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1. Halmos and Afriat

Throughout this paper, H is a complex separable Hilbert space. We denote by B(#) the C*-algebra
of all bounded linear operators on . Let P and Q be two bounded orthogonal projections on . Thus,
P =P? = P*and Q = Q% = Q*. The ranges of P and Q will be denoted by L and N, respectively. The
sets Land N are closed subspaces of . Given a closed subspace K of #, we denote by K Lits orthogonal
complement and by Py the orthogonal projection of + onto K. In this terminology, P = P; and Q = Py.

In general, (LN N) & (LN NL) is a proper closed subspace of L. We therefore have

L=(CNN)® (NN & M,,
with some closed subspace My of L. Analogously,
r=atnNnyeetnNhem,
with some closed subspace M; of Lt Letting
Moo =LNN, My =LNNY, Mp=L"NN, My =LtnN
we obtain the orthogonal decomposition
H = Moo @ Mo1 & M1o & My1 & Mo & M;. (1)
Given four complex numbers aj, we use the abbreviation
(a0, o1, 10, @11) = Qoolmyy D @01l D @10lMyg D t111My,, (2)

where Ix denotes the identity operator on K. In the case where Mj, = {0}, we may take an arbitrary
value for aj; and we may alternatively assume that the corresponding term in (2) is absent. To be
absolutely precise, on defining A = {(j, k) : Mjx # {0}}, we have

(00, 01, @10, 011) = €D g
GleA

Clearly, if My = M = {0}, we get the orthogonal sum H = Mg © Mg; © Mg & M1; and accordingly
P and Q may be written as

P=(,1,0,0), Q=(1,0,1,0). (3)

The following is usually referred to as Halmos’ two projections theorem and sometimes also as
the CS decomposition of two projections (see Remark 1.4 below). It provides us with a canonical
representation for P and Q in the orthogonal sum (1) in the case where My or M; are nontrivial. For
real numbers « and B, we write ol <A < BIif A is selfadjoint and « (x, x) <(Ax, x) < B(x,x) for all x in
the underlying Hilbert space. As usual, we denote the kernel (= null space) and range (= image) of an
operator A by Ker A and Ran A, respectively.

Theorem 1.1 (Halmeos). If one of the spaces My and M is nontrivial, then these two spaces have the same
dimension and there exist a unitary operator R : M; — My and selfadjoint operators S and C of My into
itself such that 0 <S<I,0<C<I, 5> 4+ C?> =1, Ker S = Ker C = {0}, and

P:(l,l,O,O)EB((I) 1?*) (é 8) (é g). (4)

0=0.0108 g ;)(gﬁ gi)(g ?)- (5)

Here is Halmos’ proof from [57]. We use the abbreviation M := My & Mj. Each of the five spaces
Moo, Mo1, Myg, M11, M is invariant under both P and Q, and hence we may write
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P=(,1,0,008PM, Q=(1,01,0)¢QlM, (6)

where | denotes restriction to an invariant subspace. The restrictions P|M and Q |M may be represented
by 2 x 2 operator matrices according to the decomposition M = My & M. It is clear that the matrix
representation for P|M is

I 0
P|M = (0 0) . (7)
For Q|M we can write
B E
am=(g p). (8)

with selfadjoint operators B and D. Letting Ly and Ny denote the ranges of the restrictions P|M and
Q|M, that is, Ly = PM and Ny = QM, and taking orthogonal complements in M, we have

LoNNo = {0}, LoNNy = {0}, Ly NNp={0}, Ly NNy = {0}. (9)
Indeed, suppose, for example,y € Ly N Ng. Theny € Ly = My and hencey € Landy L L N N. On the
other hand, y € Ny and therefore y = Qz = Pyz for some z € M, which implies that y € N. Thus,y €
LNNandy € LN N+, which is only possible for y = 0. This shows that Lo N Ny = {0}. The remaining

three equalities can be proved similarly.
We now return to the spaces L and N and claim that if

LNN=1{0}, LNNt={0}, L*NN={0}, L-NNt={0}, (10)

then the spaces L, L, N, N' are mutually isomorphic, L & L+ = N = N This s clear if all four spaces
are infinite-dimensional. So assume at least one of them, say L, has finite dimension. Then the direct sum
L + Nis closed, and since (L + N)* = L+ N N1 = {0}, it follows that L + N = H.AsalsoL ® L+ =
H, we conclude that L'~ = N. The direct sum L 4+ N is also closed and (L + NY)* =L+ NN = {0},
whence L + N* = #. This in conjunction with the equalities L & - =HandN @ N+ =x implies
that L+ = N+ and L & N, as desired. The argument is completely analogous if one of the spaces
L+, N, Nt is finite-dimensional.

By virtue of (6) and (9) we may assume from the very beginning that (10) is valid. As shown in the
previous paragraph, then My = L and M = Lt are isomorphic. The operators B, E, D in (8) are

B = PQP|L = P,PyP,|L = (I — PPy P))|L, (11)
E=PQ( — P)|Lt = P.PyPL|Lt,
E* = (I — P)QP|L = P, PyPy|L,

D= (I—-P)I—Q)(I—P)L* =PuPy.P|L". (12)

We claim that Ker E = Ker E* = {0}. So let Ey = 0 for some y € L. Then PyP Ly € L*, and since at
the same time PyP;1y € N, we see from (10) that PyP; 1y = 0. This implies that P, 1y € N*+, and as
P;iyisalsoin L+, we infer again from (10) that P; 1y = 0. Consequently,y € L N L+ and thusy = 0.1t
can be shown analogously that Ker E* = {0}. Since E and E* have trivial kernels, the partial isometry
W :L— L+ inthe polar decomposition E* = WA is in fact unitary. Then R = W* : I+ — Lisalso
unitary. We get

(0 H@n(o &)= ror):

By (11)and (12), 0 < B<Iand 0 < RDR* <I.Hence B = C? and RDR* = $? with0 < C<Iand 0<S<I.
Since ER* = A and RE* = A, it follows that

(6 Dem( 2)=(53 )
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and the equality (Q|M)? = Q|M yields that
CHHA2=C CA+AS?=A A*+5'=5° (13)

The first of these equalities gives A = C+/I — CZ (note that A > 0). This implies that A commutes with C
and hence the second equality in (13) shows that A(C? 4+ S?> — I) = 0. Since Ker A = Ker (ER*) = {0},
it results that C2 + S — I = 0 and A = C+/I — C? = CS. Finally, from the first and third equations in
(13) we conclude that if y is in Ker C or Ker S, then A%y = 0. As Ker A = {0}, this can only happen if
y = 0. Thus, Ker C = Ker S = {0}. This completes the proof.

The operators S and C are called the operator sine and cosine of the pair (Mg, M1 ). This terminology
was introduced in [72]. Denoting S? by H we immediately get

I 0 I—H JHI—H)\ /(I 0
e=o10e(y ) (m H )(o 0 “4)
whereas the substitution C? = H leads to
I 0 H VH(I — H) I 0
o-010e(p g) (m I—n )(o ) ()

In part of the literature one sees (14) and in the other part authors work with (15). We agreed upon
taking (14) throughout the rest of the paper. In terms of H, Theorem 1.1 reads as follows.

Theorem 1.2 (Halmos). We have My # {0} <= M; = {0}, and if one of these spaces is nontrivial, then
P=(1,1,0,0) & U* 0y (16)
- ’ ’ ’ O 0 ,
B «(I-H W
e=aoroeu ('t u (17)

where U = diag (I,R), W = /H(I — H), R : M1 — My is a unitary operator and H : Mg — My is a
selfadjoint operator such that 0 < H <I and Ker H = Ker (I — H) = {0}.

Remark 1.3 (Historical) . Theorem 1.1 in almost exactly the form cited here appeared first in Halmos’
paper [57] and nowhere before. The name “Halmos’ two projections theorem” is nowadays in common
use. A special argument justifying this name is that, in our opinion, Halmos’ paper [57] in unrivalled
in its extremely lucid exposition of the matter. However, other authors had the theorem or were very
close to it independently of Halmos and even before him.

In 1948, Krein, Krasnoselski, and Milman [72] showed that My and M; have the same dimension
and called the operators S and C defined by

s’ =P — Q)L C*= (- P}l

the operator sine and operator cosine of the pair (L, N). Clearly, P(I — Q)|L and (I — P)Q|LJ- are up to
unitary equivalence equal to

Loyt ®S? =Lyt ®H, iy @ C=I1y® U —H),

respectively, with S and C as in Theorem 1.1 and H as in Theorem 1.2.
Dixmier [34] and Davis [26] also had results like Theorems 1.1 and 1.2. They considered the operators

t:=(P-Q?% s:=PQP+(I—P)(I—Q)(I-P),

which will make their debut in this guide in Example 4.5. Dixmier used the notation t =: B2, s =: A?
while Davis wrote t =: S, s =: C and referred to S and C as the separation and closedness operators,
respectively. Clearly, Dixmier's B> and A% and Davis’ S and C are just Krein, Krasnoselski, and Milman
S? and C2. Theorem 6.2 of Davis’ paper [26] from 1958 may be restated as follows.
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The spaces My and My have the same dimension, and if these spaces are nontrivial, then

P=(1,1,0,0 & V* (—«/ﬁ _\/1@) "
B . F VFI—F)
Q=(1,0108V (m [—F )V'

with some unitary operator V : My & M1 — My & My and some selfadjoint operator F : Mg — M
such that 0 < F<I/2 and Ker F = Ker (I/2 — F) = {0}.

The theorem also holds with 0 <F <1/2 and Ker F = Ker (I/2 — F) = {0} replaced by /2 <F <1
and Ker (I/2 — F) = Ker (I — F) = {0}. Davis’ theorem is almost Theorem 1.2, but in different lan-
guage. Indeed, let

H = 4F(I — F), zz(_\/‘{% __Vi/%F).

The operator H has the properties listed in Theorem 1.2, and Z = Z* = Z~'. A straightforward com-
putation yields

(_ F _m>=z<’ 0)2,

VE@=F) I—F 0 0
F VEC=PH\_,( 1-H VHI=H),
VET—=F) I-F )~ “\VHI=H H :

Consequently, Davis’ theorem yields that

P=(1,1,0,0) ® V*Z <1 0) v,

0 0
_ . I-H VHT = H)
Q_(l,O,l,O)GBVZ(m u )zv,

which coincides with Theorem 1.2, the only difference being that the unitary operator U = ZV is not
guaranteed to be of the form diag(I, R).

We should mention that Davis [26] also proved that if H is a selfadjoint operatoron My and 0 < H <1,
then there exist orthogonal projections P and Q on My & My such that

(g’ g) =PQP+ (I—P)(I—Q)(I—P).

To do this, he put

P_(I 0) 0— H VH(I —H)
—\0 0)' T \JVHTI—H I-H )’

attributing this construction to Michael and referring to [100,89]. In [100], one finds a reference to
Halmos’ 1950 paper [56] for the construction by Michael.

Davis and Kahan's paper [27] also contains several kinds of two projections theorems. Their paper
was received by the editors on December 9, 1968 and hence they could not have known of Halmos’
paper [57] then. However, Davis and Kahan refer to Jordan [62], Dixmier [34,35], Krein, Krasnoselski,
and Milman [72], Sz-Nagy [100], Afriat [1], Kato [65] and also mention Seidel [93], Suschowk [98],
Vitner [104], and Zassenhaus [108].

In his paper [81] (which was received by the editors on November 1, 1966), Pedersen stated Theorem
1.2 in the language of representation theory and described the C*-algebra generated by P and Q. He
already then obtained what will become Theorem 4.7 later in this survey. Giles and Kummer [48] also
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had Theorem 1.2 in slightly disguised form and derived a description of the W*-algebra generated by
P and Q (see Theorem 7.1 later in this survey). Note that the Halmos paper [57] and the Giles/Kummer
paper [48] were received by the editors on April 7, 1969 and April 14, 1969, respectively. We also want
to mention the papers [14,15] by Behncke. He knew of Halmos’ paper [57] and gave a very short proof
of the theorem using group representation theory in [15].

Remark 1.4 (The connection with the CS decomposition). The following is a special case of what is
usually called the CS decomposition; see, for example, [27,53,79,97].

IfF € C?™2" is qunitary matrix, then there exist unitary matrices Uy, U, V1, Vo € C"%" and commuting
Hermitian matrices Cy, So € C™*" such that 0 < Co <I,0< Sg <1, Cé + 5(2, =1,

Uup, 0 G So\/\1 O
F= (0 U2> (—so Co> (0 v2>' (18)
The finite-dimensional version of Theorem 1.1 can be derived from the CS decomposition as follows.
We start as in Halmos’ proof quoted above. It suffices to consider P|M and Q |M. We think of M as the
column space C?" and freely identify operators on M with 2r x 2r matrices. In particular, we may
assume that P|M and Q|M are given by the matrices (7) and (8), the blocks of these matrices being
r X r. We know from Halmos’ proof that rank (Q|M) = r (because dim Ng = dim Ly = r)and thatE is

nonsingular (because Ker E = {0}).LetF = (F; F,) € C?"*?" be a unitary matrix whose first r columns,
constituting the 2r x r matrix Fy, span the range of Q |[M. We then have the decomposition (18),

_ { U1GoV4 U1SoV2
(FiF) = <—U250V1 U2C0V2> ‘

Since Q|M = FFj, it follows that

UGV
am = (5o ) wicur  —visa;)

(1 0 (U1GUD) (UL GoUY)  (U1CoUF) (Ui SoU) (1 0
=0 —U) \(UGUHUISUT)  (UiSUH UiSU7) ) o —uyug

(1 0\ (C* cs\(I O

—\0 R*J\cs s?)\0 R)’
with R = —U,UY, C = U1GoU7, S = U1SpUY. As E = CSR is nonsingular, so also are C and S. This
completes the proof.

Proposition 1.5. We have My = M; = {0} if and only if PQ = QP.

The “only if” part is trivial, since the two operators (3) obviously commute. To get the “if portion”,
assume PQ = QP but My # {0}. Theorem 1.2 then gives

0=PQ —QP
T (R T R (A TER I

B (0 W
=(0,0,0,0) DU (—w 0>U.

It follows that W = 0 and thus H(I — H) = W? = 0, which is impossible because H and I — H are
injective. This proves Proposition 1.5.

We do not define H in case My = M; = {0}. Equivalently, in the case where My = M; = {0} we
interpret (16) and (17) as (3). Note that U is unitary and that 0 < W < I with Ker W = Ker (I — W) =
{0}. In particular, the spectra o (H) and o (W) are both subsets of [0, 1].



1418 A. Bottcher, M. Spitkovsky / Linear Algebra and its Applications 432 (2010) 1412-1459

Now let I7 € B(*) be an arbitrary (not necessarily orthogonal) projection, I7 = IT2. Such projec-
tions are called skew or oblique. The closed subspacesL := Ran IT and N := Ker IT are complementary,
thatis,L NN = {0} and L + N = . It follows also that LJ- NNt = (L +N)* = {0}.Let P = P, and
Q = Py be the orthogonal projections onto L and N, respectively.

Proposition 1.6 (Afriat). I[fL = Ran IT and N = Ker [T for some skew projection IT, then |PQ|| < 1and
1= (—PQ)"'P(UI — PQ).

This result is from Afriat’s paper [1]. Proposition 1.6 is not of the depth of Theorems 1.1 and 1.2, but
it is a key result in work with skew projections. Here is a proof of Proposition 1.6. The result is trivial
if IT is the zero operator. So assume /7 # 0.Ifx € L is a unit vector, then x € Ran I7, Qx € Ker I1, and
hence

1= |Ixll = [[[Tx — ITQx|| < [[IT]| [Ix — Qx|I,

which gives
VIAIP < inf_ lx—Qx* = _inf (1 —JlQxdI) =1~ sup_loxl’
xeL[Ix]=1 [x[I=1 xeL,||x||=1
=1— sup fQxIP=1— sup [lQPul® =1~ IQP|?
xeL||lx|| <1 ueH,|lull <1
and since |PQ|| = ||(PQ)*|| = ||QP]|, it follows that |PQ|| < 1.The last inequality implies that [ — PQ

is invertible, and we are left to prove that (I — PQ)IT = P(I — PQ). Every u € H can be written as
u=x+ywithx = IMTu € Landy = (I — IT)u € N. This yields

(I—PQ)IMu = (I —PQ)x = x — PQx
and
P(I—PQ)u=P(x+y) —PQ(x +y) = Px+ Py — PQx — Py = x — PQx,
thatis, (I — PQ)IT = P(I — PQ).
Representing P and Q by (16) an (17) we obtain the following representation for I7.

Corollary 1.7. LetL = Ran IT and N = Ker [T for some skew projection I1.If My = {0}, then IT = Iyt
is simply the orthogonal projection onto L N N+, while if My = {0}, then H is invertible and

I —H'w
1=l ®U7 (0 0 )U'

Indeed, we have

_ (1l 0 _ L(I—H W
I=(1,1,1,1)QU (0 I)U, PQ = (1,0,0,0) ® U ( 0 O)U
and hence
1—PQ=(0,1,1,1)€9u*(Ig _IW)U. (19)

Since L NN = L+ N N+ = {0}, we may replace (0, 1,1, 1) by I;\y1 @ I;.L ny- The operator H is invert-
ible together with I — PQ. The entries of the 2 x 2 matrix on the right of (19) commute and therefore
this matrix can be inverted as in the scalar case. What results is that

-1 -1
(I—PQ) " =1ljyt ®l1qy ® U <HO H IW) u.



A. Bottcher, M. Spitkovsky / Linear Algebra and its Applications 432 (2010) 1412-1459 1419

Proposition 1.6 therefore yields

-1 -1 I O0\(H —-W
H:ILQNJ_@U*C-IO H IW) (o 0) <0 | >U.
which instantly gives the asserted formula.

The reader is referred to Galantai's book [45] for numerous results on orthogonal and skew projec-
tions, ranging from elementary observations up to rather sophisticated properties and, in particular,
for various representations of skew projections.

We remark that several representations that can be found in the literature are nothing but Halmos’ or

Afriat’s formulas in disguise. For example, Grof8 [54] showed that if P and Q are orthogonal projections
on C", then

T X 0
Po=v*[{o 0 o]v, (20)
0 0 I

where V is unitary, T is diagonal with all diagonal entries in (0, 1), and XX* = T(I — T). This is the
same as the formula
ro=aoo0eu ('3 T,

which is immediate from Theorem 1.2. The last formula even implies that the X in (20) may be chosen
to be a Hermitian diagonal matrix.

2. Wedin, Dokovi¢, and Jordan

We begin by citing two versions of the theorems of the previous section in the case of finite-
dimensional spaces. Thus, let # = C" with a natural number n. We freely identify operators on C" with
their matrices in the standard basis. Let P and Q be two orthogonal projections on C" (= Hermitian
and idempotent matrices). The trivial case where My = M; = {0} may be excluded. Thus, let r :=
dim My = dim M; > 1. Since H is an Hermitian r x r matrix with all eigenvalues in (0, 1), we have

H = S*diag (1, ..., ur)S, (21)
with a unitary matrix S and 0 < pq <--- < u, < 1. Evidently, x4, . . ., iy are just the eigenvalues of
H labeled in nondecreasing order and repeated according to their multiplicity. The angles 6y, . ..,6; €
(0, r/2) defined by

sin G =pw; (G=1,...,1) (22)

are referred to as the principal angles of the pair (Mg, M7). The following was established in [106] by
different methods and is called the Wedin canonical form of P and Q.

We denote by det A the usual determinant of a matrix A € C"*". Given a 2 x 2 operator matrix
with commuting entries, we define the operator determinant by

B C
Det <D E):BE—CD.

The operator matrix is invertible if and only if so is its operator determinant.

Example 2.1 (The sum of two orthogonal projections). By Theorem 1.2,

2] —H — Al w )U,

_ _ _ _ _ *
P+Q—AM=Q2—-A1—-A1—2, k)eBU( W He g

with

Det (21—H—M w

W H— “> = (/\2 —2M)I +H. (23)
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Consequently,

o(P+0Q)=0((2,1,1,00)U{1++/1—x:x€a(H)). (24)

Note that 0((2,1,1,0)) C {0,1,2}. If dimH < oo, then (21) gives o (H) = {1, ..., iU}, and taking
into account (22) we get

o(P+0Q)\{0,1,2) = {1 £cosby,...,1 =% cosb,l.

Thus, at least theoretically the problem of finding the principle angles 61, . . ., 8, simply amounts to
the determination of the eigenvalues of the Hermitian and positive matrix P + Q.

We remark that formula (24) also provides us with a quick solution of the problem considered
by Holland in [59], namely, the construction of orthogonal projections P and Q such that P 4+ Q has
prescribed eigenvalues.

Corollary 2.2 (Wedin). There exists a unitary n X n matrix V such that

._ (1o
VPV* = (1,1,0,0) & diag ||, :
L j=1

. T e =\
VQv* = (1,0,1,0) & diag A=) i

_[({ cos?6;  coshsing\7
= (1,0,1,0) & diag . )
| \cos 6; sin 6; sin“ 6; i1

To see this, put D = diag (i1, ..., 4r). Then
I 0\ (s* 0\(I 0 <S 0)
o o/ \o s*)\o o/\0O S)
I—H W\ (s* o0 I-D DI — D) (5 0)
w  H) \o s)\/pa=D) D (U

and an obvious choice of a permutation matrix T yields

L) W 10’T
o o)~ [l of]_ "

( I-D «/D(I—D)) _ rding {( 1— 1 Ji = Mj)):|r )
vD(I —D) D V(1= ) i i1 ‘

Since wj = sin®0j, 1 — pj = cos? 0;, ,/1;(1 — ;) = cos 6; sin 6;, we obtain the desired representa-
tions with

V=(1,1,1,1) T 5 9y
- v Ay 4y 0 S

from Theorem 1.2.

Now let IT be a skew projection on C" (= an idempotent matrix), L = Ran I1,N = Ker I1,P = Py,
Q = Py, define u; by (21) and the angles 6; by (22). The following representation is from [36], where
it was proved in a completely elementary fashion. It is referred to as the Dokovi¢ canonical form
of IT.



A. Bottcher, .M. Spitkovsky / Linear Algebra and its Applications 432 (2010) 1412-1459 1421

Corollary 2.3 (Dokovic) . With the same unitary n x n matrix V as in Corollary 2.2,

VITV* = I y. @ diag [((1) - “f)/“fﬂ

0

. 1 —cotd r
= IjnyL @ diag 0 0

j=1

j=1

This can be derived from Corollary 1.7 in the same way we derived Corollary 2.2 from Theorem 1.2.

Davis begins his paper [26] as follows. “A pair of non-trivial linear subspaces of Euclidean 3-space,
whose dimensionalities are known, form a geometrical figure which is determined up to Euclidean
congruence by the non-obtuse angle between them - single number between 0 and 77 /2.” In a sense,
the whole two projections business since Jordan’s 1875 paper [62] has its origin in the endeavor to
get an understanding of the corresponding picture in higher dimensions. We here confine ourselves
to complex separable Hilbert spaces #, and in this context we have the following definitions.

Let (L1, N71) and (L, N2) be two pairs of closed subspaces of 7 and denote by

Py =P,, Q =Py, P, =P, Q =Py,

the associate orthogonal projections. If the pairs are formed by complementary subspaces, we let IT;
and [T, stand for the projections of H onto L; and L, parallel to Ny and N3, respectively. The pairs
(L1,N7) and (Ly, Ny) are said to be unitarily equivalent if there exists a unitary operator V : H — H
such that VL1 = L, and VN; = N. The pairs (P1,Q;) and (P, Q) are called unitarily equivalent if
P, = VP1V* and Q, = VQqV* for some unitary operator V : H — ‘H. Finally, IT; and IT; are unitarily
equivalent by definition if there is a unitary operator V : H — H such that IT, = VIT;V*. Note that
instead of unitary equivalence one frequently also speaks of unitary similarity or simply of congru-
ence. The following proposition reveals that all these notions are one and the same thing in different
disguise.

Proposition 2.4. Let V : H — H be a unitary operator. Then the following are equivalent:

(i) VL] = L2 and VN1 = Nz,
(11) Pz = VP1V* and Q2 = VQ1V*.
If the pairs (L1,N1) and (L, N») are constituted by complementary subspaces, then (i) and (ii) are also
equivalent to the equality
(iii) [T, = VII;V*.
This can be shown as follows. If K; and K are closed subspaces of 7, then
K; = VK < Py, = VP, V* (25)

because VP, V* is obviously an orthogonal projection and its range is VK. The equivalence of (i) and
(i) is immediate from (25). To see that (i) and (iii) are equivalent, note that VIT;V* is a projection with
range VL; and kernel VNy. That'’s all.

Now let # = C". Fori = 1, 2, we put

¢ =dim(L; NN, Kk = dim(L; NN,
¢ =dim(LE NNy, kb =dim(E NN,
MY =Le (WNN)® L NND), MY =1k e (@ NN @ @ NN,

r, =dimM{" = dim M
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andwedenoteby0 < in) <0< Gr(ii) < /2 the principal angles of the pair (M(i), M%i)). The following

theorem is the n-dimensional version of Davis’ introductory sentence cited above. This theorem is
basically due to Jordan [62].

Theorem 2.5 (Jordan). The pairs (L1,N1) and (L, N,) are unitarily equivalent if and only if £1 = {5,
ki = ko, E{- = ¢4, k{- = kf‘, r1 = 1o, and the principal angles 0 < 01(1) <o g Qr(f) < 1/2 coincide

with the principal angles 0 < 61(2) SEEEEN 9r(22) < m/2.

The “if” portion follows easily from Corollary 2.2 and Proposition 2.4: the corollary shows that
V1P V] = VP,V and V1Q1 V] = V,Q,V5 with unitary matrices V4, V,, whence P, = VP;V* and
Q2 = VQ;V*withV = V3V;,and the proposition then gives VL1 = L, and VN1 = N,.To prove the “only
if” part, suppose (L1, N;) and (L3, No) are unitarily equivalent. Then, by Proposition 2.4, P, = VP, V*
and Q; = VQ;V* with some unitary matrix V. It follows that P, + Q, = V(P; + Q;)V*, and therefore
P + Qq and P, + Qo must have the same collection of eigenvalues. From Example 2.1 we deduce that

rn=r,=:r, Qj(l) = Oj(z) for1<j<r,£; = £, (multiplicity of the eigenvalue 2), k{- = kf‘ (multiplicity

of the eigenvalue 0), and ki + E{- +r=k + Eﬁ- + r (multiplicity of the eigenvalue 0). Since P;
and P, must also have the same eigenvalues, Corollary 2.2 imflies that 61 + ki +r=43+ky+r
(multiplicity of the eigenvalue 1). Consequently, k1 = k, and £7- = Ej-, which completes the proof.

The (infinite-dimensional) Hilbert space analogue of Theorem 2.5 is in [26]. It characterizes unitary
equivalence in terms of the dimensions of the four spaces LN, L N N+, LT NN, L N N+, and the
spectral decomposition of the operator H.

Remark 2.6. In the literature, the principal angles are usually defined as follows, that is, in a fashion
different from ours. Suppose m := dim L < dim N. The first principal angle ¢ is defined by
cosgr = max{|(x,y)| : x € L, x| = 1,y € N, |lyll = 1}.

Assume the maximum is attained at x; and y4, that is, cos ¢1 = |(x1,¥1)|- The second principal angle
¢, is then given by

cosgy = max{|(x,y)| : x € Lx L x1,|Ix]l =1,y e Ny Ly, llyll =1}

and if cos ¢, = |(x2,¥2)|, the next principal angle ¢j3 is the angle whose cosine is the maximum of
{lGeey:xeLix Lxi,x Lxpllxl =1,y € Ny Lyry Ly llyl =1},

and so on. At step m + 1 we meet the requirement
xelxLxy....x Lxy x| =1,

which cannot be fulfilled. Thus, the procedure stops at the mth step and yields the m principal angles
0<P1 <@ <---<pp<m/2.

Note that in the preceding recursive definition the equalities ||x|| = 1and ||y|| = 1 can everywhere be
replaced by the inequalities ||x|| < 1and ||y|| <1 without changing the result. The connection between
the angles just defined and our principal angles

0<61<---<0, <m/2

is that our 6’s are just the ¢’s lying in (0, 77 /2) or, equivalently, the ¢’s whose cosines are neither 0 nor
1. To be more precise, let £ = dim(L N N) and k = dim(L N N1). Since

L=(LNN)&LNN) & M,

we have m = £ + k + r. One can show (see, for instance, [17]) that

pr=---=@r =0, @11 =91,--..§0€+r=9r. Pldr+1 = - = Ql4r+k = 5



A. Bottcher, M. Spitkovsky / Linear Algebra and its Applications 432 (2010) 1412-1459 1423

In terms of the principal angles ¢;, Theorem 2.5 reads as follows. Let my = dim L; <dimN; and mp =
dim L, < dim N». The pairs (L;,N7) and Ly, N,) are unitarily equivalent if and only if m;y = my =: m
(1)

and @

= (pj(z) for1<j<m.

In connection with the topic of this section, we recommend Galantai’s book [45] and his recent
article [46], which contain all results of this section along with many references to original works
on principal angles. In [46], Galantai actually starts with the definition of the principal angles as in
Remark 2.6 and uses the resulting characterizations of the relative positions of subspaces to derive
Wedin’s representation and subsequently Halmos’ two projection theorem (in finite dimensions) and
Dokovic’s canonical form. We here proceed in the reverse direction: we deduce Wedin and Dokovi¢
from Halmos and not vice versa. We also want to mention that Rakocevi¢ and Wimmer [85] proved a
min-max characterization of the principal angles, namely,

cos @ = n}jinmxejl/xl(x,yﬂ G=1,...,m),

the minimum over all subspaces U C L of dimension j — 1 and the maximum overx € L N Ul,y €N,
IxIl =1, llyl = 1.

3. Some simple consequences

In a sense, Theorem 1.2 does for geometry involving two subspaces or operator theory connected
with two orthogonal projections the same as analytical geometry does for Euclidean geometry: after
expressing everything in terms of the operator H (the “coordinates”), we are left with more or less
straightforward computations. It is the purpose of this section to demonstrate this strategy by several
concrete problems.

Suppose P and Q are orthogonal projections on  with the ranges L and N, respectively. Let f (p, q)
be a polynomial in two non-commuting variables p and q of the form

f(®.q) = foo + fub + f21pq + f31pqp + fa1pqpq + fs1pqpgp + - - -
+ f129 + f229p + f32qpq + fa2qpqp + fs2qpqpq + - - - (26)

Then

F(P,Q) = fool + fi1P + f21PQ + f31PQP + f41PQPQ + f51PQPQP + - - -
+f12Q + f22QP + f32QPQ + f42QPQP + f52QPQPQ + - - -

and Theorem 1.2 shows that f (P, Q) may be written as

(0to, o1, 10, t11) B U™ (z?gggg 22(1): EZ%) . (27)

The operator (oo, o1, @10, ®11) is invertible on Moo ® Mg1 & Mo ® My if and only if oy # 0 for
M, # {0}, and the norm of this operator is max |k |, the maximum over the (j, k) with My, # {0}.

Since the operators ¢jx(H) commute, the matrix in (27) is invertible if and only if so is its operator
determinant

doolH)  oor(H)) _
pec (00000 010 ) = oo () () — gon (D)o,

which is in turn equivalent to the condition

®oo(x)  @o1(x)
det ((pm(X) (pu(x)) # 0 forallx € o (H).

In this way one can compute the spectrum of f(P,Q). One can also determine the spectrum of
f(P,Q)f(P,Q)* and thus the singular values and in particular the norm of f (P, Q).

To exclude the permanent distinction between the cases My = {0} and My # {0}, we make the
following convention. If My # {0}, we denote by min o (H) the minimum of the set o (H), while in
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the case My = {0} (where H is not defined), we define mino (H) := 1. With this convention,
mino (H) > 0if and only if My = {0} or if My # {0} and H is invertible.

Example 3.1 (Duncan and Taylor). We have |P + Q|| = 1 + ||PQ|| unlessP = Q = 0.

To see this, suppose first that Mg = {0}.ThenP = (1,1,0,0) andQ = (1,0,1,0) and thusP 4+ Q =
(2,1,1,0) and PQ = (1,0,0,0). This implies that |[P + Q| =1+ |[|PQ|| = 2 if LN N # {0}. So let
LN N = {0}. Then PQ is the zero operator and hence 1 + |PQ|| = 1.IfL N Nt and L+ N N would be
{0}, then P and Q would be the zero operators, which case is excluded. Therefore one of the spaces
L NNt and Lt N Nis nontrivial, which gives ||P + Q|| = 1. This completes the proofin the case where
M, = {0}.

Assume My # {0}. Then P and Q may be written as in Theorem 1.2. It follows that

(o) poy =rpar = 1000 0 U ('3 D). (28)

since [|PQ||* = [[(PQ)(PQ)*|| and ||I — H]| <1, we get
1 if LNN # {0},
IPQll = { IT—H[ ifLNN={0}.
On the other hand, from (24) we see that the norm of the selfadjoint operator P + Q is
if LN N £ {0},

2
P+l = {1 +/1T—minoc(H) ifLNN={0}.

As, obviously, ||| — H|| = 1 — min o (H), this completes the proof.
The equality of this example was first established by Duncan and Taylor [39]. An algebraic proof of
itis in Vidav’s paper [103].

Example 3.2 (Closedness of the sum of two subspaces). The sum L + N of two closed subspaces of H is
closed if and only if min o (H) > 0. In different but equivalent terms, this was stated without proof by
Krein, Krasnoselski, and Milman in [72]. A full proof was first published by Ljance [76]. Here is a proof
that is based on Theorem 1.2. The first part of this proof, until the equality L + N = Ran (P + Q)l/z,
is due to Anderson and Schreiber [4].

The assertion is trivial if My = {0}, in which case

L+N=(LNN)®LNNY @ L*NN).
So suppose My # {0}. On H & H, let

A::(S _OQ> andhenceAA*:(P—gQ 8)

It is well known that RanA = Ran (AA*)]/ 2 for every Hilbert space operator A. Since
RanA = (RanP 4+ RanQ) & {0}, Ran (AA*)"/?2 =Ran (P + Q)'/? & {0},
we conclude that
L+ N =RanP +RanQ = Ran (P + Q)%

Consequently, L + N is closed if and only if (P + Q)'/? has closed range. But the range of an arbitrary
Hilbert space operator B is closed if and only if

o (BB*) C {0} U [¢%, 00) (29)
for some ¢ > 0 (see, e.g.[20, Theorem 4.21]). WithB = (P + Q)l/z, we deduce from Theorem 1.2 that
BB*=B"=P+Q=(21106U ( W H)U
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and thus
o(BB*) = 0((2,1,1,0)) Uo ((2";'{ LV)) (30)

The spectrum of (2, 1, 1,0) is contained in {0, 1, 2}, and formula (23) implies that the spectrum of the
matrix in (30)is {1 £ /1 —x:x € o(H)}. If mino (H) > 0, this set is bounded away from zero and
thus (29) holds. However, if min o (H) = 0, then 0 is a cluster point of H (since it isn’t an eigenvalue)
and therefore (29) cannot be true. This completes the proof.

Example 3.3 (The minimal angle between two subspaces). Suppose L # {0} and N # {0}, or equiv-
alently, P # 0 and Q # 0. The minimal angle iy (L, N) between L and N is the angle in [0, v /2] that
is given by

sinOmin(L,N) := inf dist(x, N) = inf 1 — ||Qx||2.
min (L, N) vl =1 (x,N) xeL,||x||=1\/ [lQx||

This definition goes back to Dixmier [35]. An argument we employed to prove Proposition 1.6 shows
that

sin? Omin(LN) = 1 — QP[> = 1 — |PQ|I* = sin” Omin (N, L). (31)
In Example 3.1 we observed that
, 1 if LNN # {0},
IPQll® = !1 —mino(H) ifLON = {0}
Consequently,
1-IPQJ* = {(r)nina(H) ﬁ Rﬁ 7 }8{’.
Now let dim % = n < oo and put dim(L N N) = ¢, dim My = r. From (28) we get
o ((PQ)(PQ)*) = 0((1,0,0,0)) U o (diag (I — H, 0)).

Thus, PQ has £ times the singular value 1, n — £ — r times the singular value 0, and the remaining r
singular values are /1 — uj =cos¢; j=1,...,r).

Example 3.4 (Ljance’s formula). Let /7 be a skew projection and suppose IT # 0 and IT = I. Put
L=RanIl, N = Ker IT and P = P}, Q = Py. By Proposition 1.6, ||PQ|| < 1. Example 3.3 therefore
reveals that sin Oin (L, N) > 0 and min o (H) > 0. Ljance [76] showed that

1 1

IT|| = = = .
Il Sin Omin (L, N) \/1 — IPQ |12 /mino (H)

This follows easily from Corollary 1.7. Indeed, assume first that My #* {0}. Then the corollary gives
I —H'w I 0
OIT* =1y ®U* (0 0 ) <_H_1W 0) u

HT o
=ly. ®U* ( 0 0) u.

The norm of I}~y is at most 1 and |H='|| = 1/ mino (H) > 1. Thus || /7]|> = 1/ min o (H). On the
other hand, if My = {0}, then L N N+ = L = {0} and hence IT [T* = II;~AnL]l = 1. As we made the
convention to put min o (H) = 1 in the case My = {0}, we get again ||[T]|?> = 1/ min o (H).

Since Ran (I — IT) = N and Ker (I — P) = L, Ljance’s formula applied to I — I7 yields || — 7> =
1/(1 — ||QP||?). From (31) we therefore obtain that || /7| = ||I — I7||. We will say more about this
identity in Example 5.8.
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In the case where || - || is an arbitrary unitarily invariant matrix norm in C" with a symmetric gauge
function, the norm || I7|| is computed in [45, Proposition 2.55].

Example 3.5 (The maximal angle between two subspaces). Again suppose L # {0} and N # {0}.The
maximal angle Oax (L, N) between L and N of H was introduced in [72] and is defined as the angle in
[0, /2] given by

$inOmax (L,N) = sup dist(x, N) = sup +/1— [Qx|2.

xeL,||x]|=1 x€L,||x]|=1
We have
sinfmax(LN) = sup  [[I—Q)x|[ = sup [[(I —Q)x|l
xeL,||x[|=1 xeL,|lx|| <1
= sup [[U—Q)Pull = || —Q)P|=|P—QP|l =P —PQ].
ueH,|jull <1

Using Theorem 1.2 one can show as in the previous examples that
IP — PQ|I> = max([|(0,1,0,0)|, [IH]})
and that, analogously,
sinOmax(N,1) = [[Q — PQ|l, |Q — PQ|I* = max(]|(0,0,1,0)||, [H]).
In the same vein,
IP = Q|I> = max([|(0,1,1,0) |, [IHI}).
(In these formulas, |H|| is absent if My = {0}.) Consequently,

max (sin Omax (L, N), sin Omax (N, L)) = ||P — Q]|. (32)

Example 3.6 (Complementary subspaces). Two closed subspaces L and N of ‘H are complementary if
and only if L NN = {0}, L+ N N+ = {0}, and min o (H) > 0. The “only if’ part follows from Corollary
1.7 and the “if” portion is an immediate consequence of Example 3.2.

The following was shown by Ipsen and Meyer [61] for dim H < oo using different methods and
independently by Buckholtz [23] for general #, also without employing Halmos’ two projections
theorem.

Two closed subspaces L and N of H are complementary if and only if P — Q is invertible. In that case the
norm of the projection I1 of H onto L parallel to N is given by

Il = I —-Q7 .

Using Theorem 1.2, this can be shown as follows. We have

P—-Q=(01,—-1,0) & U* <—7/v __‘QI/>U (33)

and hence P — Q is invertible if and only if L N N = {0}, L N N+ = {0}, and

H W
Det (—W —H) =—H

is invertible. The last requirement is equivalent to saying that min o (H) > 0. This proves the first part
of the assertion. The norm equality is trivial for My = {0}. So assume My # {0}.If P — Q is invertible,
we get from (33) that

1 « I —H™'w
P-Q) '=(0,1,-1,000U (_le L )U (34)
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and since

I—A  —H'W\ _ ., .
Det(_H1W _I_M>_A1—H ,

the norm of the selfadjoint operator matrix on the right of (34) is

1
max{|A| : A2 e o (H )} = T
Because mino (H) < 1, we obtain that
1P = max(n(o,l,—l.mn. _ ) S —
Vmino(H)/  /mino (H)
which in conjunction with Example 3.4 yields the equality || I7]| = ||[(P — Q)™ ']

Example 3.7 (The gap between two subspaces). The number (32) is referred to as the gap between
L and N and will be denoted by §(L, N). This notion was introduced by Krein and Krasnoselski in [71].
Letting 6 (L, N) := ||P, — Py|| we may extend the definition of § (L, N) also to the case where one of
the spaces L and N is trivial. Obviously, é is a metric on the set of all closed subspaces of .

If§(L,N) < 1, then P and Q are unitarily equivalent and, in particular, dim L = dim N.

This was established independently by Sz-Nagy [99], Krein, Krasnoselski, and Milman [72], and Kato
[63] (seealso[65,1.§4.Section6and I. § 6. Section 8]). Proofs are also in the books [45,51]. A proof based
on Theorem 1.2 is as follows. We have representation (33) for P — Q, and if §(L,N) = ||[P — Q|| < 1,
then 1 and —1in (0, 1, —1, 0) must be absent (which happens if and only if L " N+ = L+ NN = {0}).

Put
v=(1,1,1,1)@u*(‘i/_ﬁH \;I_il-;)u

It can be checked straightforwardly that V is unitary and that Q = VPV* (note that (1,1,0,0) =
(1,0,1,0)). From (25) we infer that N = VL. This completes the proof.
Here is a simple application of the concepts of the gap and the minimal angle.

Supposedim H < ooandletL # {0} andN = {0} be complementary subspaces of H.If N’ is a subspace
of H such that

8(N,N") < sinOmin(L,N),
then L and N’ are also complementary.

This is a special case of a result by Berkson [16]. See also [51, Theorem 13.1.3]. The following simple
proof is from Schumacher’s paper [92]. Let §(N,N’) < 1. We have just shown that then N and N” have
the same dimension. It therefore suffices to prove that L N N’ = {0}. Assume the contrary, that is,

assume there is azg € L N N" with ||zg|| = 1. We then obtain
sin Opin (L, N) = sinOyin (N, L) = inf  inf ||x — z||
XxeN,||x||=1 zeL
< inf  |lx —zo|| < sup inf |lx —z|
XeN,||x||l=1 zeN' ||z||=1 XeN,||x||l=1

< sup inf ||x — z|| = sinOmax (N, N) <8(N',N) = §(N,N),

zeN',||z|=1 X€N

which is a contradiction.

The previous result is of interest in connection with controller robustness, for example. Schumacher
[92] associates a family L(s) and N(s) (s in the closed right half-plane) of subspaces with a system R and
the controller Q. The feedback loop (R, Q) turns out to be stable and well-posed if and only if all pairs
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(L(s), N(s)) are complementary and a certain matrix function has no zeros. Considering a perturbation
R’ of the system, the question whether the feed-back loop (R’, Q) is still stable and well-posed includes
the problem of whether all pairs (L' (s), N(s)) remain complementary. From what was shown above,
we know that this can be guaranteed if § (L' (s), L(s)) < sin 8pmin(L(s), N(s)) for all s.

In the above proof, we basically showed that if §(N,N’) < sinOmin(L, N), then dim(LNN") < 1.
Let m = min(dim L, dim N) and define the principal angles 0 < ¢1 < - - - < ¢y <7/2 as in Remark 2.6.
wWimmer [107] showed that if 1 <k <mand §(N,N’) < sin ¢y, then dim(L N N’) < k. He also proved
that this is no longer true with sin ¢y replaced by a smaller number.

Example 3.8 (The spherical gap between two subspaces). Given a closed subspace K # {0} of #, we
denote by Sk the unit sphere of K, that is, Sx = {y € K : |ly]| = 1}.Ifx € H, then

dist(x, Sk) =/ IX]12 + 1 — 2[[Pex]]. (35)
Indeed, this is obvious for x € K-, while if x ¢ K+, we have, for every y € Sk,
Ix —ylI? = x> + 1 — 2Re (x,y) = [Ix[|* + 1 — 2 Re (Pxx,y) > [IX||* + 1 — 2 || Px]|

and equality is attained if and only if y = Pgx/||Pxx]|.
Now let L #* {0} and N # {0} be two closed subspaces of . Recall that the gap between L and N is
the number

S§(L,N) = max (sup dist(x, N), sup dist(y, L)) . (36)
X€ESL YESN
The spherical gap between L and N was introduced by Gohberg and Markus [52] and is defined by
8(L,N) = max (sup dist(x, Sy), sup dist(y, SL)) . (37)
XeS YESN

The connection between (36) and (37) is

S(L,N) :\/2—2,/1 — 8(L,N)2. (38)

To see this, note that ||Pyx|| = /1 — dist(x, N)2 forx € S;, which in conjunction with (35) implies that

dist(x,Sy) = /2 — 2||Pnx|| = \/2 — 24/1 — dist(x,N)2. (39)

Since sup{dist(x, N)? : x € S;} = sin® Bmax (L, N) by definition, equality (39) immediately gives

sup dist(x,Sy) = \/2 — 2\/1 — sin? Bax (L, N).
XxeSy

Switching the roles of L and N we obtain

sup dist(y,S;) = \/2 — 2\/1 — sin? Bpax (N, L).
YESN

Inserting the last two equalities in (37) and taking into account that the gap is defined by (32) we
arrive at (38).

Why do we need the spherical gap? It turns out that both (36) and (37) are metrics on the set of all
closed subspaces of a Hilbert space, but that (36) is in general no longer a metric on the set of all closed
subspaces of a Banach space (because the triangle inequality need not hold), whereas (37) remains a
metric in the Banach space setting; see [51,52,65, IV. § 2. Section 1]). Note that in order to speak of
metrics, we have to extend (36) and (37) to the case where L = {0} or N = {0}. For the gap (36), this
was done in Example 3.7 via the equality 6 (L, N) = ||P. — Pn||, which is equivalent to letting

8(L{0}) =8({0},N) =1 (L {0}, N # {0}), &({0},{0}) = 0.
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In the case of the spherical gap one may put

8(L,{0}) = 8({0},N) = 8 (L # {0},N # {0}), &({0},{0}) =0,

where § is any positive real number.

Formula (38) was proved by Nakamoto [78] under the assumption that L and N are graphs of
operators A and B in B(#). This proof is based on explicit expressions of § (L, N) (derived in [77]) and
S(L,N) (obtained in [78]) in terms of A and B. We have not seen (38) for general closed subspaces L
and N in the literature.

Example 3.9 (von Neumann’s formula). Consider the orthogonal projection P;~y of 7 onto L N N.
Evidently,

PLmN:(],0,0,0)@U* 0 0 U.
0 0
On the other hand, von Neumann'’s formula [105] says that
— i n
PNV = nlLHgO(PQ) v foreveryv € H.
Theorem 1.2 implies that

n n—1
(PQ)" = (1,0,0,0) @ U* (IB K 0 W> U,

with K = I — H. Since K is selfadjoint with o (K) C [0, 1] and 1 not in the point spectrum, the powers
K™ converge strongly (= pointwise) to zero. This follows easily from the spectral decomposition of K. A
proof avoiding the spectral decomposition is due to Prager [84] and can also be found in [45, Theorem
7.119]. Von Neumann'’s formula is clearly a straightforward consequence of the fact that K™ converges
strongly to zero. Inserting the above representations in (P.ny — (PQ)™) (Prav — (PQ)™)™ we get

K> 0 -
P = 012 = | (g ) =

Thus, if max o (K) = 1 — mino (H) < 1 (which is always the case for dim % < oc0), then the norm
IP.any — (PQ)™|| goes to zero exponentially fast. This was probably first observed by Aronszajn [5]. We
refer to the papers [31,32] and the book [33] by Deutsch and to Galantai's book [45] for more on this
issue.

Notice also that if P and Q commute, then (PQ)™ = PQ coincides with Py foralln > 1.

Example 3.10 (The Friedrichs angle between two subspaces). The Friedrichs angle between L and N,
introduced in [44], is the angle 6 (L, N) € [0, /2] whose cosine is

sup{l(x, Y| :x e LN A NNy e NOLNAN)E x| =1, llyl = 1}.

It is easily seen that this is equal to

sup{|(P.arnyL U Pyt V| s w v € K, [lull < 1, vl < 1} = IPagany L Pyaean L I-
We obviously have

Pow = (100,00 U (3 g)u. 1= 11D@U (5 T)u

I 0
Puonyt =1 =Py =(0,1,1,1) @ U* (0 1) uU.
This implies that P = P and Q = Py commute with Py 1 and that therefore

I 0
Piraow: = PPy = 0.1.0,0@U" (g 0)u.
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I—H W
Pynannyt = PnPganyt = (0,0,1,0) & U* ( w H) u,
which gives
I—H W
Pinaomy-Pynaony: = (0,0,0,0) © U* ( 0 0) u. (40)
Computing PQ — P;ny we obtain the same right-hand side as in (40). This proves that

cosOp(LN) = [[PQ — Piewll = /Il = HIl = /1 — mino 1),
again with the convention to put mino (H) = 1 and ||l — H|| = 0if My = {0}.

Example 3.11 (Approximating the projection onto the sum of two subspaces). Let L and N be two
closed subspaces of H and suppose that L N N # {0} and that L + N is also closed. Put P = P; and
Q = Py. One is interested in the best approximation of the orthogonal projection P 4y by a linear
combination of the orthogonal projections P, Q, and P;~y. In [58] (and also in [37]) it is shown that if
o, B,y € C, then

leP + BQ + yPirn — Prynll > cos O (L, N)

and that equality is achieved fora¢ = 8 = 1and y = —1. The inequality can be shown as follows. As
cos O (L,N) = 0if My = {0}, we may assume that My # {0}. Since
Piv = (1,0,0,0) & U* (8 8) U, Pyy=(1,1,10) ®U* (é (I)) U,

the operator «P + 8Q + yPirn — Pryn is
+B8—1)I— BH w
(a+ﬁ—1,a—1,ﬁ—1,0)€9u*<(a p=DI=p p )U

W BH —1

The norm of the 2 x 2 matrix is

(a +B8—1—pBx B/x( —x))
B/x(1 —x) Bx—1

Decomposing « and f into real and imaginary parts, we get A(x) = B(x) + iC(x) with real symmetric
matrices B(x) and C(x). It follows that ||A(x)|| > ||B(x)||. We may therefore assume from the beginning
that o and § are real and that, consequently, A(x) is a real symmetric matrix. The eigenvalues of A(x) are

a+p—2£/(@— B2 +4ap(1 -
2

and the maximum of [A; (x)]? and [12(x)]? equals

(@ + B —22+2a + B — 2| (@ — )* + 40p(1 — ) + (@ — p)* + 4aB(1 —x)
2 :

Itis quite elementary to show that this is never smaller than 1 — x, the only “critical” case being > 0,
B > 0, 4+ B < 2, where, however, the estimate

max =: max [AX)].
xeo (H) xeo (H)

Ap(x) =

. 4aBx
J@—B)? +4aB(1 —x) = /(@ + B)? — dapx>(e + ) (1 ~ @t pe /3)2>

leads to the desired result. In summary,
max [|A(x)|| > max +/1 —x =,/1 —mino (H)
xeo (H) x€a (H)

and from Example 3.10 we know that 1 — min o (H) = cos? 6 (L, N).
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Example 3.12 (The Feldman-Krupnik-Markus formulas). Let /7 be a skew projection and suppose
IT #0and IT # I.PutL = RanIl, N = Ker IT and P = P;, Q = Py. In [40], Feldman, Krupnik, and
Markus computed the norms ||f (I7, IT*)|| for various polynomials f in terms of the norm of only I7.
The simplest of their formulas says that if o, 8 € C, then

et + 50— Ml = "S5, e = (e £ B2 + o — FRATIE = 1),

One of the proofs goes as follows. The case My = {0} is trivial. So let My # {0}. By Corollary 1.7,

I —Hlw

0 H'w
0 0 )U’

n:]LmNJ_@U*< 0 i

)U, I—H:ILLQNEBU*(
whence

-1
all + B —IT) = aljqy + Bl © U* <O([)I “- O/lg)IH W> uU.

It follows that («IT + B(I — IT))(aI1 + B(I — IT))* equals

2 _alPx? BB —
eI+ 1B 70tl Xo BB za)X> U (a1)
BB —a)X 18171

|2l ne @ 1812 LAy © U* (
with X := H~'W. Since

Det (|a|21 + |€— al’X> = BB — a)X)

B(B — @)X |BI*1 — Al
= 21— Ao + B + la — BIPX®) + la P BI°1,

the norm of the 2 x 2 matrix in (41) is

max{|A| : A2 — A(je|® + |B1? + |o — BI*x?) + |«|?|B|? = O for some x € o (H)}.
This is

lee|? + 1BI” + | — BI?x5 + \/(IOtI2 + B2+ la — BI12x5)? — 4l 2| B2

2

with xg = max o (X). The identity

2
b+ve (Vb4 —ctyb— VB —c
B 2

2

therefore shows that the norm of the 2 x 2 matrix in (41) equals

1 2
g(xo) := 1 (\/(Ial + 18D + lo — BI12x5 + \/(Ial —1BD* + la — ﬂl%) :
Clearly,
1 2 2 g2
g(x0) =2 " (lal + Bl + llal — [BID” = max(Ja|%, |B]).
Consequently, from (41) we see that |7 + S(I — IT)||? is

’ ) |,3|211_im1v ”2 ,g(xo)) = g(x0)-

max (H |oz|21mN¢)
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Finally, from Example 3.4 we know that

2 2 -1 1 2
Xp =maxo(X°) =maxoH  —-)= ——— —1=|I||* - 1.
min

o(H)

This completes the proof.

Example 3.13 (Unitary equivalence of skew projections). Due to Proposition 2.4 and Theorem 2.5,
one can decide whether two skew projections are unitarily equivalent by computing the principal
angles. As this requires the determination of eigenvalues, one is interested in “elementary verifiable”
criteria. One such criterion was given by Dokovic [36], who used Corollary 2.3 to prove that if I7; and
IT, are two projections on a finite-dimensional Hilbert space of dimension n, then I7; and IT, are
unitarily equivalent if and only if

tr [Ty = tr [, and tr (ITy IT}7Y = tr (I, [T} for 1<j<[n/2], (42)

where [n/2] denotes the integral part of n/2. With the help of Corollary 1.7, the proof is as follows.
It is clear that (42) is necessary for unitary equivalence. To prove the sufficiency, put L; = Ran IT;,
N; = Ker ITj, ki = dim(L; N N}) (i =1,2), and denote by r and r, the dimensions of the spaces My
on which the operators H; and H; act. From Corollary 1.7 we immediately see that tr [7; = k; + ;.
Thus, k1 + r1 = ky + 5. Since also k1 + 2r1 = nand ky + 2r, = n, it follows that k; = ky =: k and
ri = ry =: r. Corollary 1.7 also yields that

x «(H' 0
ILITT = ILile_l ®eU ( b 0) U,
that is, tr (Hini*)j =k+tr (Hfj). Consequently, tr (Hfj) =tr (H;j) for 1 <j<r. But if the r first
power sums of the r inverse eigenvalues of H; and H, coincide, then, by Newton’s identities, so do also
the symmetric functions and hence the characteristic polynomials. It follows that o (H;) = o (H),and
as Hy and H; are selfadjoint, this implies H; and H and thus also I7; and I1, are unitarily equivalent.

Example 3.14 (Unitary equivalence of pairs of orthogonal projections). Again suppose thatdim + =
n < oo and let Py, Py, Q1, Q; be orthogonal projections on H. In [2], Al'pin and Ikramov showed that
the pairs (P1, Q1) and (P,, Q) are unitarily equivalent if and only if one of the following two equivalent
conditions is satisfied:

(i) tr Py = tr P, tr Q; = tr Q2, P1Qq and P,Q, have the same singular values,
(ii) trPy =tr Py, trQ; = tr Qy, tr (P1Q1Y = tr (P,Q)Y for1<j<n.

The necessity of the conditions is clear. Let us prove their sufficiency. For i = 1, 2, we put

¢ = dim(L; NNy, Kk = dim(L; N N),
¢t =dim(L NNy, k- = dim@ NN

1

and denote by r; the dimension of the space My associated with the operator H;. Assume first that (i)
holds. Using Theorem 1.2 to represent (P;Q;) (P;Q;)* we obtain that P;Q; has ¢; times the singular value
1,n — £; — r; times the singular value 0, and that the remaining r; singular values are 1 — o (H;). Thus,
l1 =40y =:¢,r1 =1, =:1,ando (Hy) = o (Hy),implying that H; and H, are unitarily equivalent. The
equalities tr Py = tr P, and tr Q; = tr Q, yield that k; = k, =: k and Ef‘ = Zj- =: ¢t respectively.
Since £ + k + €+ + ki + 2r = n, we finally obtain that k;- = k;-. This proves the desired unitary
equivalence. Now assume (ii) is valid. From Theorem 1.2 it is readily seen that

tr (PiQiY = € + tr (I — HY = tr (PP = tr (PiQ) (PiQ)*Y

Thus, for 1 <j < n, the traces of ((P;Q;)(PiQ;)*) coincide, which via Newton implies that the singular
values of P;Q; are the same. We therefore arrive at condition (ii).
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4. The C*-algebra generated by two orthogonal projections

Let P and Q be two bounded orthogonal projection on H with the ranges L and N, respectively. We
denote by C*(P, Q) the smallest closed subalgebra of B(#) which contains I, P, Q. Since P and Q are
selfadjoint, C*(P, Q) is a C*-algebra. Note that alternatively we may define C*(P, Q) as the closure in
B(H) of the set {f (P, Q)} where f ranges over all polynomials of the form (26). If dim H < oo, we need
not pass to the closure, because then C*(P, Q) is simply the set of all polynomials f (P, Q).

If My = {0}, then C*(P,Q) is the set of all operators (cgo, @01, @10, @11) With ajx € C and thus
isometrically isomorphic to the C*-algebra of all complex diagonal matrices of order |A| < 4. The
following theorem is essentially due to Pedersen [81]. It was independently established (in exactly the
form it is cited here) in [102].

Theorem 4.1. Let My # {0}. Then C*(P, Q) consists exactly of the operators of the form
®oo(H)  @o1(H) )

U, 43
e1o(H) @1 (H) (43)

where ©go, ©o1, P10, P11 are arbitrary continuous complex-valued functions on o (H) satisfying the follow-
ing additional constraints:

A = (@0, @01, 10, 011) B U* <

if0 € o (H) then ¢01(0) = ¢10(0) =0,
if0 € o (H) and Moo # {0} then ¢o0(0) = apo,
if0 € o(H) and My # {0} then ¢11(0) = a1,
if1 € o (H) then ¢o1(1) = ¢10(1) =0,
if1 € o(H) and M1 # {0} then oo(1) = aon,
if1 € o (H) and M1y # {0} then ¢11 (1) = aqp.

Example 4.2. The projection P~y belongs to C*(P, Q) if and only if one of the following conditions is
satisfied:

(@) LNN = {0},
(b) LNN)® (LONT) =1L,
(© (LNN)& (LNNL) # L and H is invertible.
This can be seen as follows. If (a) holds then P,ny = 0 € C*(P, Q). If (b) is valid, we have My = {0}
and hence
Pinv = (1,0,0,0) = (1,1,0,0) - (1,0,1,0) = PQ € C*(P,Q).

In case (c) is true, Theorem 4.1 shows that
P~y = (1,0,0,0) @ U* (g 8) U (44)

is in C*(P, Q). Conversely, assume P;~y belongs to C*(P, Q) but neither (a) nor (b) are in force. Then
Moo # {0} and My # {0}. We have again (44), and if H would not be invertible, 0 € o (H), Theorem
4.1 would imply that 1 = aggp = ¢go(0) = 0, which is impossible. Thus, H must be invertible and
therefore (¢) must be true.

Since C*(P, Q) is a C*-subalgebra of B(#), the invertibility of an operator A € C*(P, Q) in B(H) is
equivalent to its invertibility in C*(P, Q). For A of the form (43), we define

_ (poo(®)  @o1(x)
Pa) = (‘ﬂlo(X) o1 (x) > x € o (H).

Proposition 4.3. An operator A in the C*-algebra C*(P, Q) of the form (43) is invertible if and only if
det @4(x) # 0 for allx € o (H) and ajx # 0 whenever My, # {0}.
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This follows from the fact that @4 (H) is invertible if and only if so is its operator determinant
(note that the entries of @4 (H) commute), which in turn happens if and only if det @4(x) # 0 for all
x € o (H).

Our next concern is to rephrase Proposition 4.3 in a language that avoids the use of H. This language
will allow us to pass from invertibility criteriain C* (P, Q) to the description of the C*-algebra generated
by two selfadjoint idempotents (Theorems 4.6 and 4.7) and afterwards even to an invertibility criterion
in the Banach algebra generated by two arbitrary idempotents (Section 6). The following example is a
first step towards this objective. It reveals that the spectrum of the operator P 4+ 2Q is able to distinguish
the nontrivial subspaces among Mij.

Example 4.4. We have

0€o(P+2Q) & My # {0} or0 € o(H),
1e0(P+2Q) &= My # {0}or1 € o(H),
2€0(P+2Q) < My # {0}or1 € o(H),
3e€0(P+2Q) < My # {0} or 0 € o (H).

Indeed, from Theorem 1.2 we obtain that
_ «( 31—2H 2/HI — H)
P+2Q=3,1,2,00U (2 HT—H) 2l U
and since

3—2x—A 2vx(0—x)\ _, 2
dEt(Z«/x(]—x) 2% — A =2 =3A +2%

the assertion is almost immediate from Proposition 4.3.

Example 4.5. Put

t=(P—-Q)7? s=PQ+ (I—P)I—Q)I—P).
Once again by Theorem 1.2,

r=(0,1,1,0)@u*(g 1(-)1>U' s=(1,0,0,1)@u*<’_0H I_OH>U
and hence

o(t) =0((0,1,1,0)) Uo (H), o(s) =0((1,0,0,1)) U (1 — o (H)).

We may therefore replace o (H) \ {0, 1} (which equals o (H) if dimH < co)by o (¢t) \ {0,1} or (1 —
o (s)) \ {0,1} and thus by the spectra of objects that no longer involve H explicitly. For example, the
condition det @4(x) # 0 forx € o (H) \ {0, 1} is equivalent to the condition

det ®4(x) #0 forallx € o(t) \ {0,1} (45)
and also equivalent to the condition
det 4(1 —x) 0 forallx € o(s) \ {0,1}. (46)

The operator H has disappeared in (45) and (46). Finally, since 0 and 1 cannot be isolated points of
o (H) (as otherwise they were eigenvalues), we arrive at the conclusion that 0 € 0 (H) <= 0 is a
cluster point of o (t) <= 1 is a cluster point of o (s). Analogously, 1 € o (H) <> 1 is a cluster point
of o (t) <= 0is a cluster point of o (s). Note that a point z € Cis referred to as a cluster point of a set
E C Cifforevery e > Othedisk {¢ € C: | — z| < ¢} contains infinitely many points of E.

We now pass to abstract C*-algebras. Suppose A is a complex C*-algebra with unit element e
and p, q € A are two selfadjoint idempotents, p> = p = p* and ¢* = q = q*. We define C*(p, q) as
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the smallest closed subalgebra of .4 which contains e, p, q. Since C*(p, q) is a C*-subalgebra of A, the
spectrum of an element a € C*(p, q) in C*(p, q) is the same as the spectrum in .A. We therefore simply
write o (a) for the spectrum of a. Put t = (p — q)2.

Theorem 4.6.

(a) The spectrum o (t) is a subset of [0, 1].
(b) For each point x € o (t) \ {0,1} the map Fy : {e,p,q} — C>*2 given by

ro=(y 7). Bo1=(5 o). Fx(q>=(\/% V"“x_")),

where 4/x(1 — x) denotes the positive square root of x(1 — x), extends to a continuous C*-algebra
homomorphism of C*(p, q) to C**2.
(c) Foreach A € o (p + 2q) N {0,1,2,3} the map G, : {e,p,q} — Cgiven by G, (e) = 1 and

Go(p) =0, Go(q) =0, Gi(p) =1, Gi(g) =0,
Ga(p) =0, G(@) =1, G3(p) =0, Gs3(q) =1
extends to a continuous algebra homomorphism of C*(p, q) to C.

(d) An element a € C*(p,q) is invertible if and only if det Fy(A) # 0 for all x € o (t) \ {0,1} and
Gr(a) #0forallk € o(p+2q) N{0,1,2,3}.

Using the Gelfand-Naimark theorem, one can derive this theorem from Theorem 4.1, Proposition
4.3, and Examples 4.4 and 4.5.

Given a set K C C with the usual topology, we let C(K) and C2*?(K) be the C*-algebra of all
continuous functions f : K — C and f : K — €2*2, respectively. For a subset M of K, we denote by
C,%/,XZ(K) the C*-subalgebra of the C*-algebra C2*2(K) that consists of all matrix functions in C2*%(K)

which are diagonal matrices at the points of M.
Theorem 4.7. The C*-algebra C*(p, q) is (isometrically) isomorphic to
%o\ {0,1) ® C(o (P +29) N {0,1,2,3})
if neither O nor 1 is a cluster point of o (t), to
Ci2 e\ 1) @ Co(p+29) N {1,2})
if 0 is a cluster point of o (t) but 1 is not, to
2 (e () \ {0}) & C(o (p + 29) N {0,3})
if 1 is a cluster point of o (t) but 0 is not, and to
Cioh (o ()

if both 0 and 1 are cluster points of o (t). The C*-algebra isomorphism is the corresponding restriction of
the map ¥ = ¥, @ ¥, given by

Fx(a) ifx e o(t)\{0,1},
(¥2(a))(x) = {diag (G3(a),Go(a)) ifx =0,
diag (G1(a),G2(a)) ifx=1
and

W1 (a)(A) =Gyp(a) ifAeo(p+29 N{01,23}.
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Theorems 4.6 and 4.7 are essentially already in [81,102]. In the form they are stated here, we learned
them from [74]. Full proofs are also contained in [91]. Here is a simple application of Theorem 4.7 to a
linear algebra problem.

Corollary 4.8. Suppose dimH < oo. Then dim C*(P,Q) = 4d + n where d is the number of distinct
principal angles among 61, . ..,0, and n is the number of nontrivial subspaces among LN N, L N N,
LY AN, Lt NNL

Indeed, if dim H < oo, then o (t) is a finite subset of [0, 1] and hence Theorem 4.7 implies that
C*(P, Q) is isomorphic to
22 (a(t) \ {0,1}) ® C(o (P +2Q) N {0,1,2,3}).
We know from (21) and Example 4.4 that
o®\{0,1} =oH)\{0,1} = o (H) = {u1,..., ur}-
Thus, o (t) \ {0, 1} contains exactly d distinct points and hence dim 22 (o (t) \ {0,1}) = 4d. Since 0
and 1 are not in o (H), Example 4.4 tells us that
0€0(P+2Q) < My; £{0}, 1€ o(P+2Q) < My # {0},
2€0(P+2Q) < My # {0}, 3€0(P+2Q) <= My # {0}

This shows that dim C(o' (P + 2Q) N {0,1,2,3}) = 0.
5. The C*-algebra generated by one skew projection

Let IT € B(H) be a projection, I[7? = IT. As the cases IT = 0 and IT = I are trivial, we assume
throughout this section that I7 # 0 and IT # I. (Note that, for example, the equality || IT|| = || — IT||
is true if and only if IT ¢ {0,1}.) We put L = RanI1, N = Ker I1, P = P;, Q = Py. Note that L and N
are complementary closed subspaces and that in particular L ' N = L N N+ = {0}. By Corollary 1.7,
the operator H is invertible if My # {0}. We denote by C*(IT) the smallest closed subalgebra of B(*)
which contains I, IT, IT*. Equivalently, C*(IT) is the smallest C*-subalgebra of B(7) which contains I
and I1. Clearly, C* (IT) coincides with the closure in B(*) of the set of all polynomials f (17, IT*) where
fis as in (26). If dimH < 00, the set of these polynomials is already closed and hence is C*(IT). The
following theorem is from [95] (and was also discovered in [74]).

Theorem 5.1. We have C*(IT) = C*(P, Q).
This can be seen as follows. Proposition 1.6 implies that C*(/T) C C*(P, Q). To get equality, we

must show that P and Q are in C*(I7T). By Corollary 1.7,

TS
I H W)U.

=Ly ®U* (0 0

The operator

H 0
"= Iy ® U* <—W O)U

is readily seen to satisfy
nnn=n nno=n" (oY =nn', (a'm*=n'n

and hence to be the Moore-Penrose inverse of I1. But if an operator in a C*-subalgebra of
B(H) is Moore-Penrose invertible, then the Moore-Penrose inverse automatically belongs to the
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C*-subalgebra (see, for example, [20, Corollary 4.22]). Thus, ntect (IT). 1t follows that P = IT mtis
also in C*(I7). Analogously, Q = (I — IT)(I — IT)T € C*(IT).

Corollary 5.2 (Dokovi¢). If dim H < oo, then dim C*(IT) = 4d + & where d is the number of distinct
principal angles among 1, . . ., 6, and & is the number of nontrivial subspaces among L N N+ and L+ N N.

This follows from Theorem 5.1 and Corollary 4.8. In [36], Dokovi¢ proved Corollary 5.2 in a straight-
forward way, using Corollary 2.3. (Note that the algebra considered in [36] is the algebra generated by
solely IT and IT*, that is, I is not included in the generating elements. Therefore the ¢ in [36] is 1 if
Lt NN # {0} and 0if L- NN = {0}.)

Theorem 5.1 in conjunction with Corollary 1.7 and Proposition 4.3 allows us to study invertibility
and norms of operators in C*(IT). We already demonstrated this in Example 3.12. Here is another
result from [40] that can be derived in this way.

Example 5.3 (Feldman, Krupnik, Markus). If o, 8, y € C, then

ld + BIT + yIT*]| = —r“; res

where
r=lal?+la+ B+ v+ B+ lyDHAMTI>-1),
s=2la(@+B+y)—BrdlIlI* -1l

To tackle more complicated cases one has to employ more heavy machinery. Let f (p, q) be a polynomial
of the form (26). Put

172:<(1) 8) 17;:(% g) (z€0).

It is not difficult to verify that

o _ (An(zP) An(zPyz
Ul 11;) = (A21(|z|2)2 Az () )

where the Aj’s are polynomials in one variable. We then define
r(0) = An P + 142017 + (A® P + 142 (01,
$(x) = 2 |A11 (0)A22 (%) — x A1p(X)A1 (2],

V(x) = V) +s(x) -2F Vrx) — S(X);

note that, obviously, r(x) > s(x) for all x > 0.

Theorem 5.4 (Feldman, Krupnik, Markus).Ifdim # = 2orifyr : [0,00) — [0, 00) isnon-decreasing,
then

IF (T, | = w (T — ).
A proof is in [40]. The following examples are also from this paper.

Example 5.5. Let us do Example 5.3 using Theorem 5.4. Thus, f(p,q) = « + Bp + yq and hence

0 0
nn=(s e oot Y- %)
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An)=a+B+y, Apx =8 Axk =y, Ank =«a,
r() =la+ B+ v+ ol + (B> + ly1Hx,
s) =2|(x+ B+ y)a — Byx|,

V) +5(0) + Vrx) —s)
5 .

Y(x) =

One can show that v is non-decreasing. Theorem 5.4 is therefore applicable and the result coincides
with that of Example 5.3.

Example 5.6. We have
|17 IT*IT + IT*1T IT*|| = | T2+ ([T ),
|17 IT* 1T — IT*17 IT*)| = | [T)|1%/ 1T )12 — 1.

In the first case, f(p, q) = pqp + qpq,
20412 (1 + IZIZ)Z)
1+ 2z 0 '
An(x) =2(1+x), Ap() =1+x% A =1+% Axk =0,
r(x) = (44 2x)(1 + %72, s(x) =2x(1+x)%,
Y =1+x0+vV1+x)
and in the second case, f (p,q) = pqp — qpq,
0 1+ IZIZ)Z)
—(14 2z 0 '
An(x) =0, Ap(x) =1+x% Axnkx =—-1—x ApnkX) =0,
r(x) = 2x(1 +x)%, s(x) = 2x(1 +x)%, ¥ (x) = (1 +x)/x.

f(Uz,UZ*)=(

f(17z,17,§k)=(

In both cases the function ¥ is non-decreasing and Theorem 5.4 yields the asserted formulas.

Example 5.7. Let f(p,q) = (p — q)* + 1. Then

(L% = 1—z)? 0
JU) =1 1— |z?

and hence
An@) =1—=% Ap@) =0, An(X) =0, ApXx =1-—x,
r(x) = 2|1 —x%, sx) =2|1 —x>, ¥x) =]|1—x|.

The function 1 is not monotonous and the equality f (17, IT*) = v (] [7]|> — 1) is in general not true.
Indeed, taking

1 0 1
T={0 1 0]esc,
0 0 0

we get
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0 0 0 2 0 0
fa,my =0 1 o|, mm*=|(o 1 o],
0 0 0 0 0 0

which implies that [|f (17, IT*)|| = 1 although ||/T]| = ~/2, thatis, Y (J IT||> — 1) = ¥ (1) = 0.

Example 5.8. We already observed in Example 3.4 that ||[T|| = || — IT||. Clearly, Example 3.12 pro-
vides us with another proof of this equality. We refer the reader to Szyld’s article [101] for the history
and many more proofs of the identity || I7|| = || — IT]|. We learned in particular from [101] that the
identity was within a five-year period independently discovered by three authors: Del Pasqua [28],
Ljance [76], Kato [64]. Feldman, Krupnik, and Markus paper [40] contains a very elementary proof. It
is based on the orthogonal decomposition % = Ran IT & (Ran IT )J-, in which the projections I7 and
I — IT are given by operator matrices of the form

mef =)

It follows that
« _ (I+AA* 0 % _ (0 0
7 _< 0 O)' I—-1m*~q—-1mn = 0 I+A*A

and thus

71> = |17 IT*]| = |[I + AA*|| = 1+ max o (AA*) = 1 + ||A]?,
I —M)1> = |1 — )*( — ]| = |I + A*A| = 1+ max o (A*A) = 1+ |A||,
which immediately gives the equality || /7| = ||I — IT]|. This proof was also communicated to Szyld

by G. Corach and is one of the many proofs listed in [101].
Note that Examples 3.12 and 5.3 imply the equalities

lalT + (I = ID||= I + a( — )],

lal + BI + yT*||=lal + yIT+ BIT*|| = |lal + B — IT) + y (I — I1)*||
=lal+yU— 1)+ Bd — 7|,

which generalize the identity ||IT|| = ||I — IT]| significantly. Finally, in [40] it is also shown that
If (T, IT%) || = |f(IT*, IT) || for every polynomial f (p, q)

Example 5.9 (Gerisch). Years before Feldman, Krupnik, and Markus [40], nice formulas for the norms
of certain operators in C*(IT) were established by Gerisch [47]. Let IT be a skew projection on
with range L and kernel N, and put P = Py and Q = Py. Let furtherRe I7T = (/T + IT*) /2 and Im [T =
(IT — IT*)/(2i) be the real and imaginary parts (= Hermitian components) of I7. Suppose IT # 0.
Gerisch proved that

7] +1 I -1
[RefT|| = ————, [Im/I|| = ——.
2 2
Replacing in the second identity I7 by I — IT and taking into account that Im (I — IT) = —Im I1, we
get one more proof of the formula || I7|| = ||I — IT]|. Here are examples of other identities derived by

Gerisch:
27 — 1| = [[Re 2T — D|| 4 |Im 21T — D| = [ || + /T[> =1,

N7 — ™| = (1A T? =1, [T+ 0T = [T+ 1)
and denoting by § := ||P — Q|| the gap between L and N, one also has
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Rex = Y8 °
er|| = ————, ||Im =,
2\/1—82 2\/1—52

The equality |2 — I|| = ||IT]| + +/||IT]|> — 1 was earlier obtained in [94, Lemma 2 on p. 236]. We
learned from [47] that for dim H < oo it is actually due to Householder and Carpenter [60].

6. Roch, Silbermann, Gohberg, and Krupnik

The undoubtedly greatest achievement in the two projections business since Halmos’ two projec-
tions theorem is the extension of that theorem to the case of two idempotents in Banach algebras. This
was done by Roch and Silbermann [90] and Gohberg and Krupnik [49,50].

Let A be a complex Banach algebra with unit e and let p and g be two idempotents of .4, that
is, elements satisfying p> = p and g°> = q. We denote by B(p, q) the smallest closed subalgebra of A
which contains e, p, g. Equivalently, B(p, q) is the closure in A of the set {f (p, ¢)} where f ranges over all
polynomials of the form (26). Given a € B(p, q), we denote by o 4 (a) the spectrum of a in .A. As usual,

we putt = (p — q)%.
Theorem 6.1 (Roch, Silbermann, Gohberg, Krupnik).

(a) For each point x € o 4(t) the map Fy : {e,p,q} — C>*? given by

_(1 0 (1 0 _ 1—x VX(1 —X)
Fe=(o 1) Fx<p)—(0 0). a@-(m N )

where /x(1 — x) denotes any number the square of which equals x(1 — x), extends to a continuous
algebra homomorphism of B(p, q) to C2*2.
(b) Foreach A € o 4(p + 2q) N {0,1,2,3} the map G, : {e,p,q} — Cgiven by G, (e) = 1 and

Go(p) =0, Go(q@) =0, Gi(p) =1, Gi(9) =0,
G(p) =0, G(q) =1, G(p)=1, G3(q) =1
extends to a continuous algebra homomorphism of B(p, q) to C.

(c) An element a € B(p, q) is invertible in A if and only if det Fx(a) # 0 for all x € o 4(t) \ {0, 1}
and G, (a) # Oforall x € o 4(p + 29) N {0,1,2,3}.

We remark that the theorem remains literally true after replacing the matrix for Fy(q) by

1—x x
1—-x x)/°
To see this, note that ifx € C\ {0, 1}, then
1—x Vx(1 —Xx) _D<1—x X)D_l
Vx(1 —x) X —T\1-x x

with

1—x X
D:diag(;‘/ ,4/1 )
X — X

Secondly, the theorem holds with t = (p — ¢)? replaced by s = pgp + (e — p)(e — q)(e — p) and the
matrix for Fy(q) replaced by

bY JX(1 —X)
Vx(1 —x) 1—x ’
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This follows from the identity s = e — t. We also emphasize that the theorem is of course valid in
the case where A = B(p, q). In that minimal case of a surrounding algebra spectra become maximal.
In particular, we always have o 4(t) C op(q)(t) and o4 (p + 2q) C o) (p + 29). The following
supplement to Theorem 6.1 is frequently useful.

Theorem 6.2 (Roch and Silbermann).

(a) If 0 and 1 do not belong to o 4(t), then
oalp+29) N{0,1,2,3} = J.

(b) If 0 and 1 are cluster points of o 4 (t) then (bad message)
oa(p+29)N{0,1,2,3} ={0,1,2,3},

but (good message) the maps F introduced in Theorem 6.1 extend to continuous algebra homomor-
phisms of B(p, q) to C2*2 for all x € o 4(t), and an element a € B(p, q) is invertible in A if and only
ifdet Fy(a) # O forallx € o.4(t).

Theorem 6.1 was essentially established in [90] and then completed in [49,50]. In fact, [90] contains
exactly Theorem 6.2. Full proofs can also be found in [18,19,91].

The main motivation for the search for theorems like Theorems 6.1 and 6.2 came from singular
integral operators, and the applications of the theorems to algebras of singular integral operators
are dominating in [90,49,50,18,19,91]. Here are a few very simple applications of Theorem 6.1 which
are mainly motivated by the recent linear algebra literature. In the following examples, p and q are
idempotents in a complex Banach algebra 4 and invertibility always means invertibility in .A.

Example 6.3. Let

Lo(p,q) =f{ap+pBq:aeCpeCa+#0,p+#0a+p+#0}.

Then either all elements of Lo(p, q) are invertible or none of them are invertible.
This can be proved as follows. Let a = ap + Bq € Lo(p, q). Forx € o 4(a) \ {0, 1} we have

_ a+pA—x) BVx(1—-x) _
det Fy(a) = det(ﬂm Bx ) =oafx#0
and for A € o4(p + 29) N {1,2,3} we get
Gi(@=a#0, G(a=B+0 G(a=a+p+0.

Thus, the matter is decided by solely Go.If 0 ¢ o 4(p + 2q), thenevery ain £o(p, q) is invertible, while
if 0 € 0.4(p + 2q), we obtain that Gg(a) = 0 for all a € £y(p, q), which means that no element of
Lo(p, q) is invertible. That's it.

The result of this example was first established in [7] in the case where p and q are idempotents
in A = B(C"), then proved in [38] under the assumption that p and q are skew projections on Hilbert
space, that is, A = B(H), and in [69] for skew projections on Banach spaces, A = B(X).

Example 6.4. Put b = p + 2q. Then

p + qis invertible <= b is invertible,

p — qis invertible <= b, b — 3e are invertible,

e — p + q s invertible <= b — e is invertible,

e — p — qis invertible <= b — e, b — 2e are invertible,

e — pq is invertible <= b — 3e is invertible,

pq + qp is invertible <=> b, b — e, b — 2e are invertible,

pq — qp is invertible <=> b, b — e, b — 2e, b — 3e are invertible.
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Furthermore, the elements p+q+pq, p+q —pq, p— q -+ pq, p— q — pq, b are all simultaneously
invertible or simultaneously not invertible. Finally,

p + pq + qp is invertible <= p + pq — qp is invertible
<= b, b — 2e are invertible.

To see this notice that

det Fy(p — q) = det (_ x("l — _V"(_lx_ ")> = —x,

which is nonzero forx € o 4(t) \ {0, 1}. The values of G, (p — q) are 0, 1, —1, 0, respectively, if 0, 1,2, 3

is in 0 4 (b). Hence, by Theorem 6.1, p — q is invertible if and only if 0 and 3 are not in the spectrum

of b. The remaining cases can be checked analogously: the determinant of Fy does not vanish outside

{0, 1} and therefore invertibility is determined by the four values of G, . This completes the proof.
Combining the above equivalences we arrive at conclusions such as

p — qis invertible <= p + q, e — pq are invertible
< p+ q — pq, e — pq are invertible,
pq — qp is invertible <= p — q, e — p — q are invertible
<= pq + pq, e — pq are invertible
<= pq + pq, p — q are invertible,
pq + gp is invertible <= p + q, e — p — q are invertible
<= p+pq+ qp, e — p + q are invertible.

These equivalences were derived by different methods in [7,55,70] for A = B(C") and in [66,67] in a
general ring theoretic setting.

Example 6.5. Another result along these lines is that if o 4(t) \ {0, 1} is contained in the open unit
disk, then

p — qisinvertible <= o(p+q—e) < 1,
where o denotes the spectral radius. To see this, put a = p 4+ q — e and note first that

det Fy(a — pe) = pu? — (1 —x) £ 0forx € o4(t) \ {0,1} and || > 1.

IfX € o4(p + 2q), then Gy (a — pe) equals 1 + w, u, u, 0 — 1 for A = 0,1, 2, 3, respectively. Thus, if
p — q is invertible and hence 0 and 3 do not belong to o 4 (p + 2q), then G, (a — we) # 0 for || >1,
which implies that o(a) < 1.Conversely, ifo(a) < 1,thena — peisinvertible for © = %1 and hence
0 and 3 cannot be in o 4 (p + 2q), implying that p — q is invertible.

If A is a C*-algebra and p and q are two selfadjoint idempotents of .4, then o 4(t) \ {0,1} is a
subset of (0,1) (because, by Example 4.5, we may assume that o 4(t) \ {0,1} = o (H) \ {0,1} for
some selfadjoint operator H with spectrum in [0, 1]) and o(p + q — e) is equal to ||p + q — e]|. Thus,
for selfadjoint idempotents in C*-algebras we arrive at the equivalence

p — qisinvertible <= |[p+q —e| < 1.

For A = B(H), the last equivalence was established in [22]. In the case where A is the Calkin algebra
B(H)/K(H),itwas derived in [68]. See also [45, Theorem 7.90]. These authors employed different tools.

Example 6.6. We have

o) \ {01} ={01—w?: neo@+q9\{01,2})
={1-p’:peo@—q\{-1,01}}.
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One proof goes as follows. Let v € o (pq) \ {0,1}.Thenv ¢ {0, 1} and pq — veis not invertible. The
possible values of G (pqg — ve) are —v and 1 — v and hence different from zero. It follows that there
must beanx € o (t) \ {0, 1} such that

det Fy(pq — ve) = det <1 _)({)_ v X(lv_ X)> =v(1—x—v)=0. (47)

Consequently, v = 1 — x for some x € o (t) \ {0, 1}. Let u € C be any number satisfying u?> — 2u +
x = 0.Thenv = (1 — )2 Since x ¢ {0, 1}, we necessarily have 1 ¢ {0,1,2}. As

det Fy(p 4 q — j1e) = det (_ZJ)% _VX"(_lﬂ_ X)) =u? —2u +x, (48)

we see that Fy(p + q — pe) is not invertible. Thus, i € o (p + q). This proves that

o) \{0,1} C{1—p?:pneolp+q\{0,1,2}}.

Conversely, take 1t € o(p + q) \ {0,1,2}} and put v = (1 — w)?. Clearly, v ¢ {0, 1}. The values that
may be assumed by G, (p + q — ne) are —u, 1 — u, 2 — p and thus nonzero. From (48) we therefore
obtain that there is an x € o'(t) \ {0,1} such that u? — 2u + x = 0. This implies that v = 1 — x.
Using (47) we arrive at the conclusion that det F,(pq — ve) = 0, which shows that v € o (pq). In
summary,

(A=W’ :pea@+q9\{01,2}} Colpg \{0,1},

which completes the proof of the first of the asserted equalities. The second can be proved analogously.
The two equalities of this example were established by different methods in paper [12].

7. The W*-algebra generated by two orthogonal projections

A C*-subalgebra W of B(H) is called a W*-algebra (or a von Neumann algebra) if it is closed under
strong convergence, that is, if A, € W and A,y — Ay for ally € H imply that A € W. Let P and Q be
two orthogonal projections in B() with the ranges L and N, respectively. We denote by W*(P, Q) the
smallest W*-subalgebra of B() which contains I, P, Q. If Mg = {0}, then W*(P,Q) = C*(P, Q) is the
algebra of all operators of the form (cgo, o1, @10, @11) With e, € C. Thus, let My # {0}.

The selfadjoint operator H induces a spectral measure 1 on the real line with values in B(H).
The support of this measure is o (H) and thus contained in [0, 1]. The sets of measure zero are the
sets E C [0, 1] for which the corresponding spectral projection yg(H) is the zero operator. Here xg is
the characteristic function of E, that is, xg(x) = 1 for x € E and xg(x) = O for x ¢ E. We denote by
L°° (o (H)) the complex-valued functions ¢ on o (H) for which the preimage of every Borel subset of
C is -measurable and which are essentially bounded. Two functions in L°° (o (H)) will be identified
if they differ on a set of y-measure zero only.

Theorem 7.1 (Giles and Kummer). The W*-algebra W*(P, Q) is the set of all operators of the form

A = (ago, 21, @10, 211) B U* (‘é?ggg; 2(1)1 Egi) U, (49)

where aj are arbitrary complex numbers and @y are arbitrary functions in L°° (o (H)).

This theorem is proved in [48]. We confine ourselves to the following. For a subset .A of B(*), the
commutant A’ is defined as the set of all operators T € B(H) such that TA = AT for all A € A. The
commutant of A" is denoted by A”. It is well known that if 4 is invariant under passage to adjoints,
then the smallest W*-subalgebra of B(7) which contains A coincides with .A”. Thus, the theorem can
be proved by showing that the operators (49) just constitute A" for A := {P,Q}.

A function ¢ € L° (o (H)) is said to be separated from zero on a ;-measurable set E if there is an
& > 0 such that |p| > & almost everywhere on E. Throughout the rest of this section we suppose that
Ais given by (49). Recall that @, is defined as
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_ (wo0(®)  @o1(x)
Da(x) = (@10(X) o1 (X))' x € o(H). (50)

Proposition 7.2. An operator A € W*(P, Q) is invertible if and only if det @4 is separated from zero on
o (H) and aj, # 0 whenever My, # {0}. In that case Det @4 (H) is invertible and

A—lz( &) ajfl,wjk)
M;#{0}
« [(Det a(H)) ™! 0 ou(H)  —go1(H)
®v ( 0 (Det¢A(H))—1> (Lot oot )V

Indeed, the entries of the matrix @4 (H) commute and hence the invertibility of @4 (H) is equivalent
to the invertibility of Det @4 (H). The last operator is invertible if and only if det @, is separated from
zero on o (H).

Example 7.3. In Example 4.2, we found necessary and sufficient conditions for P~y to be in C*(P, Q).
Theorem 7.1 with ago = 1, o1 = 10 = o¢11 = 0, Yoo = @o1 = @10 = @11 = O reveals that Piny is
always in W*(P, Q). In fact, this also follows from von Neumann'’s formula cited in Example 3.9, which
identifies P,y as the strong limit of (PQ)".

Example 7.4. Employing Theorem 7.1 it is easy to identify the idempotents in W*(P, Q). Indeed, an
operator A € W*(P, Q) satisfies A> = A if and only if o € {0, 1} whenever My, # {0} and ®2 = &,
ono (H) provided My = {0}. Forx € o (H), we have ®4(x)?> = ®,(x) if and only if one of the following
is satisfied:

(@) woo(x) = @o1(x) = p10(x) = @11 (x) =0,
(b) @oo(®) = @11 (x) = 1and gg (x) = @10(x) = 0,
(€) @oo(x) + @11(x) = 1 and @oo (X) @11 (X) = @o1 (X)@10(X).

In [58, Theorem 1, 37], the authors considered the operator A = P + 8Q + Y Py under the
assumption that L N N == 0. Suppose first that My # {0}. Then

A= (a+B+y,apB,0) U ((a+§)\/{/— BH /}36‘1/\{/> U

Since 0 and 1 are not in the point spectrum of H, there exists a point x € ¢ (H) N (0, 1). For this point
X,

woo(X) =+ B — Bx, po1(x) = g1o(x) = x(1 —x), @ukx) = Bx

and hence (a) holds if and only if («, 8) = (0, 0), (b) cannot be fulfilled, and (c) is valid if and only if
(o, B) = (0, 1) or (a, B) = (1,0). Consequently, A = Ain exactly the six cases where (c, 8, y) equals

(0,0,0), (0,0,1), (0,1,0), (0,1,—1), (1,0,0), (1,0,—1).

If My = {0} (<= PQ = QP), we obtain that A> = Aifand onlyif + 8 + y € {0,1}, « € {0,1} for
LNNL # {0}, and B € {0,1} for L~ N N == {0}. We remark that Theorem 1 of [58] is incorrect (but
apparently not used in the rest of the paper).

Our next concern is the description of the kernel and range of operators in W*(P, Q).

For r € {0,1,2}, let A, be the set of all x € o (H) for which the rank of ®@4(x) equals r. As @4 is
defined only almost everywhere, the sets Ag, A1, A, are also specified up to null sets only. We may
assume that they are chosen so that they are mutually disjoint and that their union is o (H).
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Recall that yg stands for the characteristic function of E. The range of the operator x4, (H) (r =
0,1,2), My := xa,(H)Moy, is called the spectral subspace of H corresponding to A,. The spaces M;
are invariant subspaces of A and Mg = Mg @ M7 @ M. Let H; be the restriction of H to M;. Thus,
H = Hy ® H; ® Hy. If A, = J, we define M, = {0} and H, = 0. Finally, forr = 0, 1, 2, put

_<§000(Hr) (001(Hr))
"7 \gwH)  euHy) /)

The operator A; acts on M, € M,. Recall that A denotes the pairs (j, k) for which Mj, # {0}. We may
now write

H = ( P Mjk) ® U™ [(Mo & Mo) @ (M1 & M) @ (M & My)]
Gilea

and accordingly

A= ( @ ajk[Mjk) ® U* (A D A1 ® A)U.
j.k)ea

For x € [0, 1], we define
(%) = oo + lgor W * + lp10®) > + lon (%) (51)

and forx € A1, we put

| poo®) 12 + [910(0) |2 [ por (02 + lon (x)]?
Xo(x) = . = .
@(x) ()

Note that xé + X12 = 1o0n A;. Further, for x € [0, 1], let

n(x) = @oo(x) wo1 (X) + @10(x) @11 (%),
00) = 1™ it £0. 00 = 1if 5(x) = 0.
[n(x)]

Finally, for x € Aq, we define

%WZJMWW+MﬂW‘%®:JMWWHW®ﬂ

@) @(x)
(%) = @oo(X)@10(X) + @o1 (X) 11 (%),
T(x) = S if¢x) #0, t(x) =1 if {(x) =0.
(£ ()]

The following theorem is from [95].

Theorem 7.5. The kernel of A equals

KerA = ( P Mjk) e U* [(Mo ® Mo) & (9(5;)0)251151)) M1i|

(]',k)EA,OljquO

and the closure of the range is

RanA = ( ) Mjk) o U* [(“’23&?’”) Mi & (M @Mz)]

(j.k) € A,jk #0
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The defect numbers «(B) and S (B) of an operator B € B(#) are defined by
a(B) = dimKer B, B(B) = dimKer B* = dim(#/Ran B).

Theorem 7.5 and minor additional arguments imply the following.

Corollary 7.6. We have

a(A) = B(A) = ( P dimMjk) + 2dim Mo + dim M;.
(k) € A0

An operator is said to be normally solvable if its range is closed.

Theorem 7.7. An operator A € W*(P, Q) is normally solvable if and only if ¢ is separated from zero on A4
and det @4 is separated from zero on As.

An operator B € B(H) is called semi-Fredholm if it is normally solvable and at least one of the
numbers « (B) and B(B) is finite. The index of a semi-Fredholm operator is defined as Ind B = «(B) —
B(B). An operator B is normally solvable and both «(B) and 8 (B) are finite if and only if B is a Fredholm
operator, that is, if and only if B is invertible modulo compact operators.

Theorem 7.8. For A to be semi-Fredholm it is necessary and sufficient that
(a) dim Mj, < oo whenever My, # {0} and cj = 0,
(b) dim Ker Det ®4(H) < o0,
(c) 0is not a cluster point of o (Det ®4(H)).

If conditions (a)-(c) are satisfied, then A is Fredholm and IndA = 0.

Theorem 7.9. Let ¢(x) and w(x) be the squared Frobenius norm and determinant of ®4(x), respectively,
that is, define ¢ (x) by (51) and put w(x) = @oo(X)@11(X) — o1 (X)@10(x). Then forevery A € W*(P, Q),

J () + Jpx)? — 4o )|

2

A|l = max | max |aj|, max
jk
Gkea xeo (H)

Corollary 7.6 and Theorems 7.7 and 7.8 were established in [102] for operators in C*(P, Q) and in
[95] for operators in W*(P, Q). Theorem 7.9 is from [95].

8. Moore-Penrose inversion

An operator A € B(H) is said to be Moore-Penrose invertible if there exists an operator B € B(H)
such that

ABA =A, BAB=B, (AB)* =AB, (BA)* =BA.

Such an operator B exists if and only if A is normally solvable. In that case B is unique, denoted by A,
and called the Moore-Penrose inverse of A. Note that AA” and ATA are the orthogonal projections onto
Ran A and Ran A*, respectively.

In the case where # = C", we may think of A as a matrix. If A = USV with S = diag (s1,...,sp) is
the singular value decomposition, then AT = V*STU* where ST is the diagonal matrix diag (s];, ... ,s;ﬂ)

ands} = 1/sjforsj + 0and 0" = 0.
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Let P,Q € B(H) be two orthogonal projections and A be an operator in W*(P, Q).If My # {0}, then
Theorem 7.7 tells us that A is Moore-Penrose invertible if and only if ¢ and det @, are separated from
zero on Aq and A, respectively.

Theorem 8.1. Let My # {0}. If ¢| A1 and det @4| A, are separated from zero, then
AT = ( @ a]?;clek) 2] U*(BO ® B1 ® By)U,
(ke

where aka is 1/ajk for ajx # 0 and 0 for aejy, = 0, By is the zero operator on Mo @ Mo, By is the operator
on My @ M that is given by

B, — <<¢<H1>>1 0 ) (aoo(Ho %(H»)

0 (p(H1) ") \ @01 (H1) @y (Hr)
and B; acts on M @ M; and is defined by
B, — [ (Det Pp(Hz)) ™! 0 ( orn(H2)  —oo (H2)>
2 0 (Det 4(Hy)) ') \—¢10(H2)  @o1(Hz) -

This theorem was established in [95].

The operators P and Q themselves are obviously Moore-Penrose invertible and P’ = P, QT = Q.
Here are some more interesting examples. Recall that min o (H) is just the minimum of o (H) if My #
{0} and that mino (H) := 1if My = {0}.

Example 8.2. The operator P — Q is Moore-Penrose invertible if and only if min o (H) > 0. In that case

vt _ N I —H 'w
P-Q'=(01-1,08U <—H—1w L)

This can be seen as follows. If My = {0}, we have P — Q = (0,1, —1,0) and the Moore-Penrose
inverse is the operator itself. So assume My # {0}. Then, by Theorem 1.2,

P-Q=(0,1-1,0@U" (—I-\I/V _—m” .

and it follows that

det @a(x) = —x, @) =x(1 —Xx),
Ao ={0}No(H), A=, A= (0,1]1No(H).

By Theorem 7.7, P — Q is Moore-Penrose invertible if and only if x is separated from zero on A, which
happens if and only if o (H) C {0} U [, 1) for some & > 0. Since 0 cannot be an isolated point of o (H)
(recall that 0 is not an eigenvalue of H), we arrive at the conclusion that P — Q is Moore-Penrose
invertible if and only if H is invertible. In that case we deduce from Theorem 8.1 that

N B «[—H7! 0 -H W
P-of=q1 meau( ! _H—1)<w v (53)

which is equivalent to the asserted formula.

Example 8.3. Let A = P + BQ witha # 0, 8 # 0, o« + B # 0. Then A is Moore-Penrose invertible if
and only if min o (H) > 0, in which case
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L U P N
A _<a+ﬂ'a'ﬂ’0>®aﬂu <—/3H—1w (+pHT —1 u.
This is evident for My = {0}. Suppose My #* {0}. Then
A=(a+p.ap0) ®U* ((“Jrg%_ pH %V)U (54)

and consequently,

det P4(x) = afx, () = (@ — B — Bx)? + B2x* + 28%x(1 — x),
Ao =, A ={0}NoH), A, =(0,1]Noc(H).

We therefore obtain as in Example 8.2 that A is Moore-Penrose invertible if and only if H is invertible.
Theorem 1.1 then yields that Alis

1 11 L1 (H' o BH —-BW
(oc—l—,B'a',B'O)EBU cx,B( 0 H—l) (ow s —n)V %)
as desired.

Example 8.4. The operator P + Q is Moore-Penrose invertible if and only if the space L + N := RanP +
Ran Q is closed, and in that case L + N = Ran (P + Q) and

Pion = 2P(P+Q)'Q, Prin = (P+Q)(P+ Q).

Indeed, from Example 8.3 we deduce that P + Q is Moore-Penrose invertible if and only if
mino (H) > 0, and Example 3.2 tells us that mino (H) > 0 if and only if L + N is closed. To prove
the remaining assertions, we may assume that My # {0}. Example 8.3 yields

v N I —H 'w
P+Q)'=00/2,1,1,000U (_H_1W g1 1)U

which implies that

2P(P 4+ Q)'Q = (1,0,0,0) ® U* (8 8) U=Pn

and

P+QCF+Q = 11100V (¢ ])U =P

As (P4 Q)(P + Q)T is the orthogonal projection onto the space Ran (P + Q), we finally obtain that
L+ N = Ran (P + Q). This completes the proof.

By means of different methods, the formula P~y = 2P(P + Q)TQ was established by Anderson
and Duffin [3] for matrices and by Anderson and Schreiber [4] for Hilbert space operators. Paper [82]
contains more formulas of this type for the projections P;ny and P in the case where dim H < oo.
We also remark that

I—H w

and that the spectrum of the operator matrix on the right is {=/1 — x : x € o (H)}. This shows that
o if LNN # {0},
”P+Q_PL+N”_L/]—mina(H) if LN N = {0}.

Comparing the last formula with the formula for ||PQ|| established in Example 3.1, we obtain that
IIP 4+ Q — Pryn|l = ||PQ||, which was derived in [11] for dim H < oo in a different way.
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The following theorem is also proved in [95].

Theorem 8.5. Let f (p, q) be a polynomial of the form (26). The operator A = f(P, Q) is Moore-Penrose
invertible if and only if Mg = {0} or if My # {0} and one of the following conditions is satisfied:

(a) det @4 does not vanish at the cluster points of o (H),
(b) det @4 is identically zero and ¢ is nonzero at the cluster points of o (H),
(c) both det @4 and ¢ are identically zero.

Example 8.6. Consider the operator
E =Py + Pyt + (P —Q)>%
This operator is the identity operator for My = {0} and has the representation

E:(l,l,l.l)@U*<<(I) 8)‘(1@14 g))zu
:(1_1,1_1)@11*(’; g)”

for My # {0}. From Theorem 7.1 it easily follows E € W*(P, Q). Suppose My # {0}. From the repre-
sentation of E we infer that E is invertible if and only if H is invertible, in which case

-1
E'=@1111)@®U* (HO H91) uU.

Combining this insight with Example 8.2 we obtain that P — Q is Moore-Penrose invertible if and only
if E is invertible and that then, by (52) and (53),

P-Q'=E"'(P-0Q). (56)

Analogously, for A as in Example 8.3, we see that A is Moore-Penrose invertible exactly if E is invertible.
Since

L =Py + U - Q)]
B

111 1 1 . (H' o0 BH —BW
= (O'a'ﬁ'a+,s)@aﬁ” ( 0 H1) (o A [
we obtain from (54) and (55) that if E is invertible, then

1 1 1 1
P ﬂPLﬂN — <a + ﬁ) Piine + ﬁf_l [a(I —P)+ BUI—Q)]. (57)

Formulas (56) and (57) express the Moore-Penrose inverses in terms of explicit operators in W* (P, Q).
The operator H is no longer present in these formulas.

Al =

9. Drazin inversion

An operator A € B(H) is said to be Drazin invertible if the sequences {Ker Ai}]?’io and {RanAj}]‘?:o0

stabilize. In that case there is a smallest non-negative integer k such that KerA* = Ker A*! and
RanA¥ = RanAKt!, and the Drazin inverse of A is the uniquely determined operator B € B(H) satis-

fying
A1 = A% BAB =B, AB=BA. (58)
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We denote the Drazin inverse of A by AP and refer to k as the Drazin index of A (which should not be
confused with the index Ind A := «(A) — B(A) of a semi-Fredholm operator A).

Let H = C" and accordingly A be a matrix and let A = (JC~! be the Jordan canonical form of
A. Then | = diag (Ji, .. .,Jm) with Jordan blocks J,. The Drazin inverse is A” = ¢J°C~! where J° =
diag (7, ...,J5) and J? = J; " if J, is nonsingular and J? = 0 if J is singular. The Drazin index of A is
the maximal k for which there is a singular k x k Jordan block.

Now let A € W*(P,Q) be as in Theorem 7.1, define @4 by (50), and let ¢ be the function (51).
Recall the definitions of the sets Ag, A1, A and of the associated spectral spaces M; and operators
H, = H|M, (r = 0,1,2)in Section 7. We now have to stratify the spectrum o (H) further. We put

A ={x € A1 :trPa(x) =0}, Ay ={x € Ay :tr P4(x) # 0}
denote by Mjg and M1 the corresponding spectral subspaces of H, and let Hyg and Hy; stand for the

restrictions of H to Mg and M1, respectively.
If My = {0} and accordingly A = (g0, @01, @10, 1), then the Drazin index is 0 or 1 and A? =

(“30-0‘(];1' a;ro,a11). So suppose My # {0}.

Theorem 9.1. An operator A € W*(P, Q) is Drazin invertible if and only if det @, is separated from zero
on A, and tr @4 is separated from zero on Aq1. In that case the Drazin index of A is at most 2 and

AP = ( P OthkIMjk) ® U*(Bo & Ci0 & C11 @ By)U,
G.k)eA

where oc}k, Bo, B1 are as in Theorem 8.1, Cyg is the zero operator on Mg @ Mg, and Cy; is the operator on
My @ My given by
c (tr da(H)) ™! 0 ®oo(H11) o1 (Hn)
n= .
0 (tr ®a(H1)) ™) \@1o(Hn)  @n(Hn)

A more careful analysis reveals that the Drazin index of A is 2 exactly if Mq9 # {0} and that it
equals 0 (which is equivalent to usual invertibility) if and only if cj, # 0 whenever Mj, # {0} and
Mg = M; = {0}. In all other cases when AP exists, it does so with Drazin index 1.

Example 9.2. There exist operators in C*(P,Q) which are Moore-Penrose invertible but not Drazin
invertible.

To see this, suppose the point 1/2 is a cluster point of o (H) and put A = 2PQ — P.Then

A=(1,-1,0,0) & U* (1 _OZH 2gv> U
and we have
1—2 2/x(1 —
Dp(x) = ( 0 * X(O x)>' detPy(x) =0, Ay =,

(0()() =1, A1 = G(H), Ao = @,
trda(x) =1—2x, A ={1/2}No(H), An=o(H)\{1/2).

Since A, = ¢J and ¢| A is separated from zero, the operator A is Moore-Penrose invertible and
Theorem 8.1 yields that

F w(I=2H O\, _ .
AT =Q, 1,0,0)@U<2W 0)U=2QP—P.

On the other hand, as tr @4 is not separated from zero on Aqq, the operator A is not Drazin invertible.
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Example 9.3. There exist operators in C*(P,Q) which are Drazin invertible but not Moore-Penrose
invertible.

Indeed, suppose 0 or 1 is a cluster point of o (H) and let A be the operator

JPQP( — Q)P — /(I = PYQ( — P)(I — Q) — P) — PQU — P) + (I — P)QP.

From Theorem 1.2 we infer that

_ (W =W
A=(0,0,0,0)®U (w _W)U.

The operator is clearly in C*(P, Q). We have

_ (VXA =% —vx(1-x) _ _
¢A(X)—<¢X(1_x) —Jx(l—x))' det @4(x) = 0, Az—@,

p(x) =4x(1—x), Ay =(0,1)No(H), Ag={0,1}No(H)
tr®a(x) =0, An =, Aw=(01)No(H).

Since ¢| A1 is not separated from zero, the operator is not Moore-Penrose invertible. However, because
A; = Jand Ay = F, the operator is Drazin invertible due to Theorem 9.1. The same theorem shows

that AP is the zero operator and that the Drazin index is 1.

Theorem 9.4. An operator A € W*(P,Q) is both Moore-Penrose and Drazin invertible if and only if
det @4| Ay, @|Aq, and tr d4|Aqq are separated from zero. In that case AT = AP if and only if My = {0}
and @4| A1 is normal, that is, 4P = P4 P4 almost everywhere on Ay.

Example 9.5. Alinear combinationA = aP + BQ («, B € C)is Drazin invertible ifand only if it is Moore—
Penrose invertible, and in this case AT = AP.

This can be proved as follows. The Drazin and Moore-Penrose inverses of 0, P, Q are the operators
themselves. If A = P — Q, then, by Example 8.2, A; = Ayg = A1 = . It follows that both Drazin
and Moore-Penrose invertibility are equivalent to the requirement that det ®4| A, is separated from
zero. Theorem 9.4 implies that then AT = AP. Now let A = «P + SQ with aB(c + B8) # 0. From
Example 8.3 we know that

Oalx) = <a +B—Bx PJx(— x))
B/x(1 — x) Bx '

whence A1 = ¢ and A1y = {0} N o (H).Since tr ®4(0) = o + B # 0Ois separated from zero on {0},
Example 8.3 and Theorem 9.1 show that Moore-Penrose and Drazin invertibility of A are equivalent.
Finally, as Mg = {0} and ®,(0) is normal, we deduce from Theorem 9.4 that AT = AP.

Example 9.6. For the operator PQ, both Drazin and Moore-Penrose invertibility are equivalent to the
condition that either My = {0} or My # {0} and I — H is invertible. If My = {0}, then (PQ)" = (PQ)P =
PQ, while if My # {0} and I — H is invertible, we have

t_ « (U—H)T 0 I—H 0
(PQ)' = (1,0,0,0) ® U ( . (,_H)1>( W o)U
D _ « [0 —H)2 0 I—H W
(PQ)P =(1,0,000 U ( 0 (I_H)_2>( 0 O)U.

In particular, (PQ)T =+ (PQ)P whenever My # {0} and 1 ¢ o (H).
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Here is a proof. The case My = {0} is trivial. So let My # {0}. We have

Dpg (x) = <1 gx X(lo_ x)), detPpy(x) =0, Ay =,

px) =1—x, Ay =0H)\ {1}, Ao={1}No(H),
trdp(x) =1—% An=ocH)\{1}, Ap=.

By Theorems 7.7 and 9.1, PQ is Moore-Penrose and Drazin invertible, respectively, if and only if 1 — x is
separated from zero on A and A1;. Thus, both Moore-Penrose and Drazin invertibility are equivalent
to the condition that 1 is not a cluster point of H. As 1 is not in the point spectrum of H, it is not a cluster
point of o (H) if and only if | — H is invertible. Theorems 8.1 and 9.1 now yield the explicit expressions
for (PQ)" and (PQ)P quoted above. From these expressions we see that (PQ)' =+ (PQ)P. Incidentally,
the last conclusion can also be drawn from Theorem 9.4 because Aq; \ {0,1} = o (H) \ {0, 1} cannot
be empty and ®pq is not normal for x ¢ {0, 1}.

Theorem 9.7. Let f (p, q) be a polynomial of the form (26). The operator A = f(P, Q) is Drazin invertible
ifand only if My = {0} or if My # {0} and one of the following holds:

(a) det @, does not vanish at the cluster points of o (H),
(b) det @4 is identically zero and tr @4 is nonzero at the cluster points of o (H),
(c) both det @4 and tr @4 are identically zero.

Clearly, the criteria established in Examples 9.5 and 9.6 can also be derived using Theorem 9.7
instead of Theorem 9.1.

Example 9.8. Suppose My #* {0}. The operator
F=PNL +Piny+POP+(I—-P)I—-Q)I—P)

has the representation
. «(I—H 0
F=(1,1,1,1) U ( 0 I—H)U

and is invertible if and only if so is | — H. A straightforward computation using the representations for
(PQ)" and (PQ)P in Example 9.6 gives

(PQ)" =F~'Qp, (PQ)P =F2PQ.

In these two formulas, the operator H has disappeared and been replaced by an explicit operator
F € W*(P,Q).

Proceeding as in Example 9.6, one can show without difficulty that if A is one of the operators PQ,
PQP, PQPQ, PQPQP.,..., then A is Moore-Penrose invertible if and only if it is Drazin invertible and that
this is in turn equivalent to the invertibility of F. If F is invertible, then for every integer m > 1,

(PQ™T =F"QP, ((PQ™P =F"""PQ,
((PQ)™P)T = ((PQ)™P)P = F~™'PQP.

In this section we follow [21]. Drazin invertibility and Drazin inverses of several special operators
were previously studied and constructed in Deng’s papers [29,30]. In fact, the papers by Deng motivated
us to look for a single theorem (which eventually became Theorem 9.1) that implied all the special
results known so far.
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10. Commuting idempotents

Let A be an algebra with unit e over a field K and let pq, . ..,pn € A be commuting idempotents.
Thus pj2 = pj and p;px = pkp;j for all j and k. We denote by 5 (which should not be confused with (%))
the smallest subalgebra of .4 which contains the unit e and the idempotents py, . . ., py. Clearly, B is
the set of all linear combinations

D VerenP1 oo B (&5 € {01}, Ve, e, € K.

Consider the 2" products by - - - b, in which each b; is either p; or e — p; and denote these products
(in any order) by 7o, 71, . . ., 7N. Thus, N = 2" — 1. For example, if n = 2 and p := p1, q := p», then
B is just the set of all linear combinations

Yoo€ + Y10P + Y019 + yupq (59)
and we may put
mo=(e—p)e—q), m =ple—q), ma=qle—p), 73=pq (60)

(the labeling of the m}’s being unessential). It is easily seen that njz = mr;j for all j and 7jmr, = O for
j # k. Moreover, we have e = my + 71 + ... + 7y and hence it is impossible that 7, = 0 for all k
unless .A = {0}, which trivial case may be excluded. Put

D={ke{0,1,...,N}: m + 0},
let d be the number of elements in D, and denote by C(D) the algebra of all functions « : D — K
with pointwise operations. We write the elements of C(D) in the form {o}kep. The algebra C(D) is

obviously isomorphic to the algebra of all diagonal matrices in K?*¢. The following proposition reveals
the simple structure of 5.

Proposition 10.1. The map ¥ : C(D) — B, {ak}kep F> Y kep Ok Tk is an algebra isomorphism.

Indeed, it is clear that ¥ is linear, and since also

> Bk = (Z Olkﬂk) (/g ﬂjﬂj) ,

keD keD
it follows that ¥ is an algebra homomorphism. The map ¥ is injective because if > ycp axmy = 0,
multiplication of this equality by 7 (j € D) gives ajmrj = 0 and o; = 0. Finally, ¥ is surjective since
every a € B may be written as
a=a(mo+m +---+7ay) = Zaﬂk
keD

and arry, is easily seen to be a scalar multiple of 7.
The next proposition, which can be proved by standard arguments, shows that nothing spectacular
happens when passing from the “non-closed” setting to Banach algebras.

Proposition 10.2. If A is a Banach algebra over K = C, then the following hold.

(a) The closure of B in A is B itself.

(b) The maximal ideal space of the commutative Banach algebra B may be identified with D with the
discrete topology and the Gelfand map I" : B — C(D) is the inverse of the algebraic isomorphism
¥ introduced in Proposition 10.1,

r (Z C(kT[k) = {o}ken-

keD

The Gelfand transform is in particular bijective.
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(c) An element a € B is invertible in A if and only if it is invertible in B, which is in turn equivalent to
the invertibility of I"a in C(D).

Example 10.3. This example is motivated by results of [10]. An element a € 3is said to be generalized
invertible in B if there exists a b € B such that ab = a. Writinga = Y yep axmmy and b = Y pep Biti
the equation a®b = a is equivalent to the scalar equations ay(oxfr — 1) = 0 for k € D. This shows
thatevery a € Bis generalized invertible in B.If, for instance, n = 2 and notation is as in (59) and (60),
then

p+q=um+m+ 213

and b = > ",cp Bkk is a generalized inverse of p 4 qif and only if one of the following eight conditions
is satisfied:

M fr=1B=1=1/2, 2) pi=1fk=113=0,
3 Bp1=1B8=1/2,1,=0 (‘) P1=1m=0m3=0,
(5) Bo=1,B8=1/2,m11 =0 (6) Bp=1m71=0,713=0,
(7)) B3=1/2,m1 =0,1,=0 (8) 7 =0,m1,=0,73 =0.

If p # 0 and q # 0, then the three conditions (4), (6), (8) are never satisfied and we are therefore left
with the remaining five conditions. Transforming these into the coordinates yj in (59) we get the
result that was established in [10] for two commuting projections on C".

Example 10.4. The following result was established in [6].

Let A be an algebra with identity element e # 0 over a field K, let p and q be two different and nonzero
(not necessarily commuting) idempotents in A, and let « # 0 and B #* 0 be two scalars in K. Define
o, 71, T2, 3 by (60). Then the element ap + Bq is idempotent if and only if one of the following holds:

() pg#ap. P—*=0a+p=1,
(i)pg=gqp, m1 =0, =—1, B =1,
(li)pg=qp, 1y =0, ¢ =1, B = —1,
(ivypg=qp, 135 =0, =1, B =1.

This can be proved as follows. The equation (ap + 8q)*> = ap + Bq is equivalent to the equation

a(e —1)p+aB(pq +qp) + B(B — 1)g = 0. (61)

Multiplying (61) by p from the left and from the right and taking the difference of the two results we
obtain B(a + B — 1)(pq — qp) = 0.Thus, ifap + Bqis anidempotent and pqg # gp, then necessarily
o+ B =1.Inserting B =1 — v in (61) we get ¢(e — 1)(p + ¢ — pq — qp) = 0, which is the same
as (p — q)> = 0 (note that # 0and @ = 1 — B # 1). This proves that if pq # gp, then ap + Bq is
an idempotent if and only if (p — q)> = 0anda 4+ 8 = 1.

So suppose pq = qp. Since p = 71 + 73, q = 7y + 73, pq = qp = 73, Eq. (61) can be written in
the equivalent form

ale = Doy + BB - D+ (@+p)la+ B —1Dr3 =0 (62)

and the rest is done by Proposition 10.1. If 73 = 0, then 71 = p # 0 and 73 = q # 0 and hence (62)
holds if and only if « = 1 and 8 = 1. Thus, let 73 # 0. Since 77 = p — pqg and 7, = q — pq, we have
71 # 1. Consequently, if 71 = O, then 7, # 0 and it follows that (62) is true if and only if 8 = 1 and
o + B = 0, while if m, = 0 and therefore 711 # 0, we conclude that (62) is valid if and only if &« = 1
and o + B = 0. Finally, (62) never holds with nonzero «, 8 if 71 # 0,7y # 0, 13 # 0.

We remark that case (i) cannot occur if p and q are selfadjoint idempotents (or orthogonal projec-
tions on some Hilbert space).
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Now assume that # is a complex separable Hilbert space of dimension at least 2. Let f(p, q) be a
polynomial of the form (26). There exist such polynomials with the property that if P and Q are two
orthogonal projections in B(#) and f (P, Q) = 0, then necessarily PQ = QP. For instance

pg—qp, p+q—1 p—gq, 1
are such polynomials. (In the last case the equality f(P,Q) = 0 cannot be fulfilled, but we use the
convention that a void set of operators is commutative.) Less trivial examples are the polynomials
(P—q*=p-+q—pqg—ap. pq+qp. PIPIP — Pqp.

We say that a polynomial f is enforcing commutativity on 7 if it has the following property: if
P,Q € B(H) are any orthogonal projections and f(P,Q) = 0, then PQ = QP. Equivalently, f is en-
forcing commutativity if and only if f (P, Q) # 0 for every pair (P, Q) of non-commuting orthogonal
projections in B(7). And in still other terms, f is not enforcing commutativity if and only if there exist
two orthogonal projections P, Q € B(H) such that f(P,Q) = 0 and PQ # QP.

We associate with the polynomial f (p, q) the four polynomials

P1(0) = fir + X+ faxX* + -, @) = for +fux +forx> + -,
o3(%) = fio + frax + fsa + -+, @a(X) = oo + farx + feo® + -+ -

and then define another set of four polynomials by

Yoo(%) = foo + ¢1(x) + x[@2(x) + @3(x) + @4 (x)],
Vo1(X) = g2(x) + ¢3(%),

V10(x) = ¢3(x) + @a(x),

Y11 (X)) = foo + (1 — X)@3(x).

The following theorem is the main result of [96].
Theorem 10.5. The following are equivalent:

(i) f is enforcing commutativity,
(ii) the polynomials Yroo, Vo1, Y10, Y11 have no common zero in (0, 1).
If foo = 0, then (ii) is equivalent to the condition
(iii) the polynomials @1, @2, @3, @4 have no common zero in (0, 1).

Example 10.6. If P,Q € B(H) are two orthogonal projections and PQ + QP = 0, then PQ = QP.

Indeed, we have f(p, q) = pq + qp.foo = 0,and since ¢1(x) = 0, 2(x) = 1,¢3(x) = 0,¢4(x) =1
have no common zero in (0, 1), the polynomial f enforces commutativity.

Example 10.7. Let P,Q € B(H) be two orthogonal projections. If two of the operators
I, P, Q, PQ, QP, PQP, QPQ, PQPQ, QPQP, PQPQP, QPQPQ, ...

coincide, then

PQ = QP = PQP = QPQ = PQPQ = QPQP = PQPQP = - - -

To see this, let S = {p, q, pq, qp, pqap. qpq. . . .}. If f is a polynomial in S, then three of the associated
polynomials ¢1 (x), @2 (%), ¢3(x), 4 (x) are identically zero and one is x" for some n > 0. Thus, if f1, f, €
S, then one of the polynomials ¢1(x), @2 (x), 3(X), p4(x) associated with f; — f> is £x" or " — x™
with n # m. This polynomial has no zeros in (0, 1) and hence f; — f, enforces commutativity. We are
left with 1 — f for f € S. Let ¢1(x), p2(x), ¢3(x), 94(x) be the polynomials that are associated with f.
If 3 is identically zero, then the polynomial 17 (x) is identically 1 and thus has no zeros in (0, 1).
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If 3 is not identically zero, then ¢3(x) = X" and ¢ = @3 = @4 = 0 identically. This implies that
Yo1(x) equals —x™ and is therefore nonzero in (0, 1). In either case it follows that 1 — f is enforcing
commutativity.

Remark 10.8 (Quantum-mechanical interpretation). Let P and Q be orthogonal projections. Example
10.7 shows in particular that

PQP = QPQ — PQ = QP. (63)

We may think of the selfadjoint operators P and Q as observables in a quantum-mechanical system.
The equality PQ = QP means that P and Q are commensurable, that is, they can be measured simul-
taneously. The selfadjoint operator PQP is also an observable. The expected value of PQP when the
system is in state ¢ is (¢, PQPp) = (Pg, QP¢). Thus, PQP determines the conditional probability of Q
under the condition that P is given. Clearly, QPQ may be interpreted in an analogous fashion as the
probability of P, given Q. Rehder [86] writes that in this light “it comes as no surprise that PQP = QPQ
should imply PQ = QP.Mathematically speaking, however, the implication seems curious: (63) means
that for PQ = QP it is sufficient that PQ has the same value for Px as QP has for Qx, for all x € H. In
other words, (63) permits an implication from the equality of positive selfadjoint operators PQP and
QPQ to the equality of prima facie more general operators PQ and QP. Putting A = PQ, A* = QP, (63)
may be restated as: A = A* is equivalent to AA* = A*A, i.e., for A = PQ selfadjointness and normality
are the same”.

It was moreover pointed out in [86,87] that the implication (63) is a special case of the Fuglede-
Putnam theorem. This theorem says that if A, B, T are in B(*) and A and B are normal, then AT = TB
implies A*T = TB*. Taking A = PQ, B = QP, T = P yields (63).

We also learned from [86,87] that the selfadjoint operator

J(P,Q) :=QP(I—-Q)+ (I—-Q)PQ=PQ+QP—2QPQ

is the observable which defines Mittelstaedt’s probability of interference: the probability of interfer-
ence of P and Q for the system in state ¢ is (¢, J (P, Q)¢).Forf(p,q) = pq + qp — 2qpqwe have foy = 0,
©1(x) =0,02(x) = 1, 3(x) = —2x, p4(x) = 1, and hence Theorem 10.5 gives the implication

J(P,Q) =0=PQ =QP, (64)

which was by different methods already proved in [86,87], too. Physically speaking this means that
absence of interference implies commensurability, which is again not a surprise.

To our knowledge, the implications (63) and (64) are due to Rehder [86,87]. The statement of
Example 10.7 along with a very short purely C*-algebraic proof is in the one-pager [24]. In [88], Rehder
proved the following generalization: if A and B are selfadjoint and A > 0 or B > 0, then

AB%A = BA’B =—> AB = BA.

In other words, if AB is normal, it is automatically selfadjoint. It is also shown in [88] that this is not
true if the positivity hypothesis is dropped.

Papers[8-10] contain Examples 10.6 and 10.7 and some more complicated particular commutativity
enforcing polynomials in the case where H = C".

11. Concluding remarks

There are many more topics on two projections we could embark on. We leave the matter with a
few remarks on the problem of what happens if we have more than two idempotents. As shown in
Section 10, things are trivial in case the idempotents commute pairwise. Already in 1955, Davis [25]
discovered that there exist three orthogonal projections on  such that the smallest W*-subalgebra
of B(H) which contains the identity and these three projections is all of B(#). In other words, B(+)
is always generated by three projections in the sense of W*-algebras. Different proofs of this result
(and another proof of Halmos’ theorem) are in Behncke’s papers [14,15]. It is clear that a Banach
algebra that is generated in the sense of Banach algebras by a finite number of elements must be
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separable, that is, must have a countable dense subset. In [18], it is shown that every separable Banach
algebra is isomorphic to a subalgebra of an algebra that is generated in the sense of Banach algebras
by three idempotents. Consequently, a theory for C*-algebras or W*-algebras generated by at least
three orthogonal projections or of Banach algebras generated by at least three idempotents would be
a theory of everything and thus a hopeless venture.

However, if further axioms are imposed on the generating idempotents, results like Theorems 4.7
or 6.1 are available. Such additional axioms may, for example, come from the theory of singular integral
operators. In that connection one has, for instance, to deal with Banach algebras generated by e, p, q, j
where p? = p, ¢> = q, j*> = e (which means that (e 4 j)/2 is an idempotent) and either jpj = e — p
and jgj = e — q or jpj = p and jgj = e — q. The reader is referred to Roch, Santos, and Silbermann’s
book [91] for an exhaustive treatment of this subject. Original works on the topic include Finck, Roch,
and Silbermann [43], Krupnik and Spigel [75], and Power [83]. The N-projections theorem proved in
[18,19] is based on still another set of additional axioms but also motivated by the theory of singular
integral operators.

We take up the opportunity to mention that Fillmore [41] showed that every bounded linear
operator A on a separable infinite-dimensional Hilbert space can be written as a linear combination of
257 orthogonal projections. (This result has meanwhile been improved considerably, for instance, by
Pearcy and Topping [80].) The case where A is a scalar multiple of the identity is very well understood.
Let X, denote the set of all A € R for which Al is the sum (sic!) of n orthogonal projections. Kruglyak,
Rabanovich, and Samoilenko [73] refer to the equalities

3
> =1{0,1}, > =1{0,1,2}, E3={0,1,5,2,3},

k
+ 2

k
>4=10,1,1 —(k eN),2,3 — k € N),3,4
’ { s ken o ken }

as mathematical folklore and completely describe X, for general n, showing that if n > 5, then X, is
the union of a segment [«y,, B,] and of two sequences 5,1 and Sﬁ converging to «,, and 3, respectively.

Bart, Ehrhardt, and Silbermann [13] studied the following problem. Let .A be a Banach algebra and let
D1, ..,Pn € Abe idempotents such that p; + - - - 4+ p, = 0. Does it follow that p; = - - - = p, = 0?
They showed that the answer is “yes” for n <4 or if A is a Banach algebra that satisfies a polynomial
identity (which is e.g. the case for .4 = CN*N) but that for n > 5 there exist .4 for which the answer is
“no”. These latter Banach algebras are far away from being commutative.

To quote another result in this vein, we take the liberty to cite Holland, who begins his article [59]
as follows. “Noncommutativity and infinite dimensionality seem to lie at the source of the mysteries
of Hilbert space. Consider a theorem of Fillmore [42]: given any bounded selfadjoint operator T on
a separable infinite-dimensional complex Hilbert space, there exists a positive number « such that
oT + 41 equals the sum of eight or fewer orthogonal projections. Not a linear combination: simply a
sum. Put another way, Fillmore’s theorem says that after scaling, any bounded selfadjoint operator equals
the sum of eight or fewer orthogonal projections.” That is a nice end of a guided tour, isn’t it?
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