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LetA1,A2 be standard operator algebras on complexBanach spaces

X1, X2, respectively. For k � 2, let (i1, . . . , im) be a sequence with

terms chosen from {1, . . . , k}, and define the generalized Jordan

product

T1 ◦ · · · ◦ Tk = Ti1 · · · Tim + Tim · · · Ti1
on elements inAi . This includes the usual Jordan productA1 ◦ A2 =
A1A2 + A2A1, and the triple {A1, A2, A3} = A1A2A3 + A3A2A1. As-

sume that at least one of the terms in (i1, . . . , im) appears exactly

once. Let a map Φ : A1 → A2 satisfy that

σ(Φ(A1) ◦ · · · ◦ Φ(Ak)) = σ(A1 ◦ · · · ◦ Ak),

whenever any one of A1, . . . , Ak has rank at most one. It is shown

in this paper that if the range of Φ contains all operators of rank

at most three, then Φ must be a Jordan isomorphismmultiplied by

an mth root of unity. Similar results for maps between self-adjoint

operators acting on Hilbert spaces are also obtained.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

There has been considerable interest in studying spectrum preserving maps on operator algebras

in connection to the Kaplansky’s problem on characterization of linear maps between Banach alge-

bras preserving invertibility; see [16,14,3,20,2]. Early study focus on linear maps, additive maps, or
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multiplicative maps; see, e.g. [17]. Moreover, researchers considered maps preserving different types

of spectra of operators such as the approximate spectrum, left invertible spectrum, right invertible

spectrum, etc. Despite these variations, the maps often have the standard form

A �→ S−1AS or A �→ S−1A∗S
for a suitable invertible operator S, and A∗ is the dual of A if A is a (bounded linear) operator between

reflexive spaces. Many interesting techniques have been developed to derive these standard forms

under different settings.

Recently, researchers have improved the results on spectrum preserving maps by showing that the

map has the standard form under much weaker assumptions; see, e.g. [22,21,8,9,4,7,13]. For example,

in [12], we characterize maps Φ (not assumed to be linear, additive or continuous) between standard

operator algebras A1,A2 (not necessarily unital or closed) on complex Banach spaces X1, X2, respec-

tively, such that σ(Φ(A1)∗ · · · ∗Φ(Ak)) = σ(A1∗ · · · ∗Ak) whenever any one of Ai’s is of rank at most

one. Here, T1∗ · · · ∗Tk = Ti1 · · · Tim for a sequence (i1, . . . , im) with terms in {1, . . . , k} such that one

of the terms appears exactly once. Such product covers the usual product T1∗ · · · ∗Tk = T1 · · · Tk , and
the Jordan semi-triple product T1∗T2 = T2T1T2. It is interesting to note that we can get the conclusion

by requiring the spectrum preserving properties for low rank operators. In particular, we do not need

to consider different types of spectra for such operators, as all of them coincide in this case. The

list includes the left spectrum, the right spectrum, the boundary of the spectrum, the full spectrum,

the point spectrum, the compression spectrum, the approximate point spectrum and the surjectivity

spectrum, etc. Thus, our results in [12] unify and generalize several recent results of various spectrum

preservers, see, e.g. [13].

In this paper, we continue this line of study. In particular, we consider the generalized Jordan

products of operators defined below.

Definition 1.1. Fix a positive integer k and a finite sequence (i1, i2, . . . , im) such that {i1, i2, . . . , im} =
{1, 2, . . . , k} and there is an ip not equal to iq for all other q. Define a product for operators T1, . . . , Tk by

T1 ◦ · · · ◦ Tk = Ti1 · · · Tim + Tim · · · Ti1 .
Evidently, this definition covers the usual Jordan product T1T2 + T2T1, and the triple one:

{T1, T2, T3} = T1T2T3 + T3T2T1.

In the following, for i = 1, 2, let Xi be a complex Banach space, and Ai be a standard operator

algebra on Xi, i.e., Ai contains all continuous finite rank operators on Xi. In particular, the Banach

algebra B(Xi) of all bounded linear operators on Xi is a standard operator algebra. Note that we do not

assumea standardoperator algebra is unital or closed in any topology. Recall that a Jordan isomorphism

Φ : A1 → A2 is either a spacial automorphism or anti-automorphism. In this case, σ(Φ(A1) ◦ · · · ◦
Φ(Ak)) = σ(A1 ◦ · · · ◦ Ak) holds for all A1, . . . , Ak . We will show that the converse is also true. It is

interesting that consideration of low rank operators is again enough to ensure the conclusion of the

converse statement.

Theorem 1.2. Consider the product T1 ◦ · · · ◦ Tk defined in Definition 2.1. Suppose Φ : A1 → A2 satis-

fies

σ(Φ(A1) ◦ · · · ◦ Φ(Ak)) = σ(A1 ◦ · · · ◦ Ak), (1.1)

whenever any of A1, . . . , Ak has rank at most 1. Suppose also that the range of Φ contains all operators in

A2 of rank at most 3. Then one of the following conditions holds.

(1) There exist a scalar λ with λm = 1 and an invertible operator T in B(X1, X2) such that

Φ(A) = λTAT−1 for all A in A1.

(2) The spaces X1 and X2 are reflexive, and there exist a scalar λwith λm = 1 and an invertible operator

T ∈ B(X∗
1 , X2) such that

Φ(A) = λTA∗T−1 for all A in A1.
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We remark that if the condition (1) or (2) in Theorem1.2holds, thenΦ satisfies (1.1) for allA1, . . . , Ak

inA1. In fact,Φ preservesdifferent kindsof spectraofA1 ◦ · · · ◦ Ak . For thegeneralized Jordanproducts

of rank at most two appearing in (1.1), all such kinds of spectra coincide, however. So our results do

unify, strengthen, and generalize several theorems in literature. See, e.g. [12, Remark 3.3]. Remark also

that the linearity and continuity of Φ are parts of the conclusion. The proof of Theorem 1.2 is given in

Section 3.

We also have a version for maps between the Jordan algebras of self-adjoint operators on Hilbert

spaces, given in Section 4.

Wenote that our results areneweven for the classical JordanproductAB + BAand tripleABC + CBA.

Similar to other papers, a crucial step in our proof is to show that the map Φ actually preserves

rank one operators. To this end, we provide some new characterizations of rank one operators in

term of the spectra of their Jordan products with rank one operators in Section 2. Nonetheless, the

technique we employ in this paper is quite a bit different from those we usually see in the literature,

e.g. [14,11,22,21,6,8,9,4,7,13].

Finally, we would like to thank the Referee for his/her careful reading and helpful comments.

2. Characterizations of rank one operators

Lemma 2.1. Suppose r and s are integers such that s > r > 0. Let A be a nonzero operator on a complex

Banach space X of dimension at least three. The following conditions are equivalent.

(a) A has rank one.
(b) σ(BrABs + BsABr) has at most two distinct nonzero eigenvalues for any B in B(X).
(c) There does not exist an operator B with rank at most three such that BrABs + BsABr has rank three

and three distinct nonzero eigenvalues.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear.

To prove (c)⇒ (a), we consider the contrapositive. Suppose (a) is not true, i.e., A has rank at least 2.

If A has rank at least 3, then there are x1, x2, x3 ∈ X such that {Ax1, Ax2, Ax3} is linearly independent.
Consider the operator matrix of A on the span of {x1, x2, x3, Ax1, Ax2, Ax3} and its complement:(

A11 A12

A21 A22

)
.

ThenA11 ∈ Mnwith3� n� 6. By [12, Lemma2.3], there is anonsingularU on the spanof {x1, x2, x3, Ax1,
Ax2, Ax3} such that U−1A11U has an invertible 3-by-3 leading submatrix. We may further assume that

the 3-by-3 matrix is in triangular form with nonzero diagonal entries a1, a2, a3. Now let B in A have

operator matrix(
B11 0

0 0

)
,

where UB11U
−1 = diag (1, b2, b3) ⊕ 0n−3 with B11 using the same basis as that of A11 and b2, b3 being

chosen such that a1, a2b
r+s
2 , a3b

r+s
3 are three distinct nonzero numbers. It follows that BrABs + BsABr

has rank 3 with three distinct nonzero eigenvalues.

Next, suppose A has rank 2. Choosing a suitable space decomposition of X , we may assume that A

has operator matrix A1 ⊕ 0, where A1 has one of the following form:

(i)

⎛⎝a 0 b

0 0 0

0 0 c

⎞⎠ , (ii)

⎛⎝a 0 0

0 0 1

0 0 0

⎞⎠ , (iii)

⎛⎝0 1 0

0 0 1

0 0 0

⎞⎠ , (iv)

(
02 I2
02 02

)
.

If (i) holds, set θ = π/s. Then cos rθ /= ±1 and cos rθ /= ±√
cos 2rθ . Let d > 0 such that

a(cos rθ ± √
cos 2rθ),−2cdr+s are three distinct nonzero numbers. Let B ∈ A be represented by the

operator matrix
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⎛⎝cos θ − sin θ 0

sin θ cos θ 0

0 0 d

⎞⎠ ⊕ 0.

Then Bs = −I2 ⊕ [ds] ⊕ 0, and −(BrABs + BsABr) has operator matrix⎛⎝2a cos rθ −a sin rθ ∗
a sin rθ 0 ∗

0 0 −2cdr+s

⎞⎠ ⊕ 0,

which has rank 3 with three distinct nonzero eigenvalues a(cos rθ ± √
cos 2rθ),−2cdr+s.

Suppose (ii) holds. Let d > 0be such that 2adr+s, s + r ± 2
√

rs are three distinct nonzeronumbers.

Then construct B by the operator matrix⎛⎝d 0 0

0 1 0

0 1 1

⎞⎠ ⊕ 0.

Then BrABs + BsABr has operator matrix⎛⎝2adr+s 0 0

0 s + r 2

0 2rs s + r

⎞⎠ ⊕ 0,

which has rank 3 with three distinct nonzero eigenvalues 2adr+s, s + r ± 2
√

rs.

Suppose (iii) holds. First, assume that s = 2r. Let B be such that Br has operator matrix⎛⎝0 1 0

0 0 1

1 0 0

⎞⎠ ⊕ 0.

Then BrABs + BsABr has operator matrix⎛⎝0 1 0

0 0 1

2 0 0

⎞⎠ ⊕ 0,

which has rank 3 with three distinct nonzero eigenvalues: 21/3, 21/3ei2π/3, 21/3ei4π/3.

Next, suppose s/r /= 2. Then s > 2 and 2r/s is not an integer. Let θ1 = 2π/s, θ2 = 4π/s. Then

1, eirθ1 , eirθ2 are distinct because ei4π r/s = ei2π(2r/s) /= 1 and eirθ1 = eirθ2/eirθ1 = ei2π r/s /= 1. Thus,

there exists an invertible S ∈ M3 such that⎛⎜⎝1 0 0

0 eirθ1 0

0 0 eirθ2

⎞⎟⎠ = S−1

⎛⎜⎝1 0 0

1 eirθ1 0

0 2 eirθ2

⎞⎟⎠ S.

Let B have operator matrix

S

⎛⎜⎝1 0 0

0 eiθ1 0

0 0 eiθ2

⎞⎟⎠ S−1 ⊕ 0.

The operator matrix Bs = I3 ⊕ 0 and the operator matrix of Br has the form

S

⎛⎜⎝1 0 0

0 eirθ1 0

0 0 eirθ2

⎞⎟⎠ S−1 ⊕ 0 =
⎛⎜⎝1 0 0

1 eirθ1 0

0 2 eirθ2

⎞⎟⎠ ⊕ 0.

Then BrABs + BsABr = ABr + BrA has operator matrix⎛⎜⎝1 1 + eirθ1 0

0 3 eirθ1 + eirθ2

0 0 2

⎞⎟⎠ ⊕ 0,
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which has rank 3 with three distinct nonzero eigenvalues.

If (iv) holds, then X has dimension at least 4.Wemay use a different decomposition of X and assume

that A has operator matrix(
0 1

0 0

)
⊕

(
1 1

−1 −1

)
⊕ 0.

Let θ = π/(2(r + s)) and d > 0 be such that 1 ± √
sin(2rθ) sin(2sθ) and dr+s are 3 distinct nonzero

numbers, and let B be an operator in B(X) such that B� has operator matrix

B� =
⎛⎝cos �θ − sin �θ 0

sin �θ cos �θ 0

0 0 d�

⎞⎠ ⊕ 0

for any positive integer �. Then BrABs + BsABr has operator matrix⎛⎝sin((r + s)θ) 2 cos rθ cos sθ 0

2 sin rθ sin sθ sin((r + s)θ) 0

0 0 dr+s

⎞⎠ ⊕ 0,

which has rank 3 with three distinct nonzero eigenvalues. �

Lemma 2.2. Suppose s is a positive integer. Let X be a complex Banach space of dimension at least three.
Let A ∈ B(X) be such that A2 /= 0. Then the following are equivalent.

(a) A has rank one.
(b) σ(ABs + BsA) has at most two distinct nonzero eigenvalues whenever rank(B) � 3 and rank(ABs +

BsA) � 3.

Proof. One direction is trivial. Suppose A has rank at least 2 such that A2 /= 0. First assume that A has

rank 2. Choosing a suitable decomposition of X , we may assume that A has operator matrix A1 ⊕ 0,

where A1 has one of the following form

(i)

⎛⎝a 0 b

0 0 0

0 0 c

⎞⎠ , (ii)

⎛⎝a 0 0

0 0 1

0 0 0

⎞⎠ , (iii)

⎛⎝0 1 0

0 0 1

0 0 0

⎞⎠ , (iv)

(
02 I2
02 02

)
.

SinceA2 /= 0, (iv) is impossible. If (i) holds, set θ = π/(2s + 1) so that cos sθ /= ±√
cos 2sθ . Let d > 0

such that a(cos sθ ± √
cos 2sθ), 2cds are three distinct nonzero numbers. Let B have operator matrix⎛⎝cos θ − sin θ 0

sin θ cos θ 0

0 0 d

⎞⎠ ⊕ 0.

Then similar to the proof of Lemma 2.1, we see that ABs + BsA has operator matrix⎛⎝2a cos sθ −a sin sθ ∗
a sin sθ 0 ∗

0 0 2cds

⎞⎠ ⊕ 0,

which has rank 3 with three distinct nonzero eigenvalues a(cos sθ ± √
cos 2sθ), 2cdr+s.

Suppose (ii) holds. Let d > 0 be such that 2d, d ± √
a2 + d2 are three distinct nonzero numbers.

Since the matrix

C =
⎛⎝0 1 0

1 0 0

0 2d 2

⎞⎠
is similar to a matrix with distinct eigenvalues −1, 1, 2, there exists an operator B of rank 3 such that

the operator matrix of Bs equals C ⊕ 0. It follows that the operator matrix of ABs + BsA is



1054 J. Hou et al. / Linear Algebra and its Applications 432 (2010) 1049–1069

⎛⎝0 a 1

a 2d 2

0 0 2d

⎞⎠ ⊕ 0,

which has rank 3 and distinct nonzero eigenvalues 2d, d ± √
a2 + d2.

Suppose (iii) holds. Since the matrix

C =
⎛⎝0 0 0

1 1 0

0 2 2

⎞⎠
has distinct eigenvalues 0, 1, 2, there exists an operator B of rank 2 such that the operator matrix of Bs

equals C ⊕ 0. Then ABs + BsA has operator matrix⎛⎝1 1 0

0 3 3

0 0 2

⎞⎠ ⊕ 0,

which has rank 3 with three distinct nonzero eigenvalues 1, 2, 3.

Now, suppose A has rank at least 3. Since A2 /= 0, there is x ∈ X such that A2x /= 0. We consider 3

cases.

Case 1. There is x ∈ X such that [x, Ax, A2x] has dimension 3. Decompose X into [x, Ax, A2x] and its

complement. The operator matrix of A has the form⎛⎜⎜⎝
0 0 c1 ∗
1 0 c2 ∗
0 1 c3 ∗
0 0 ∗ ∗

⎞⎟⎟⎠ .

Note that for t > 0, the matrix

C =
⎛⎝2t 1 0

0 t 2

0 0 0

⎞⎠
has three distinct eigenvalues: 2t, t, 0. So, there is B1 of rank 2 such that Bs1 = C. Let B have operator

matrix B1 ⊕ 0. Then ABs + BsA has operator matrix
(
tR1 + R2 ∗

0 0

)
, where

R1 =
⎛⎝0 0 2c1
3 0 c2
0 1 0

⎞⎠ and R2 =
⎛⎝1 0 c2
0 3 2c2
0 0 2

⎞⎠ .

SinceR2 has distinct eigenvalues 1,2,3, thematrix tR1 + R2 will have three distinct nonzero eigenvalues

for sufficiently small t. Hence, ABs + BsA has rank 3 with three distinct nonzero eigenvalues.

Case 2. Suppose Case 1 does not hold, and there is x ∈ X such that A2x /= 0 and [x, Ax, A2x] has

dimension 2. Clearly, we cannot have Ax = λx. Otherwise, [x, Ax, A2x] has dimension 1. Hence, A2x =
b1x + b2Ax so that (b1, b2) /= (0, 0). SinceAhas rankat least three, there is y ∈ X such thatAy /∈ [x, Ax].
We claim that there is a decomposition of X so that A has operator matrix(

A0 ∗
0 ∗

)
, (2.1)

where A0 ∈ M3 is in upper triangular form of rank at least 2 and with at least one nonzero eigenvalue.

To prove our claim, suppose Ay = c1x + c2Ax + c3y with c3 /= 0. Using [x, Ax, y] and its comple-

ment, the operator matrix of A has the form(
A1 ∗
0 ∗

)
with A1 =

⎛⎝0 b1 c1
1 b2 c2
0 0 c3

⎞⎠ ,

where A1 has rank at least 2. Since (b1, b2) /= (0, 0), thematrix A1 has at least two nonzero eigenvalues

including c3. We may replace {x, Ax, y} by a linearly independent family {x̂1, x̂2, x̂3} in [x, Ax, y] so that

the operator matrix of A has the form described in (2.1).
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Next, suppose Ay /∈ [x, Ax, y]. Note that [y, Ay, A2y] has dimension 2 by our assumption in Case 2. In

this subcase, Ay /= λy. So, A2y = d1y + d2Ay with (d1, d2) /= (0, 0). With respect to [x, Ax, y, Ay] and
its complement in X , the operator matrix of A has the form(

A2 ∗
0 ∗

)
with A2 =

(
0 b1
1 b2

)
⊕

(
0 d1
1 d2

)
.

Since (b1, b2) /= (0, 0) and (d1, d2) /= (0, 0), A2 has rank at least 2 and at least 2 nonzero eigenvalues.

We may choose an independent family {x̃1, x̃2, x̃3, x̃4} in [x, Ax, y, Ay] so that the operator matrix of

A2 with respect to [x̃1, x̃2, x̃3, x̃4] is in upper triangular form, whose leading 3-by-3 submatrix A0 has

rank at least 2 and has at least one nonzero eigenvalue. So, the operator matrix of A with respect to

[x̃1, x̃2, x̃3] and its complement has the form described in (2.2). So, our claim is verified.

Now, if A0 in (2.2) is invertible, then there is B with operator matrix B1 ⊕ 0, where B1 =
diag (1, b2, b3), and ABs + BsA has operator matrix(

A0B
s
1 + Bs1A0 ∗
0 0

)
,

which has rank 3 with three distinct nonzero eigenvalues. Suppose A0 is singular. Since A0 in (2.2) has

rank two and at least one nonzero eigenvalue, we may assume that A0 has the forms⎛⎝a 0 b

0 0 0

0 0 c

⎞⎠ or

⎛⎝a 0 0

0 0 1

0 0 0

⎞⎠ .

In each case, we can use the arguments in the proof when A has rank 2 to choose B with operator

matrix B1 ⊕ 0 so that B1 ∈ M3 and ABs + BsA has operator matrix(
A0B

s
1 + Bs1A0 ∗
0 0

)
,

which is a rank 3 operator with three distinct nonzero eigenvalues.

Case 3. Suppose [x, Ax, A2x] has dimension one for any nonzero x in X . Then A is a scalar operator.

Let B have operator matrix diag (1, 2, 3) ⊕ 0. Then ABs + BsA has rank 3 and three distinct nonzero

eigenvalues. �

Corollary 2.3. Suppose s is a positive integer. Let X be a complex Banach space X of dimension at least

three, and let A in B(X) be nonzero. The following conditions are equivalent.

(a) A has rank one, or A has rank two such that A2 = 0.
(b) σ(ABs + BsA) has at most two distinct nonzero eigenvalues for any B in B(X).
(c) There does not exist an operator B with rank at most three such that ABs + BsA has rank at most six

with three distinct nonzero eigenvalues.

Proof. (a) ⇒ (b). If A has rank one, then (b) clearly holds. If A has rank two and A2 = 0, then there is

a decomposition of X such that A has operator matrix⎛⎝02 I2 0

02 02 0

0 0 0

⎞⎠ .

So, for any B in A such that Bs has operator matrix⎛⎝B11 B12 B13
B21 B22 B23
B31 B32 B33

⎞⎠ ,

ABs + BsA has operator matrix⎛⎝B21 B22 + B11 B23
0 B21 0

0 B31 0

⎞⎠ ,
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whose nonzero eigenvalues are the same as those of B21 ∈ M2. Thus, there are at most two nonzero

distinct eigenvalues.

The implication (b) ⇒ (c) is clear.

Finally, we verify the implication (c) ⇒ (a). If (c) holds, by Lemma 2.2, we see that A is either rank

1 or A2 = 0. If A2 = 0, we claim that A has rank at most 2. If it is not true, then we can find x1, x2, x3 in

X such that {Ax1, Ax2, Ax3} is linearly independent. Then with respect to [x1, x2, x3, Ax1, Ax2, Ax3] and
its complement, the operator matrix of A has the form⎛⎝03 03 ∗

I3 03 ∗
0 0 ∗

⎞⎠ .

Let B ∈ B(X) have rank 3 with three distinct nonzero eigenvalues such that Bs has operator matrix(
D D

03 03

)
⊕ 0, with D = diag (1, 2, 3).

Then ABs + BsA has rank 6 and 3 distinct eigenvalues. Our conclusion follows. �

3. Maps preserving spectrum of generalized Jordan products of low rank

Theorem 1.2 clearly follows from the special case below, by considering Aip = A and all other Aiq =
B.

Theorem 3.1. Suppose a map Φ : A1 → A2 between standard operator algebras satisfies

σ(Φ(B)rΦ(A)Φ(B)s + Φ(B)sΦ(A)Φ(B)r) = σ(BrABs + BsABr), (3.1)

whenever A or B has rank at most one. Suppose also that the range of Φ contains all operators in A2 of

rank at most 3. Then one of the two assertions in Theorem 1.2 holds with m = r + s + 1.

We note that the case when s = r > 0 has been verified in [12]. So, unless specified otherwise,

we will assume s > r � 0 in the rest of this section. In below, we first show that Φ in Theorem 3.1 is

injective.

For a Banach space X denote by I1(X) the set of all rank one idempotent operators in B(X). In other

words, I1(X) consists of all bounded operators x ⊗ f with x ∈ X , f ∈ X∗ and 〈x, f 〉 = f (x) = 1.

Lemma 3.2. Let A, A′ ∈ B(X) for some Banach space X. Suppose

〈Ax, f 〉 = 0 if and only if 〈A′x, f 〉 = 0, ∀x ⊗ f ∈ I1(X).

Then A′ = λA for some scalar λ.

Proof. First suppose there is a nonzero x in X such that Ax = αx for some nonzero scalar α. Then

for any f in X∗ with 〈x, f 〉 /= 0, we have 〈Ax, f 〉 /= 0, and thus 〈A′x, f 〉 /= 0. Hence, A′x = βx for some

nonzero scalar β , and Ax, A′x are linearly dependent.

Then suppose {x, Ax} is linearly independent. Choose any x ⊗ f in I1(X) with 〈Ax, f 〉 = 0. Then

for any g in X∗ with 〈x, g〉 = 0, we have 〈x, f + g〉 = 1. If 〈Ax, g〉 = 0 then 〈Ax, f + g〉 = 0, and thus

〈A′x, f + g〉 = 0. This eventually gives 〈A′x, g〉 = 0. Thus, together with the assumption, we see that

Ax, A′x are linearly dependent again.

If A has rank one then the assertion is plain. Assume Ax, Ay are linearly independent for some x, y in

X . Then A′x = λxAx, A
′y = λyAy and A′(x + y) = λx+yA(x + y) for some scalars λx , λy and λx+y. This

forces λx = λy = λx+y. So the assertion follows. �

Lemma 3.3. Suppose r and s are nonnegative integers with (r, s) /= (0, 0). Let X be a complex Banach

space. If A, A′ ∈ B(X) satisfy

σ(BrABs + BsABr) = σ(BrA′Bs + BsA′Br), ∀B ∈ I1(X),

then A = A′.
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Proof. We may suppose that A′ /= 0 since it is obvious that σ(BrABs + BsABr) = {0} for all rank one

idempotents B implies that A = 0.

Assume first that s� r > 0. Then the assumption implies that σ(BAB) = σ(BA′B) and hence

f (Ax) = tr(BAB) = tr(BA′B) = f (A′x) for all rank one idempotents B = x ⊗ f . By Lemma 3.2, we see

that A′ = A.

Assume then that s > r = 0 and write the rank-one idempotent B in the form B = x ⊗ f with

〈x, f 〉 = 1. Then ABs + BsA = AB + BA, and either

(i) tr (AB + BA) is the sum of the elements in σ(AB + BA), or
(ii) AB + BA has rank two and a repeated nonzero eigenvalue so that tr (AB + BA) is twice the sum

of the elements in σ(AB + BA).

Therefore, tr (AB + BA) = 0 if and only if σ(AB + BA) = {0} or {α,−α, 0} for some nonzero α.

Since σ(AB + BA) = σ(A′B + BA′), we see that tr (AB + BA) = 0 if and only if tr (A′B + BA′) = 0. It

follows from Lemma 3.2 again that A′ = λA for some scalar λ. But the spectrum coincidence implies

λ = 1. �

As a direct consequence of Lemma 3.3 and the condition (3.1), we have

Corollary 3.4. Let Φ satisfy the hypothesis of Theorem 3.1. Then Φ is injective, and Φ(0) = 0.

In the following, we present the proof of Theorem 3.1 in several steps.

3.1. The case dim X2 = 1. We claim dim X1 = 1. Suppose on contrary that dim X1 � 2. Let Φ(A) =
λA ∈ C. Then for the rank one idempotent B =

(
1 0
0 0

)
⊕ 0 in A1 we have by (3.1) that λr+s+1

B = 1.

Moreover,

σ(BsABr + BrABs) = σ(2λAλ
r+s
B ), ∀A ∈ A1.

If r = 0 then BA + AB =
(
2a b
c 0

)
⊕ 0 for any A =

(
a b
c d

)
⊕ 0 in A1. In particular, BA + AB can have

two distinct eigenvalues for some choices of a, b, c. This contradiction forces dim X1 = 1. If r > 0 then

we will have

tr (BAB) = λAλ
r+s
B , ∀A ∈ A1.

Thus

Φ(A) = λA = λBtr (BAB), ∀A ∈ A1.

Using another rank one idempotent B′ in place of B we will have the same conclusion. Hence,

λBtr (BAB) = λB′ tr (B′AB′), ∀A ∈ A1.

This is possible only when dim X1 = 1. In both cases, we see that Φ : C → C is an algebra isomor-

phism given by Φ(α) = λα with λr+s+1 = 1.

3.2. The case dim X2 = 2. We first claim that dim X1 � 2. Suppose on contrary that dim X = 1. Write

Φ(α) = Aα . By (3.1),

σ(As
βAαA

r
β + Ar

βAαA
s
β) = {2αβr+s}, ∀α,β ∈ C.

By the subjectivity of Φ , we assume Aα =
(
1 0
0 2

)
. Then Ar+s+1

α has two distinct eigenvalues 1 and

2r+s+1, a contradiction.

The following lemma verifies Theorem 3.1 for the case when dim X2 = 2. Indeed, similar argu-

ments can be used to study the cases when 2� dim X2 � dim X1 < ∞. Anyway, we will use a unified

arguments for all the cases when dim X2 � 3 in the next subsection.
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Lemma 3.5. Let n� 2 be a cardinal number. Denote by Vn either a standard operator algebra on a Banach

space of dimension n, or the Jordan algebra of all self-adjoint bounded operators on a Hilbert space of

dimension n. Denote by M2 the algebra of all 2 × 2 matrices. Let Φ : Vn → M2 satisfy

σ(BrABs + BsABr) = σ(Φ(B)rΦ(A)Φ(B)s + Φ(B)sΦ(A)Φ(B)r), (3.2)

whenever A and B in Vn have rank one. Then n = 2, and there is an mth root of unity, λ, and an invertible

operator S such that Φ assumes either the form

Φ(X) = λS−1XS or Φ(X) = λS−1XtS.

Proof. We first note that Vn contains a copy of V2. So we can assume that Φ is a map from V2 intoM2.

Let A be a rank one orthogonal projection. Then B ∈ V2 satisfies

[tr (ArBAs + AsBAr)]2 /= 4 det(ArBAs + AsBAr)

if and only if ArBAs + AsBAr has distinct eigenvalues. Thus, the set S of all suchmatrices B form an open

dense set of V2. Thus, for four linearly independent rank one orthonormal projections A1, A2, A3, A4,

we get a dense set S of matrices B ∈ V2 such that Ar
j BA

s
j + Ar

j BA
s
j has two distinct eigenvalues for

j = 1, . . . , 4. For eachB ∈ S , the rank atmost twooperatorArBAs + AsBAr has twodistinct eigenvalues,

and so is Φ(A)rΦ(B)Φ(A)s + Φ(A)sΦ(B)Φ(A)r for all A ∈ {A1, . . . , A4} and B ∈ S . It follows that for

m = r + s + 1

2tr (AB) = 2tr (Am−1B) = tr (ArBAs + AsBAr)

= tr (Φ(A)rΦ(B)Φ(A)s + Φ(A)sΦ(B)Φ(A)r) = 2tr (Φ(A)m−1Φ(B))

for all A ∈ {A1, . . . , A4} and B ∈ S . For X = (xij) ∈ M2, let v(X) = (x11 x12 x21 x22)
t . Form the 4 × 4

matrices

R = [v(A1)|v(A2)|v(A3)|v(A4)]t ,
and

R̂ = [v(Φ(A1)
m)|v(Φ(A2)

m)|v(Φ(A3)
m)|v(Φ(A4)

m)]t .
Then

Rv(Bt) = R̂v(Φ(Bt)), for all B ∈ S.

Pick a linearly independent set {B1, B2, B3, B4} in S . If
T = [v(B1)|v(B2)|v(B3)|v(B4)],

and

T̂ = [v(Φ(B1))|v(Φ(B2))|v(Φ(B3))|v(Φ(B4))],
then

RT = R̂T̂ .

Since the left side is the product of two invertible matrices, the two matrices on the right side are

invertible. So, R̂−1Rv(B) = v(Φ(B)) for all B ∈ S . Consider the linear map Φ̂ : V2 → M2 such that

R̂−1Rv(B) = v(Φ̂(B)).

Then

σ(ArBAs + AsBAr) = σ(Φ̂(A)rΦ̂(B)Φ̂(A)s + Φ̂(A)sΦ̂(B)Φ̂(A)r)

for all A, B ∈ S . By the continuity of X �→ σ(X), we see that the set equality holds for all A, B ∈ V2. Let

A = B be a rank one orthogonal projection. Sinceσ(Am+1) = σ(Φ̂(A)m+1), we see that Φ̂(A) is similar

to λdiag(1, 0) with λm+1 = 1. By a connectedness argument, we see that such λ is the same for every
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rank one orthogonal projection. Dividing Φ by λ, we can assume λ = 1. By Lemma 3.3, we see that Φ̂

sends exactly zero to zero. In case A is a rank one square zero matrix, σ(Φ̂(A)m) = σ(Am) = {0}, and
thus Φ̂(A) is also a rank one square zero matrix.

Write every invertible self-adjoint matrix A in V2 as a linear sum of two orthogonal rank one

projections. By (3.2), we see that Φ̂ sends orthogonal rank one projections to orthogonal rank one

projections. Hence Φ̂(A2) = Φ̂(A)2 for all self-adjoint 2 × 2 matrices. It follows that Φ̂(AB + BA) =
Φ̂(A)Φ̂(B) + Φ̂(B)Φ̂(A) for all self-adjoint 2 × 2matrices. IfV2 = M2 then Φ̂((A + iB)2) = Φ̂(A2) +
iΦ̂(AB + BA) + Φ̂(B2) = Φ̂(A + iB)2, whenever A, B are self-adjoint 2 × 2matrices. Consequently, Φ̂

has the standard form X �→ S−1XS or X �→ S−1XtS, where S is an invertible 2 × 2 matrix. Note that

Φ(X) = Φ̂(X) for all X ∈ S . We may modify f and assume that Φ(X) = X for all X ∈ S . So, for any
X ∈ V \ S ,

σ(BrXBs + BsXBr) = σ(BrΦ(X)Bs + BsΦ(X)Br)

for all B ∈ S . One can then argue that Φ(X) = X by Lemma 3.3. Finally, by Corollary 3.4 we see that

Φ is injective, and thus n = 2. �

3.3. The case dim X2 � 3. Here are some technical lemmas.

Lemma 3.6. Let X be a complex Banach space and A ∈ B(X). Assume that x ⊗ f ∈ B(X) is a rank one

idempotent. Then the at most rank two operator A(x ⊗ f ) + (x ⊗ f )A has

(1) a nonzero repeated eigenvalue if and only if 〈Ax, f 〉 /= 0 and 〈A2x, f 〉 = 0;
(2) two distinct nonzero eigenvalues if and only if 〈A2x, f 〉 /= 0 and 〈A2x, f 〉 /= 〈Ax, f 〉2.

Proof. (1) Assume that B = A(x ⊗ f ) + (x ⊗ f )A = Ax ⊗ f + x ⊗ A∗f has rank two and a nonzero

repeated eigenvalueλ. Then 〈Ax, f 〉 = 1
2
tr(A(x ⊗ f ) + (x ⊗ f )A) = λ /= 0. Furthermore, letu = Ax −

λx and g = A∗f − λf . Then 〈x, g〉 = 〈u, f 〉 = 0. In a space decomposition with basic vectors u, x, the

operator B has a matrix form

B =
(

0 1

〈u, g〉 2λ

)
⊕ 0.

Hence, the spectrum of B contains the zeros of t2 − 2λt − 〈u, g〉, which gives the repeated eigenvalue

λ of the operator. We have 〈u, g〉 = −λ2. So, 〈A2x, f 〉 = 〈Ax, A∗f 〉 = λ2 + 〈u, g〉 = 0.

Conversely, if 〈Ax, f 〉 = λ /= 0 and 〈A2x, f 〉 = 0, then Ax = λx + u and A∗f = λf + g with 〈u, f 〉 =
〈x, g〉 = 0 and 〈u, g〉 = −λ2. This implies thatλ is a repeated nonzero eigenvalue of Ax ⊗ f + x ⊗ A∗f .

(2) Use the same notations as in the proof of (1). If A(x ⊗ f ) + (x ⊗ f )A has two distinct nonzero

eigenvalues, then, by (1), 〈A2x, f 〉 = 〈Ax, A∗f 〉 = λ2 + 〈u, g〉 = 〈Ax, f 〉2 + 〈u, g〉 /= 0 and 〈u, g〉 /= 0.

Thus, 〈A2x, f 〉 /= 〈Ax, f 〉2. The converse is clear. �

Lemma 3.7. Let X be a complex Banach space of dimension at least two, and let Ai ∈ B(X)withA2
i /= 0, i =

1, 2, 3. Then, the set of rank one idempotent operators P ∈ B(X) satisfying that every AiP + PAi, i = 1, 2, 3,

has two distinct nonzero eigenvalues is dense in the set of all rank one idempotents in B(X).

Proof. Let P = x ⊗ f be a rank one idempotent. By Lemma 3.6, if AP + PA does not have two distinct

nonzero eigenvalues, then 〈A2x, f 〉 = 0 or 〈A2x, f 〉 = 〈Ax, f 〉2. Let ε > 0 be a small positive number.

Assume 〈A2x, f 〉 = 0. If A2x /= 0, take h ∈ X∗ such that 〈A2x, h〉 /= 0 and let Pε = (1 + ε〈x, h〉)−1x ⊗
(f + εh); ifA2x = 0 and there exists u ∈ X such that 〈A2u, f 〉 /= 0, let Pε = (1 + ε〈u, f 〉)−1(x + εu) ⊗
f ; if A2x = 0 and there exists no u ∈ X such that 〈A2u, f 〉 /= 0, take u and h such that 〈A2u, h〉 /= 0

and let Pε = 〈x + εu, f + εh〉−1(x + εu) ⊗ (f + εh). If 〈A2x, f 〉 = 〈Ax, f 〉2 /= 0, take any u so that

{x, u} is linearly independent and 〈Au, f 〉 /= 0, and let Pε = (1 + ε〈u, f 〉)−1(x + εu) ⊗ f . In any case,

for sufficient small ε, the rank one idempotent Pε = xε ⊗ fε satisfies that 〈A2xε , fε〉 /= 0, 〈A2xε , fε〉 /=
〈Axε , fε〉2, limε→0 ‖xε − x‖ = 0 and limε→0 ‖fε − f‖ = 0.
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For given Ai, i = 1, 2, 3, in the lemma, and for any given positive number δ > 0, by Lemma 3.6, we

have to show that for any rank one idempotent P there exists a rank one idempotent Q = u ⊗ hwith

‖P − Q‖ < δ such that 〈A2
i u, h〉 /= 0 and 〈A2

i u, h〉 /= 〈Aiu, h〉2, i = 1, 2, 3.

Given δ > 0. If the rank one operator P = x ⊗ f is such that 〈A2
1x, f 〉 = 0 or 〈A2

1x, f 〉 = 〈A1x, f 〉2,
then, by what has been proved in the previous paragraph, there exists a rank one idempotent Q1 =
u1 ⊗ h1 such that‖P − Q1‖ < 1

3
δ, 〈A2

1u1, h1〉 /= 0 and 〈A2
1u1, h1〉 /= 〈A1u1, h1〉2. If both 〈A2

i u1, h1〉 /= 0

and 〈A2
i u1, h1〉 /= 〈Aiu1, h1〉2 hold for i = 2, 3, then we are done. If, say, 〈A2

2u1, h1〉 = 0 or 〈A2
2u1, h1〉 =

〈A2u1, h1〉2, there exists a rank one idempotent Q2 = u2 ⊗ h2 with

‖u1 − u2‖ < max

{
δ

6‖h1‖ ,
1

4‖A‖2‖h1‖ |〈A2u1, h1〉|
}
,

and

‖h1 − h2‖ < max

{
δ

6(‖u1‖ + 1)
,

1

4‖A‖2(‖u1‖ + 1)
|〈A2u1, h1〉|

}

such that 〈A2
2u2, h2〉 /= 0 and 〈A2

2u2, h2〉 /= 〈A2u2, h2〉2. Then ‖Q1 − Q2‖ < 1
3
δ, 〈A2

1u2, h2〉 /= 0, and

〈A2
1u2, h2〉 /= 〈A1u2, h2〉2. If 〈A2

3u2, h2〉 /= 0 and 〈A2
3u2, h2〉 /= 〈A3u2, h2〉2, then we are done since ‖P −

Q2‖ < 2
3
δ; if 〈A2

3u2, h2〉 = 0 or 〈A2
3u2, h2〉 = 〈A3u2, h2〉2, one may repeat the above process and find

Q3 = u3 ⊗ h3 such that‖Q2 − Q3‖ < 1
3
δ, 〈A2

i u3, h3〉 /= 0and 〈A2
i u3, h3〉 /= 〈Aiu3, h3〉2 for all i=1, 2, 3.

Consequently, we get the desired Q = Q3 as ‖P − Q3‖ < δ. �

Lemma 3.8. Let X be a Banach space of dimension at least 2. Let P,Q in I1(X) be such thatσ(PQ + QP) =
{0}. Then PQ = 0 = QP if and only if there does not exist R in I1(X) such that (PR + RP)/2, (QR +
RQ)/2 ∈ I1(X).

Proof. Let P,Q ∈ I1(X) such that PQ = 0 = QP. Then there is a decomposition of X so that P and Q

have operator matrices

diag (1, 0) ⊕ 0 and diag (0, 1) ⊕ 0.

Then for any R ∈ I1(X) such that (PR + RP)/2 ∈ I1(X), the (1,1) entry of the operator matrix of R

equals 1, and the off-diagonal part of the first row or the first column of the operator matrix of Rmust

be zero to ensure that PR + RP has rank one. Hence, R has operator matrix⎛⎝1 ∗ ∗
0 0 0

0 0 0

⎞⎠ or

⎛⎝1 0 0

∗ 0 0

∗ 0 0

⎞⎠ .

Similarly, if (QR + RQ)/2 ∈ I1(X), then R has operator matrix⎛⎝0 0 0

∗ 1 ∗
0 0 0

⎞⎠ or

⎛⎝0 ∗ 0

0 1 0

0 ∗ 0

⎞⎠ .

Thus, we cannot have R ∈ I1(X) such that both (PR + RP)/2, (QR + RQ)/2 ∈ I1(X).
Conversely, supposeP,Q ∈ I1(X) are such thatσ(PQ + QP) = {0}. IfPQ /= 0orQP /= 0, then there

is a decomposition of X so that P has operator matrix diag (1, 0) ⊕ 0 and Q has operator matrix⎛⎝0 1 0

0 1 0

0 0 0

⎞⎠ or

⎛⎝0 0 0

1 1 0

0 0 0

⎞⎠ .

Let R have operator matrix⎛⎝1 0 0

1 0 0

0 0 0

⎞⎠ or

⎛⎝1 1 0

0 0 0

0 0 0

⎞⎠ .
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Then PR + RP has operator matrix⎛⎝2 0 0

1 0 0

0 0 0

⎞⎠ or

⎛⎝2 1 0

0 0 0

0 0 0

⎞⎠ ,

and QR + RQ has operator matrix⎛⎝1 1 0

1 1 0

0 0 0

⎞⎠ or

⎛⎝1 1 0

1 1 0

0 0 0

⎞⎠ .

Hence, (PR + RP)/2, (QR + RQ)/2 ∈ I1(X). �

For a Banach space X and a ring automorphism τ of C, if an additive map T : X → X satisfies

T(λx) = τ(λ)Tx for all complex λ and all vectors x, we say that T is τ -linear. The following result can

be proved by a similar argument as the proof of the main result in [18]; see also [5, Lemma 3], [19,

Theorems 2.3 and 2.4].

Lemma 3.9. Let X and Y be complex Banach spaces with dimension at least 3. Let Φ : I1(X) → I1(Y) be
a bijective map with the property that

PQ = QP = 0 if and only if Φ(P)Φ(Q) = Φ(Q)Φ(P) = 0

for all P,Q in I1(X). Then there exists a ring automorphism τ of C such that one of the following cases

holds.

(i) There exists a τ -linear transformation T : X → Y satisfying

Φ(P) = TPT−1 for all P ∈ I1(X).

(ii) There exists a τ -linear transformation T : X∗ → Y satisfying

Φ(P) = TP∗T−1 for all P ∈ I1(X).

If X is infinite dimensional, the transformation T is an invertible bounded linear or conjugate linear

operator.

We are now ready to complete the proof of Theorem 3.1. Recall that s > r � 0 and m = r + s +
1� 2, and we assume from now on that X2 has dimension at least 3.

Proof of Theorem 3.1. Recall that Φ satisfies condition (3.1).

Claim 1. Φ is injective, and Φ(0) = 0.

It is just Corollary 3.4.

Claim 2. If A ∈ A1 is a nonzero multiple of a rank one idempotent, then so is Φ(A). In particular, if

P ∈ I1(X1), thenΦ(P) = μR such that R ∈ I1(X2) andμm = 1.When s > r > 0, the mapΦ also sends

square zero rank one operators to square zero rank one operators.

Let A /= 0 be a nonzero multiple of an idempotent, say A = αP, where 0 /= α ∈ C and P in A1 is a

rank one idempotent operator. For any D in A2 of rank at most 3, there is C in A1 such that Φ(C) = D.

By Eq. (3.1) we have

σ(DrΦ(A)Ds + DsΦ(A)Dr) = σ(CrACs + CsACr),
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whichcontains0andhas atmost2nonzeroelements. PuttingB = A in Eq. (3.1),wehaveσ(2Φ(A)m) =
σ(2Am) /= {0}. Applying Lemma 2.1 or Corollary 2.3, depending on s > r > 0, or s > r = 0, we see

that Φ(A) is a nonzero multiple of rank one idempotent. Thus Φ preserves nonzero multiples of rank

one idempotents. If P in A1 is a rank one idempotent, then Φ(P) = μR, where R in A2 is rank one

idempotent and μ ∈ C. Since σ(2Pm) = σ(2Φ(P)m), we see that μm = 1. The last assertion follows

from Lemmas 2.1 and (3.1).

Suppose that s > r > 0. In this case, Φ sends rank one operators to rank one operators by Claim 2.

Observe that if Φ(x ⊗ f ) = y ⊗ g, by (3.1) we will have〈
Φ(B)r+sy, g

〉
=

〈
Br+sx, f

〉
(3.3)

〈y, g〉r+s−1 〈Φ(B)y, g〉 = 〈x, f 〉r+s−1 〈Bx, f 〉 , ∀B ∈ A1. (3.4)

Setting A = B = x ⊗ f , we also have

〈y, g〉r+s+1 = 〈x, f 〉r+s+1 . (3.5)

With these three conditions (3.3)–(3.5) in hand, we can now utilize the proof of [12, Theorem 2.5] to

arrive at the desired assertions of Theorem 3.1.

Conclusion I. From now on, we know that the case s > r > 0 is done.

However, since we shall use some arguments below in the next section, the case s > r > 0 is still

considered until we reach Conclusion II in the following.

Claim 3. Φ(αA) = αΦ(A)holds for all A in I1(X1) and α in C.

Denote Φ(A) = C. Then, for any B ∈ A1, we have

σ(Φ(B)rΦ(αA)Φ(B)s + Φ(B)sΦ(αA)Φ(B)r)

= σ(Br(αA)Bs + Bs(αA)Br)

= σ(αΦ(B)rΦ(A)Φ(B)s + αΦ(B)sΦ(A)Φ(B)r)

= σ(Φ(B)r(αC)Φ(B)s + Φ(B)s(αC)Φ(B)r)).

Since Φ(A1) contains I1(X2), Lemma 3.3 implies Φ(αA) = αC = αΦ(A).

Claim 4. Suppose Φ(A) is a rank one idempotent. Then A2 /= 0.

In the case s > r > 0, it follows from Lemmas 2.1 and (3.1) that A has rank 1. Then by (3.1) again, A

could not have zero trace. Thus A2 /= 0.

Next, we shall see that it is impossible to have A2 = 0 when s > r = 0, either. Assuming A2 = 0

and noting that A /= 0, we would have a nonzero x in X1 such that {x, Ax} is linearly independent. Let

B = x ⊗ f be any rank one idempotent on X1 with < Ax, f >= 1, and thus λΦ(B) = y ⊗ g ∈ I1(X2)
is a rank one idempotent on X2 with some scalar λ such that λm=1. If AB + BA is of rank 1, then either

{x, Ax} is linearly dependent or {f , A∗f } is linearly dependent. However, A2 = 0 would then establish

a contradiction x = 0 or f = 0. On the other hand, as its trace 2 < Ax, f >= 2, the Jordan product

AB + BA has exactly rank 2. By Lemma 3.6(2), we see that AB + BA cannot have two distinct nonzero

eigenvalues. This forces

σ(AB + BA) ∪ {0} = {0, 1} = σ (Φ(A)Φ(B) + Φ(A)Φ(B)) ∪ {0}. (3.6)

As Φ(A) is a rank one idempotent, Lemma 3.6(1) implies that Φ(A)Φ(B) + Φ(A)Φ(B) cannot have a

nonzero repeated eigenvalue. Therefore,Φ(A)Φ(B) + Φ(A)Φ(B) has rank 1. Consequently, {y,Φ(A)y}
or {g,Φ(A)∗g} is linearly dependent. Since Φ(A) is an idempotent, we have exactly y = Φ(A)y or g =
Φ(A)∗g. Computing trace in (3.6), we have the absurd equality 1 = 2λ < y, g >= 2λ with λm = 1.
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Claim 5. Let Φ(C) = Φ(A) + Φ(B). If rs /= 0, then C = A + B. If rs = 0, then together with A2 /=
0, B2 /= 0 and C2 /= 0, it implies C = A + B.

LetW = Φ(A) andW ′ = Φ(B). For any rank one idempotent P ∈ A1, by Claim 2, Q = λΦ(P) is a
rank one idempotent for some scalar λ with λm = 1. It follows from (3.1) that

σ(λ(Qr(W + W ′)Qs + Qs(W + W ′)Qr)) = σ(PrCPs + PsCPr),

σ(λ(QrWQs + QsWQr)) = σ(PrAPs + PsAPr),

and

σ(λ(QrW ′Qs + QsW ′Qr)) = σ(PrBPs + PsBPr).

If rs /= 0, then the traces of the operators in each side of above equations are the same. This leads to

tr(PCP) = tr(λQ(W + W ′)Q) = tr(P(A + B)P)

for all rank one idempotents P in A1. Hence we have C = A + B by Lemma 3.3.

Assume rs = 0. Then, for those rank one idempotent operators P ∈ A1 such that every one of

CP + PC, AP + PA and BP + PB has two distinct nonzero eigenvalues, applying (3.1) and then taking

trace, we have

tr(PC) = tr(P(A + B)). (3.7)

By assumption, A, B and C are non square-zero. Lemma 3.7 ensures that (3.7) holds for a dense set of

rank one idempotents P in A1. As a result, C = A + B.

Claim 6. There exists a scalar λ with λm = 1 such that λ−1Φ sends rank one idempotents to rank one

idempotents.

Let f be nonzero in X∗
1 . Assume 〈x1, f 〉 = 〈x2, f 〉 = 0, and Φ(x1 ⊗ f ) = λ1P1,Φ(x2 ⊗ f ) = λ2P2,

and Φ
((

x1+x2
2

)
⊗ f

)
= λ3P3 for some rank one idempotents P1, P2, P3 and scalars λ1, λ2, λ3 with

λm
1 = λm

2 = λm
3 = 1. By Claims 3–5, we have

2λ3P3 = λ1P1 + λ2P2.

Comparing traces, we have

2λ3 = λ1 + λ2.

Since λm
1 = λm

2 = λm = 1, we have

λ1 = λ2 = λ3.

Denote this common value by λf . Similarly, for any nonzero x in X1 we will have an mth root λx of

unity depending only on x such that

Φ(x ⊗ f ) = λxQx⊗f

for some rank one idempotent Qx⊗f whenever f (x) = 1.

Now consider any two rank one idempotents x1 ⊗ f1 and x2 ⊗ f2 inA1.Wewrite x1 ⊗ f1 ∼ x2 ⊗ f2
if there is a scalar λ with λm = 1 such that λΦ(xi ⊗ fi) is a rank one idempotent for i = 1, 2. In case

α = 〈x1, f2〉 /= 0, we see that

x1 ⊗ f1 ∼ x1 ⊗ f2

α
= x1

α
⊗ f2 ∼ x2 ⊗ f2.

In case 〈x1, f2〉 = 〈x2, f1〉 = 0, we also have

x1 ⊗ f1 ∼ (x1 + x2) ⊗ f1 ∼ (x1 + x2) ⊗ f2 ∼ x2 ⊗ f2.

Conclusion II. By Claim 6, without loss of generality, we assume that Φ preserves rank one idempotents.

By Conclusion I, it suffices to deal with the case s > r = 0 in the sequel.

Claim 7. If Φ(A) ∈ A2 is a rank one idempotent, then A ∈ A1 is a rank one idempotent.
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Suppose Φ(A) is a rank one idempotent. If A is of rank one, then Claims 1 and 3 ensure that A is a

rank one idempotent. Now we suppose A has rank at least 2, and we want to derive a contradiction.

Note that A2 /= 0 by Claim 4.

Case 1. Suppose there is an x in X1 such that {x, Ax, A2x} is linearly independent. Let f in X∗
1 be such

that 〈x, f 〉 = 〈Ax, f 〉 = 1, but 〈A2x, f 〉 /= 0 or 1. Lemma 3.6(2) ensures that A(x ⊗ f ) + (x ⊗ f )A has 2

distinct nonzero eigenvalues, and so hasΦ(A)(y ⊗ g) + (y ⊗ g)Φ(A) by (3.1), where y ⊗ g = Φ(x ⊗
f ) is a rank one idempotent. Comparing traces, we have 〈Φ(A)y, g〉 = 〈Ax, f 〉 = 1. This contradicts to

Lemma 3.6(2), however.

Case 2. Suppose {x, Ax, A2x} is linearly dependent for all x inX1. Hence, by Kaplansky’s Lemma [15,1]

there are scalars a, b, c, not all zero, such that aA2 + bA + cI = 0.

Subcase 2a. If A has rank 2 then A has nonzero eigenvalues α1,α2 (maybe equal). With respect to a

suitable space decomposition, we can assume

A =
⎛⎝α1 0 0

0 α2 0

0 0 0

⎞⎠ or A =
⎛⎝α1 1 0

0 α1 0

0 0 0

⎞⎠ .

Then

A = α1e1 ⊗ e1 + α2e2 ⊗ e2 or A = α1e1 ⊗ e1 + α1

(
e1

α1

+ e2

)
⊗ e2.

By Claims 3 and 5, and Conclusion II, the rank one idempotent

Φ(A) = Φ(α1e1 ⊗ e1 + α2e2 ⊗ e2)

= α1Φ(e1 ⊗ e1) + α2Φ(e2 ⊗ e2)

= α1y1 ⊗ g1 + α2y2 ⊗ g2,

in thefirst casewith rankone idempotents y1 ⊗ g1 = Φ(e1 ⊗ e1) and y2 ⊗ g2 = Φ(e2 ⊗ e2). Observ-
ing ranks,we see that {y1, y2}or {g1, g2} is linearly dependent.On theotherhand, as 〈e1, e2〉〈e2, e1〉 = 0

we see by (3.1) that 〈y2, g1〉〈y1, g2〉 = 0. This eventually gives the contradiction 1 = 〈y1, g1〉〈y2, g2〉 =
0. The second case is similar.

Subcase 2b. Assume A has rank at least 3. Since A is quadratic, each Jordan block of A has order

either 1 or 2. Consider the case

A =
⎛⎜⎜⎝
α1 1 0 0

0 α1 0 0

0 0 α2 0

0 0 0 ∗

⎞⎟⎟⎠ .

Here the nonzero eigenvalues α1,α2 of A can be equal. Then

Ae1 = αe1, Ae2 = e1 + α1e2 and Ae3 = α2e3.

Observe

A(e1 ⊗ e1) + (e1 ⊗ e1)A = e1 ⊗ (2α1e1 + e2),

A(e2 ⊗ e2) + (e2 ⊗ e2)A = (e1 + 2α1e2) ⊗ e2,

and

A(e3 ⊗ e3) + (e3 ⊗ e3)A = 2α2e3 ⊗ e3.

Consider the rank one idempotents Φ(A) = y ⊗ g, and Φ(ei ⊗ ei) = yi ⊗ gi for i = 1, 2, 3. By (3.1),

we see that

σ((y ⊗ g)(yi ⊗ gi) + (yi ⊗ gi)(y ⊗ g)) ∪ {0} = {0, 2α1} or {0, 2α2}, for i = 1, 2, 3.

In particular, by Lemma 3.6(1),

〈yi, g〉 〈y, gi〉 = α1 or α2, is not zero, for i = 1, 2, 3. (3.8)
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But as 〈ei, ej〉〈ej , ei〉 = 0, we have〈
yi, gj

〉 〈
yj , gi

〉 = 0 whenever i /= j.

On the other hand, Lemma 3.6(1) and (3.8) force all (y ⊗ g)(yi ⊗ gi) + (yi ⊗ gi)(y ⊗ g) have rank

one. Consequently, {yi, y} or {g, gi} is linearly dependent for each i = 1, 2, 3. Eventually, wemight have

two of y1, y2, y3 are linearly dependent, or two of g1, g2, g3 are linearly dependent. Suppose y1, y2 are

dependent. Since g1(y1) = g2(y2) = 1, we see that 〈y1, g2〉〈y2, g1〉 = 0, which is absurd. We shall

reach other contradictions similarly for other possible situations. Analogously, we can also derive a

contradiction when we are dealing with the case

A =
⎛⎜⎜⎝
α1 0 0 0

0 α1 0 0

0 0 α2 0

0 0 0 ∗

⎞⎟⎟⎠ or A =

⎛⎜⎜⎜⎜⎝
α1 1 0 0 0

0 α1 0 0 0

0 0 α2 1 0

0 0 0 α2 0

0 0 0 0 ∗

⎞⎟⎟⎟⎟⎠ .

This completes the verification of Claim 7.

Claim 8. One of the following statements is true.
(i) There exists a bounded invertible linear operator T : X1 → X2 such that

Φ(x ⊗ f ) = T(x ⊗ f )T−1 for all x ∈ X1, f ∈ X∗
1 with 〈x, f 〉 = 1.

(ii) There exists a bounded invertible linear operator T : X∗
1 → X2 such that

Φ(x ⊗ f ) = T(x ⊗ f )∗T−1 for all x ∈ X1, f ∈ X∗
1 with 〈x, f 〉 = 1.

SinceΦ preserves rank one idempotents in both directions, by use of Lemma3.8, it is easily checked

that P,Q ∈ I1(X) satisfy PQ = 0 = QP if and only ifΦ(P)Φ(Q) = 0 = Φ(Q)Φ(P). Thuswe can apply

Lemma 3.9 to conclude that (i) or (ii) holds, but with T a τ -linear for some ring automorphism τ of C.

Next we prove that τ is the identity and hence T is linear. For any α ∈ C \ {1, 0}, let A and B have

operator matrices(
1 α − 1

0 0

)
⊕ 0 and

(
1 0

1 0

)
⊕ 0.

Then AB + BA has two distinct nonzero eigenvalues summing up to 2α. Since

σ(AB + BA) = σ(Φ(A)Φ(B) + Φ(B)Φ(A))

= σ(T(AB + BA)T−1) = {τ(ξ) : ξ ∈ σ(AB + BA)},
we see that

2α = tr (AB + BA) = tr (Φ(A)Φ(B) + Φ(B)Φ(A)) = tr (T(AB + BA)T−1) = 2τ(α).

Hence τ(α) = α for any α ∈ C. It follows that T is an invertible bounded linear operator.

Claim 9. Φ has the form in Theorem 3.1.

Suppose (i) in Claim 8 holds. Let A ∈ A1 be arbitrary. For any x ∈ X1 and f ∈ X∗
1 with 〈x, f 〉 = 1, the

condition (3.1) ensures that

σ((T−1Φ(A)T)(x ⊗ f )s + (x ⊗ f )s(T−1Φ(A)T))

= σ(T[T−1Φ(A)T(x ⊗ f )s + (x ⊗ f )sT−1Φ(A)T]T−1)

= σ(A(x ⊗ f )s + (x ⊗ f )sA).
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Hence, by Lemma 3.3, we have

Φ(A) = TAT−1

for all A in A1, that is, Φ has the form (1) in the theorem.

Similarly, one can show that Φ has the form (2) if (ii) of Claim 8 holds.

4. Generalized Jordan product spectrum preserving maps of self-adjoint operators

Let H be a complex Hilbert space and S(H) be the real linear space of all self-adjoint operators in

B(H). Note that S(H) is a Jordan algebra. In this section we solve the problems discussed previously

for maps on S(H). Our results refine those in [7].

Theorem 4.1. For i = 1, 2, let Hi be a complexHilbert space, andS(Hi) be the Jordan algebra of all bounded

self-adjoint operators on Hi. Consider the product T1 ◦ · · · ◦ Tk defined in Definition 1.1. Suppose Φ :
S(H1) → S(H2) satisfies

σ(Φ(A1) ◦ Φ(A2) ◦ · · · ◦ Φ(Ak)) = σ(A1 ◦ A2 ◦ · · · ◦ Ak), (4.1)

whenever any one of the Ai’s has rank at most one. Suppose further that the range of Φ contains all self-

adjoint operators of rank at most 3. Then there exist a scalar ξ in {−1, 1} with ξm = 1 and a unitary

operator U : H1 → H2 such that either

Φ(A) = ξUAU∗ for all A in S(H1),

or

Φ(A) = ξUAtU∗ for all A in S(H1),

where At is the transpose of A for an arbitrarily but fixed orthonormal basis.

To prove Theorem 4.1, it is important to characterize rank one operators in terms of the general

Jordan products of self-adjoint operators. We have the following lemma.

Lemma 4.2. Suppose s > r � 0 is a pair of nonnegative integers. Let H be a Hilbert space of dimension at

least three, and let 0 /= A ∈ S(H). Then the following statements are equivalent.

(a) A has rank one.
(b) For any B ∈ S(H), σ(BrABs + BsABr) contains 0 and at most two nonzero elements.
(c) There does not exist B ∈ S(H) of rank at most three such that BrABs + BsABr has rank at most three

and σ(BrABs + BsABr) contains three distinct nonzero elements.

Proof. The implications (a) ⇒ (b) ⇒ (c) are clear. To prove (c) ⇒ (a), we consider the contrapositive.

Suppose (a) does not hold. Assume rs /= 0. If A has rank at least 3, then there are vectors x1, x2, x3 such

that {Ax1, Ax2, Ax3} is linearly independent. Extend an orthonormal basis for [x1, x2, x3, Ax1, Ax2, Ax3]
to an orthonormal basis for H. Then the operator matrix of Awith respect to this basis has the form(

A11 A12

A∗
12 A22

)
,

where A11 = A∗
11 is the compression of A on the subspace [x1, x2, x3, Ax1, Ax2, Ax3]. By [12, Lemma 2.3],

we can choose an orthonormal basis for [x1, x2, x3, Ax1, Ax2, Ax3] so that the leading 3 × 3 matrix of

A11 equals diag (a1, a2, a3) for some nonzero scalars a1, a2, a3. Now construct B so that the operator

matrix of B using the same basis as that of A equals diag (1, b2, b3) ⊕ 0 ⊕ 0 so that a1, a2b
r+s
2 , a3b

r+s
3

are distinct nonzero numbers. Then BrABs + BsABr has rank 3with three distinct nonzero eigenvalues.

Next, suppose A has rank 2. Choosing a suitable basis, we may assume that A has operator matrix

diag (a, b, 0) ⊕ 0. Construct B with operator matrix [d] ⊕ B1 ⊕ 0, where

B1 =
(
1 1

1 −1

) (
2 0

0 1

) (
1 1

1 −1

)
= 2

(
1 1

1 1

)
+

(
1 −1

−1 1

)
.



J. Hou et al. / Linear Algebra and its Applications 432 (2010) 1049–1069 1067

Compute

Bk1 = 2k−1

[
2k

(
1 1

1 1

)
+

(
1 −1

−1 1

)]
, k = 1, 2, . . . .

Now, if γ = 2r and δ = 2s then

Br1

(
1 0

0 0

)
Bs1 + Bs1

(
1 0

0 0

)
Br1 = 2r+s−1

(
(γ + 1)(δ + 1) γ δ − 1

γ δ − 1 (γ − 1)(δ − 1)

)
has determinant −4r+s−1(γ − δ)2 < 0. So, it has a positive and a negative eigenvalue, say, μ and

ν . Thus, we can choose d so that BrABs + BsABr has three nonzero distinct nonzero eigenvalues:

2adr+s, bμ, bν .
Next, suppose s > r = 0. IfAhas rank 2, thenAhas an operatormatrix of the formdiag (a1, a2, 0) ⊕

0 for some nonzero real numbers a1, a2. Let b > 0 be such that 2bsa1 /= a2

(
1/2 ± 1/

√
2
)
. Suppose

B ∈ S(H) is such that B and ABs + BsA have operator matrices⎛⎝b 0 0

0 1/2 1/2
0 1/2 1/2

⎞⎠ ⊕ 0 and

⎛⎝2a1b
s 0 0

0 a2 a2/2
0 a2/2 0

⎞⎠ ⊕ 0.

Then ABs + BsA has rank 3 with three distinct nonzero eigenvalues 2bsa1, a2

(
1/2 + 1/

√
2
)
and

a2

(
1/2 − 1/

√
2
)
.

Now, suppose A has rank at least 3. If A = λI, then let B have operator matrix diag (1, 2, 3) ⊕ 0

with respect to some orthonormal basis for H. Then B has rank 3 and ABs + BsA has rank 3 with

three distinct nonzero eigenvalues λ, 2sλ, 3sλ. So, assume A is non-scalar. Thus, there is a unit vector

x1 ∈ H such that Ax1 = a1x1 + a2x2 with a1 /= 0 and a2 > 0, where x2 is a unit vector in [x1]⊥. Let

Ax2 = b1x1 + b2x2 + b3x3 with b3 � 0, where x3 is a unit vector in [x1, x2]⊥. We consider two cases.

Case 1. If b3 > 0, then the operator matrix of the self-adjoint operator A with respect to an or-

thonormal basis with {x1, x2, x3} as the first three vectors has the form⎛⎜⎜⎝
a1 b1 ∗ ∗
a2 b2 ∗ ∗
0 b3 ∗ ∗
0 0 ∗ ∗

⎞⎟⎟⎠ .

Let B have operator matrix I2 ⊕ 0. Then ABs + BsA has an operator matrix of the form C1 ⊕ 0, where

C1 =
⎛⎝2a1 2a2 0

2a2 2b2 b3
0 b3 0

⎞⎠ .

Note that det(C1) = −2a1b
2
3 /= 0, and C1 − λI has rank at least two for any eigenvalue λ as the 2 × 2

submatrix at the right top corner is always invertible. So, C1 is invertible and has three distinct nonzero

eigenvalues. Hence, ABs + BsA has rank 3 with three distinct nonzero eigenvalues.

Case 2. Suppose b3 = 0. Then [x1, x2] is an invariant subspace of A. Since A has rank at least 3, there

is a unit vector x3 in H such that Ax3 /= 0 and Ax3 ∈ {x1, x2}⊥.

Subcase 2a. If [x1, x2, x3] is an invariant subspace of A, thenwith respect to an orthonormal basis for

[x1, x2, x3] and its orthonormal complement, A has operator matrix A1 ⊕ A2, where A1 inM3 has rank

at least 2. If A1 has rank 3, we may assume that A1 = diag (a1, a2, a3). We can choose B with operator

matrix diag (b1, b2, b3) ⊕ 0 for some suitable b1, b2, b3 so that ABs + BsA has rank 3with three distinct

nonzero eigenvalues 2a1b
s
1, 2a2b

s
2, 2a3b

s
3. If A1 has rank 2, we may assume that A1 = diag (a1, a2, 0)

and continue exactly as when A has rank 2. Then choose B with operator matrix⎛⎝b 0 0

0 1/2 1/2
0 1/2 1/2

⎞⎠ ⊕ 0
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so that 2bsa1 /= a2

(
1/2 ± 1/

√
2
)
. Then ABs + BsA has rank 3with three distinct nonzero eigenvalues

2bsa1 /= a2

(
1/2 ± 1/

√
2
)
.

Subcase 2b. Suppose Ax3 = c3x3 + c4x4 so that c4 > 0 and {x1, x2, x3, x4} is an orthonormal set in

H. If Ax4 = d3x3 + d4x4 + d5x5 so that {x3, x4, x5} is an orthonormal set in H and d5 > 0, then we

are back to Case 1 with (x1, x2) replaced by (x3, x4). We thus assume that [x1, x2, x3, x4] is an invariant

subspaceofA.With respect to anorthonormal basis for [x1, x2, x3, x4] and its orthonormal complement,

A has operator matrix A3 ⊕ A4, where A3 ∈ M4 is self-adjoint and has rank at least 2. We may assume

that A3 is in diagonal form with at least two nonzero diagonal entries. Using a similar argument as in

Subcase 2A, we get the desired conclusion. �

Proof of Theorem 4.1. Assume that Φ satisfies (4.2). Let

r = min{p − 1,m − p} and s = max{p − 1,m − p}.
In particular, r + s = m − 1. It suffices to prove a special case of Theorem 4.1, as that Theorem 3.1 to

Theorem 1.2 in last section. More precisely, we assume the condition

σ(Φ(B)rΦ(A)Φ(B)s + Φ(B)sΦ(A)Φ(B)r) = σ(BrABs + BsABr) (4.2)

holds whenever A or B in S(H1) has rank at most one. The case s = r has been done in [12]. Hence, we

assume s > r � 0. Arguing similarly as in the beginning of the proof of Theorem 3.1, we can verify the

case dimH2 � 2. Therefore, we assume the dimension of the Hilbert space H2 is at least three in the

sequel.

Claim 1. Φ is injective, and Φ(0) = 0.

This works out similarly as in Corollary 3.4.

Claim 2. Φ sends rank one self-adjoint operators to rank one self-adjoint operators.

This follows from (4.2) and Lemma 4.2. Indeed, every rank one self-adjoint operator has the form

± x ⊗ x. So, Φ(x ⊗ x) = λxyx ⊗ yx for some λx ∈ {−1, 1} and yx ∈ H2. Since

{2‖x‖2m, 0} = σ(2(x ⊗ x)m) = σ(2Φ(x ⊗ x)m) = {2λm
x ‖yx‖2m, 0},

we see that λx is anmth root of the unity and ‖yx‖ = ‖x‖.
Claim 3. Φ is real homogeneous; and ifΦ(C) = Φ(A) + Φ(B) then C = A + B.Moreover, there is a fixed

λ, being either +1 or −1, such that for every x in H1 we have Φ(x ⊗ x) = λyx ⊗ yx with ‖yx‖ = ‖x‖.
The assertions follow from arguments similar to, and a bit easier than, that in Claims 3, 5 and 6 in

the proof of Theorem 3.1 in last section.

Claim 4. Φ has the form stated in the theorem.

Let x, x′ be two nonzero vectors in H1, and x ⊗ x and x′ ⊗ x′ be the associated rank one self-adjoint

operators, respectively. By (4.2), and Lemma 3.6 when s > r = 0, we see that

tr (Φ(x ⊗ x)Φ(x′ ⊗ x′)) = tr ((x ⊗ x)(x′ ⊗ x′)),
or

〈λxyx , λx′yx′ 〉 =
〈
x, x′〉 .

This gives

| 〈yx , yx′ 〉 | = |
〈
x, x′〉 |, for all nonzero x, x′ ∈ H1.
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If follows from the Wigner’s Theorem [10] that there exist a modular one function ξ : H1 → C and a

linear or conjugate linear isometry U : H1 → H2 such that

yx = ξ(x)Ux, ∀x ∈ H1.

By Claim 3, we see that all ξ(x) equal a constant ξ ∈ {−1,+1}, and
Φ(x ⊗ x) = ξUx ⊗ Ux for all rank one projection x ⊗ x on H1.

Moreover, (4.2) ensures that ξm = 1. Because the range of Φ contains all rank one self-adjoint op-

erators, by (4.2) we can see that U has dense range, and thus U is a unitary or a conjugate unitary

operator.

In general, for any A in S(H1), let Aip = A and Aiq = x ⊗ x with ‖x‖ = 1 if q /= p, and substitute

them into (4.2). Since both A and Φ(A) are self-adjoint, we see that

σ(ξm−1((x ⊗ x)rU∗Φ(A)U(x ⊗ x)s + (x ⊗ x)sU∗Φ(A)U(x ⊗ x)r))

= σ((x ⊗ x)rA(x ⊗ x)s + (x ⊗ x)sA(x ⊗ x)r).

ByLemma3.6 andcomparing traces,wegetΦ(A) = ξUAU∗ for allA inS(H1). IfU is a conjugateunitary,

take an orthonormal basis {ej} of H1 and define a conjugate unitary J : H1 → H1 by J : ∑
j ξjej �→∑

j ξ̄jej and let V = UJ. Then V is unitary and JA∗J = At . Thus, Φ(A) = VAtV∗ for all A in S(H1).
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