorphic to a subalgebra of an algebra that is generated in the sense of Banach algebras

by three idempotents. Consequently, a theory for C∗-algebras or W∗-algebras generated by at least

three orthogonal projections or of Banach algebras generated by at least three idempotents would be

a theory of everything and thus a hopeless venture.

However, if further axioms are imposed on the generating idempotents, results like Theorems 4.7

or 6.1 are available. Such additional axiomsmay, for example, come from the theory of singular integral

operators. In that connection one has, for instance, to deal with Banach algebras generated by e, p, q, j

where p2 = p, q2 = q, j2 = e (which means that (e + j)/2 is an idempotent) and either jpj = e − p

and jqj = e − q or jpj = p and jqj = e − q. The reader is referred to Roch, Santos, and Silbermann’s

book [91] for an exhaustive treatment of this subject. Original works on the topic include Finck, Roch,

and Silbermann [43], Krupnik and Spigel [75], and Power [83]. The N-projections theorem proved in

[18,19] is based on still another set of additional axioms but also motivated by the theory of singular

integral operators.

We take up the opportunity to mention that Fillmore [41] showed that every bounded linear

operator A on a separable infinite-dimensional Hilbert space can be written as a linear combination of

257 orthogonal projections. (This result has meanwhile been improved considerably, for instance, by

Pearcy and Topping [80].) The case where A is a scalar multiple of the identity is very well understood.

LetΣn denote the set of all λ ∈ R for which λI is the sum (sic!) of n orthogonal projections. Kruglyak,

Rabanovich, and Samoı̆lenko [73] refer to the equalities

Σ1 = {0, 1}, Σ2 = {0, 1, 2}, Σ3 =
{
0, 1,

3

2
, 2, 3

}
,

Σ4 =
{
0, 1, 1 + k

k + 2
(k ∈ N), 2, 3 − k

k + 2
(k ∈ N), 3, 4

}

as mathematical folklore and completely describe Σn for general n, showing that if n� 5, then Σn is

the union of a segment [αn,βn] and of two sequences S1n and S2n converging to αn and βn, respectively.
Bart, Ehrhardt, andSilbermann [13] studied the followingproblem. LetAbe aBanach algebra and let

p1, . . . , pn ∈ A be idempotents such that p1 + · · · + pn = 0. Does it follow that p1 = · · · = pn = 0?

They showed that the answer is “yes” for n� 4 or if A is a Banach algebra that satisfies a polynomial

identity (which is e.g. the case for A = CN×N) but that for n� 5 there exist A for which the answer is

“no”. These latter Banach algebras are far away from being commutative.

To quote another result in this vein, we take the liberty to cite Holland, who begins his article [59]

as follows. “Noncommutativity and infinite dimensionality seem to lie at the source of the mysteries

of Hilbert space. Consider a theorem of Fillmore [42]: given any bounded selfadjoint operator T on

a separable infinite-dimensional complex Hilbert space, there exists a positive number α such that

αT + 4I equals the sum of eight or fewer orthogonal projections. Not a linear combination: simply a

sum. Put anotherway, Fillmore’s theorem says that after scaling, any bounded selfadjoint operator equals

the sum of eight or fewer orthogonal projections.” That is a nice end of a guided tour, isn’t it?
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