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Abstract. The problem of service differentiation and admission control in web
services that utilize a multi-tier architecture is more challenging than in a single-
tiered one, especially in the presence of bursty conditions, i.e., when arrivals of
user web sessions to the system are characterized by temporal surges in their
arrival intensities and demands. We demonstrate that classic techniques for a ses-
sion based admission control that are triggered by threshold violations are inef-
fective under bursty workload conditions, as user-perceived performance metrics
rapidly and dramatically deteriorate, inadvertently leading the system to reject
requests from already accepted user sessions, resulting in business loss. Here,
as a solution for service differentiation of accepted user sessions we promote a
methodology that is based on blocking, i.e., when the system operates in over-
load, requests from accepted sessions are not rejected but are instead stored in a
blocking queue that effectively acts as a waiting room. The requests in the block-
ing queue implicitly become of higher priority and are served immediately after
load subsides. Residence in the blocking queue comes with a performance cost
as blocking time adds to the perceived end-to-end user response time. We present
a novel autonomic session based admission control policy, called AWAIT, that
adaptively adjusts the capacity of the blocking queue as a function of workload
burstiness in order to meet predefined user service level objectives while keeping
the portion of aborted accepted sessions to a minimum. Detailed simulations il-
lustrate the effectiveness of AWAIT under different workload burstiness profiles
and therefore strongly argue for its effectiveness.

1 Introduction

One of the most challenging problems for public Internet and e-commerce sites is the
delivery of performance targets to users given the unpredictability of Web accesses. As
Internet services become indispensable both for businesses and personal productivity,
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the efficient management of Internet services under periods where the system is over-
loaded or simply highly variable, is of critical importance. There is a host of solutions
to maintain user-perceived performance levels in the form of service-level objectives
(SLOs) that focus mainly on admission control and/or techniques for service differen-
tiation that are threshold based [13,6,7,19] but their effectiveness can be compromised
if the workload is bursty, i.e., it is characterized by sudden temporal “surges” in the
intensity of user arrivals [23] and user demands [22]. While capacity planning of sys-
tems under bursty workload conditions has been recently demonstrated as critical for
business success [22,23], the problem of efficient admission control and service differ-
entiation under temporal workload bursts remains largely unexplored.

To get the intuition why threshold, usage-based techniques may not be effective if the
system is subject to bursty conditions, let us consider a system that provides web ser-
vices and which is built according to the widely used multi-tiered paradigm. Typically,
access to a web service occurs in the form of a session consisting of many individual
requests. For a customer trying to place an order, or a retailer trying to make a sale, the
real measure of a web server performance is its ability to process the entire sequence of
requests needed to complete a transaction. Session-based admission control (SBAC) has
been proposed as a solution to the above problem [13] and its gist can be summarized
as follows: the system accepts a new session only when the system has enough capacity
to process all future requests related to the session, i.e., the system can guarantee that
the session completes successfully. If the system is functioning near its capacity, a new
session will be rejected (or redirected to another server if one is available).

The original session-based admission control (SBAC) [13] is proposed for a single-
tier web server, and its implementation is usage-based. SBAC accepts a new session
only when the server CPU utilization is below a certain threshold. However, burstiness
in the user arrival flows results in sudden, nearly simultaneous arrivals of requests in
the system. The experiments presented in [23] show that under bursty arrivals SBAC is
ineffective in maintaining a low ratio of aborted sessions due to a slow reaction to bursts.

Conventional wisdom suggests that the original session-based admission control can
be extended for a multi-tiered system in a straightforward way: it should simply be
employed at the bottleneck tier. Yet, if burstiness exists in the flows of a multi-tiered
system (irrespective of its source, in the arrivals or service) then burstiness triggers the
phenomenon of persistent bottleneck switch, i.e., the bottleneck continuously shifts to
another tier [22], making control at the bottleneck tier an elusive task.

In this paper, we depart from threshold usage-based policies, and instead we dynam-
ically control the number and the type of user requests admitted for processing into the
multi-tier system. When the system enters the overload state, we advocate request buffer-
ing from the already accepted sessions in a so-called “blocking” queue, that effectively
acts as a waiting room. This blocking queue differentiates among the requests of already
accepted sessions to those of new sessions, and implicitly gives them higher priority. To
this end, we borrow ideas from the theory of queueing networks with blocking [5,25].

Blocking of accepted sessions during workload surges may be very effective in dif-
ferentiating accepted sessions from new sessions, but the performance of accepted ses-
sions is still directly bounded by the time the requests spent in the blocking queue. That
is, if the time spent is so long that results in SLO violations, it is desirable to limit the
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capacity of the blocking queue in order to bound the user end-to-end time. We perform
a sensitivity study to explore the different fixed blocking queue limits under a variety
of burstiness profiles and conclude that the effectiveness of blocking is strongly related
to the workload burstiness. To address this issue, we propose a parameter-free, auto-
nomic session-based admission control policy called AWAIT that adjusts the blocking
queue capacity in response to workload burstiness. We perform detailed simulations
using the parameterized TPC-W benchmark with extended functionality for generating
bursty session arrivals [23] to demonstrate the effectiveness and robustness of the new
strategy. AWAIT supports a simple and inexpensive implementation. It does not require
significant changes or modifications to the existing Internet infrastructure, and at the
same time, it significantly improves the performance of overloaded multi-tier web sites.

This paper is organized as follows. Section 2 presents results that motivate this work.
Section 3 presents the admission control algorithm and illustrates its robustness un-
der different burstiness profiles by showing that it consistently meets the sought after
performance goals while optimizing its performance targets. Section 4 positions this
contribution within the context of related work. Section 5 summarizes the paper.

2 Capacity Planning and Admission Control

In this section, we present a short case study that illustrates how burstiness may im-
pact in an unexpected way the performance of admission control. The basic model of
an e-commerce site that we use in this paper is based on the TPC-W benchmark that is
implemented as a typical multi-tier application which consists of a web server, an appli-
cation server, and a back-end database. The web server and the application server reside
usually within the same physical server, which is called front server. After a new session
connection is generated, client requests circulate among the front and database server
before they are sent back to the client. After a request is sent back, the client spends
an average think time E[Z] before sending the following request. A session completes
after the client has generated a series of requests.

Overload management is a critical business requirement for today’s Internet services.
A common approach to handle overload is to apply specific resource limits that typi-
cally bound the number of simultaneous socket connections or threads. For example, in
traditional web servers that employ thread-per-connection implementation, the server
configuration specifies the number of processes (and connections) that are allocated for
admitting the user requests. As an example, in the Apache web server [4], when all the
server threads are busy, the system stops accepting new connections. The same princi-
ple applies for providing the basic overload protection in multi-tier applications. The
system administrators may set limits on the number of simultaneous client sessions (we
call them active requests) in the system. Limiting the active requests is critical for qual-
ity of service: setting this limit too low results in achieving a good response time but
at a price of lower system throughput (and a high number of dropped user sessions).
Setting this limit too high may lead to a better throughput and reduced drop rates at a
price of a much higher response time.

Capacity planning is routinely used to determine the base number of active requests
in order to strike a balance among the expected customer response times and dropped
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Fig. 1. Capacity Planning study for SBAC under exponential (i.e., not bursty) new session arrivals.
Performance measures are presented as a function of the maximum number of active requests in
the system.
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Fig. 2. Three different burstiness profiles. The capacity planning results and SLO targets are now
violated. It appears that a queue size of 256 (i.e., maximum active requests for the baseAC con-
figuration) is not sufficient to meet SLO requirements.

sessions. Figure 1 illustrates the results of a capacity planning study that models a
typical TPC-W 2-tier implementation (i.e., a front server and a database server). The
TPC-W defines 14 transactions, each of which can be generally classified as “brows-
ing” or “ordering”. Here, we assume that we use the ordering mix, that consists of
50% browsing and 50% ordering transactions. Request service times in the front and
database servers are derived using the models presented in [22] that have been shown to
capture very accurately the performance and behavior of multi-tier applications. Con-
sistent with the specifications of the TPC-W benchmark, the average user think time
is equal to 7 seconds, exponentially distributed. Inter-arrival times of new sessions are
assumed to be exponentially distributed, i.e., there is no burstiness in the arrival stream
of new sessions.

Each session consists of a sequence of requests (i.e., essentially visit “rounds” to the
front and database server that define the a session length) that is uniformly distributed
with parameters 5 and 35, that is with expected mean equal to 20.

It is a typical situation when after a certain waiting time an impatient client might
“click again” and reissue the original request. Client request timeouts and retries can
be added to our model to reflect a more complex and realistic scenario but according to
a sensitivity analysis in [13] this will just decrease the useful system throughput (due
to the processing overhead of these additional requests) but does not fundamentally
change the results of our study. In this paper, we use a simplified model without request
timeouts and retries in order to focus on the effects of burstiness.
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Figure 1(a) illustrates the 95th percentile of user end-to-end response time as a func-
tion of the predefined value of the maximum active requests in the system. Figures 1(b)
and 1(c) present the aborted rate of existing sessions and the drop rate of new ses-
sions, respectively, as a function of the allowed active requests. The figure suggests
that given this TPC-W mix, one may use 256 as the recommended limit on active re-
quests, since this value strikes a good balance among all desired measures. In all ex-
periments in the remaining of this paper we set the limit on active requests equal to
256.

Session-based admission control (SBAC) [13] is a very effective policy for web
servers and is based on monitoring the CPU utilization of the web server. SBAC ac-
cepts a new session only when the system utilization is below a certain threshold, to
guarantee a successful session completion. If the observed utilization is above a spec-
ified threshold, then for the next time interval, the admission controller rejects all new
sessions and only serves requests from already admitted sessions. Once the observed
utilization drops below the given threshold, the admission controller changes its policy
for the next time interval and begins admitting and processing new sessions again. A
web server employs a configurable size “listen queue” for buffering the incoming re-
quests. If requests from sessions that are already accepted arrive when the queue is full,
then they are aborted. The useful throughput of the system is measured as a function of
the number of completed sessions. Aborted requests of already accepted sessions are
highly undesirable because they compromise the server’s ability to process all requests
needed to complete a transaction and result in wasted system resources.

We have implemented the SBAC mechanism in a simulation model of a client-server
system that is built according to the TPC-W specifications. The SBAC mechanism uses
a front server utilization threshold for admitting new sessions.1 Figure 2 illustrates the
ineffectiveness of the threshold-based techniques in presence of bursty arrivals. We
compare the results of two different admission control strategies. A first strategy (called
baseAC) employs a traditional overload control based on admitting a fixed, predefined
number of active requests for processing. Here, we set ActiveRequests = 256 as sug-
gested by capacity planning (see Figure 1). The second strategy is SBAC where the
front server utilization threshold is set to 85% and 95% respectively. The three bursti-
ness profiles that we used here are further discussed and described in Section 3.2.

Figure 2(a) illustrates the 95th percentile of user response time. SBAC is effective
in maintaining good response times under bursty arrivals but at the expense of a rela-
tively high ratio of aborted sessions as well as a high ratio of rejected new sessions, see
Figure2(b) and 2(c). The baseAC strategy does not differentiate between the requests
from new and existing sessions and this leads to a very high ratio of aborted sessions.
While both of these threshold-based strategies might be a reasonable choice under
non-bursty traffic, they clearly exhibit their deficiencies under bursty traffic conditions.
This simple experiment shows that the admission control mechanism has to take traffic
burstiness into account and adapt the system configuration and/or thresholds in order

1 For the TPC-W testbed used in our experiments of the ordering mix, SBAC uses the CPU
utilization of the front server because the front server is the system bottleneck for this particular
mix. In general, admission should be based on the utilization of the bottleneck resource, e.g.,
if the DB tier is a bottleneck then its CPU utilization should be used for SBAC decisions.
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to effectively deal with bursty traffic conditions. In the next section, we present a new
algorithm that effectively deals with the above problem.

3 AWAIT Algorithm

In this section, we describe AWAIT, a novel session-based admission control algorithm
that aims to provide an additional support for dealing with bursty session arrivals.
AWAIT has two different mechanisms to regulate request acceptance for processing. The
first mechanism uses a counter of ActiveRequests that is defined according to capacity
planning for achieving a given SLO for response time. Until this counter reaches its
maximum any incoming request is accepted, this request may represent a new session
or it may belong to an already accepted session. The second mechanism uses a special
queue, called blocking queue, which is created to store the requests from already ac-
cepted sessions after the number of ActiveRequests reaches its maximum capacity. Via
this mechanism, the AWAIT controller rejects new session requests if ActiveRequests
reached its capacity but the system still admits requests from earlier accepted sessions.
When the blocking queue becomes full, then incoming requests from accepted sessions
are unavoidably aborted. This is undesirable because it leads to business loss.

The capacity of the blocking queue is a critical parameter for the performance of
the accepted sessions since the time spent there contributes to the user end-to-end time,
thus may violate the target SLOs. The larger the capacity of the blocking queue, the
longer the contribution of the time waiting there to the user end-to-end time. Similarly,
the larger the capacity of the blocking queue, the smaller the expected aborted ratio of
accepted requests. Striking a good balance between these two conflicting measures is
the purpose of AWAIT.

To ease the presentation of AWAIT, we first present a static version that considers
a fixed blocking queue size. In the adaptive version of AWAIT, the size of this block-
ing queue is autonomically adjusted according to the burstiness of the workload while
ensuring that the response time SLOs are met.

3.1 Static AWAIT

To formally describe the AWAIT algorithm, we introduce the following notions:

– New session request – a request that is generated by a new client (i.e., it is a first
request in a new session);

– Accepted session request – a request that is issued by a client within an already
accepted session;

– ActiveRequests – a counter that reflects the number of accepted requests which are
currently in processing by the system. These active requests could be either of new
sessions or of already accepted sessions. The maximum value for this counter is set
to a value defined by capacity planning (see Section 2). Let us denote this value as
A;

– BlockedRequests – a counter that reflects the number of blocked requests which
are received from the clients of already accepted sessions and which are stored in
the BlockingQueue. Note this difference: the blocking queue stores requests from



AWAIT: Efficient Overload Management for Busy Multi-tier Web Services 87

already accepted sessions only. Let B denote the maximum value of this counter
that also defines the capacity of this queue;

– AdmitNew – a boolean variable that defines whether a new session can be accepted
by the system. If AdmitNew = 1 then a new session can be accepted by the
system. If AdmitNew = 0 then all the new sessions are rejected by the system;

Now, we describe the iteration steps of the algorithm. Let a new request req arrive for
processing. The system can be in one of the following states.

– AdmitNew = 1 and ActiveRequests < A.
This state corresponds to normal system processing when there is enough system
capacity for processing requests from new sessions as well as requests from already
accepted sessions. Therefore, independent on the request type req is accepted for
processing and the counter ActiveRequests increases by one. When this counter
reaches its maximum value A, then AdmitNew = 0, and this corresponds to a
new system state when any requests from new sessions are rejected.

– AdmitNew = 0 and BlockedRequests < B.
In this state the incoming requests are treated differently depending on their type.
If the incoming request is from a new session then it is rejected. If it is part to an
already accepted session, then it is stored in the BlockingQueue and the queue’s
counter is updated.

– AdmitNew = 0 and BlockedRequests = B.
This state reflects to the situation when BlockedRequests has reached its maxi-
mum value B. Any incoming request, independent on its type, is rejected. If the
request comes from an already accepted session, then its entire session is aborted.

Now, we describe how the system counters ActiveRequests and BlockedRequests
are updated when a processed request leaves the system, i.e., the reply is sent to the
client. The system can be in one of the following states (similar to the states described
above).

– If ActiveRequests < A,
then ActiveRequests← ActiveRequests− 1.

– If AdmitNew = 0, ActiveRequests = A, and BlockedRequests = 0,
then ActiveRequests ← ActiveRequests − 1 and AdmitNew = 1, i.e., the
admission control status changes and the system again starts accepting both types
of requests: from new sessions and already accepted sessions.

– If AdmitNew = 0, ActiveRequests = A, and 0 < BlockedRequests ≤ B,
then one of the blocked requests is accepted for processing in the system and
only the counter BlockedRequests is updated: BlockedRequests ← Blocked
Requests− 1.

We call this version of algorithm the conservative AWAIT. Under this algorithm the
differentiation of requests from new and accepted sessions starts when the counter
ActiveRequests reaches its maximum value A. Then new sessions are rejected and re-
quests from accepted sessions have extra buffering facility in the blocking queue. Once
the ActiveRequests counter gets below A, then the admission restriction is lifted and
new session requests are again accepted.
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We also introduce a different version of the algorithm, called aggressive AWAIT,
which at a first glance is only slightly different from the conservative AWAIT above.
However, the performance evaluation of these two versions shows a surprising differ-
ence in behavior and in the numbers of aborted and rejected sessions. As we see later,
the aggressive AWAIT decreases forcefully the number of aborted sessions while sup-
porting the same useful system throughput as the conservative AWAIT.

For the aggressive AWAIT strategy we introduce the additional variable Overload:

– Overload is a boolean variable that defines whether the system is under severe over-
load. Typically, Overload = 0 while the system can process all the requests from
the already accepted sessions. Overload = 1 when system observes an aborted
request from the accepted session. This may happen when ActiveRequests = A
and BlockedRequests = B, and the incoming request is from an accepted session.
The aborted session triggers an “emergency situation” that is treated aggressively.
New session requests are not accepted during overload until all the queues in the
system are flushed. This helps in providing a prolonged preferential treatment of
requests from the accepted sessions to rapidly overcome the overload state.

When the overload condition is triggered, i.e., Overload = 1, there are slightly differ-
ent rules for updating the system state when a processed request leaves the system:

– If AdmitNew = 0, Overload = 1, ActiveRequests = A, and Blocked
Requests = 0,
then ActiveRequests ← ActiveRequests − 1, but the system is considered to
be still under severe overload and its admission control status does not change: the
system still rejects requests from new sessions and only processes requests from
the already accepted sessions.

– If Overload = 1 and ActiveRequests = 0, then the operation of the system goes
back to normal: Overload = 0 and AdmitNew = 1.

The pseudo-code shown in Figure 3 summarizes both versions of the AWAIT algorithm:
conservative and aggressive. To unify the description, in the conservative version of the
algorithm the state of variable Overload does not change, i.e., Overload = 0.

In sum, the rationale for the conservative versus the aggressive version of the algo-
rithm is the following. If the system operates under a burst, then queues tend to build up
fast. An accepted session that is aborted signals the system about insufficient resource
capacity for processing requests from already accepted sessions. To mitigate the perfor-
mance effects of this, it is more effective to completely dedicate system resources for
processing only the accepted session requests by flushing the system queues at the ex-
pense of a higher ratio of rejected new sessions. This strategy benefits accepted sessions
by implicitly giving them priority and “reserving” the system for exclusive processing
of accepted session requests (until overload subsides). In the following subsection, we
present experimental evidence that shows the relative performance of the conservative
versus the aggressive version of the algorithm.

3.2 Performance Evaluation of AWAIT

We evaluate the performance of AWAIT via trace driven simulation. Because our pur-
pose is to evaluate the different proposed algorithms under varying burstiness levels,
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For every request req that arrives for processing
if (AdmitNew AND ActiveRequests < A)

accept req
ActiveRequests = ActiveRequests + 1
if (ActiveRequests == A)

AdmitNew = 0
else if (!AdmitNew AND BlockedRequests < B)

if (type(req) == NewSession)
reject req

if (type(req) == AcceptedSession)
accept req into BlockingQueue
BlockedRequests = BlockedRequests +1

else if (!AdmitNew AND BlockedRequests == B)
reject req //Reject all requests
if (type(req)==AcceptedSession) //Accepted session is aborted

Overload=1 //Aggressive version: trigger overload state

For every request req that leaves the system
if (ActiveRequests < A)

ActiveRequests = ActiveRequests -1
else if (ActiveRequests==A AND 0<BlockedRequests≤B

move one request from blocking queue to queue
BlockedRequests = BlockedRequests -1

else if (ActiveRequests == A AND BlockedRequests == 0)
ActiveRequests = ActiveRequests -1
if (!Overload)

AdmitNew = 1
if (ActiveRequests==0 ) //Aggressive version: queues flushed

Overload = 0 //Restore overload state to normal
AdmitNew = 1 //Start admitting new sessions

Fig. 3. AWAIT: Admission control algorithm, aggressive version. The conservative AWAIT is ob-
tained by removing the statements labeled Aggressive version.

(c) Burst Level 3

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

nu
m

be
r 

of
 a

ct
iv

e 
cl

ie
nt

s

time (s)

(a) Burst Level 1

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

nu
m

be
r 

of
 a

ct
iv

e 
cl

ie
nt

s

time (s)

(b) Burst Level 2

 0

 200

 400

 600

 800

 1000

 1200

 0  50  100  150  200

nu
m

be
r 

of
 a

ct
iv

e 
cl

ie
nt

s

time (s)

 0

Fig. 4. The burstiness profiles of the three arrival MAPs

we conducted experiments assuming that arrivals of new sessions are bursty. We use
a Markovian Arrival Process (MAP) to generate three arrival processes with the same
mean and variance but with distinctive burstiness profiles. For details on the generation
of the three MAP processes as well as on their effectiveness in mimicing bursty arrivals
such those reported in the 1998 World Cup web server we direct the reader to [23]. The
burstiness profiles (i.e., the number of arrivals as a function of time) for the three MAPs
that we use for the arrival process are illustrated in Figure 4.

The service processes at the front server and the database server are also modeled via
MAPs (see [22]) that accurate capture the service demands of TPC-W’s ordering mix.2

Each session consists of a sequence of requests that defines a session length. MAPs have

2 Experiments with TPC-W’s ordering and browsing mixes were also conducted. Results are
qualitatively the same as with the ordering mix and are not reported here due to lack of space.
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Fig. 5. AWAIT with fixed size of the blocking queue. The graphs illustrate performance values
for the aggressive and conservative versions (see white and shaded bars, respectively) for various
fixed sizes of the blocking queue B. In all experiments, the limit of accepted requests A is set to
256, based on capacity planning.

been shown to be surprisingly compact yet very effective models of the service process
in multi-tiered systems, modeling implicitly conditions such as caching or database
locks (see [22]). Session lengths are uniformly distributed between parameters 5 and
35, that is with expected mean equal to 20.

Figure 5 illustrates the performance of the two versions of AWAIT as a function of
the capacity of the blocking queue B. For reference, we also report on the performance
of the system with simple admission control based on the number of ActiveRequests
only (labeled: “baseAC”) as well as the performance of SBAC with CPU utilization
threshold set to 85%. Note that for all experiments, we set the ActiveRequests counter
to 256, as suggested by the capacity planning study of Section 2.
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The figure presents results for the three burstiness profiles in the arrivals of new ses-
sions. First, one can easily see that the effect of the degree of burstiness in the arrivals
dramatically impacts the user perceived performance, see the 95th percentiles of user re-
sponse times for the various policies, first row of graphs. Looking just at the percentiles,
it is clear that the addition of the blocking queue deteriorates the user end-to-end times
but the real benefit of blocking can be seen in the decrease of the aborted session ratio,
see the second row of graphs, as well as in the decrease of new session drop ratio, see
the third row of graphs. The useful throughput of the system (measured in successfully
completed sessions) is shown in the last row of graph that demonstrate the improved
metric for both versions of AWAIT strategy compared to SBAC and baseAC.

Under low burstiness conditions, see first column of graphs, it is apparent that SBAC
remains a good choice, at the expense of a very high percentage (nearly as high as
30%) of new session rejections. The aggressive and conservative versions of AWAIT
result in longer response times but in significantly lower drop ratios, see Figures 5(b)
and 5(c). With higher burstiness levels, the aggressive version results in better response
time percentiles, see Figures 5(e) and 5(i).

The effectiveness of the aggressive version to keep the aborted session ratio low is
apparent across all burstiness levels, see Figures 5(b), 5(f), and 5(j) (second row of
graphs). These figures show that the aggressive version very effectively differentiates
between existing and new sessions, and treats existing sessions preferentially.

Naturally, because of the limited system capacity, if the number of accepted sessions
that are aborted is low, then the ratio of rejected new sessions is bound to increase. This
effect is shown for the aggressive policy in the third row of graphs in Figure 5, but this
is unavoidable since our purpose is to bias the system for processing the requests of
already accepted sessions against admitting new sessions, especially under periods of
bursty traffic.

However, intuitively, there is an additional concern on the effectiveness of the aggres-
sive AWAIT strategy compared to its conservative version: “flushing” the system queues
might result in a less efficient resource usage and potentially may lead to a lower useful
throughput. The last row of graphs in Figure 5 answers this question. It shows that the
useful throughput of the system measured in successfully completed sessions is very
similar for both conservative and aggressive versions of AWAIT and also significantly
higher than under earlier proposed SBAC strategy or the simple baseAC policy.

In summary, the Figures 5 shows that the aggressive AWAIT minimizes the number
of aborted sessions while meeting service SLOs. Yet, its performance is sensitive to the
capacity of the blocking queue B. In the following section we present an adaptive algo-
rithm that changes the blocking queue capacity as a function of the workload burstiness
in order to adaptively meet SLO targets.

3.3 Adaptive AWAIT Strategy

Here, we show how we can adjust on-the-fly the size of the blocking queue B in order to
achieve a certain predefined SLO. Larger blocking queues result in longer user response
times but have less aborted sessions.

To dynamically adjust the blocking queue size, we use historical information of
the achieved 95th percentiles of all requests served by the system (irrespective of the
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blocking queue capacity used – this value should reflect the target system SLO as the
size of the blocking queue is transparent to the user) but also response time percentiles
that correspond to every other blocking queue capacity B used since the inception of the
system. We use this information to decide whether the current blocking queue capacity
is sufficient or not. Changing the blocking queue capacity B throughout the lifetime of
the system is critical as during workload surges smaller B’s result in better performance
rather than large B’s.3 To make readily available the values of the 95th percentiles of
the user response times, we maintain for each blocking capacity B a corresponding his-
togram of the user response times for that B. Therefore, for each completed request, two
response time histograms are updated: the histogram of all requests in the system (irre-
spective of the blocking capacity B) and the histogram that corresponds to the current
block capacity B used.

We decide whether to change the capacity of the blocking queue for every group
of K = 10, 000 requests served.4 The adaptive algorithm then compares the achieved
response time percentiles of all jobs in the system and the response times percentiles of
the current configuration B with the target SLOs. If both percentiles are less than the
SLO and there are aborted sessions, then it is clear that we can reduce the aborted ratio
because there is room to increase B (since response times percentiles do not violate
the SLO). If both percentiles are greater than the SLO, then the blocking queue should
be reduced in an effort to meet the SLO target. If none of the above two conditions
are met, we opt to leave the blocking queue capacity in its current level, otherwise the
system may suffer from thrashing. For example, if the response time percentile of all
requests is violated, but the percentile of the current B is not, the algorithm still stays
with the current blocking queue size B, since the system is on a positive state and its
accumulated statistics eventually will correct the percentile of all requests.

The steps of increase/decrease of the blocking queue capacity can be arbitrary. In the
experiments presented in this section, the capacity of the blocking queue B can have
sizes as small as 1 and as large as 120. The increase/decrease step is equal to 5 for
values of B less than 10 and equal to 20 for values of B greater than 20. We stress that
other step values could also work, their selection may affect though how quickly the
algorithm converges to a desirable B range. Figure 6 summarizes the algorithm.

The effectiveness of the adaptive AWAIT strategy is illustrated in Figure 7. Here,
we experimented with the three different burst levels but also using different target
SLOs. The figure illustrates how the blocking queue size changes as a function of the
number of requests that are processed by the system for the various experiments. In
each graph we also report on the achieved 95th percentile of the round-trip time, as
well as on the aborted and new session drop ratios. The figure shows that the adaptive
AWAIT is remarkably robust: it reaches the target SLOs exceptionally well for all cases,

3 This may initially seem counter-intuitive as workload surges would result in large numbers of
requests that are simultaneously in the system. However, in order to maintain the target SLOs
during a surge it is necessary to limit the blocking queue capacity, otherwise the time spent
there dominates user response times and SLOs are violated.

4 We selected K = 10, 000 to be able to collect meaningful statistics for a group of requests.
K should be large enough for accumulating meaningful statistics, but different values, e.g.,
K = 5, 000 or K = 15, 000 will work too.
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For every aborted session
AbortedSessions++

For every finished request
counter++
update total RT histogram (all requests, irrespective of B)
update current B RT histogram (with current blocking queue B)
if (counter == K)

if (total RT percentile < SLO AND current B RT percentile < SLO
AND AbortedSessions > 0)

increase current blocking capacity B // Reduce aborted ratio
if (total RT percentile > SLO AND current B RT percentile > SLO)

reduce current blocking capacity B // Meet SLO target
counter = 0
AbortedSessions = 0

Fig. 6. Policy for adapting the blocking queue size B in the enhanced, adaptive AWAIT strategy
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Fig. 7. Adaptive AWAIT: illustration of how the capacity of the blocking queue B changes as a
function of the workload

while maintaining very low aborted rates. For each burst level, as the target SLO in-
creases, the algorithm effectively increases the blocking queue capacity while reducing
the aborted ratio. If we maintain the same SLO but change the burstiness of arrivals,
the algorithm decreases the capacity of the blocking queue B. In all experiments, re-
quests from existing sessions are preferentially treated as low aborted ratios across all
experiments are reported, and the ratio of successfully completed sessions is higher
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under the adaptive AWAIT policy compared to the aggressive static AWAIT strategy in-
troduced in Section 3.1. These results demonstrate the effectiveness and robustness of
the proposed autonomic mechanism of the aggressive AWAIT policy.

Note that the target SLO can be achieved with a fixed blocking size queue, but the
size of the blocking queue needs to differ depending on the degree of burstiness (e.g.,
SLO = 4 sec can be achieved with a blocking queue size set to 8 for the burst levels
2 and 3, but if the system operates under burst level 1, then the blocking queue size
should be set to 32, see Figure 5). Note that any fixed configuration does not adapt
to a changing traffic pattern. The proposed adaptive strategy is specially designed to
“auto-tune” the blocking queue size for achieving and supporting a given SLO.

4 Related Work

There has been a lot of research in the areas of overload control, service differentiation,
request scheduling, and request distribution for Web servers and web server clusters.
Due to space limitations, we provide a very brief overview here.

The use of admission control for an overload management has been proposed and
explored in several systems. Iyer et al. [18] employ a simple admission control mech-
anism based on bounding the length of the Web server listen queue. The authors try
minimizing the work spent on a request which is eventually not serviced due to over-
load. They analyze different queue management approaches and use multiple thresh-
olds, though they do not specify how these thresholds should be set to meet a given
performance target. Cherkasova and Phaal [13] introduce session-based admission con-
trol, driven by a CPU utilization threshold, which performs an admission decision based
on user sessions rather than individual requests, and during the overload rejects new
sessions while serving requests from already accepted sessions. Carlstrom and Rom [9]
proposed a performance model for scheduling client requests and session-level admis-
sion control using generalized processor scheduling discipline. To improve the effi-
ciency of session-based admission-control mechanisms and reduce its overhead, Voigt
et al. [28,29] present several kernel-level mechanisms for overload protection and ser-
vice differentiation. The earlier works consider a single tier web server, and the pro-
posed techniques do not directly provide a solution for a multi-tier system.

Many of the proposed techniques are based on fixed policies, such as bounding the
maximum request rate of requests to some constant value. For example, PACERS [11]
limits the number of admitted requests based on estimated web server capacity. The au-
thors use a very simple simulated service where request processing time is linear function
of the requested Web page size. Similar ideas (and similar problems with fixed thresh-
old settings) are pursued in [8]. Web2K presents a mechanism prioritizing requests into
two classes: premium and basic. Connection requests are forwarded into two different
request queues, and admission control is performed using two metrics: the accept queue
length and measurement-based predictions of arrival and service rates from that class.
Bartolini et al., in their recent work [6,7], introduce a quite elaborate session admission
algorithm, called AACA, that self-configures a dynamic constraint on the rate of incom-
ing new sessions to satisfy guarantees of the Service Level Agreements (SLA). However,
the rate limitation for the next iteration interval is based on a relatively straightforward
prediction of the session arrival rate from the previous interval measurements.
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Many earlier papers combine differentiated service with admission control
[3,15,19,20,28]. Kanodia and Knightly [19] develop an admission control and service
differentiation mechanism which is based on a general framework of request and service
envelopes. Such envelopes statistically describe the server’s request load and service
capacity as a function of interval length.The proposed mechanism integrates latency
targets with admission control and improves the percentage of requests that meet their
QoS delay requirements. The approach is evaluated via a trace-driven simulation.

A number of systems have explored a controlled content adaptation [1,10,17] for
scaling web site performance, i.e., degrading the quality of static Web content by re-
ducing the resolution and the number of images delivered to clients.

Several research papers have examined how control theory can be applied in the
context of Web servers [2,21,24]. Lu et al. [21] present a control-theoretic approach to
provide guaranteed relative delays between different service classes. Main challenge in
such works is that good models of system behavior are difficult to derive. Web applica-
tions are subject to widely varying traffic patterns and resource demands. The consid-
ered papers make use of linear models, which may be inaccurate in describing systems
with bursty loads and resource requirements.

Many earlier papers study request and connection scheduling for improving Web
server performance [12,14,16]. While shortest job first scheduling for static content
Web sites can improve performance of a web server, it can not prevent it from overload
though. Elnikety et al. [16] present an elegant solution for admission control and re-
quest scheduling for multi-tier e-commerce sites,. Their method is based on measuring
the execution costs of requests online, distinguishing different request types, and per-
forming both overload protection and preferential scheduling using a straightforward
control mechanism. They implement their admission control using proxy, called Gate-
keeper, with standard software components on the Linux operating system. There were
a few other works close to Gatekeeper in spirit, SEDA [31] is a prime example of such
work. In SEDA, applications consist of a network of event-driven stages connected by
explicit queues. SEDA makes use of a set of dynamic resource controllers by prevent-
ing resources from being over-committed when demand exceeds service capacity. It
keeps stages within their operating regime despite large fluctuations in load and allows
services to be well-conditioned to load, i.e., preventing their performance degradation
under severe overload. The authors describe several control mechanisms for automatic
tuning and load conditioning, including thread pool sizing, event batching, and adaptive
load shedding.

5 Conclusions

We presented an autonomic policy for service differentiation and admission control dur-
ing overload for multi-tiered system management that offer web services. We focused
on the pitfalls of existing policies under bursty conditions and remedy the problem
by proposing the concept of a blocking queue where requests from already accepted
sessions are stored if the system operates in overload. This blocking queue benefits
performance by minimizing the dropped requests of already accepted sessions but also
contributes to the end-to-end user perceived system response time. We proposed a novel
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autonomic algorithm, called AWAIT, that can limit the increase of the end-to-end re-
sponse times within predefined SLO targets while dynamically adjusting the capacity
of the blocking queue to the workload burstiness. Detailed simulations with the widely
used TPC-W e-commerce benchmark under a variety of workload burstiness levels sup-
port the effectiveness and robustness of AWAIT.

The current algorithm adapts the blocking queue capacity to shield the offered web
service from bursty arrivals, to provide service differentiation, and to prevent the sys-
tem from overload. It complements the basic overload mechanism that sets a limit on
the number of active client requests that are simultaneously processed by the system.
Currently, this limit is defined by capacity planning. In our future work, we plan to
automate the capacity planning step as well, i.e., to adjusts the value of this basic pa-
rameter on-the-fly when the workload profile experiences significant changes. We are
also working on theoretically determining the ideal blocking queue capacity given a
level of workload burstiness.
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