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ABSTRACT

Currently available wind-wave prediction models require a prohibitive amount 
of computing time for simulating non-linear wave-wave interactions. Moreover, 
some parts of wind-wave generation processes are not fully understood yet. For this 
reason accurate predictions are not always guaranteed. In contrast, Artificial Neural 
Network (ANN) techniques are designed to recognize the patterns between input and 
output so that they can save considerable computing time so that real-time wind-wave 
forecast can be available to the navy and commercial ships. For this reason, this 
study tries to use ANN techniques to predict waves for winter storms and hurricanes 
with much less computing time at the five National Oceanic and Atmospheric 
Administration (NOAA) wave stations along the East Coast o f the U.S. from Florida 
to Maine (station 44007,44013,44025,44009, and 41009).

In order to identify prediction error sources of an ANN model, the 100 % 
known wind-wave events simulated from the SMB model were used. The ANN 
predicted even untrained wind-wave events accurately, and this implied that it could 
be used for winter-storm and hurricane wave predictions. For the prediction of 
winter-storm waves, 1999 and 2001 winter-storm events with 403 data points and 
1998 winter-storm events with 78 points were prepared for training and validation 
data sets, respectively. In general, because winter-storms are relatively evenly 
distributed over a large area and move slowly, wind information (u and v wind 
components) over a large domain was considered as ANN inputs. When using a 24- 
hour time-delay to simulate the time required for waves to be fully developed seas, 
the ANN predicted wave heights (r = 0.88) accurately, but the prediction accuracy of 
zero-crossing wave periods was much less (r = 0.61). For the prediction o f hurricane 
waves, 15 hurricanes from 1995 to 2001 and Hurricane Bertha in 1998 were prepared 
for training and validation data sets, respectively. Because hurricanes affect a 
relatively small domain, move quickly, and change dramatically with time, the 
location of hurricane centers, the maximum wind speed, central pressure of hurricane 
centers, longitudinal and latitudinal distance between wave stations and hurricane 
centers were used as inputs. The ANN predicted wave height accurately when a 24- 
hour time-delay was used (r = 0.82), but the prediction accuracy o f peak-wave 
periods was much less (r = 0.50). This is because the physical processes o f wave 
periods are more complicated than those o f wave heights.

This study shows a possibility of an ANN technique as the winter-storm and 
hurricane-wave prediction model. If more winter-storm and hurricane data can be 
available, and the prediction of hurricane tracks is possible, we can forecast real-time 
wind-waves more accurately with less computing time.
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CHAPTER I 

INTRODUCTION

1.1. Rationale

Water waves are the most important force in erosion, transport, and deposition 

of sediments on coastal areas. They not only change natural environments by 

eliminating beaches and barriers or reshaping the maps o f shorelines, but also impact 

human life by undermining waterfront houses and public facilities, eventually making 

them uninhabitable or unusable.

Waves are subdivided by generation forces: tidal waves, tsunami, and gravity 

waves are generated by gravitational forces, earthquakes, and wind forces, 

respectively. Among gravity waves, wave periods o f 5 to 15 seconds are most 

important for coastal communities because substantial wave energies are associated 

with these particular periods.

Change o f atmospheric pressure generates different wind speeds near the sea 

surface, and big waves are accompanied by strong winds. Summer hurricanes and 

winter storms are the two strong forces that generate large surface wind waves, which 

are usually gravity waves. For this reason, it is very important to know the expected 

waves caused by those strong wind systems.
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Hurricane is a term used for a specific type o f cyclone that has a low-pressure 

system and counterclockwise wind circulation with wind speeds exceeding 64 kts in 

the northern hemisphere: the North Atlantic Ocean, the Northeast Pacific Ocean east 

o f the International Date Line, or the South Pacific Ocean east o f 160°E (Neumann, 

1993).

Winter storm is a general name to define a strong wind system during cold 

weather. The wind fields of winter storms appear over a large domain. Wind speeds 

are relatively even distributed in the corresponding areas. The wind speeds and 

directions o f winter storms vary slowly during each event. For this reason, winter 

storms give enough time for waves to be developed.

In contrast, hurricanes generate from tropical areas and move to extra-tropical 

areas. Hurricanes usually move rapidly along a track, and the area affected by 

hurricanes is restricted to a relatively small domain {e.g., on the order of 100km) 

compared with that for winter storm systems. The intensity of hurricanes depends on 

the initial intensity, the thermodynamic state of the atmosphere through which it 

moves, and the heat exchange with the upper layer of the ocean under the core of 

hurricanes (Emanuel, 1999). In general, hurricane wind speed is much larger when 

compared with the winter storm wind field, and the wind speed and direction of 

hurricanes change rapidly with time and location. In general, there is no wind at the 

hurricane center. Wind speed increases sharply from the hurricane’s center and 

reaches a maximum at a distance called the radius o f maximum wind, beyond which 

it gradually declines.
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The strong wind energy from winter storms and hurricanes is transmitted to the 

sea, generating large waves, which may or may not impinge coastal areas. However, 

wind-energy transfer to the sea is not the same between hurricanes and winter storms. 

The wind energies of winter storms are transferred over large areas. Hurricane 

waves, however, are restricted to a small region because hurricanes have small wind 

fields. In other words, the wind energies o f hurricanes are transferred to waves by 

strong winds over a relatively small domain.

Moreover, the corresponding wave energy is changing drastically with time 

because hurricane-wind energy changes rapidly with time and space. The wind 

velocity for a particular area is always changing. Thus, hurricanes rarely give enough 

time for water waves to be fully developed. These are the reasons why hurricane 

wave prediction is much more difficult than winter-storm wave prediction.

Useful warning systems for hurricanes include predicting hurricane intensity, 

track, and corresponding waves. Today, with the advance of high-speed computers, it 

is possible to predict wind speeds, locations, and rainfall o f hurricanes while 

hurricanes are in progress. Mathematical models have been developed to estimate 

wind speeds (Aberson, 2001; Batts et al., 1980; Georgiou et a l ,  1983; Geogiou, 

1985; McAdie and Lawrence, 2000; Vickery and Twisdale, 1995a and b; Vickery et 

al., 2 0 0 0 ).

Many research divisions in the National Oceanic and Atmospheric 

Administration (NOAA) analyzed the information about storms and hurricanes for 

future event predictions. For instance, the Hurricane Prediction Center (HPC) made
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86 real-time analyses of hurricane wind fields during the 1995 hurricane season using 

the technique developed during the reconstruction of the hurricane Andrew’s wind 

field (Powell and Houston, 1996).

The National Center for Environmental Prediction (NCEP) provides 

worldwide wind forecasts. The Hurricane Prediction Center (HPC) has forecasted 

hurricane tracks three days in advance since 1964. The National Weather Service 

(NWS) has provided the forecast from the HPC to the public. Since March 2003, the 

HPC has been able to forecast hurricanes five days in advance.

The Ocean Modeling Branch (OMB) in the NOAA provides forecasts o f wave 

height and period up to 126 hours in advance, using the NOAA WaveWatchlll 

(NWW3) model. The Tropical Analysis and Forecasting Branch (TAFB) has 

provided marine forecasts and warnings for the tropical and subtropical oceans o f the 

Atlantic and eastern Pacific using the NWW3 since 2003.

The Tropical Analysis and Forecasting Branch (TAFB) o f the HPC compared 

observed wave heights, obtained from the National Data Buoy Center (NDBC), and 

predicted wave heights from advanced NWW3 model at the NDBC station 42002 and 

others in the Gulf o f Mexico on February 1, 2002 during a winter storm. Figure 1-1 

compares the observed and predicted wave heights (Robert and Christopher). They 

predicted only five data points that have a 12-hour period, and the correlation 

coefficient between the observed wave height and predicted wave height is about 

0.78.
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Fig. 1-1. Comparison o f observed (solid line) and NWW3 forecasted 
(dashed line) wave heights at station 42002 (25.17°N and 94.42°W) located 
in the Gulf o f Mexico (after Robert and Christopher, 2002).
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Currently available numerical wave models, such as the WAve Model (WAM) 

and the Simulating WAve Nearshore (SWAN), require prohibitive computing time, 

and some physical processes are still poorly understood. A more detailed explanation 

of numerical wind-wave prediction models will be given in Chapter 3.4. In contrast 

to the improvement in forecasting the intensity and track of hurricanes, there has been 

comparatively little advance in predictions o f storm and hurricane waves. 

Improvement in computing time and accuracy of the prediction o f hurricane waves 

can save both economic loss and human lives.

Thus, the objective o f this study is to develop a faster wave prediction model 

using an Artificial Neural Network (ANN) technique. Problems o f numerical wave 

models and advantages of an ANN model are explained in the next section.

1.2. Problem of Current Numerical Models 

Wind-wave generation is a complicated non-linear process that is not yet fully 

understood. The prediction o f wave generations requires knowledge o f all processes 

as well as all inputs. At present, wave prediction models (e.g., WAM and SWAN) 

solve physical processes numerically. These models include wave-wave interaction 

terms that are important to represent complicated non-linear characteristics. 

However, the uncertainty of these non-linear interactions as well as processes o f non­

linear interaction terms significantly degrade the model accuracy and efficiency. This
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means that progress in wave prediction models strongly depends on research of wave- 

wave interactions and computer advances.

Today, the wind-wave generation models have advanced to third and forth 

generation models. However, even the updated wind-wave prediction models are not 

yet perfect. With respect to physical processes, wind energy inputs and energy 

dissipations are the least understood processes in wave evolution and are still difficult 

to adequately simulate. This means that different possible combinations o f the two 

terms can yield the same model results. Hence, even with field verifications, correct 

wave prediction results do not necessarily mean that wind inputs and energy 

dissipations have been correctly modeled (Burgers and Makin, 1993).

Low computing speed is another critical weakness o f the third generation 

models. Even though numerical integration of all wave-wave interactions improves 

prediction accuracy, this integration requires tremendous computer resources. 

Hasselmann and Hasselmann (1985) provided the Discrete Interaction Approximation 

(DIA) method, which considers only simplified quadruplet wave interactions to 

reduce the prohibitive computing time. However, the DIA model still requires 

considerable computing resources. An improvement on computing speed is only 

possible when computer power increases by 2000 times (Komatsu and Masuda, 

1996). More efficient computing schemes are needed in the future.
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1,3. What Is ANN? It’s Advantages and Limitations

An Artificial Neural Network (ANN) is a system that, in imitation of human 

brains, learns from past experiences. Biological neurons consist of three functional 

parts: dendrites for receiving inputs from other sources, soma for processing the 

inputs in some way, and axons for producing outputs (see Fig. 1-2). An ANN model 

was designed to simulate these biological functions, so it also has three artificial 

layers: input, hidden and output layers. In each layer, the number o f neurons is 

selected according to the characteristics of a process. The neurons between the input 

layer and hidden layer, and between the hidden layer and output layer are 

interconnected. More information about the basic ANN concept is given in chapter

2.3.

An ANN technique recognizes general patterns and relationships between 

inputs and corresponding outputs. Before prediction, however, an ANN model must 

learn through known data sets. This process is called training. The ANN continues 

to update its weights and biases using summation, multiplication, and transfer 

functions until it obtains a pre-defined least square error, which is the difference 

between observed values and model outputs. The core processes o f an ANN model 

self-optimize by trying to find optimum weight values for the errors. After training, 

the ANN uses the set o f best-fitted weights and biases between the neurons for the 

prediction of future events. (For more information on an ANN model, see chapter 2).
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Fig. 1-2. A Typical structure o f the Back-Propagation Neural Network 
with symbol ImHnOp. Solid lines represent weights and dashed lines 
indicate biases.
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An ANN technique is very useful for wind-wave prediction because o f the 

following reasons. First, an ANN model requires much less computing time 

compared with traditional numerical models because it does not compute physical 

processes but finds the differences in patterns between observed inputs and outputs. 

Reduced computing time is the greatest advantage in using an ANN technique.

Second, an ANN model can avoid error that has resulted from simulating 

inexactly-known non-linear wave-wave interactions because it does not simulate 

those processes at all.

Third, an ANN with optimum structure can increase accuracy of wind-wave 

predictions in the well-trained state (e.g., a sufficient set of training data on wind 

speed and corresponding wave height). In addition, the training process can be 

updated whenever new data become available.

There is, however, a critical limitation in using an ANN model. The ANN 

model cannot be trained without long term or sufficient data on wind and waves. 

Another limitation is that measurement data of winds and corresponding waves 

cannot be available everywhere. Therefore, where insufficient or no data are 

available, an ANN technique is hardly useful to predict wind-waves.

1.4. Objectives

Tsai and Lee (1999), Tsai et al. (2002), and Deo et al. (2001) used the Back- 

Propagation Network (BPN) to predict tide level or wind-waves. Although their new
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trial of an ANN technique was revolutionary, their prediction results were not 

satisfactory. For this reason, there are no ANN models available to accurately predict 

wind-waves yet. More explanation about early ANN studies is given in section 3.5.

The objective of this study is to build ANN wave prediction models for winter- 

storms and hurricanes with a small computing time at the five stations (44007,44013, 

44025, 44009, and 41009) from Florida to Maine along the east coast o f the U.S. 

Before using ANN techniques, we should first know what is required for ANN 

modeling and what is its capability for accurate wind-wave prediction.

For this reason, the following five questions were posed and the answers will 

be given in separate chapters: (1) which is the more efficient ANN scheme and 

learning algorithm; (2) how to simulate wind-wave generation for ANN modeling 

and what is(are) the major parameters); (3) how to select the optimum number of 

hidden neurons and iteration; (4) how to identify the sources o f prediction errors; and 

(5) how many wind-wave patterns are needed for training?

1.5. Outline o f Presentation 

This dissertation consists o f seven chapters and is presented in the following 

order. A brief review of the Artificial Neural Network (ANN) is given in chapter II. 

Review of wind-wave prediction models is given in chapter III. Two test cases for 

ANN model capability are given in chapter IV, using a linear and the SMB-simulated 

nonlinear wind-waves. An ANN for winter-storm waves is given in chapter V. An

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

ANN for hurricane waves is given in chapter VI. Discussion and conclusions are 

given in chapter VII.
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CHAPTER II

REVIEW OF ANN

2.1. Introduction

The fundamental background and general features of an ANN model are 

explained in this chapter. An historical background of an ANN is given first in 

section 2.2. The basic layout and structural concept o f an ANN model are given in 

section 2.3, including the function o f each component of an ANN model. Statistical 

relationships in an ANN model are explained in section 2.4. Classification of ANN 

models is given in section 2.5. The various types o f ANN learning rules are detailed 

in section 2.6. A general outline o f neural system operation is given in section 2.7, 

and the optimum number of hidden neurons and iterations is selected in section 2.8.

2.2. Historical Background 

Although the study of artificial neurons began in the late 19th century, models 

off the basic theories o f human neurons were not possible until computer hardware 

and software advanced in the 1950s. Farely and Clark (1954) were the first to 

simulate the Hebbian theory. They used a digital computer at the Massachusetts
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Institute of Technology to construct nodes that represented biological neurons 

randomly connected with each other. Rosenblatt (1958) opened a new phase ofheural 

network research by presenting an unsupervised learning network, which is called an 

auto-learning network. This was a pattern regularity detector that leams occurring 

patterns consistently and regularly. Then, the ANN technique was first applied to 

solve real world problems (Widrow and Hoff, 1960). Hopfield (1982) clearly showed 

how such networks could work and what they could do.

Today, ANNs are applied to many areas including defense, industry, 

commerce, civil engineering, medicine and science for prediction, pattern 

recognition, classification, signal processing, and data filtering. The promise o f ANN 

seems bright, and development is absolutely dependent on hardware advancement in 

the future (Kartam e ta l ,  1997; Daniel, 1998).

2.3. Basic Concept

An ANN is a system designed to imitate the brain to learn from past 

experiences, just as children learn to recognize dogs from examples o f dogs. After 

learning, children develop capabilities o f generalization beyond the taught data. In 

the same way, the ANN can recognize patterns from past experience (Haykin, 1994).

The basic unit of the brain is a specific type of cell, the neuron. Up to 20,000 

are interconnected and provide the ability to think, remember, and apply previous
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experiences to our every action. All these biological neurons have four sub-units: 

dendrites, soma, axons, and synapses (Fig. 2-la).

Dendrites receive inputs from external sources, the soma processes the inputs, 

and the axons perform a non-linear operation and turn the processed inputs into 

outputs. Signal transmission between neurons occurs at the synapse.

The basic unit of an ANN is the input, hidden, and output layers, which 

represent corresponding biological neural groups. Each layer may have an 

unspecified number of artificial neurons. The artificial neurons have much simpler 

functions than found in biological neurons (see Fig. 2-lb). The number of input 

parameters determines the number of input neurons, which is represented by a 

mathematical symbol Xj. The number o f output parameters determines the number of 

output neurons. However, there is no rule to determine the number o f hidden 

neurons.

Weights are established between the input and hidden layers. The number of 

interconnections of the neurons between the two layers determines the number of 

weights. Each weight has a proper numerical value to adequately represent the 

importance of each input parameter. In other words, an ANN model identifies the 

optimum weight factor for each input and produces the best output for a given effect 

of input.

An ANN multiplies the inputs and weight values, and these products are 

summed arithmetically. The result of the summation is transformed to the output 

through a transfer function, which has a range from -1 to +1. The transfer function
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Fig. 2-1 a. The basic unit o f biological neurons, which are 
interconnected each other: Dendrites for accepting input signal, Soma 
for processing the input, Axon for directing the processed result to the 
output, and Synapse for representing the final output to other neurons.
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Fig. 2-1 b. A Structure of Artificial Neural Network, which are 
Simulating Biological Neurons. Each input, hidden, and output layer 
consists o f different numbers of artificial neuron. Input layer is to 
accept input, X, hidden layer is to process the input signal, and output 
layer is to represent the network result.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

can process both linear and non-linear problems. Further explanation of transfer 

function is given in section 2.6.4.I.

The accuracy o f the model output is evaluated by the difference between 

observed values and model outputs. The performance of an ANN model is judged by 

the ‘Least Square Error (LSE)\ A large LSE means that the distributed weight values 

are improper. Thus, the error signal is fed back to the input and hidden layers. An 

ANN changes its weight value according to the feedback signal, a process called 

‘weight update’. The feedback of the LSE and the weight update processes will 

continue until the LSE is less than a defined value. The repetitive processes o f the 

ANN are called ‘iteration’.

The great advantage of an ANN model is that it can self-optimize by finding 

optimum weight values to reduce the LSE. Hence, an ANN model is easy to use 

where the relationship between a given input and corresponding output is not clearly 

known (e.g., non-stationary and time varying environments).

Through these processes, an ANN can learn the patterns from presented 

representative data. In fact, an ANN model is trained to recognize the hidden 

relationship between the fed inputs and outputs using their weight values. 

Afterwards, it can identify the patterns from the learned weight values. Hence, an 

ANN can be called a physical cellular system that can acquire, store, and utilize 

experiential knowledge (Zurada, 1992; Daniel, 1998).
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2.4. Statistical Relationship

There is considerable overlap between the fields o f Artificial Neural Networks 

(ANNs) and statistics. By including feedback topology, most ANNs can be trained to 

identify relationships effectively from noisy and complicated data when the data set is 

large. This process is similar to statistical methods, e.g., statistical regression models 

and the analysis o f variance among groups (Francis, 2001; Ripley, 1994).

Data mining aims to find trends, patterns, or regularities in data. It almost 

always involves a search architecture requiring evaluation of hypotheses at different 

stages of the search, evaluation o f the search output, and appropriate use o f the 

results. Artificial Neural Networks are one o f best technical tools for discovering 

hidden regularities or groupings in data.

Based on a particular theory, one can use a statistical method to find the 

relationship between variables. Based on the selected theory, measures of uncertainty 

(e.g., standard deviations) can be generated from probability distributions for given 

samples. Therefore, statistical applications are often central to data analysis and 

model fit.

Artificial Neural Networks involve exactly the same kind of model fit. 

However, ANNs ignore the consequences and importance of particular theories. For 

instance, many types of ANNs’ learning algorithms, such as the Backprop, the 

Quickprop, and the Levenberg-Marquardts, are modified techniques that use the usual

1 *statistical formulae of arithmetic mean such as — V  X, where X* = each data point
2n M
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and n = the total number o f data points. In short, ANNs are used for data mining 

through learning from a given noisy data set, while a statistic approach must be based 

on a theoretical formulation such as factor analysis, clustering, and principal 

component analysis (Hand, 1999; Glymour et a l ,  1996).

Statistical methods can be used for simulating non-linear systems, e.g., 

polynomial regression, Fourier series regression, and multivariate adaptive regression 

splines (Friedman, 1991). However, when using an ANN technique for a non-linear 

system, efficient handling of many input parameters that are related to each other is 

an advantage.

2.5. Classification o f the ANN 

There is no standard classification for Artificial Neural Networks (ANNs), but 

it is possible to roughly classify them according to the learning algorithms and the 

kinds o f data employed.

2.5.1. Classification According to Learning Algorithm

According to different learning algorithms, ANNs can be categorized by 

supervised and unsupervised learning. In supervised learning, both inputs and 

outputs are provided, and the outputs, so-called desired values, take the role of a 

teacher for system learning. The ANN processes the inputs and compares its results 

(i.e., model outputs) with the desired values. Errors are then fed back through the
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system, making the system adjust the weights that represent the importance o f a 

particular input (Jordan and Rumelhart, 1992). This back-propagated learning 

algorithm is the so-called feedback system, because the communication continues 

until the ANN reaches a pre-determined Least Square Error to predict the right 

answer (Taylor, 1993; Haykin, 1994).

In unsupervised learning, the representative outputs are not fed back during 

training. For instance, Kohonen (1995) used an unsupervised ANN for his Self- 

Organizing Map. This unsupervised ANN is also called a feed forward ANN, 

because the connections among layers are not iterated. The neurons at the first layer 

send their outputs to the neurons at the second layer, but they do not receive any input 

from the second layer neuron.

2.5.2. Classification according to Time Delay

According to whether an ANN uses time delay, either externally or internally, it 

can be classified as an ANN with or without time delay. If a user externally feeds 

data from more than one previous time level to the ANN input layer for predicting 

outputs at the current time level, it is a so-called external time-delay ANN (e.g., Time 

Delay Neural Network). By contrast, if  an ANN uses internal outputs at the previous 

time level to help predict output at the present time level, it is called an internal time- 

delay ANN. Comparison of each ANN type is given in the next section.
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2.5.2.1. BPN

The Back-Propagation Network (BPN) is a popular ANN because it is simple 

to understand, and it works well for general application. The BPN is a general name 

for a supervised learning algorithm and can be expressed using the symbol ImHnOp to 

represent the input, hidden, and output layers (see Fig. 1-2). In each layer, the 

number of neurons is represented by subscript m, n, and p. In general, the numbers of 

neurons in the input and output layers correspond to the numbers of input parameters 

and output requirements, respectively. For instance, if  there is only one input, then 

the BPN will use one input neuron at time level t = 1 to predict the output at time 

level t = 1. Hence, the BPN does not use external and internal delays.

2.5.2.2. ERN

The Elman Recurrent Network (ERN) still consists o f the three layers o f a 

Back-Propagation Network (BPN), but uses the additional internal input o f the 

previous time level t = 0 generated from the hidden layer, to predict the output at time 

level t = 1. This process results in an increase in the memory of an ANN (Elman, 

1990). The place in which the internal input is fed is called the Context Layer (Fig. 

2-2).

The ERN has been widely used in applications such as sequence recognition, 

phonetic representations, and temporal sequence generation. Because it uses 

information only at time level t = 0, it is a short-term memory ANN. An easy way to
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Input
Layer Hidden

Layer Output
Layer

Context Unit

Fig. 2-2. Sructure o f the Elman Recurrent Network (ERN) with the 
input, hidden, output layers, and additional context unit. For the 
prediction (Oi ~ Op) at the next time level, the ERN will use an external 
input (Ii ~ Im) as well as an internal input (ni ~ nn) from the context unit.
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increase the short-term memory o f the ERN is to increase the number o f hidden layer 

neurons (Watrous et al., 1990; Hanes et al., 1994; Elman, 1990).

2.5.2.3. TDNN

The Time Delay Neural Network (TDNN) has a time delay at the input and/or 

in the hidden layers. Depending on the duration of the time delay, there are three 

different TDNNs: a non-memory TDNN, a short-term memory TDNN, and a long­

term memory TDNN.

(11 Non-Memorv TDNN

The non-memory TDNN uses only an external time-delay. For instance, 

suppose that there are four external delays. For predicting an output at time level t = 

m, the TDNN will use four consecutive inputs that occurred at time level t = m, m-1, 

m-2, and m-3 (Fig. 2-3).

(21 Short-Term Memory TDNN

The short-term memory TDNN uses both an external and internal time-delay, 

the latter generated by the hidden layer.

For predicting outputs at time level t = m {i.e., Om), it uses not only four 

durations o f external time-delay as input at time level h, i = m, m-1, m-2, and m-3, 

but also the internal result at time level t = m-1 {i.e., nm.i), which is provided from the
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Input Hidden Output
Layer Layer Layer

UK

Ba­

rn,

Internal Delay

time = ^.2  

time = tm.1

time^tjjj

Fig. 2-3. An illustration of the Time Delay Neural Network (TDNN). Each input 
condition, Im, Im.i, and Im-2 has four external durations o f time-delay at four 
different time levels (e.g., t = m, m -1 , m - 2, and m-3 for Im, t = m -1 , m - 2, m - 
3, and m - 4 for Im„i, and t = m - 2, m - 3, m - 4, and m - 5 for Im.2). For the 
prediction of outputs at time level t = m -1  (Qm.i), the TDNN uses input condition 
Im-i- In order to predict the outputs at time level t = m (Om), if the TDNN uses an 
external input Im and an internal input this is called short-term memory. For 
the same purpose, if  the TDNN uses an external input Im and internal inputs nm.i 
a n d  n m - 2 , i t  i s  c a l l e d  l o n g - t e r m  m e m o r y .
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hidden layer. For predicting new outputs at time level t = m+1 (i.e., Om+2), the TDNN 

model uses both the data from four time steps at time level h, i = m+1, m, m-1, m-2, 

and the previous internal results at time level t = m+1 (i.e., nm). Hence, only one 

internal result produced at previous time level from the hidden layer, is used for 

current predictions (see Fig. 2-3).

(31 Long-Term Memory TDNN

The long-term memory TDNN model uses the external time-delays and 

internal time-delays that include all previous time levels to predict an output at the 

current time level (see Fig. 2-3). For instance, suppose that the duration o f time delay 

is four (e.g., time level ti, i = m-1, m-2, m-3, and m-4). For prediction o f outputs at 

time level t = m-1 (i.e., Om-i), the TDNN model uses the four durations o f external 

time delay as inputs at time level h, i = m-1, m-2, m-3, and m-4 and the previous 

internal result at time level t = m-2 (nm.2). For the prediction of outputs at time level t 

= m (i.e., Om), the TDNN model uses four durations o f external time delay as inputs 

at time level % i = m, m-1, m-2, and m-3 and the internal results at time level t = m-1 

(i.e., nm.i) as well as at time level t = m-2 (nm-2). In the same way, to predict outputs 

at time level t = m+10 (i.e., Om+io), the TDNN model will use all previous internal 

results (e.g., nm-2, nm-i, ...nm+9) as well as the four consecutive external inputs at time 

level t = m+7, m+8, m+9 and m+10.
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A long-term memory TDNN seems to be better than the others. Depending on 

the physical process, however, a long-term memory TDNN may not always be better 

than others (Clouse et a l ,  1997).

2.6. Learning Rule

Learning rules vary according to the different mathematical algorithms used to 

update the connection weights. A few basic rules will be explained briefly in this 

section.

2.6.1. Earlv Learning Rules

Hebb (1949) introduced a principle that became very influential in ANN 

learning. The characteristic o f Hebb’s rule is that no desired signals are required, and 

thus it is one of unsupervised learning algorithms. Only input signals need to be fed 

to an ANN, and a learning rate is fixed a priori. However, this rule cannot be used for 

a wave prediction model because the present wave prediction model had to be trained 

with a set o f known data using a supervised learning algorithm.

The delta rule is a variation of Hebb’s rule, and it was one of the most 

commonly used. This rule is based on the idea o f continuously modifying the 

weights of the input connections to reduce the difference between the desired value 

and the actual network output value, so-called ‘delta’. This rule changes the 

connection weight so as to minimize the Mean Squared Error (MSE). The error is fed
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back to the previous layers in the neural network, and this process continues until the 

MSE reached a defined minimum error. This network is called a back-propagation 

network because it uses a supervised learning algorithm (Widrow and Hoff, 1960). 

However, the delta rule is outdated and not usually used at present.

The Hopfield network simulates how human memory works, e.g., a person can 

be remembered by the type o f his hair, eyes, the shape of his nose, his height, the 

sound of his voice, etc. (Hopfield, 1982). The memory of those characters for that 

person is stored all together as one pattern. Hence, a Hopfield network is defined as 

an ANN with memory that stores patterns. However, this network is not designed for 

prediction purposes, so it will not described in detail. For more information on this 

rule, see Principe et al. (2000).

2.6.2. Gradient Descent Rule

The Gradient Descent (GD) is one o f the most commonly used supervised 

learning algorithms for predictive ANN models. For this reason, it will be explained 

in detail here.

For finding the Least Square Error (LSE), the GD rule is designed to change 

weight values, a w , using the following equation; see Eq. 2-1.

AW — TJ———X  n  n
d W  C2 *1)

where E is the error based on a given weight matrix, W, the input column matrix, X, 

and a learning rate coefficient, q (0 < n < !)•
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The basic mathematical derivations of GD for a two-layered and a three- 

layered ANN model are available on the Internet (http://maths.uwa.edu.au/~rkealley/ 

annall /nodel.html). The following is a brief documentation.

2.6.2.I. Two-Lavered Network (Input and Output Lavers)

Mathematically, the inputs and the corresponding weights are represented as an 

input vector, X = xi, x2, ..., xm, and weight vector, W = w y, wi2, ..., Wmn- Those 

inputs and weights are multiplied and summed using the following equation:

S = WX + b (2-2)

where b is a bias discussed later.

The result of the summation is transformed to an output through a transfer 

function between the input and hidden layers. There are two different transfer 

functions: linear transfer function (e.g., a constant slope or step equations) or non­

linear transfer function (e.g., a sigmoid or a Gaussian equation). The non-linear 

transfer function allows an ANN model to represent complicated non-linear features 

(Jordan, 1995; Rumelhart and McClelland, 1986; Homik et a l ,  1989; Cybenko, 1989; 

McCullag and Nelder, 1989).

Among those transfer functions, a constant slope function and a sigmoid 

function are more commonly used. Let F determine the transfer function, and in the 

case o f a simple constant slope function, F can be expressed as F = aS + c, where a 

and c are two constants. On the other hand, a sigmoid transfer function for non-linear 

case can be expressed as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://maths.uwa.edu.au/~rkealley/


29

F  = -----— --------   (2-3)
1 + EXP { - s )

The transfer level is based on its net input {i.e., S = WX + b). The model result, 

Y, for the two-layered ANN structure is the output of a selected transfer function 

between the input and hidden layers. Thus, Y = F(WX + b) has a value between -1 

and 1.

The above mentioned bias (b) is also important to understand. As the 

complexity of learning task increases, it becomes more difficult for an ANN model to 

generalize well. Also, it is too expensive to prepare a sufficient number of training 

data points to ensure good generalization. So, a bias that was learned from the 

training data set is used for a validation data set Thus, the problems resulting from 

an insufficient number of training data points may be reduced if the bias is applied.

The effects of a bias for a linear and non-linear transfer function are explained 

next. Fig. 2-4a shows an example o f a constant slope transfer function with the slope 

o f -1. If the linear function does not use any bias {e.g., b = 0), the output of the linear 

function would be the dashed line. However, if  the linear function uses a bias of one 

{e.g., b = 1), the output of the linear function will move toward the solid line and the 

slope remains the same at -1. Fig. 2-4b shows a sigmoid transfer function that has a 

bias. A high bias makes the sigmoid function vary gradually, and a low bias makes 

the sigmoid function vary quickly. In general, an ANN model needs more iterations 

to find an optimum solution if it does not use bias (Zwart and Vries, 2001, 

unpublished).
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y *

Fig. 2-4a. An illustration o f a constant slope linear transfer function where 
the slope = -1. If bias is not used (e.g., b = 0), the linear function passes 
through the origin (0, 0) shown by the dashed line. If bias = 1, the linear 
fu n ction  m oved  tow ards the so lid  lin e  w ith the sam e s lo p e .

Output

Input

Fig. 2-4b. An illustration o f a sigmoid transfer function with a range between -1 
and 1. A low initial bias makes a sharp sigmoid function (solid line), while a high 
initial bias makes the smooth sigmoid function vary gently (dashed line).
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The error, E, is actually an error square, defined as E = E(d;-Yi)2/2, here E is

the difference between desired value, d, and model output, Y. If E is larger than a 

pre-defined value, the ANN will change its weight according to the GD learning 

algorithm. The gradient of error in terms o f weight, W, can be written as

BE = ( d ( d - Y ) '\
d W \  dW J

= e d ( d  ~ F (sj )  
d W

= e dd BF dS }
dw as dwJ

= e dd
dW

-  F' W dX
dW

+ X dW
dW

(2-4)

Because d, X, and b are independent o f W, i.e., <3X/dW = 5d/8W = 5b/5W = 0. Thus, 

5E/8W = -eXF'(s). In the case of a linear transfer function, dE/cW = -eaX, where a 

is the slope o f the linear transfer function.

The change o f the weight at the (k+l)to iteration is determined by the previous 

weight and gradient o f error in terms o f W; see Eq. 2-5.

a E
Wk * = Wk + V a w (2-5)

where W* = weight at kft iteration
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Wjc+i = weight at (k+l)* iteration

T| = learning rate (0 <T1 < 1)

The magnitude of the error gradient will change, depending upon the given learning 

rate.

2.6.2.2. Three-Lavered Network (Input Hidden, and Output Lavers)

In a three-layered network, the learning algorithm is very similar to that 

previously explained for a two-layered network. The only difference is that there are 

two learning processes involved. The first learning is between the input and hidden 

layers, and the second learning is between the hidden and output layers.

A three-layered network has two transfer functions: Fj between the input and 

hidden layers and Fk between the hidden and output layers. The output between the 

input and hidden layers is expressed as H. Thus, H = Fj(Si), where Si is the 

summation, WX + bi, between the input and hidden layers. Another output between 

the hidden and output layers is expressed as Y. The weight matrix between the 

hidden and the output layers is expressed as U, and Fk is the transfer function. Thus, 

Y = Fk(S2), where S2 is the summation, UH + b2, between the hidden and output 

layers.

After model results are produced, E is calculated. If E is less than a pre-defined 

LSE, W and U will be used as the final weight matrices. However, if  E is larger than 

the LSE, an ANN model will change U and W according to the GD algorithm, or 

another selected algorithm.
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If using the GD, the gradient of error in terms of U between the hidden and 

output layers can be expressed as

layers is determined by the previous weight and the gradient o f error in terms of U:

T| = learning rate (0 < r | < 1)

The error gradient between the input and hidden layers is related to two transfer 

functions, Fj and Fk, and can be expressed in terms o f weight matrices U and W as 

follows:

BE 1 B { d -Y )2

3 W ~  2 dW

BY-e~—

Because Y = Fk(S2)

BE_= BF\_ = _ BFk BS2 

BW  ~ *B W  6 BS2 BW

^  = -eH F k'(S2) (2-6)

The change of the weight at (k+l)* iteration between the hidden and output

(2-7)

where Uk = weight between the hidden and the output layers at k*51 iteration

Uk+i = weight between the hidden and the output layers at (k+l)4*1 iteration
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= -eFk' u dFj(Sl) because 8U/5W = 0 
* dw

= —eFk U
dFj
35, 9W

= ~eFk UFj
d xw
dW

= -eUXFj Fk

?iF  '  *
Thus, = -eUXFj (5, )Fk (52) (2-8)

The change of weight at (k+l)fe iteration between the input and hidden layers is 

determined by previous weight and the gradient o f error in terms of W because U has 

been already determined between the hidden and output layers; see Eq. 2-5.

Based on the complexity to the problem, more than one hidden layer can be 

used. If two hidden layers are used, the four-layered ANN structure is expressed as 

ImHniHn2 0 p and includes one more process o f the summation, multiplication, and 

transfer function between two hidden layers. For this reason, the performance o f the 

ANN technique will increase as the number of hidden layers increases.
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2.62.3. The Problem of Gradient Descent

For the GD learning algorithm, there is no guidance to find the optimum 

learning rate for a given problem In general, ‘trial and error’ is the only method and 

is started with an arbitrarily selected low learning rate. This is because a high 

learning rate does not guarantee convergence to the LSE. This fixed low learning 

rate, however, may take a long time to meet the LSE, and there is no proof if the 

selected learning rate is the optimum (Duda et al., 1997; Rumelhart and McClelland, 

1986).

The convergence problem due to a fixed learning rate can be improved if the 

learning rate changes during the ANN’s processes. The Gradient Descent with 

Variable Learning Rate and Momentum (GDX) and Scaled Conjugate Gradient 

(SCG) are two o f these improved learning algorithms that use a variable learning rate. 

The characteristics o f these two learning algorithms will be explained in the next 

section.

2.6.3. GDX

The GDX algorithm uses a momentum coefficient, a, and a variable learning 

rate, p to improve the learning efficiency o f an ANN model. The GDX algorithm 

retains previous weights and effectively smoothes the variations o f weights during 

training. Thus, the effective learning rate is rapid and speeds up the training of the 

ANN model.
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The momentum coefficient is designed to slow the rapid changes o f weight. A 

new weight is updated as a function of previous weights and the error gradient, 

dE/dW; see Eq. 2-9.

(  A E \
A W k+l= a A W k + 7ja —  (2-9)

Jk

where, a = less than 1 for stability

The new weight is discarded, if  the new error exceeds the old error by more 

than a predefined ratio (e.g., 1.05), and the learning rate decreases. Otherwise, the 

new weight is retained. If the new error is less than the old error, the learning rate 

increases. In general, a default momentum and a learning rate o f 0.9 and 0.01, 

respectively, are used (Rabelo, 1990; Moreira and Fiesler, 1995).

2.6.4. SCG

The Scaled Conjugate Gradient (SCG) is an advanced learning algorithm for 

calculating a new weight (e.g., W2 = Wi + aP, where P is a unit vector and a  is the 

amplitude or length) every iteration using the information from the second-order 

approximation to find the least square error (Mailer, 1993). The unique feature o f the 

SCG is that the new search direction is always conjugate to the previous direction.

For instance, let a given initial weight matrix be Wo, and suppose an ANN with 

SCG uses Wo at the starting point. The first direction, Pi, is determined by the 

steepest gradient descent direction, ri, which is -Ei (Ei = the maximum of (9E/9W)i).
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In other words, another weight, Wi, is determined at a point in which dE/dW is the

maximum.

The step size, oti can be calculated using the ratio between Ei' and Ei"Pj, here

A new weight matrix, W2 is determined by adding the weight (Wi), and the 

product o f search direction (Pi) and step size («i): W2 = Wi + aiPi. After knowing 

the W2 , the ANN model can calculate a new model output (Y2) and a new error 

gradient (E2O9 and the process repeats.

The new steepest gradient descent direction r2 is -E 2'. If E2' *  0, the ANN will 

update its new weight and go to the next iteration, otherwise, the weight, W2, is the 

desired value.

For further iteration, a new conjugate search direction P2 is calculated by 

adding r2 and Pi, a modulator factor, defined as Pi = f a 2 -  r2ri)/(PiXri).

Ei" = (32E/dW2)i. Because in calculating E* every iteration is computationally 

expensive, Ei"Pi was approximated as:

(2-10)

where 01 and Ai are two constants and selected as 5x10' and 5x10", respectively.

P2 -  f2 + Pi (2-11)

In the same way, P2 is used to calculate a 2 and the next new weight (W 3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

2.7. Neural System Operation 

In this section, the details o f establishing an ANN model are given.

2.7.1. Pre-Processing

Before training an ANN model, the inputs and outputs are normalized within a 

range o f -1 and 1. This is called pre-processing. Pre-processing is performed using 

minimum and maximum of the input, Pm™ and PmaX; see Eq. 2-12.

p  = 2(p - pmin) . !  (2-12)
" P  - P .max min

where Pn = normalized value

P = input and corresponding output

For the pre-processing, choosing maximum and minimum wind speed must be 

done carefully. For instance, suppose 10 m/s is the maximum wind speed for the 

training data set and 20 m/s the maximum wind speed for the validation data set. If a 

maximum wind speed for both training and validation data sets, e.g., 2 0  m/s, global 

maximum, is used for the pre-processing, the range of normalized wind speed is 0.5 

for the training data set and one for the validation data set. By contrast, if  10 m/s and 

2 0  m/s wind speed are used for the training and validation sets, respectively, so-called 

local maximum, the range o f normalized wind speed is the same for both training and 

validation data sets.

Further explanation and discussion of global wind speed for pre-processing is 

given in Chapter 4.2.
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2.7.2. Selection o f Initial Weights

Each element of the input has its own weight for constructing the output. The 

weight should be different, reflecting the importance of each element. Initial weights 

can be particularly specified or arbitrarily selected.

An ANN model can also have additional bias neurons between the input and 

hidden layers, and the hidden and output layers. A constant bias is usually sufficient 

and is used in ANN modeling.

2.7.3. Post-Processing

The results o f an ANN model should be explained in the same units as if  pre­

processing had not been. If there was pre-processing, however, the output results 

vary between -1  and +1. These values have to be changed in order to have physical 

meaning. This process is called post-processing, and the post-processed value is the 

ANN model output needed. This post-processing is calculated using the following 

equation:

PP =0.5(Pn +1 )x(Pm  - P ^ + P ^  (2-13)

where Pp = post-processed model output

Pn = ANN model output with pre-process 

Pmin = minimum output o f training data set 

Pmax = maximum output of training data set

Values o f Pmin and Pmax should be carefully selected in post-processing and pre­

processing.
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For predictions, a new input data set has to be provided to an ANN model. The 

wind speed will also be pre-processed by using the same minimum and maximum 

values, which were used in the training data set. The output o f the ANN for the 

prediction is also normalized corresponding to the minimum and maximum values 

used in the training data set.

2.7.4. Comparison between Desired Value and Model Output

For comparing the performance of an ANN model, four indexes are currently 

being used: (1) the Mean Square Error (MSE), (2) Root Mean Square Error (RMSE), 

(3) correlation coefficient (r) between two variables, and (4) square correlation 

coefficient (r2) between the two variables. The MSE indicates that how far model 

outputs are from their true values. That is to say, the MSE is defined by the mean 

sum o f square deviations between the observed and predicted values (Principe et a l ,

where N = number o f training data points.

The RMSE is the root mean square error between the observed and predicted 

values, and it is defined by

2000):

(2-14)

RMSE = ; - y , ) 2 ' 2 N (2-15)

where y; = observed value, and y, = predicted value.
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If the RMSE or MSE is larger than a pre-defined error, which is ideally zero, the 

ANN model will adjust the weight between input and hidden layer, and between 

hidden and output layer until this is smaller than the pre-defined value. A simplified 

illustration o f general ANN procedures for weight update is shown in Fig. 2-5. The 

weight value that is set at the final iteration during the training process will be used 

for prediction.

The correlation coefficient (r) between the observed and predicted values 

identifies the strength of the linear relationship between the observed and predicted 

values rather than estimating prediction errors. For more information about the index 

of the correlation coefficient between the observed and predicted value, see section

2.8.3.

The square correlation coefficient (r2) between the observed and predicted 

values gives the proportion o f the total variability in the dependent variable y 

(predicted value) that can be accounted for by the independent variable x (observed 

value). For instance, if  r = 0.9996, r2 = 0.99962 = 0.9992. That is to say, 99.92% of  

the variability in y is accounted for by x.

However, there is no guidance for use of a particular index. For instance, Tsai 

et al., (2002) used the RMSE for determining the optimum learning rate and 

momentum, and correlation coefficient between the observed and predicted values. 

On the other hand, Deo et a l ,  (2001) used the MSE and correlation coefficient as 

agreement indices for the same purpose.
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Desired Value (d)

Post-Processing

i a a m b as

Ek= 0.5 S e \

Model Output(Yk)
J Feedback

Yk= F k(UkH k + b 2) 

H k= Fj(W kX + bO

O W k+1 = ( t E A W ) *  

O U k+1 = (TE/TU)k

t
Pre-Processing

t
Input(X )

Fig. 2-5. A schematic illustration o f the learning pathway o f a three-layered 
Artificial Neural Network. W= weight matrix between input and hidden 
layers, U = weight matrix between hidden and output layers, Fj = transfer 
function between input and hidden layers, Fk = transfer function between 
hidden and output layers, bj and = bias between input and hidden layers, 
and between hidden and output layers, e = difference between d and Y, H = 
output at hidden layer, Y = output o f Fk(UH + b2) between hidden and output 
layers, and k = number of iteration. If the mean square error is larger than a 
predefined value, which is ideally zero, the ANN will repeat to update weights 
U and W update (notice dotted line) until it meets the criterion.
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When using the RMSE or MSE as an agreement index between the observed 

and predicted value, we can compare the performance of an ANN at a given condition 

regarding the number of hidden neurons, learning rate, momentum, or training data 

points. However, these indices do not show exactly what number is the optimum for 

hidden neurons and iterations in a validation data set. For instance, in general, the 

RMSE or MSE decreases with an increase in the number o f hidden neurons and 

iterations. However, when using a large number of hidden neurons or iterations, the 

ANN may be over-structured or over-trained. In this case, the prediction uncertainty 

for unknown events may increase.

The optimum number of hidden neurons or iterations can be relatively easy to 

find when using the correlation coefficient between the observed and predicted values 

because an ANN has a maximum correlation coefficient at the optimum condition. 

After this optimum, the correlation coefficient may not increase any more while the 

RMSE or MSE still decreases. However, there still remains a problem that the best 

correlation coefficient does not guarantee an accurate prediction for other events yet 

unknown.

In the beginning, we used the MSE in order to find the optimum number of 

hidden neurons and iterations. But the optimum condition could not be found 

because the MSE decreased continually as the number of hidden neurons and 

iterations increased. For this reason, the correlation coefficient between the observed 

and predicted values was used in this study. In this case, although uncertainties for
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other events still remain, the correlation coefficient index will be helpful in finding 

the optimum condition.

2.8. Selection of Optimum Numbers o f Hidden Neurons and Iterations 

For the best accuracy and computing pace, an ANN model should be used with 

an optimum number of hidden neurons and iterations. For this reason, the importance 

of these two variables and their selection is explained in this section.

For a three-layered ANN model with a structure of ImHnOp, the parameter is 

determined as follows: parameters = (m x n) + (n x p). Therefore, selecting the 

optimum number of hidden neurons will directly determine the number o f parameters 

for the ANN model. Baum and Haussler (1989) suggested that an optimum number 

o f parameters for an ANN model should be less than 10% of the total training data 

points. For instance, because 218 data points were used for training in this study, the 

number of parameters should be less than 22. However, an ANN with one hidden 

neuron has 720 parameters, which is larger than 22 parameters by about 30 times. 

For this reason, this rule is not sufficient for this study.

Fletcher and Goss (1993) proposed a specific rule to determine the optimum 

number o f hidden neurons with a range between (2m + 1) and (2m0'5 + p). For 

instance, in this study, this rule implies that these should be 58 to 1,441 hidden 

neurons. However, for multiple input parameters like those in this study, if  an ANN 

uses 58 hidden neurons, the total parameters will be 41,760 which greatly exceeds
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218 data points for training by 200 times. Many studies reported that this rule did not 

give good prediction results (Kuligowski and Barros, 1998; Swingler, 1996; Kim and 

Barros, 2001). Again, this rule was not used here.

The following five approaches were developed to find an optimum number of 

hidden neurons and iterations: (1) pruning, (2) regularization, (3) early stopping, (4) 

trial and error, (5) bias and variance. The pruning method chooses a large number of 

hidden neurons arbitrarily and then, removes the hidden neurons one by one to find 

the optimum number of hidden neurons and iterations by using the error sensitivity to 

the removal of hidden neuron (Hassibi and Stork, 1993; Solla et al., 1990; and Mozer 

and Smolensky, 1988). However, the selection o f reference error sensitivity is 

unclear and subjective. For this reason, this method is also not used in this study. 

More information about this selection can be found in Reed (1993).

Regularization was not designed to directly control the number o f hidden 

neurons but to modify the error o f an ANN model by decaying a given weight 

(Tikhonov and Arsenin, 1977). Thus, it also called weight decay method. For 

instance, the equation, xA = y, is ill conditioned if a small change o f y due to noises 

produce an enormous change in the solution for x. In this case, the total error is to be 

reduced using a regularization parameter, A, which limits the growth of weight, w. It 

is so-called ‘weight decay’. Thus, Ep = E + lA A lw 2, here Ep = penalized error and E 

= original error. A small value o f the regularization parameter (e.g., X = 0.00008) 

could be used (Krogh and Hertz, 1995). However, it is not clear what number of X is
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the optimum value, so this method was not used in this study. Krogh and Hertz 

(1995) have more details on the weight decay method.

Because the early stopping, ‘trial and error’, and ‘bias and variance’ methods 

were used in this study, details are given in next section.

2.8.1. Early Stopping

The early stopping method was developed to find the optimum number of 

iterations at a fixed number of hidden neurons (Amari et a l ,  1997; Finnof and 

Zimmermann, 1993; Sarel, 1994 and 1995; Nelson and Illingworth, 1991). In order 

to find the optimum number o f iterations, a given data set should be divided into a 

training and validation set. Then, a large number o f hidden neurons and a small (as 

small as possible) iteration have to be arbitrarily selected. The error, the difference 

between observed and model output o f both training and validation data set should be 

calculated for every trial. The best number o f iterations is that for which the error of 

the validation data set begins to diverge from that o f the training data set

The assumption of this method is that the training and validation data sets are 

not identical each other. For instance, let the first-half output range o f a validation 

data set be within the output range o f a training data set, while letting the second- half 

output be outside of the training data set In this case, the error paths o f the first 

patterns for the training and validation data set may pass along the same line {e.g., 

Passi = Pass:); see Fig. 2-6. However, the error paths for the second-half output for 

the training and validation data set may be different (Passi *  Pass2> Sarel (1994)
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E r r o r

Pass 1 =Pass 2

Mniinum Error 
for Validation 
Dataset

Passi
Murimum Error 
for Training
Dataset

Fig. 2-6. An illustration of error paths for a training and validation data set 
The output of the first half for die validation data set is within the output 
range o f the first half for the training data set, while the rest 50 % output for 
the validation data set is out o f range for the training data set. Pass 1 and 2 
indicate the error path for the training and validation data set, respectively. 
For the first half output, passi = pass2 because they have the same output. 
However, for the second half output, passi and pass2 may have different 
errors.
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indicated that, at this turning point, the error path for the validation data set is 

diverging from that for the training data set. If the number of iterations stops early 

before the ANN model exactly learns all the patterns in the second-half training data 

set, the ANN may avoid large errors for prediction of unknown patterns.

The early stopping method is faster compared to other previously explained 

methods, and can be applied successfully to networks in which the number of 

parameters far exceeds the number of data points (Nelson and Illingworth, 1991).

The early stopping method is applicable only for a fixed small learning rate. 

The Gradient Descent with variable Learning Rate and Momentum (GDX) and the 

Scaled Conjugate Gradient (SCG), which were used in this study, do not use a fixed 

small learning rate but use a variable learning rate that changes during training. 

Moreover, there is no evidence that the variable learning rate is small enough. For 

this reason, the early stopping method is not available for GDX and SCG directly.

However, both GDX and SCG use the gradient o f error with respect to weight 

(e.g., 5E/8W) to update the weights. In other words, because the change of error in 

terms of weight between two consecutive iterations is known, the error gradient for a 

training and validation data set can be used instead of error itself. In the same way, if  

the input of the second-half for the validation data set is out o f the range o f input for 

the second-half for the training data set, the change of error gradient for the validation 

data set will be different from that for the training data set. Thus, 8E/0W for the 

validation and training data is different at this particular number o f iterations. Thus,
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instead of error, the error gradient was used to select an optimum number o f iterations 

in this study.

2.8.2. Bias and Variance

For an ANN model, the number o f hidden neurons determines the number of 

model parameters. From a statistical point o f  view, if  the number o f hidden neurons 

changes, the bias and variance may also change. For this reason, the examination of 

the bias and variance is important for selecting an optimum number of hidden 

neurons.

Mathematically, the bias, Et>, is the difference between the mean o f observed 

values, ym, and the mean of model outputs, y m . Thus, Eb = (ym - y m)2 ■ Also, the 

variance, Ev, indicates that how far is each model output, y t , from the mean of the

n
model outputs, ym. Thus, Ey = 1 / n £ ( y m - y i ) 1, here n = number o f data points

Z=1

(Geman et a l ,  1992).

2.8.3. Trial and Error

The trial and error method is one o f most widely used for finding the optimum 

number of hidden neurons and iterations simultaneously (Tsai and Lee, 1999; Tsai et 

a l ,  2002; Deo et a l  2001; Kim and Barros, 2001). This method tests the efficiency 

of an ANN model at different combination o f hidden neurons and iterations. Here,
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the model efficiency of the ANN was determined by the correlation coefficient 

between observed and predicted values.

The correlation coefficient between the observed and predicted values indicates 

the strength of the linear relationship between the two variables ranging between -1  

and 1. If r *  0, the two variables have a linear relationship, but ifr  = 0, there are no 

linear relationships between the two variables. If one wants to know the percentage 

of the variability in one variable to the other, r2 can be used.

The correlation coefficient, r, can be calculated using the following equation 

(Davies and Goldsmith, 1972):

n

r=  (2-16)

- y . ) 21 i-1 i-l

where n = number of data points, 

yi = observed value 

ym = mean of observed values 

y t = model output 

y m = mean of model outputs 

The best correlation coefficient between observed values and model outputs 

represents the best efficiency o f the ANN model, and corresponding numbers of 

hidden neurons and iterations are the optimum.
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CHAPTER III 

REVIEW OF WIND-WAVE MODELS

3.1. Introduction

Water waves can roughly be classified as monochromatic and random waves, 

also called regular waves and irregular waves. The study o f regular waves can be 

traced back to the 17th century. In this category, only one wave frequency was used 

to describe wave characteristics, i.e., wave length, wave phase velocity, etc.

In this chapter, historical wind-wave prediction models are briefly explored. 

Monochromatic waves are discussed in section 3.2. The history o f early wind-wave 

prediction models is given in section 3.3. Currently available numerical models are 

explained in detail in section 3.4. Early studies o f ANN wind-wave prediction 

models are reviewed in section 3 .5 .

3.2. Monochromatic Waves

Airy (1845) developed a classical linear wave theory that can be applied over 

an entire wave frequency domain. Stokes (1880) developed a finite amplitude theory, 

which uses second and higher order approximation to better describe the wave
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characteristics for large waves. Wiegel (1960), Kinsman (1965), and Ippen (1966a) 

presented the development and application o f results o f those wave theories.

Wave development depends upon wind speed, direction, fetch, and duration. 

Fetch is the total length of water body over which the wind can act. Wind duration is 

the total time that a given wind blows over the water body. If wind speed, fetch, and 

duration increases, the generated wave energy will also increase, resulting in a 

general decrease o f wave numbers (Smith, 1973).

Waves with periods less than 0.1 seconds are called capillary waves, which 

occur at all stages o f wave generation. The continuous random collision and 

reforming o f these capillary waves over time produce well-developed seas that move 

in the general direction of the wind.

Waves with periods between 1 and 30 seconds are called gravity waves. 

Among the gravity waves, wave periods from 5 to 15 seconds are the most common 

and thus, important for coastal communities because a large amount o f wave energies 

are associated with these particular wave periods.

Waves with periods more than 5 minutes are called long period waves. Tidal 

waves, which are generated by gravitational attraction forces, have 12-hour wave 

periods. Storm surges, which are generated by a low atmospheric pressure of 

hurricanes and strong winds, have long wave periods that are more than several 

hours. Another example o f long period waves is Tsunami waves that are generated 

by earthquakes, submarine landslides, and volcanic explosions. Tsunami waves
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usually have periods over 12 hours. For more information about wave classification 

according to wave periods, see Kinsman (1965).

3.3. History o f Wind-Wave Prediction Models 

For random waves, there are many wave components. Each component wave 

has its own period and wave height (i.e., energy). To find a representative period and 

wave height, significant wave height (Hs) and wave period (Ts) are commonly used to 

describe the strength of a random wave field.

Munk (1944) defined the significant wave height, also expressed as H1/3, as the 

average of the one-third highest waves in an entire wave record. Other terminologies, 

tenth-wave height, H10, maximum wave height, Hmax> and root-mean-squared wave 

height, Hnnsj are also available and have their use for different objectives. The H10 

represents the average of the highest 10 percent of all waves. Hmax represents the 

maximum wave height in the entire wave record. The Hms represents the wave 

height that has root-mean-squared values o f the waves.

With respect to wave period, zero-crossing period (Tz)and peak wave period 

(Tp) are the two most commonly used wave period to represent a random wave field. 

The Tz represents the average period o f all wave periods measured when water level 

crosses the zero-level. The Tp represents the component which has the largest wave 

energy. In general, Tp is about 1.4 times larger than Tz (Hogben and Dacunha, 1985).
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Numerical and empirical studies have contributed to our understanding of 

wind-wave generation processes (Phillips, 1957; Pierson and Moskowitz, 1964; 

Kinsman, 1965; Hasselmann et al., 1973; Shore Protection Manual, 1977; World 

Meteorological Organization, 1998) and continue to expand our understanding. After 

national efforts led by the U.S. to establish wave models during World War II 

(WWII), development of wave models accelerated. In the next sections, two 

historical wave prediction models are briefly presented.

3.3.1. SMI

The Sverdrup-Munk-Bretshneider (SMB) model was developed to facilitate 

military operations during World War II. At that time, the processes of wind-waves 

and wave-wave interactions were not fully understood. Sverdrup and Munk (1947) 

found inter-relationships between wind states and waves through empirical 

observations: waves are changed according to wind speed (U), fetch (F), and duration 

(t). The SMB used those wind conditions to estimate wave height and period. Later, 

Bretschneider modified this model in a series (1951,1952, and 1959).

In general, significant wave height (Hs) and wave period (Tp) increase when F 

and t increase at a given U for a constant direction. However, Hs and Tp will not 

increase anymore when wave development comes into equilibrium with U for a fixed 

F or t. That is to say, a sea is not fully developed for a given U until a required F and 

t are reached.
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The Hs, Tp, and minimum duration for fully developed sea, t, can be determined 

by U and F using the following equations:

where g = gravitational acceleration 

In = natural log 

K =6.5882 

A= 0.0161 

B = 0.3692 

C = 2.2024 

D = 0.8798

Equations 3-1, -2, and -3 are shown for the significant wave height, period, and 

duration, respectively. The use of Eqs. 3-1 to 3 for prediction has been described in 

details in the Shore Protection Manual (1977), so will not be repeated here. A 

computer program written in Matlab was also developed. This program is listed in

= 0.283 tanh[ 0.0125 ( -^ - )° ‘42 ]
U U

(3-1)

(3-2)

j.
(3-3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Appendix I and used for checking the performance o f an ANN model compared with 

the SMB method.

3.3.2. Spectrum Models

The second-generation (spectrum) model was produced in the 1960s and early 

1970s. In this model, wave growths are assumed to stop when it reaches a universal 

saturation level. The intensity o f a wave-field can be described by integration of 

wave energy and frequency. In the beginning, wave energy increases with increase of 

wave frequency, however the energy does not continue to increase after a certain 

point. This phenomenon is called a fully developed sea The number o f powers of 

frequency determines an energy peak. However, these models usually overestimate 

the influence o f wind inputs and underestimate the strength of non-linear effects.

Pierson, Neumann, and James (1955) developed a wave spectrum for 

estimating significant wave height, Hs, and zero-crossing wave period, Tz. A random 

wave may have many wave components, and each component may have a different 

energy. Thus, a random wave field can be described by a wave energy spectrum.

From a given wave spectrum, E(f), Hs and Tz can be calculated, but wave 

spectrum moments (n^) should be calculated first. The n-order wave moment is 

determined by integrating wave frequency, f, and corresponding wave energy, E(f).

OS
Thus, mn- j f nE(f)df,  If n = 0, 1, and 2, above results will be zero, first, and

o

second-order moments, which are expressed as mo, mi, and m2, respectively. The H„

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

and Tz are determined by zero-order moment and the ratio between zero-order and

Philips (1957) was the first person to propose a wave spectrum model as E(f) = 

«g2f ' 5. Bretschneider (1959) improved the spectrum as E(f) = Af~5e{~ar4). Later, 

Pierson and Moskowitz (1964) suggested another improvement based on the wave 

spectra measured in the North Atlantic Ocean:

where U = mean wind speed measured at 19.5m above sea surface

Results from the JOint North Sea WAve Project (JONSWAP) suggested that 

the wind-wave spectrum in a growing phase had a much sharper peak than the 

Pierson-Moskowitz spectrum and provided a peak enhancement factor as:

where fm = peak frequency

a = Phillip’s constant or equilibrium range constant 

Y = peak enhancement factor 

0  = 0.07 for f  sfm 

0.09 for f > f m

For more information on JONSWAP wave spectrum, see Hasselmann et al. (1973).

second-order moments, respectively. Thus, Hs = 4 and Tz -^Jm0 I m 2 .

= g 1(2n)~A f~5e
(_0.74(X))<

(3-4)

E( f )  = a g 2( 2 x y 4r 5e (3-5)
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3.4. Currently Available Wind-Wave Models 

The third generation of wave prediction models developed in the late 1980s 

overcame those non-linear problems by using wave-wave interaction terms 

(SWAMP, 1985). Wave energy at a specific point on the sea surface was described 

as a function of frequency, wave direction, and position, and the energies were 

balanced by energy sources and sinks.

Currently available numerical models for wave hindcast or prediction include 

WAM, SWAN, HISWA, STWAVE, and GLERL. The basic concept o f currently 

used wave prediction models will be explained in detail in the next section.

3.4.1. WAM

The WAve Model (WAM) is the third generation of wave prediction models 

that solve the wave transport equation explicitly without any presumptions on the 

shape o f the wave spectrum in deep water (WAMDI, 1998). The propagation of 

wave energy, which is balanced by wave energy on the sea surface, can be described 

as a function of longitudinal (<p), and latitudinal (X), and wave direction (0) using the 

following equation:

3» C,  C, C,

where C<p = Cg<p + u

C l =  CgA +  V

Ce = Cg6 + U, here U = u + v
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Cg(p and Cgx = wave group velocity in latitudinal and longitudinal directions 

u and v = depth and time averaged current velocity in x and y directions 

S = net wave energy source and sink 

The four terms on the left o f equation 3-6 indicate the change o f wave energy with 

time and the change o f wave energy in moving wave group velocity and current 

velocity in terms of three variables: <p, X, and 0. The right term in equation 3-6 

indicates net energy source and sink from wave energy input, energy dissipation due 

to white-capping, and non-linear wave interaction.

Although accuracy of the model design was improved by including a non­

linear interaction term, one big problem of the WAM is that solving the non-linear 

wave interaction term takes too much computational time. Hasselmann and 

Hasselmann (1985) have developed the Discrete Interaction Approximation method, 

which considers only simplified quadruplet wave interactions, to reduce prohibitive 

computing time. But it still needs considerable computational resources. According 

to Komatsu and Masuda (1996), a 2000-fold improvement on computational power is 

needed and an increase is unlikely to occur soon.

With respect to prediction accuracy, the WAM usually underestimates wind- 

waves by 10 % and swells by 30% (Wen et a l ,  1999). Nonetheless, the WAM, or its 

derivatives are currently running for prediction of wind waves.
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3.4.2. SWAN

The Simulating WAves Nearshore (SWAN) is a wind-wave prediction model,

which has been developed to compute random, short-crest wave conditions in small

scale coastal regions and inland waters (Booij et al., 1999). The irregular waves are

described by the two-dimensional density spectrum of wave actions: wave frequency

and position, which are conserved in the presence of ambient currents (Whitham,

1974). Hasselmann et al. (1973) mathematically described the propagation of wave

action density that is balanced by net wave energy, in terms o f x and y directions,

wave direction (9), and relative wave frequency (f), as follows:

» +ac£jv+3ciAf XfN_^S_
dt dx <fy dd df f

where N = action density (E/f)

Cx ~  Cgx + u 

Cy =  Cgy +  V

Ce = Cge + U, here U = u + v

Cf = Cgf + U

Cgx and Cgy = wave group velocity in x and y directions 

u and v = current velocity in x and y directions 

S = net energy source and sink 

The left terms in equation 3-7 indicate the change o f action density with time, 

location, wave moving direction, and energy transfer among each component in terms 

of four variables: x and y directions, 0, and f.
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When compared with the WAM, the SWAN has one more variable, f, because 

of the possible depth effect. For this reason, SWAN is expected to require even more 

computational time than the WAM. As another shortcoming, the SWAN cannot 

solve the wave diffraction process.

3.4.3. fflSWA

The HIndcasting Shallow water WAves (HISWA) was developed by Booij et 

al. (1985) for wave predictions at shallow depth areas, which are strongly influenced 

by coastal morphology (e.g., islands, bars, shoals, and channels). The HISWA uses a 

parameterized process on the frequency domain to reduce the huge computation time. 

The parameterization is formulated in the zero and first order o f spectrum moments 

(mo and mi) in each spectral direction. Using this momentum equation, the evolution 

o f mi o f the action density spectrum is induced.

I!h+ £ j ^  + £ i J l + £ l l l !h .= c : m Q + Sl (3-8)
t  x  y  C  f

where Cx+ = propagation speed of mi in x direction

Cy = propagation speed o f mi in y direction

Ce+ = propagation speed of mi in wave direction

Cf* mo = effect of time variations in currents and depth on the mean frequency 

Si = net generation and dissipation of mi 

The left hand terms in equation 3-8 indicate the change of mi with time, and die flux 

change of mi in terms of three variables: x and y, and 8. The right hand terms in
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equation 3-8 indicate the effects o f time variation in current and depth on the mean 

frequency, and net generation and dissipation o f mi.

HISWA takes less computational time compared with that for SWAN because 

it does not use a variable for wave frequency. HISWA, however, is not effective 

when actual wave directions do not fall within a certain direction boundary, and the 

situation is not stationary. In other words, the wave spectrum is discrete only in 

limited directions and the shape of the frequency spectrum has to be prescribed due to 

parametric frequency. For this reason, HISWA is restricted to the prescribed shape of 

spectrum (Holthuijsen etal., 1997; Resio, 1987 and 1988; Resio and Perrie, 1989).

3.4.4. STWAVE

The STeady state irregular WAVE (STWAVE) which simulates wave energy 

transformation is easy to apply and flexible for near shore wind-generated wave 

growth and propagation (Resio and Perrie, 1989). This model is based on the 

assumption of steady-state condition, which means that wave energy is always 

considered to be in equilibrium with time. For this reason, the STWAVE has no local 

time derivative term, and it does not provide information on wave evolution. The 

important features o f the STWAVE are that the wave spectrum in shallow depths has 

a depth independent equilibrium range, and the growth o f spectral peak frequency is 

limited.

The governing equation of this model solved the spectrum energy in the 

moving group velocity of the spectral peak:
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c „ E ( j t 8 )  | c v E ( j , e )  „ (3_9)
x y

where E(f, 0) = the energy spectrum in frequency and direction 

Cgx and Cgy = group velocity in x  and y directions 

S = net energy source and sink 

The left hand terms o f equation 3-9 indicate the change of wave spectrum energy in 

moving group velocity in terms o f x and y directions. The right o f the equation 

indicates net energy source and sink.

The computational speed is fast because the STWAVE has assumed that waves 

are in a steady state, and they move with the spectral center. But the accuracy of 

wind-wave prediction has not been clearly reported so far.

3.4.5. WAVEWATCH

The development o f the WAVEWATCH has three different phases: 

WAVEWATCH I, II, and III. The WAVEWATCH I was first developed by Tolman 

(1989 and 1991) at Delft University o f Technology. Tolman (1992) improved the 

governing equations, the model structures, numerical methods, and physical 

parameterizations to create the WAVEWATCH II.

The Ocean Modeling Branch at the National Center for Environmental 

Prediction (NCEP) has developed the WAVEWATCH III as a new global wave 

forecast system (Tolman, 1997). The basic concept o f WAVEWATCH III is like the 

WAM, except it uses wave number as an additional variable. The major governing
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equation of WAVEWATCH III can be described mathematically by the following 

equation:

3N  d C xN  dC N  U N  d0N S im_ _  +  _ i —  +  — Z—  + — + — _ _  ( 3 - 1 0 )
51 dx 3y dk 3 9 a

where Q  = Cgx + u 

C y — Cgy +  V

Cgx and Cgx = group velocity in x and y directions 

u and v = depth and time averaged current velocity in x and y directions

i  d a  d d  , du , , ,k = ~ —— ----- k — , here d = mean depth
ad os 3 s

r d a  d d  , du- k
\  J J3c? dm dm 

here m = a coordinate perpendicular direction of net S 

N = wave action density 

S = net energy source and sink 

k = wave number (2tc / L)

0 = wave direction

m = perpendicular coordinate to net energy source 

a  = intrinsic frequency (a2 = gk tanh(kh), here h = mean water depth)

The left hand terms in equation 3-10 indicate the change of wave spectral 

action density with time, and the change of action density flux in terms o f four 

domains: x and y directions, wave number, and direction. The right side o f the 

equation indicates the change of energy source and sink in terms of wave frequency.
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One implicit assumption of WAVEWATCH III is that depth and current as 

well as wave field vary with time and space much more than corresponding scales of 

a single wave.

The WAVEWATCH III is expected to be more accurate than the WAM 

because it is designed to solve for one additional parameter, wave number. This 

model is expected to need significantly more computationally expensive due to its 

higher-order accurate numerical scheme (Tolman, 1997).

The Great Lakes Environmental Research Laboratory (GLERL) wave

Administration for forecasting wave height in the Great Lakes (Schwab et ah, 1984).

The GLERL uses local momentum for deep-water wave prediction, which 

assumes that the potential energy is equal to the kinetic energy in the wave fields. 

The momentum force, F, is determined by the mass, m, and acceleration rate (i.e., F = 

ma). The momentum component in x and y directions are expressed as:

M -^GLERL

prediction model was developed in the National Ocean and Atmospheric

(3-11)

(3-12)

where Mx and My = momentum in x and y directions 

C = phase velocity
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The governing equation o f those momentums is not based on the energy 

transport equation but the local momentum balance equation. In other words, wind 

force, t w, is balanced by the local and accelerated change of momentum with respect 

to time, t, and x and y directions:

i « £ +| k +5 ^  (3-13)
dt ax dy p„

dM  dT dT r w
(3-14)

dt ax dy p w

where pw = air density

Txx, Txy, Tyx, and Tyy = wave radiation stress tensor

According to linear theory, group velocity is equal to half o f the phase velocity, 

thus radiation stress tensors are:

7 „ - f J  j F ( f  ,9) cos2 0  d 0  d f  (3-15)
o o

«a 2 X

Ty=Tyx= j F { f , 9 )sin0 c o s 0 d 0 d f  (3-16)
0 0

« 2lt
J F (f,9 )sin20 d 0 d f  (3-17)

1 o o

The wave spectrum of the GLERL was assumed to agree with the Joint North 

Sea Wave Project spectrum, the so-called JONSWAP spectrum, which has the three
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parameters: peak frequency (fm) Phillips equilibrium range parameter (a), and 

constant (a) (see Eq. 3-5).

The problem with GLERL is that the magnitude o f the total momentum from 

the air to water used to generate waves is not clearly known, and there is no direct 

measurement. For this reason, the weakness o f the GLERL model is that the 

momentum fraction has to be adjusted to fit the observed wave heights to this model 

prediction. (For more information on the GLERL model, see Schwab et a l ,  1984.

3.5. Early ANN Wind-Wave Prediction Models

Tsai and Lee (1999) used the Back-Propagation Network (BPN) to estimate 

tidal level at the Taichung harbor and Mitour coast in Taiwan. Two observed 

consecutive tide levels and the difference in tide level between observed and 

predicted tide levels at time t-1 and t- 2  to predict tidal elevation at time = t were used 

for ANN inputs.

As a training data set, they regrouped one month of tidal levels in January, 

1995 into five different data sets according to data span: one, three, five, eight, 15, 

and 30-day. As a validation set, five different data sets observed in 1996 were used: 

one, two, three, five, and 12-month.

The prediction results were satisfactory with the correlation coefficients larger 

than 0.9 between observed and predicted wave heights when using only one-day tide 

levels for training.
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However, in order to predict the tide level at time = t, the observed tide level at 

time t-1 and t-2 from predicted results are still needed for preparing ANN inputs. 

That is to say, the predicted tide-level at a previous time step must be used as an ANN 

input for current-time prediction. For this reason, it is hard to say the BPN was used 

to predict tide levels for unknown events.

Tsai et al. (2002) used the BPN model to estimate wave height at Taichung 

Harbor in Taiwan. Significant, tenth, maximum, and mean wave heights at two 

nearby wave stations were used as ANN inputs.

They collected two training data sets with one-month spans in September 1994 

and 1995, and another two validation data sets with three-month spans from 

December 1994 to February 1995 and from December 1995 to February 1996, 

respectively.

The prediction results were satisfactory, and the correlation coefficient between 

observed and predicted wave heights for two validation sets was larger than 0.9. 

However, for the prediction of future waves, waves at two nearby wave stations must 

be known in advance. For this reason, their study is not reliable for practical wind- 

wave prediction.

Deo et al. (2001) used a three-layered BPN to predict significant wave height 

and zero-crossing wave period at a near-shore wave station with 16m-depth, several 

kilometers away from Karmar and Mumbai in India.

Wind and wave data with 900 points measured every three hours were prepared 

from March 1988 to July 1988 and from December in 1988 and May 1989. Among
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those data, 720 points were used for training and another 180 points were used as 

validation data. They used wind speed, fetch, and duration as ANN input However, 

the prediction results were not accurate.

In the second trial, they separated previously collected data by different wind 

patterns, e.g., monsoon and fair weather season, and the BPN was used to predict 

only wave heights for monsoons. At this time, the wind speed and one previous time 

step were used as inputs. However, the prediction results were still bad.

They then prepared another data set with 168 points measured at a relatively 

deep-water (75 m) wave station offshore, from October 1992 to January 1993. For 

training and validation data sets, 134 and 34 points were used, respectively. For 

reducing uncertainties resulting from sudden shift in winds, at this time, weekly- 

averaged wind information at about four wind stations were considered. The 

prediction results improved so that the correlation coefficient between observed and 

predicted wave height became 0.77. However, wave period prediction was still poor.

There are two drawbacks in the Deo et al. (2001)study. (1) It is well known 

that wind direction as well as wind speed is important in generating wind-waves. 

However, they did not use wind direction as input. (2) Winds blowing away from the 

wave recorder can generate swells, which can be observed at the wave recorder after 

several hours. Thus, wind information on the wind fields upwind side as well as the 

spot of interest is important for wind-wave prediction.
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CHAPTER IV

TWO TEST CASES FOR CHECKING ANN MODEL CAPABILITY

4.1. Introduction

There are two basic questions regarding the use o f Artificial Neural Network 

(ANN) techniques for wind-wave predictions: (1) How complicated are wind-wave 

systems, and (2) what is the ultimate capability o f ANN techniques? Theoretically, 

the number of training observations and the optimum ANN structure for wave 

predictions should change according to the level o f complexity in wind-wave 

systems. However, there is no reference to identify ANN capabilities for wind- 

wave predictions. Thus, without the understanding o f ANN capabilities, it is hard to 

determine to what extent prediction errors are caused by the complexities of wind- 

wave systems for a selected ANN structure or by limitation of the ANN technique 

itself.

For this reason, we carried out two experiments for (1) a simple linear case and

(2) a complicated non-linear case to observe how an ANN model responds differently 

between the two contrasting cases. Because the linear case has a simple relationship 

between inputs and outputs and has no other error sources, we can find how to 

properly use an ANN model for accurate prediction in terms o f structures and 

procedures in terms of structures and procedures. For the non-linear case, because we
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can set the model conditions and the number of training data sets, the error sources 

must be studied.

In this chapter, the ANN capabilities o f predicting linearly and non-linearly 

simulated wind-waves were checked. The test o f the linear case for ANN modeling is 

given in section 4.2. The test o f non-linear case for ANN modeling and conclusions 

are given in sections 4.3 and 4.4, respectively.

4.2. Linear Case

For this study, a pure linear function between wind speed and corresponding 

wave height was assumed. For a training data set, wind and waves were generated by 

a simple linear equation, H = U/6  where H = wave height and U = wind speed. For 

the first 10 hours, wind speed increases from 0 m/s to 30 m/s. Afterwards, U linearly 

decreases to zero at time = 20 hours. For the validation data set, H and U are also 

generated by the same equation and time span, but wind speed increases to 60 m/s 

(Fig. 4-1).

In order to determine the effects o f pre-processing, the Back-Propagation 

Network (BPN) was tested with or without pre-processing. If the pre-processing was 

used, the input and output in the training and validation data sets should be 

normalized by a selected pair o f  global maximums and minimums. For this study, 

two wind speeds of 50 m/s and 70 m/s were arbitrarily selected as the global 

maximum. When 50 m/s was used as a global maximum wind speed, the maximum
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Fig. 4-1. Wind speeds and corresponding wave heights, which were 
generated by a linear equation with a constant slope to prepare 
t r a i n i n g  a n d  v a l i d a t i o n  d a t a .
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wind speed o f 60 m/s for the validation data set was normalized as 1.17. But when 

using 70 m/s, it was normalized as 0.86. For global minimum wind speeds, 0 m/s was 

used for both the training and validation data sets.

Second, in order to understand the effects o f maximum and minimum wind 

speeds on the pre-processing, local and global maximum and minimum wind speeds 

were tested, respectively. When local maximum and minimum wind speeds were 

used, both training and validation data sets were normalized between -1 and +1. For 

instance, with a maximum input o f 30 m/s for wind in the training set and a maximum 

input o f 60 m/s for wind in the validation data set, both were changed to +1. On the 

contrary, if  a global maximum wind speed (60 m/s) was used, the maximum input for 

the training set was changed to +0.5. But the maximum input for the validation set 

was changed to + 1.

Third, in order to determine the effects o f number o f hidden neurons, 

comparative numbers o f two and 45 hidden neurons were arbitrarily selected. 

Because the number of hidden neurons determines the number o f parameters for 

ANN models, we can also observe how ANN prediction results can change with the 

number o f model parameters.

4.2.1. Proposed ANN Structure

In this experiment, the BPN and the scaled conjugate gradient learning 

algorithm were used. The number o f iterations was arbitrarily selected as 25. Only 

one wind speed was used at one station as input. Thus, the number o f input and
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output neurons is one, respectively (m = 1 and p = 1). With regard to the number of 

hidden neurons, two and 45 (n = 2 and 45) were used. Thus, the BPN structures of 

I1H2O1 and I1H45O1 were proposed for this study.

4.2.2. Results and Discussion

When pre-processing was not used, the BPN structures of I1H2Q1 and I1H4 5O1 

did not predict the 10 m-maximum wave height perfectly but predicted only about 9 

m at 25 iterations, respectively (Fig. 4-2a). Notice that the predicted wave height 

became 10 m when the number o f iterations increased to 100 (Fig. 4-2b). -

When a local maximum and minimum wind speed was used for the pre­

processing, two BPN structures predicted only 5 m as the maximum wave height 

(Fig. 4-3). By contrast, when the BPN used a global maximum wind speed o f 50 m/s 

or 70 m/s, both structures o f I1H2O1 and I1H45O1 predicted the 10 m-maximum wave 

height exactly (Fig. 4-4). It was clear that the prediction results inproved, and the 

BPN needed only 25 iterations when global maximum and minimum wind speeds 

were used.

Conclusions o f the studies on the linear case for ANN models were the 

following. (1) Pre-processing should be used for ANN models, and (2) a global 

maximum and minimum wind speed should be used although the magnitude of these 

two selected values may not be critical for the linear case.
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Fig. 4-2. Wave height predictions without pre-processing for the BPN 
with structures of I1H2O1 and I1H45O1. (a) For 25 iterations and (b) for 
100  iterations, respectively.
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Fig. 4-3. An experiment to demonstrate the need for a global maximum and 
minimum wind speed for pre-processing. The predicted maximum wave height 
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Fig. 4-4. Wave height predictions using the global maximum wind speed o f 50 m/s 
(a) and 70 m/s (b). The Back-Propagation Network structures o f I1H2O1 and 
IiEUsOiwere used at 25 iterations.
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4.3. Non-Linear Case (compared with SMB method)

This test was designed to check the feasibility o f using an ANN for predicting 

non-linear responses. It is assumed that there are five stations for wave heights and 

one wind station to represent wind within the wind field (Fig. 4-5). Wave heights at 

these five stations are arbitrarily proportional to that given in station 1.

The objective of this test was to identify error sources in a simple non-linear 

wind-wave system. If prediction errors are due to improper ANN model structures 

and an insufficient number of training data, then prediction accuracy can improve 

when the optimum condition for the ANN model is found, and more training data are 

provided. However, if  the reason is related to non-linearity and/or other unknown 

effects, it would be difficult to improve prediction accuracy, but at least it will 

indicate the suitability of ANN modeling.

For this reason, this test was designed to address: (1) the sufficient number of 

training data points, (2) the optimum number of hidden neurons and iterations, and

(3) the optimum structure o f an ANN model for simple wind-wave predictions.

For evaluating the efficiency o f an ANN model, the correlation coefficient (r) 

of 0.9 between reference and predicted values was used. That is to -say, if  the 

correlation coefficient was more than 0.9, it was considered that a correct model 

structure was found. In contrast, if  r was less than 0.9, the ANN was assumed to have 

an insufficient number o f training data and/or improper ANN structures. If large 

numbers of training data did not improve prediction accuracies, the ANN was tested 

by increasing the number o f iterations and hidden neurons.
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Fig. 4-5. An assumed location map with five imaginary wave stations. 
Wind fetch is ranked from high to low for station 1,2, 3 , 4  and 5. Station 5 
has the least wind effects because it is located behind a headland.
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4.3.1. Method

4.3.1.1. Data Description

Non-linear wind-wave data were produced by using the SMB model developed 

for estimating significant wave heights and zero-crossing wave periods using wind 

speed, fetch, and duration. More details about the SMB were given in chapter 3.

For applying the SMB method, it was assumed that a representative fetch for 

this study area was 500 km. Wind speed was assumed to arbitrarily change every 

hour between 5 m/s and 27 m/s from zero to 799 hours. Thus, the total number of 

wind data points was 800, which consisted o f eight events named from the left to 

right as No.l to No.8 (see Fig. 4-6a). The corresponding significant wave height and 

zero-crossing wave period produced by the SMB are shown in Fig. 4-6b. The ranges 

o f the wave height and wave period were 0.18 m-9.83 m and 1.67 seconds-12.52 

seconds, respectively. Details o f the simulated winds and waves used are given in 

Table 4-1.

Event one, three, and six were arbitrarily chosen as validation data to compare 

with prediction results for the ANN model. The sequence of these three events was 

randomly changed into event number 6-1-3 to make certain that the ANN did not 

memorize the same event sequence o f 1-3-6. Thus, the total number o f validation 

data points was 245.

For training data, five different data sets were prepared. For instance, the 

sequence o f wind-wave events was randomly changed to 2-6-4-8-5-3-7-1. In order to
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Fig. 4-6. Simulated eight wind (a) and wave events (e.g., wave height Hs 
and period T) (b). Wind speed was changed from 5 m/s to 27 m/s, and 
corresponding waves were designated from left to right as No. 1 to No. 8.
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Table 4-1

Wind and wave data sets for non-linear test

Type Events No.l No.2 No.3 No.4 No.5 No.6 No.7 No.8 Total

W ind
Speed
(m /s)

Min. 5 6 6 6 10 6 6 6 5

M ax. 15 20 25 27 27 25 19 17 27

Wave
Height

(m)

Min 0.18 0.98 0.98 0.98 2.38 0.98 0.98 0.98 0.18

M ax 4.42 6.62 8.90 9.83 9.83 8.02 4.57 3.25 9.83

Wave
Periods

(m /s)

Min. 1.67 4.16 4.16 4.16 6.28 4.16 4.16 4.16 1.67

M ax 8.46 10.30 11.92 12.52 12.52 11.31 8.58 7.25 12.52

Data Points 80 170 100 140 180 65 40 25 800
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determine how much training data are needed for accurate prediction, the number of 

training data was reduced as follows: (1) the eight events with the sequence of 2-6-4- 

8-5-3-7-1 were all used, which indicated that the training data had 100 % coverage of 

all validation data; (2) seven events with the sequence of 2-4-8-5-3-7-1 were used as 

the training data, omitting event 6 and providing 92 % coverage; (3) six events with 

the sequence o f 2-4-8-5-3-7 were used, omitting events 1 and 6, and providing 82 % 

coverage; (4) five events with the sequence o f the 2-4-8-5-7 were used, providing 

coverage of 69 %, and omitting events 1, 3 and 6; (5) only four events with the 

sequence of 2-8-S-7 were used, covering only 52 % of the validation data. “Details of 

all training data sets are given in Table 4-2.

4.3.I.2. Proposed ANN Structure

The Time Delay Neural Network (TDNN) and the scaled conjugate gradient 

learning algorithm were used in this test

Wave heights and periods produced by the SMB model were assumed to be 

different at five stations (stations 1 to 5). The simulated wave heights and periods 

were modified by multiplying a factor o f 1, 0.8, 0.6, 0.5, and 0.4 for station 1 to 5, 

respectively (Fig. 4-7) so as to add some complexity to the data set.

Wind speed and fetch were used as inputs to the ANN model. Thus, the number 

of input neurons was set as two (m = 2). For predicting wave heights or periods at
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Table 4-2

Training and validation data sets

Training 
Data Set

Data Points
(% )

Validation Data Set Known Events
(% )

8 events

(2-6 4 -8-5-3-7- 1)
100 3 events (6-1-3; all trained) 100

7 events 

(24-8-5-3-7-1)
92 3 events (6-1-3: Event land 3 trained) 66.6

6 events 

(24-8-5-3-7)
82 3 events (6-1 -3: Event 3 trained) 33.3

5 events 

(24-8-5-7)
69 3 events (6-1-3; none trained) 0

4 events 

(2-8-5-7)
52 3 events (6-1-3; none trained) 0
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Fig. 4-7. Wave heights and periods at the five imaginary stations (See Fig. 
4-5). Wave heights and periods produced by the SMB method were 
multiplied by factor 1 at station 1 (a), 0.8 at station 2 (b), 0.6 at station 3 
(c), 0.5 at station 4 (d), 0.4 at station 5 (e), respectively, to simulate wind 
effects according to different wind fetch.
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five stations, the TDNN needs five output neurons (p = 5). The duration o f time- 

delays was set as one-day because it takes time to generate a fully developed wave 

field, and the 500 km fetch is a long distance for waves to travel. In order to consider 

a one-day duration of time-delays, eight previous time steps as well as a current-time 

wind speed and fetch are used because the time interval for wave heights and periods 

was three hours. Thus, J = 9. However, there is no rule to determine the number of 

hidden neurons, and so, the number o f hidden neurons must be determined by 

checking the TDNN performances. For this reason, the TDNN structure o f IigHnOj 

was proposed for this case study.

i

4.3.2. Results and Discussion

For finding the optimum number of hidden neurons, 6, 10, 12, 15, 20, 30, and 

50 hidden neurons were used, while the number o f iterations was fixed as 500. The 

correlation coefficients between reference and predicted wave heights, corresponding 

to different numbers of hidden neurons, were compared. Eight events were used for 

training data, and number 6,1,  and 3 events were used as a validation data set

Regardless o f the number o f hidden neurons, the correlation coefficients 

between reference and predicted wave heights were over 0.93 when 100% data 

coverage cases were used. This implies that the number of hidden neurons did not 

strongly affect the ANN prediction capability, at least when all the data are available. 

The results are shown in Table 4-3.
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Table 4-3

Mean Square Error (MSE) and correlation coefficient (r) between reference and 

predicted wave heights at different number of hidden neurons

Hidden
Neurons

6 10 12 15 20 30 50

Iterations 500 500 500 500 500 500 500

MSE 0.02701 0.02757 0.02527 0.02344 0.02733 0.01225 0.01048

r 0.94 0.94 0.93 0.94 0.93 0.96 0.96
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For this reason, 15 was arbitrarily chosen as the number o f hidden neurons and 

used to test all different training data sets. The prediction results o f wave heights and 

periods are given in Table 4-4 and 5. Figures 4-8 and 4-9 plot the true and predicted 

wave heights, and true and predicted wave periods, respectively, at the five wave 

stations. The correlation coefficients for wave heights and periods are given in Fig. 

4-10. In general, the prediction results are satisfactory except that the TDNN did not 

recognize the rapid change of wave heights and periods between each event. For 

instance, reference values of wave heights and periods sharply decreased between 

each event and almost became zero at the end, while the predicted wave heights and 

periods gently decreased.

With regard to the number o f iterations, prediction accuracy improved as the 

number o f iterations increased for both wave heights and periods at a given number of 

hidden neurons. The correlation coefficient (r) between the reference and predicted 

wave heights and periods for five training data sets were more than 0.95 when the 

number o f iterations was over 500. When using 200 iterations, the similar correlation 

coefficients were still 0.90 or more (over 80 % variability of the predicted values can 

be accounted for by references values). This indicates that the TDNN model was not 

strongly affected by the number o f hidden neurons when the number o f iterations was 

large.

For understanding of the difference in patterns among training data sets, the 

correlation coefficient of the weight matrix between training and validation data sets 

was compared. If the training data set has the same features as the validation data set,
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Table 4-4

Mean Square Error (MSE), correlation coefficient when different number o f hidden

neurons and iterations were used for the Prediction of wave height.

Events Data
Points

Hidden
Neurons

Iteration MSE Correlation
Coefficient

8 events 100 % 15

100 0.06829 0.86
200 0.04421 0.91
300 0.02647 0.93
500 0.02344 0.94
600 0.01710 0.96

7 events 92% 15

100 0.06853 0.85
200 0.04320 0.90
300 0.02024 0.92
500 0.01956 0.96

6 events 82% 15

100 0.07297 0.86
200 0.03919 0.92
300 0.03161 0.93
500 0.02031 0.95
600 0.01774 0.95
700 0.01532 0.96

5 events 69% 15

100 0.06373 0.86
200 0.03094 0.92
300 0.02516 0.92
500 0.01812 0.93
600 0.0618 0.94
700 0.01462 0.95

4 events 52% 15

100 0.05743 0.90
200 0.03322 0.92
300 0.02710 0.92
500 0.01826 0.93
600 0.01461 0.94
700 0.01149 0.96
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Table 4-5

The Mean Square Error (MSE), correlation coefficient when different number of

hidden neurons and iterations were used for the prediction o f wave period.

Events Data
Points

Hidden
Neurons

Iteration MSE Correlation
Coefficient

8 events 100 % 15

100 0.07357 0.87

200 0.04954 0.91

300 0.03429 0.93

500 0.02267 0.95

7 events 92% 15

100 0.07349 0.86

200 0.05206 0.93

300 0.03891 0.94

500 0.02292 0.95

6 events 82% 15

100 0.07691 0.93

200 0.04334 0.93

300 0.03507 0.94

500 0.02479 0.95

5 events 69% 15

100 0.05648 0.92

200 0.04178 0.93

300 0.03032 0.94

500 0.02406 0.95

4 events 52% 15

100 0.09957 0.89

200 0.06786 0.93

300 0.0555 0.94

500 0.0433 0.94

600 0.03945 0.95
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Fig. 4-8. Comparison o f true and predicted wave heights using the Time 
Delay Neural Network with a structure o f I18H15O5 at 700 iterations when 
four training events were used.
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Fig. 4-9. Comparison o f true and predicted wave periods using the Time 
Delay Neural Network with a structure o f I18H15O5 at 600 iterations when 
four training events were used.
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True Wave Height (m) True Wave Period (sec.)

Fig. 4-10. Correlation coefficient between reference (true) and predictions 
when four training events were used, (a) For wave height and (b) for wave 
period. Notice that predicted maximum wave periods are obviously less than 
t r ue  m a x i m u m  p e r i o d s  c o m p a r e d  w i t h  w a v e  h e i g h t s .
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weight matrices for these two data sets should be identical. If not, the weight matrix 

produced with a large number o f training data should be closer to validation data than 

that produced with a smaller training data set.

Weight matrices o f two training data sets o f 552 and 416 points were compared 

with those o f another training data set o f  800 points. The number o f weights between 

the input and hidden neurons was determined by the number of hidden neurons (n = 

15) and inputs (m = 2J = 18). Thus, the total number of elements in the weight matrix 

was 270. The number of iterations tested started from zero and increased to 100 with 

an increment o f 10 iterations for wave heights and from zero to 200 with an 

increment o f 20 for wave periods.

Figure 4-11 shows the change o f the correlation coefficient o f weight matrices 

for wave height and period with increasing number of iterations. The correlation 

coefficient o f the weight matrix among three data sets was almost identical for both 

wave heights and periods. However, when examining these figures, the correlation 

coefficient of the weight matrix between 800 and 552 data points was larger than that 

between 800 and 416 data points for both wave heights and periods as the number of 

iterations increased.

For these reasons, it can be concluded that: (1) the TDNN model was not 

strongly affected by the number of hidden neurons when the number o f iterations was 

sufficiently large; (2) the prediction accuracy improved as the number of iterations
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increased for both wave height and period at a given number o f hidden neurons; (3) 

the prediction accuracy improved with an increase in the number of training events.

Despite a small change in prediction accuracies, the prediction results o f the 

TDNN were satisfactory in this non-linear case. Such good predictions may result for 

the following reasons: (1) there is only one pattern for the ANN to recognize, i.e., 

equations 3-1 and 3-2, (2) for the application o f the SMB model, it was assumed that 

only one-wind field affects all five-wave stations, (3) only a single fetch o f 500 km 

was used to produce the reference data. In other words, the simulated wave heights 

increase simply with periods because it used only one 500 km fetch. In contrast, for 

observed waves, the wave heights do not always increase (Fig. 4-12). This implies 

that wind-wave systems are more complicated in nature, and may include several 

wind fields at the same time.

4.4. Conclusions

The TDNN predicted simulated linear and non-linear wind-waves accurately 

when it was appropriately structured and trained, although it slightly underestimated a 

large wave period. This indicates that an ANN technique can be used to predict 

wind-waves in a real environment, however the prediction results are expected to be 

somewhat inaccurate because o f the complexity of wind-waves.
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Fig. 4-12. Relationship between wave heights and periods, (a) shows 
simulated waves produced by the SMB method. Wave heights simply 
increase with wave periods, (b) shows observed waves at five stations 
(44007, 44009, 44025, 44013, and 41009) in February, 1998, 1999, and 
2001. In general, observed wave heights increase as wave periods increase. 
However, many large waves heights occurred at small wave periods. This 
indicates that the relationship between wave height and period is more 
c o m p l i c a t e d  i n  r e a l  w i n d - w a v e  g e n e r a t i o n .
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CHAPTER V

ANN MODEL FOR WINTER-STORM WAVES

5.1. Introduction

Winter storm is a general name for a strong wind system during cold weather. 

Wind fields of winter storms appear over a large domain and usually move slowly. 

Wind speeds are relatively evenly distributed throughout the domain. For these 

reasons, storm waves may have enough time to generate a fully developed sea.

Because o f the large wind field for winter storms, the affected area is also large, 

and the storm waves can be observed along the entire East Coast o f the U.S (Fig. 5-

1). Winter-storms with low air pressures usually come from the north and confront 

winds blowing eastward, forming an extensive and slow moving front. Wave heights 

increase nearly simultaneously along the East Coast o f the U.S. as the storms come 

from the north, and the temporal-variations of wave heights are similar along the East 

Coast except at station 41009 (see wave heights observed at the five stations Fig. 5-

2).

In this chapter, predictions o f storm-wave height and period are given. The 

study area is given in section 5.2; data description is in section 5.3; a proposed ANN 

structure is provided in section 5.4; the development o f a time-delay mechanism is 

given in section 5.5; selection of an efficient learning algorithm is in section 5.6;
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Fig. 5-1. Storm-wind field over the northwest Atlantic Ocean, (a) On February 
24,00:00 GWT, 1998 and (b) on February 25, 00:00 GWT, 1998. Circles indicate 
the five wave stations along the East Coast o f the U.S.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

2/25/98
(00:50)

2/22/98
(00:50) 2/28/98

(00:50)
2/24/98
(00:50)

105

Time (hr)

Fig. 5-2. Observed significant wave height at the five wave stations (44007, 
44009, 44025, 44013, and 41009) along the East Coast o f the U.S. from 
February 22 to 28,1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

results of significant wave height prediction and discussion with three-layered Back- 

Propagation Network (BPN), Elman Recurrent Network (ERN), and Time Delay 

Neural Network (TDNN) are given in section 5.7; results o f zero-crossing wave 

period prediction with a three or four-layered TDNN are in section 5.8; and 

conclusions are in section 5.9.

5.2. Study Area

The East Coast of the U.S. was chosen as the study area to develop an artificial 

neural network model for winter-storm wave prediction. The National Data Buoy 

Center (NDBC) from the National Oceanic and Atmospheric Administration (NOAA) 

has more than 10 wave stations along the East Coast of the U.S. Among those 

stations, seven are located offshore (44007, 44013, 44025,44009, 44014, 41004, and 

41009). However, only the following five offshore, stations (44007, 44009, 44025, 

44013, and 41009; see Fig. 5-3), which extend from Florida to Maine, were chosen 

because they have complete wave records during the period o f our study. More 

information on the five offshore wave stations is given in Table 5-1.

As shown in Fig. 5-1, the area dominated by winter-storms may cover a few 

hundred kilometers in the on-offshore direction as well as the shore-parallel direction. 

For this reason, wind information over the Northwest Atlantic Ocean should be
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Fig. 5-3. Location map of 40 wind stations (squares) and five wave station 
(circles). Wind stations are regrouped as three types: (1) 15 single-point 
stations, which represent the wind information in each grid; (2) 19 middle- 
size (2.5 °E x 2°N) stations, which represent the average of nine single 
point stations; (3) Six large-size (5°E x 4°N) stations, which represent the 
a v e r a g e  o f  2 5 s i n g l e - p o i n t  s t a t i o n s .
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Table 5-1

Information on the selected five wave stations

Station Location Water Depth
(m) Area

44007 43°-31'-53" N 70°-08'-40" W 18.9 Portland

44013 42°-21'-14"N 70°-41'-29" W 55.0 Boston

44025 40°-15'-01" N 73°-10'-00" W 40.0 Long Island

44009 38°-27'-49" N 74°-42'-07" W 28.0 Delaware Bay

41009 28°-30'-01" N 80°-10'-03" W 42.0 Canaveral
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considered for ANN model inputs. This constitutes a spatial domain from 

approximately 23°N to 45°N and 58.75°W to 80°W.

5.3. Data Description

5.3.1. Wind

The National Climate for Environmental Prediction (NCEP) and the National 

Center for Atmospheric Research (NCAR) provided ‘reanalyzed’ atmospheric data 

for public use. They use data from land, surface, ships, aircrafts, satellites, other data 

sources that have good quality, and an assimilation system to calculate the best 

estimated global atmospherical data. Different types of output are being created and 

archived every year since 1997 to meet different user’s needs.

All the reanalyzed meteorological data are stored in ‘grib’ format, which is a 

highly compressed binary file. Data are archived by month, and the global domain 

stretches from 0°E to 360°E and from 78°S to 78°N. The resolution is 1.25° in 

east/west directions and 1° in north/south directions, providing a total number of 

points on longitudinal and latitudinal directions o f 288 and 157, respectively. Thus, 

the grand total number is 45,216 points for each ‘reanalysis.’

The reanalyzed wind data have an interval of three hours. Meteorological data 

from 1998 to 2001 were downloaded and the software ‘wgrib’ (which was developed 

by Ebisuzaki at the NCEP and is available on the internet at ftp://wesly.wwb.noaa. 

gov/pu/wgrib) was used to get the wind velocity components u and v. Other available
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information was not used. The wind data in 2000 was not used here because station 

44025 did not have wave records during February 2000.

A few winter-storms, which occurred from February 14, 1998 to March 1,

1998, were chosen as one of the data sets. Not all the wind data between February 14 

and March 1 were used. Only those wind data that represent a winter storm, from 

beginning to the end, were used. Thus, 78 data points were collected (Table 5-2). 

The second winter storm season, which occurred from February 1, 1999 to March 1,

1999, was selected as the second data set with 218 data points. A third winter storm 

season, from February 1 to 28, 2001, was selected as the third data set with 185 data 

points. Among the three data sets, storm events in 1999 were used as a training set 

because they have more data points than those in either 1998 or 2000. Later, the data 

from 2001 were added for training to improve the prediction.

It is well known that waves generated far away can affect the observation at 

each wave station along the coast. In order to consider long-distance waves, wind 

stations were regrouped into three types according to the distance from the east coast 

o f the U.S.: (1) 15 nearby wind stations, which used wind information on each grid 

directly; (2) 19 middle-range wind stations, which represented the average of nine 

grids (the size o f each wind station = 2.5°W x 2°N); and (3) Six long distant wind 

stations, which represented the average o f 25 grids (the size o f each wind station = 

5°W x 4°N). Thus, the total number of wind stations was 40; see Fig. 5-3.

For wind information, either u and v wind components or wind speed and 

direction can be used. It was not clear at the beginning of this study which choice
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Table 5-2

Summary o f the three selected data sets

Type Data Set 1 Data Set 2 Data Set 3

Span 2/14/98 ~ 3/1/98 2/1/99 ~  3/1/99 2/1/01 -2/28/01

Number of 
Data Point

78 218 185
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was a better one for inputs. For this reason, the effects of each choice were tested to 

find the best choice of wind information for ANN wind-wave prediction.

Theoretically, there were two problems in using wind speed and direction were 

used as ANN inputs. First, the unit and magnitude o f absolute numerical values in 

wind direction were much larger than wind speed. For instance, wind speed may 

change from 0 m/s to 30 m/s, and wind direction may change for 0° to 360°. The 

maximum difference between the wind speeds and directions are 30 and 360, 

respectively. In this case, an ANN may view the change of 360 in wind direction as 

more important. Thus, it will put more weight on the change o f 360 in wind direction 

than on the change of 30 in wind speed. Another critical problem was the difference 

between numerical and physical meanings of wind direction. For instance, there is no 

difference o f wind directions between 0° and 360° from a physical point of view. In 

ANN, however, it recognizes a difference o f 360 numerically. In this case, the ANN 

model will put more weights on wind direction changes, resulting in an incorrect 

prediction on weight height.

When using wind speed and direction as inputs for two ANN models (BPN and 

ERN), the above effects could be observed in the prediction results. For instance, the 

predicted wave heights had negative values and rapidly changed between consecutive 

wave heights at all wave stations. For this reason, u and v wind components only 

were used for ANN inputs in the rest of the studies.
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The National Data Buoy Center (NDBC) has provided wave records since 1982 

for station 44007, 1984 for station 44013 and 44009, 1975 for station 44025, and 

1988 for station 41009. All the above five stations are along the east coast of the U.S. 

This wave information is now available on the internet (http://www.ndbc.noaa.gov/ 

rmd.shtml). Significant wave height and zero-crossing wave period were extracted 

from the NDBC data set for the same periods shown in Table 5-2. These data sets are 

required for training and validation o f an ANN model. More information about the 

five wave stations is given in Table 5-1.

5.4. Proposed ANN Structure

The purpose o f this study was to predict storm-generated wave height and 

period at the five stations (e.g., 44007, 44013, 44025, 44009, and 41009) along the 

East Coast o f the U.S. Because the generation o f wave height and period was 

physically different (see section 3.3.2), the development of wave height prediction 

was separated from the wave period prediction. Thus, the number o f output 

requirements for each case is five (p = 5).

The number o f ANN inputs was determined by the number o f wind stations 

(i.e., 40 stations), and u and v wind components. Thus, the total number o f inputs 

was 80 (m = 80) if there was no time-delay.
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However, there was no rule to determine the optimum number o f hidden 

neurons, n. The number of hidden neurons has to be determined by checking the 

ANN performance. For this reason, an ANN structure of IsoHnOs was proposed in 

this study where time-delay was not considered.

5.5. Time Delay

In Fig. 5-3, the longest wind field selected in this study is about 10 degrees 

(roughly 1,100 km) from west to east and 18 degrees from south to north (roughly 

2,000 km). Assuming all the waves observed at the selected five wave stations were 

generated within this area, the next step is to consider how to select the ‘time-delay’ 

for ANN modeling. It is well known that any wind field requires time to develop 

large waves. This is a well-known factor called ‘duration.’ For instance, given a 

strong wind but short duration, the wave field will not be fully developed, and large 

waves cannot be produced. This is an indication that a time-delay mechanism is 

needed for an ANN to better predict the wind-wave relationship.

Previous studies (e.g., the SMB method) indicate that the higher the wind 

speed, the shorter the duration for a wind-wave system to fully develop. For instance, 

according to the SMB model, a 50 m/s wind over a fetch of 1,000 km will require 22 

hours to fully develop to a wave height o f 27.7 m and period of 20.9 seconds. When 

the wind speed is reduced to 20 m/s over the same 1,000 km fetch, it takes 38 hours to 

become a fully developed sea with wave height of 8.1 m and period o f 11.5 seconds.
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This example indicates that it is impossible to have a single time-delay to mimic the 

different duration encountered in winter storms.

There is another factor that may affect the ANN wind-wave predictions. For a 

large domain with many different wind fields, waves could be generated from each 

wind field and move into another wind-wave system, and all of them will reach the 

observation station with different attenuations. How to simulate this process is 

another challenge. Assuming that one single time-delay can handle the real wind- 

wave generation in a large domain may be an over-simplifying assumption. 

However, it is worth trying, and the following attempts are based on this assumption.

For testing the need o f a time delay, two algorithms (BPN and ERN) with the 

scaled conjugate gradient learning algorithm were used with pre-processing. For this 

study, a 24-hour duration was chosen to consider the required time-delay for wind- 

wave generation and compared to a zero-hour duration. Two, 10, and 45 hidden 

neurons were used (n = 2, 10, and 45) to observe the difference between a small and 

large number of hidden neurons. The number of inputs was 80 (m = 80) because u 

and v wind components at 40-wind stations were used.

For considering a 24-hour time-delay, wind information from eight previous 

time steps as well as a current time was used because wind and wave data were 

available every three hours. Hence, the number o f inputs changes to m-J with m = 80 

and J = 9.

Hence, the BPN and ERN structures are I80H2O5, IsoHioOs, and I80H45O5 for no 

time-delay (J = 1), and I720H2O5,1720H10O5, and I720H45O5 for 24-hour time-delay (J =
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9). The prediction results were better w hen a 24-hour time delay and 45 hidden 

neurons were used, although the predicted wave heights still can occasionally be 

negative. The above results indicate that a 24-hour time-delay should be used in 

further studies.

5.6. Selection o f Learning Algorithm 

In order to select a better learning algorithm, two supervised learning 

algorithms were tested: (1) the Gradient Descent with a Variable Learning Rate and 

Momentum (GDX) and (2) a Scaled Conjugate Gradient (SCG) which was developed 

to overcome the drawbacks o f the gradient descent rule. For more information on the 

GDX and SCG, see sections 2.6.5 and 2.6.6, respectively. The performances o f these 

two learning algorithms were compared in terms o f the Mean Square Error (MSE) for 

two rather simple ANN schemes: BPN and ERN without time delay. It was assumed 

that the better-performing learning algorithm would also and consistently perform 

better for other ANN schemes, e.g., TDNN. The number o f inputs and output 

requirements was 80 and 5 (m = 80 and p = 5). For training data, 218 data points 

from  1999 were used.

The number of hidden neurons was arbitrarily selected as 60 (n = 60), and the 

number o f iterations was set as 100, 500 and 1000, respectively, to compare the 

com puting time. Because this test was tried in the very beginning of this study, the 

importance o f pre-processing was not recognized, and the BPN and ERN did not use
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pre-processing. Thus, BPN and ERN structures o f I80H60O5 were established. No 

difference in computing time was observed between the BPN and ERN.

For comparing the MSE between observed and predicted wave heights, the 

number o f hidden neurons was increased from 10 to 130 with an increment o f 10 

hidden neurons between each trial for both the GDX and SCG learning algorithms. 

The number of iterations was fixed at two arbitrarily selected values: 500 and 1000, 

respectively. Thus, the BPN and ERN structures of IgoHnOs, where n = 10 —» 130, 

were established.

In general, the MSE of the GDX and SCG decreased as the number of 

iterations increased for the combination o f BPN with GDX, BPN with SCG, and ERN 

with GDX. At the beginning o f this experiment, the BPN and ERN with the GDX 

were tested first, and the results o f the MSE were only slightly different between the 

two ANN schemes. For this reason, it was assumed that the MSE for the ERN with 

SCG would be similar to that for the BPN with SCG, and only the BPN with the SCG 

was tested later. The final result was that the MSE for BPN with SCG was less than 

that o f BPN and ERN with GDX (Fig. 5-4). For this reason, the SCG learning 

algorithm was selected for use used in further study.
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Fig. 5-4. Comparison o f Mean Square Error between the Gradient Descent 
with a Variable Learning Rate and Momentum (GDX) and the Scaled 
Conjugate Gradient (SCG) for the Back-Propagation Network (BPN) and 
Elman Recurrent Network (ERN) with a structure of IsoHio-mOs. The 
number o f training data was 218 points.
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5.7. Results o f Significant Wave Height Prediction and Discussion

5.7.1. Three-Lavered BPN and ERN

Although the BPN algorithm has no time-delay capability, and the ERN 

algorithm has a short time memory (one time-delay), time-delays were used in an 

artificial manner. That is to say, by using wind data from every three hours for a 24- 

hour period (J = 9) as inputs, instead o f from only one time (J = 1), it was assumed 

that time-delay information was incorporated into the ANN. This is a rather naive 

approach, but might produce some insight into the importance of a time-delay. Thus, 

the simple BPN and ERN algorithms were used first.

The observed m axim um  and m inim um  values o f u and v wind components 

were 17.8 m/s and -19.8 m/s for the training data set and 17.8 m/s and -19.1 m/s for 

the validation data set, respectively. For this reason, global maximum and minimum 

were selected as 20 m/s and -20  m/s for pre-processing.

Figure 5-5 shows the learning curves for the BPN and ERN using the training 

data set from 1999 winter storms with 218 data points. The number of hidden 

neurons increased from one to 10 at an increment o f one, and the number of iterations 

increased from 10 to 100 at an increment of one iteration between each trial.

The MSE did not further improve after 20 iterations when the BPN model used 

one or two hidden neurons. Similar results were observed when the ERN model used 

one, two, or three hidden neurons. This suggests that a small number (less than three) 

of hidden neurons are not sufficient for wave height prediction.
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Fig. 5-5. Effects o f the number of hidden neurons and iterations on 
Mean Square Error (a) for the Back-Propagation Network and (b) for the 
Elman Recurrent Network. The winter storm events o f 1999 with 218 
data points were used.
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The MSE improved gradually with increasing iteration when more hidden neurons 

were used. With seven to 10 hidden neurons, the MSE of the BPN and ERN models 

significantly reduced to 10"2.

For checking the change o f the bias, variance, and MSE, the number of hidden 

neurons was increased from one to 10 with an increment of one between each trial. 

The number of iterations was fixed at 20. The results o f bias and variance are given 

in Table 5-3. The variance and bias were much smaller than the MSE for both BPN 

and ERN models. The MSE decreased with increasing number of hidden neurons. 

However, it did not decrease when the number of hidden neurons was -larger than 

seven for both the BPN and ERN (Fig. 5-6). For this reason, the number of hidden 

neurons was fixed at six.

In order to find the optimum o f training iterations, so that the ANN model will 

not be ‘over-trained’, two different data sets were used and their error gradients 

compared (Fig. 5-7). In this particular case, the first data set was the wind-wave data 

set from the 1999 winter storm season, and the second data set was the wind-wave 

data from the 1998 winter storm season.

The error gradients for the BPN and ERN were compared by changing the 

number o f iterations and hidden neurons. Figure 5-7 shows divergent points on the 

gradient curves around 20 iterations for the BPN and 16 iterations for the ERN. But 

the error gradient is still too large for the ERN with 16 iterations (> 10'7), and the next 

closest point between two lines is at iteration 30. For this reason, 20 and 30 iterations 

were chosen as the optimum for the BPN and ERN, respectively.
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Table 5-3a

Bias, Variance, and Mean Square Error (MSE) for the Back-Propagation Network 

with different number o f hidden neurons to predict wave height. The 1999 winter 

storms with 218 points was used for training, and the number of 

iterations was fixed as 20.

Number of 
Hidden Neurons ym Ym Bias Variance MSE

1 1,3269 1.3152 1.35E-04 1.50E-27 0.075

2 1.3269 1.3150 1.42E-04 1.72E-26 0.130

3 1.3269 1.3133 1.84E-04 1.92E-28 0.067

4 1.3269 1.3241 7.35E-06 2.70E-27 0.059

5 1.3269 1.3528 6.75E-04 5.65E-27 0.064

6 1.3269 1.3559 8.43E-04 2.23E-26 0.049

7 1.3269 1.3328 3.49E-05 5.27E-28 0.034

8 1.3269 1.3669 1.60E-03 8.04E-28 0.044

9 1.3269 1.3573 9.24E-04 1.16E-27 0.034

10 1.3269 1.3561 8.57E-04 4.29 E-27 0.038

ym -  mean of observed wave heights

-  mean of predicted wave heights
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Table 5-3b

Bias, Variance, and Mean Square Error (MSE) for the Elman Recurrent Network with 

different number of hidden neurons to predict wave height. The 1999 winter storms 

with 218 points was used for training, and the number o f iterations was fixed as 20.

Number of 
Hidden Neurons Ym Ym Bias Variance MSE

1 1.3269 1.3575 9.38E-04 1.29 E-26 0.087

2 1.3269 1.2766 1.50E-03 2.24E-26 0.099

3 1.3269 1.2999 7.28E-04 2.45 E-27 0.058

4 1.3269 1.2925 1.12E-03 4.05 E-27 0.062

5 1.3269 1.2932 1.10E-03 7.35 E-27 0.059

6 1.3269 1.3218 2.53E-05 7.20 E-28 0.049

7 1.3269 1.3169 9.97E-04 4.02 E-27 0.052

8 1.3269 1.3328 3.50E-05 7.69 E-29 0.035

9 1.3269 1.3265 1.37E-07 9.97 E-30 0.037

10 1.3269 1.3246 5.03E-04 2.50 E-27 0.036

ym -  mean o f observed wave heights

% -  mean of predicted wave heights
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Fig. 5-6. Effects of the number o f hidden neurons on the Mean Square Error. 
The number of training data and iterations were 218 and 20, respectively.
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Fig. 5-7. Error gradient curves for finding the optimum number of iterations (a) 
for the Back-Propagation Network and (b) for the Elman Recurrent Network. Six 
hidden neurons and 1999 winter storm events with 218 data points were used.
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Figure 5-8 shows the correlation coefficient (r) between the observed and 

predicted wave heights for both models when five, six, seven, and 10 hidden neurons 

were used. Exercises with smaller numbers o f hidden neurons were not done because 

they had larger MSE. The number o f iterations ranged from 10 to 50 with an 

increment o f five iterations between each trial. The best correlation coefficient was 

observed as 0.70 and 0.77 (r2 = 0.49 and 0.59) at 20 and 30 iterations for the BPN and 

ERN, respectively.

Figure 5-9 compares the observed and predicted wave heights for the BPN and 

ERN at the five wave stations. When compared with prediction results- with wind 

speed and direction as ANN inputs, the number o f occurrences for negative wave 

height was much reduced. However, at station 44013, the predicted wave height still 

has negative values at 09:50, 15:50, and 18:50, on February 16, 1998 for the BPN, 

and at 21:50, on February 16, 1998 for the ERN. Some common characteristics of the 

BPN and ERN might explain why two ANN models have negative heights. So, a 

better ANN algorithm (i.e., the TDNN) was identified and tested with the same 

conditions as the BPN and ERN in the next section.

Figure 5-10 shows the correlation coefficient (r) between the observed and 

predicted wave heights. The low correlation coefficient of 0.77 between the observed 

and predicted wave height compared with the prediction results o f the SMB simulated 

wind-waves may be due to an insufficient number o f training data points and the 

complicated wind-wave systems. The training data set size used was only 218 points 

from one winter storm season. In general, if  the training data set increases, the
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coverage of training patterns to validation data will increase, and thus, the prediction 

accuracy will improve. For this reason, more training data points should be tested to 

address this problem in further studies.

The prediction results at station 41009 (see Fig. 5-9e) were much less accurate 

than those o f other stations. It is not clear yet what is (are) the reason(s) o f this low 

accuracy. What is clearly evident is that station 41009 is very distant and different 

from the other four stations, and the correlation coefficients o f wave height between 

44007 and 44013, 44025, 44009, and 41009 are 0.72, 0.64, 0.42, and -0.01, 

respectively. This fact indicates that temporal variation of wave height at station 

41009 is very weakly related to that at northern stations, if  at all.

As shown in Fig. 5-1, the wind system near station 41009 was clearly different 

from that in the northern area. This explains why the correlation coefficient is near 

zero between station 41009 and other stations. Apparently, for station 41009, there 

are too many input data {i.e., wind at northern area), which are irrelevant to the wave 

observed at station 41009. Or, additional wind stations on the south side should be 

included.

5.7.2. Three-Lavered TDNN

For considering possible long-term memory, the Time Delay Neural Network 

(TDNN) algorithm with the scaled conjugate gradient learning scheme was used. The 

input conditions were the same as the previous for the BPN and ERN models.
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Figure 5-11 shows the learning curves when the training data set used only the 

single winter season of 1999 with 218 points. The number o f hidden neurons was 

increased from one to 10 with an increment o f one, and the number of iterations was 

increased from 10 to 100 with an increment o f one iteration between each trial.

In general, the MSE improved as the number o f hidden neurons and iterations 

increased. The MSE did not improve when a small number o f hidden neurons were 

used (e.g., one and two). When a large number o f hidden neurons, from seven to 10, 

was used, the MSE improved significantly through all iterations.

Similar to that for the BPN and ERN, the error gradient for two data sets (78 

data points from the 1998 winter storm season and 218 points from 1999 winter storm 

season) was compared with different numbers o f hidden neurons and iterations. The 

number of hidden neurons was increased by one from four to nine because small 

numbers o f hidden neurons are not a good choice based on previous experience using 

the BPN and ERN. The number of iterations was increased by one iteration from 10 

to 100 between each trial.

Figure 5-12 shows the results o f estimating the optimum number o f iterations. 

Use of four, five, six, or eight hidden neurons had no remarkable divergent points 

through all iterations. Results with seven hidden neurons indicate a small number of 

iterations (e.g., 10) with large error gradients (> 10*7), and thus cannot be used. 

Results from the nine hidden neurons had a divergent point at 40 iterations. This 

indicates that nine hidden neurons and 40 iterations might be the optimum.
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Fig. 5-12. Error gradient curves for finding the optimum number o f iterations 
for the TDNN. (a) For four hidden neurons, (b) five hidden neurons, (c) six 
hidden neurons, (d) seven hidden neurons, (e) eight hidden neurons, and (f) nine 
hidden neurons. Only the data from 1999 winter-storm season with 218 data 
points were used.
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For the assessment of bias, variance, and MSE, the data set o f 1999 winter 

storm season with 218 points was used. The number o f hidden neurons was increased 

from one to 10 with an increment o f one hidden neuron between each trial, whereas 

the number of iterations was fixed at 40. The results are shown in Table 5-4. The 

changes in the bias and variance were much less than those for the MSE. In general, 

the MSE decreased as the number of hidden neurons increased (Fig. 5-13). However, 

that decrease ended when the number o f hidden neurons was more than seven.

The above studies indicate that the number o f hidden neurons should be 

between six and nine, and the number of iterations should be around 40. 

Nevertheless, none o f the above results guarantee that the optimum number of hidden 

neurons and iterations for the TDNN have been found.

The last effort used a trial and error method with different numbers o f hidden 

neurons and iterations. The correlation coefficient between observed and predicted 

wave height was compared. The number o f hidden neurons was changed from three 

to 10 in increments o f one, and the number o f iterations was increased from 10 to 50 

in increments o f five between each trial until the correlation coefficient decreased 

again (Fig. 5-14). The correlation coefficient for eight hidden neurons is clearly 

better than that for other hidden neurons after die number of iterations was larger than 

25. The best correlation coefficient between observed and predicted wave heights 

was 0.82 (r2 = 0.67) when eight hidden neurons and 40 iterations were used. This is 

close to the results shown in Figs. 5-12 and 13.
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Table 5-4

Bias, Variance, and Mean Square Error (MSE) for the Time Delay Neural Network 

with different number of hidden neurons. The winter storm season for 1999 with 218 

data points was used for training, and the number o f iterations was fixed as 40.

Number of 

Hidden Neurons ■ ym Ym Bias Variance MSE

1 1.3269 1.3259 5.0E-07 1.2E-27- 0.0702

2 1.3269 1.347 4.1E-04 1.2E-26 0.0723

3 1.3269 1.3208 3.3E-05 9.8E-27 0.0464

4 1.3269 1.3167 9.8E-05 1.0E-26 0.0296

5 1.3269 1.3177 7.9E-05 2.3E-27 0.0363

6 1.3269 1.3208 3.4E-05 3.1E-27 0.0266

7 1.3269 1.3379 1.3E-04 1.3E-27 0.0159

8 1.3269 1.3411 2.1E-04 6.6E-27 0.0177

9 1.3269 1.3219 2.2E-05 1.8E-27 0.0177

10 1.3269 1.3263 1.1E-07 8.8E-27 0.0147

ym = mean of observed wave heights

= mean o f predicted wave heights
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Fig. 5-13. Effects o f the number of hidden neurons on the Mean Square 
Error (MSE) for the Time Delay Neural Network when 1999 winter storms 
with 218 data points were used for training.
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and predicted significant wave heights for the Time Delay Neural Network 
with different numbers o f hidden neurons and iterations. The number on 
each line indicates the number o f hidden neurons.
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Figure 5-15 plots the observed and predicted wave heights together at five 

wave stations along the east coast o f the U.S. Figure 5-16 shows the correlation 

coefficient between the observed and predicted wave heights. When compared with 

the results for the BPN and ERN, the TDNN has no negative wave heights at any 

wave station. This indicates that the TDNN algorithm is better than the BPN and 

ERN. However, because the prediction results at station 41009 were still poor, more 

training data were added in the next trials.

Structures o f the BPN, ERN, and TDNN models are summarized in Table 5-5. 

The MSE o f the TDNN model is 0.018, which was 2.7 times less than that-of the BPN 

model (0.049) and 1.5 times less than the ERN model (0.026). The unit computing 

time (total computing time/number o f iterations) o f the TDNN model was 1.34 

seconds, which was smaller than those o f the BPN and ERN. The reason for the slow 

speed o f the BPN and ERN may be the use o f artificially provided time-delays. 

Because error gradient curves from the previous section failed to show the optimum 

number o f hidden neurons and iteration clearly, they were omitted from further 

studies.

5.7.3. Effect of Training Data Set Size

In this section, the effects o f  the number o f training data points were observed. 

The third winter storm season in 2001 with 185 data points were added to the 218 

points in 1999. Thus, the total number of training data is 403 points, an increase of 

85 %.
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Fig. 5-16. Correlation coefficient between the observed and predicted 
significant wave heights for the Time Delay Neural Network a tthe  five wave 
stations when 1999-winter storm season with 218 data points was used for
training.
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Table 5-5

Comparison of Mean Square Error (MSE) and computing time for the Back- 

Propagation Network (BPN), Elman Recurrent Network (ERN), and Time Delay

Neural Network (TDNN).

Network

Type

Structure Iterations MSE Computing Time 
(Sec.)

Time/Iteration

BPN 720-6-5 20 0.049 33.5 1.67

ERN 720-6-5 30 0.026 164.8 3.66

TDNN 720-8-5 40 0.018 53.7 1.34
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For the validation data set, the data for the 1998 winter season was used as before.

The maximum and m in im u m  of u and v wind components for the 2001 winter 

storm season was 20.9 m/s and -19.3 m/s. For this reason, a global maximum and 

minimum o f 20 m/s and -2 0  m/s was used as before.

Figure 5-17 shows the learning curves with the new data set. The number of 

hidden neurons was increased from one to 10, and the number o f iterations was 

increased from 10 to 100 between each trial. The MSE did not improve for a small 

number o f hidden neurons (e.g., one and two). The MSE behaved similar to those for 

the BPN, ERN (see Fig. 5-5), and TDNN (see Fig. 5-11), except that the curves for 

seven to 10 hidden neurons were almost identical.

In order to check the change on the bias, variance, and MSE for the training set 

with 403 data points, the number of hidden neurons was increased from one to 10 

between each trial, and the number o f iterations was fixed at 25. The results are 

shown in Table 5-6. The bias and variance are much less than the MSE for all hidden 

neurons. In general, the MSE decreased when the number o f hidden neurons 

increased (Fig. 5-18). However, the MSE did not decrease when using more than 

seven hidden neurons.

Figure 5-19 shows the correlation coefficient between the observed and 

predicted wave heights, prepared as in Fig. 5-14 with only 218 data points. 

Correlation coefficients for all hidden neurons with 403 data points generally 

improved. Especially, seven to 10 hidden neurons have a high correlation coefficient 

of 0.80 after 15 iterations.
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Fig. 5-17. Effects o f the numbers o f hidden neurons and iterations on the 
Mean Square Error (MSE) for the Time Delay Neural Network. The 
t o t a l  n u m b e r  o f  t r a i n i n g  d a t a  p o i n t s  w a s  4 0 3 .
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Table 5-6

Bias, Variance and Mean Square Error (MSE) for the Time Delay Neural Network 

with different numbers o f hidden neurons to predict wave height. The 1999 and 2001 

winter storms with 403 data points were used for training, and the number of

iterations was fixed as 25.

Number of 

Hidden Neurons ym
A

ym Bias Variance MSE

1 1.2157 1.2092 4.20E-05 3.80E-27 0.07630

2 1.2157 1.2208 2.65E-05 3.76E-26 0.08280

3 1.2157 1.2329 2.98E-04 9.25E-27 0.06770

4 1.2157 1.2252 9.19E-05 1.23E-26 0.06130

5 1.2157 1.2422 7.02E-04 3.71E-27 0.05960

6 1.2157 1.2371 4.61 E-04 4.60E-26 0.04380

7 1.2157 1.2237 6.45E-05 3.96E-26 0.03300

8 1.2157 1.192 5.60E-04 2.08E-26 0.04380

9 1.2157 1.2136 4.42E-06 7.87E-27 0.03640

10 1.2157 1.2103 2.89E-05 1.97E-27 0.04030

ym = mean o f observed wave heights

JVn- mean of predicted wave heights
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predicted significant wave heights for the Time delay Neural Network with 
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indicates the number o f hidden neurons.
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The best correlation coefficient was 0.85 (r2 = 0.72) when eight hidden neurons and 

25 iterations were used. That is to say, only 70 % of variation can be explained by 

the model.

Figure 5-20 plots the observed and predicted wave heights at the five stations 

along the east coast of the U.S. when the TDNN model used I720H8O5 at 25 iterations. 

Like the BPN and ERN, the prediction accuracy at station 41009 was still not good 

despite the improved correlation coefficient 0.60 vs. 0.34. In addition, the predicted 

largest wave heights at station 44013 and 44025 were less than those of observed 

wave heights by 1 m to 1.5 m. At station 44007, one o f the predicted wave heights 

was negative on February 16, 06:50, 1998. The reason for this negative wave height 

is unclear.

After examining the relationship between the number o f iterations and training 

data points, one question was posed: “Is the negative wave height prediction caused 

by the decrease o f iterations from 40 to 25 when the number o f training data was 

increased from 218 to 403?” Therefore, iteration numbers greater than 25 were 

tested. When the number of iterations was 30, the predicted wave heights were all 

positive at the five stations with a slight reduction in the correlation coefficient (r) to 

0.83. It is clear that the problem of negative wave height is strongly related to the 

number of iterations. As shown, when the number of iterations is small, the error can 

be large, and this large error may cause negative wave height when the wave heights 

itself is small.
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Fig. 5-20. Comparison of the observed and predicted significant wave heights 
using the Time Delay Neural Network with a structure of LnoHgOs. (a) For station 
44007, (b) station 44013, (c) station 44025, (d) station 44009, and (e) station 
41009. A global maximum and minimum wind speed was ±20 m/s. The number 
of training data points and iterations were 403 and 25, respectively.
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The next question is: “Which number of iterations (25 or 30) is better for storm 

wave height prediction?”. Considering that negative wave height has no meaning at 

all and occurred only when the wave height was small, it is of little importance and 

the number of iterations for the best correlation coefficient may be used as the 

optimum {i.e., 25). Figure 5-21 shows the correlation coefficient (r) between the 

observed and predicted wave heights at 25 iterations. The unit-computing time (total 

computing time/number o f iterations) increases from 1.34 seconds to 2.56 seconds. 

The summary o f the prediction results for training data set with 218 and 403 is given 

in Table 5-7.

The correlation coefficient between the observed and predicted wave heights 

for the BPN, ERN, and TDNN at each wave station was compared (Table 5-8). 

Clearly, the TDNN algorithm with two winter storm seasons for training is much 

preferable. The maximum correlation coefficient o f 0.96 (r2 = 0.92) was observed at 

station 44013 and the minimum of 0.60 (r2 = 0.36) at station 41009.

When the 2001 winter storm season with 185 data points was added for 

training, two characteristic things were observed. The prediction accuracy increased 

at four wave stations (44013, 44025, 44009, and 41009) with only a slight reduction 

(from 0.92 to 0.90) at a single station (44007). The correlation coefficient at station 

41009 increased from 0.38 to 0.60. Although the larger number of training patterns 

has better predictive accuracy, there is an obvious need of more winter-storm patterns 

for training if prediction accuracy at that station is to be improved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Observed Wave Height (m)

Fig. 5-21. Correlation coefficient between the observed and predicted 
significant wave heights for the Time Delay Neural Network, which was 
trained with 403 data points.
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Table 5-7

Comparison of the Mean Square Error (MSE) and computing time for the Time Delay 

Neural Network when 218 data points for 1999 winter storms and 403 points for 1999 

and 2001 winter storms were used for training.

Type Structure Iteration MSE Computing Time 
(Sec)

Time/Iteration

TDNN 

(218 points)
720-8-5 40 0.0176 53.7 1.34

TDNN 

(403 points) 720-8-5 25 0.0438 63.9 2.56
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Table 5-8

Correlation Coefficient between the observed and predicted wave height at five Wave 

stations for the Back-Propagation Network (BPN), Elman Recurrent Network (ERN), 

and Time Delay Neural Network (TDNN).

Type 44007 44013 44025 44009 41009

BPN (218) 0.84 0.73 0.72 0.80 0.35

ERN (218) 0.81 0.82 0.84 0.88 0.31

TDNN (218) 0.92 0.89 0.86 0.79 0.38

TDNN (403) 0.90 0.96 0.88 0.84 0.60

-(Number) indicates the number o f training data points
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One possible reason for negative values at station 44007 and underestimated 

wave heights at stations 44013 and 44025 is the sensitivity o f ANN performance to 

the range o f normalized wind. For instance, the TDNN has negative wave height 

when small wave heights (less than 0.5 m) occur (see Fig. 5-20a). In pre-processing, 

we used ±20 m/s as a global maximum and minimum wind speed, resulting in 

normalized wind between -1  and 1. In the case o f a large range o f wave heights, 

relatively small changes in wind (0.5 m/s) will not be easy to identify. When using a 

larger global maximum and minimum wind speed, the input range o f the wind 

decreased with reduced output o f transfer function (Fig. 5-22).

For instance, as previously explained in Chapter 2, an ANN weights each input 

between -1  and 1 according to its importance and adds up these weight values, which 

are used as input in a non-linear transfer function. As shown in Fig. 5-22, the output 

o f the transfer function will be between -1 and 1 if  the summed weight value is 

between -5  and 5.

Now, let’s think about the normalized wind input again. When using a large 

global wind {e.g., ±80 m/s), the normalized wind inputs will be less than those when 

±20 m/s global wind/ are used. If the normalized value is relatively small, the ANN 

may designate lower weight values and thus, the product of input and weight values 

becomes smaller. This implies that the maximum input o f the activation function 

may be less than five, better allowing the ANN to recognize changes in wind speed.
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Fig. 5-22. Illustration o f the relationship between global maximum and 
minimum wind,- and output range of sigmoid transfer function, e.g., F = 
l/(l+exp('2n)), where n = sum o f weight values. When ±20 m/s is used as a 
global maximum and minimum wind, an ANN may set a large weight value 
for a given wind speed than ±80 m/s. In this case, the transfer function output 
will not change much (solid line) after n is larger than 2.5. In contrast, 
because ±80 m/s o f a global wind may have smaller weight values, the output 
of the transfer function chanaes non-linearlv (dotted line).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



154

For this reason, a global maximum and minimum wind more than ±20 m/s was 

tested to reduce the input wind range after normalization using the same number of 

hidden neurons and training data set. For instance, the global wind was changed from 

±30 m/s to ±100 m/s with an increment o f ±10 m/s between each trial. The optimum 

iteration was selected as one of the iterations around 25 having best results and no 

negative wave heights (e.g., 2 0 ,25, or 30).

In general, the prediction accuracy gradually improved as a larger global 

maximum and minimum wind was used. The MSE was least as 0.032 when a global 

maximum and minimum of ±20 m/s was used. However, the correlation coefficient 

(r) between the observed and predicted wave heights was 0.86 (r2 = 0.74) when using 

±80 m/s as global winds at 25 iterations, and the correlation coefficient improved to 

0.88 (r2 = 0.77) when iterations were increased to 30. However, the TDNN did not 

improve prediction accuracy after ±80 m/s. All results for the TDNN with various 

global maximum and minimum winds are given in Table 5-9.

Figure 5-23 shows the observed and predicted wave heights at the five wave 

stations when the TDNN used ±80 m/s as the global winds. The predicted wave 

heights at stations 44013 and 44025 were much improved and almost the same as the 

observed wave height. At station 44007, no negative wave height was predicted.

The correlation coefficient between the observed and predicted wave heights at 

the five stations is given in Fig. 5-24. In general, the correlation coefficient increased 

slightly compared with the results using ±20 m/s global winds. The correlation 

coefficient (r) increased from 0.90 to 0.92 at station 44007,0.88 to 0.89 at station
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Table 5-9

Effects o f global maximum and minimum wind on the performance of the Time 

Delay Neural Network with eight hidden neurons and 403 data points for training.

Global Wind (m/s)
(Minimum, Maximum) Iterations MSE Correlation Coefficient

(-20,20) 25 0.044 0.85

(-20,20) 30 0.036 0.83

(-30,30) 30 0.032 0.83

(-40,40) 30 0.039 0.82

(-50,50) 20 0.051 0.85

(-60,60) 20 0.064 0.85

(-70,70) 25 0.061 0.86

(-80,80) 30 0.058 0.88

(-90,90) 25 0.075 0.81

(-100,100) 25 0.069 0.84
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Fig. 5-23. Comparison o f the observed and predicted significant wave 
heights using the Time Delay Neural Network with a structure o f I72oHg0 5 . 
(a) For station 44007, (b) station 44013, (c) station 44025, (d) station 44009, 
and (e) station 4 1009. A global maximum and minimum wind speed were 
80 m/s and -80  m/s. The number of training data points and iterations were 
4 0 3 a n d  3 0 , r e s p e c t i v e l y .
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44025, 0.84 to 0.85 at station 44009, and from 0.60 to 0.65 at station 41009. Station 

44013 remained at 0.96.

The TDNN did not greatly improve the prediction accuracy at station 41009. 

This implies that waves at station 41009 may be generated by another wind system 

developed in the area south of Florida. For instance, Fig. 5-25 shows the wind 

systems over the Northwest Atlantic Ocean on February 22 at 12:00 GWT, 1998. At 

this time, the southern wind system blowing westward extended to Florida and 

affected station 41009, leaving the mid-latitudes unaffected. In other words, the 

observed waves at station 41009 were not generated by the same winter-storms 

impacting northern stations. For this reason, for predicting wind-waves more 

accurately, more wind stations should be considered in the southern part o f station 

41009.
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Fig. 5-25: Wind field over the northwest Atlantic Ocean ori February 
22,12:00 GWT, 1998. Circles indicate the five wave stations along the 
E a s t  C o a s t  o f  t h e  U . S .
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5.8. Results of Zero-Crossing Wave Period Prediction and Discussion 

Since the Time Delay Neural Network shows the best performance, only the 

TDNN algorithm was used to study wave period prediction. The bias, variance, and 

gradient error curves were not used here for finding the optimum number of hidden 

neurons and iterations because those parameters did not show the optimum choices 

clearly from previous experiment Instead, the optimum numbers were selected from 

the trial and error method by comparing correlation coefficients between observed 

and predicted zero-crossing wave periods directly.

5.8.1. Three-Lavered TDNN

The Time Delay Neural Network (TDNN) model with scaled conjugate gradient 

learning algorithm was used to predict zero-crossing wave period. The total number 

of training data points was 403 from  the winter storms in 1999 and 2001. The 

number of inputs was 80 (m  = 80), and 24 hours was used as the duration o f time 

delays (J = 9). Thus, the TDNN structure o f  I720H11O5 was used.

Figure 5-26 shows learning curves for different selections o f hidden neurons 

and iterations with a training data set o f 403 points. The MSE gradually im proved as 

the number of iterations increased if the number o f hidden neurons was more than 

three. This is similar pattern to that of wave height prediction.

The correlation coefficient between the observed and predicted wave heights 

was compared using different numbers o f hidden neurons and iterations (Fig. 5-27). 

The TDNN model had the best correlation coefficient, 0.58 (r2 = 0.34), when it used
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the Mean Square Error (MSE) for the Time Delay Neural Network. 
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Fig. 5-27. Comparison of the correlation coefficient between the observed 
and predicted zero-crossing wave periods for the Time Delay Neural 
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eight hidden neurons and 50 iterations. Thus, eight hidden neurons and 50 iterations 

were used for training and prediction.

Figure 5-28 plots the observed and predicted wave periods at five wave 

stations. In general, the TDNN predicted the general trend of the zero-crossing wave 

period reasonably well. When compared with wave heights, the temporal variation of 

the observed period was more complicated than wave height, and thus the prediction 

of zero-crossing wave period was much less accurate than that of wave height.

Figure 5-29 shows the relatively low correlation coefficient between the 

observed and predicted wave periods. Station 44025 had the maximum- correlation 

coefficient of 0.69 (r2 = 0.48), while the minimum correlation coefficient was 0.27 (r2 

= 0.07) at station 41009 (Table 5-10).

The best correlation coefficient (r) o f 0.58 between observed and predicted 

wave periods was much less than that for wave heights (0.85). This indicates that 

wave period prediction is more difficult than wave height prediction because wave 

period is a more complicated physical process.

In order to observe the difference of ANN performances with range of wind 

input, ±80 m/s was used as a global maximum and minimum for pre-processing using 

the same hidden neurons and iterations. In contrast to wave height, the prediction 

results o f wave period were less accurate, so, a four-layered TDNN model, which 

uses an additional hidden layer, was tested in the next section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



165

12  t ■
■- Observed 
- <3>- modal output

1D . (a )S T A .44007 
>J2akLl8/2^5,15:50^

b - o
i i T  

a  . <9 '■■ I •'/•  f>  ! J  O  <=« ? ^ TT
o

(b) STA. 44013

DA
o

o

1 2 0

Time (hr)
Fig. 5-28. Comparison of the observed and predicted zero-crossing wave 
periods using the Time Delay Neural Network with a structure o f IrzoHsOs. 
(a) For station 44007, (b) station 44013, (c) station 44025, (d) station 44009,
and (e) station 41009. A global maximum and minimum wind speed was 
±20 m/s. The number o f training data and iterations was 403 and 50.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



166

12
—I— O bserved 
- O -  m odel output(d) STA. 44009

1Q

Date: 98/2/15,15:50

> 0 

M 7.s05
© 6 k.
u
© 5k,
3  '

(e) STA. 41009

O'

■soerf
0

o

120 144 16824 9672 19248

Time (hr)

Fig. 5-28. (continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



167

a
©o©

m
XIo
•e©

©s»®8

M
e
&m
2

u
t,
A
1

12

10 r  = 0.58
o  o

°o  0  0  00  <§>

o
[0 °  0

o

O o

0 0  0  ^ 0 0 ^ ^  o

% % o 0 6>
8  o

4 6 8 10 12
Observed Zero-Crossing Wave Period (Second)

Fig. 5-29. Correlation coefficient between the observed and predicted 
zero-crossing wave periods for the three-layered Time Delay Neural 
N e t w or k .  The number  o f  t ra in i ng  data p o i n t s  was  4 03 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



168

Table 5-10

Correlation coefficient between the observed and predicted zero-crossing wave period 

at the five wave stations for the four-layered Time Delay Neural Network (TDNN)

with 403 training data points.

Type 44007 44013 44025 44009 41009

Three-Layered TDNN 0.41 0.65 0.69 0.52 0.27

Four-Layered TDNN 0.63 0.64 0.58 0.49 -0.20
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5.8.2. Four-Layered TDNN

One of advantages of ANN models is that it is easy to increase the number of 

hidden layers to accommodate the complexity o f a system. A four-layered TDNN 

model was used because the initial prediction result o f wave periods with a three- 

layered TDNN was not satisfactory. Because two hidden layers are used in the four- 

layered structure, the summation o f weight matrix and transfer function are 

additionally processed between the first and second hidden layer (Fig. 5-30). Since 

all the inputs and outputs remain the same, the TDNN structure o f I720H111HH2O5 was 

established.

Following results from the previous three-layered ANN, eight hidden neurons 

and 50 iterations were selected. It is not clear how to select the number of second 

hidden neurons, so, the trial and error method described next was tried.

Figure 5-31 compares the correlation coefficient between the observed and 

predicted wave periods at the five wave stations. The number o f neurons in both 

hidden layers was increased from three to 10 in increments o f one. The number of 

iterations increased from 10 with an increment o f 10 between each trial until the 

coefficient decreased again. The best correlation coefficient (r) o f O.bT r̂2 = 0.37) 

was observed when six hidden neurons at the first layer, four hidden neurons at the 

second hidden layer, and 30 iterations were used.

Figure 5-32 plots the observed and predicted wave periods at the five wave 

stations. The prediction results were still not as good as those for wave height.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



170

In p u t
Layer Hidden Hidden

Layerl Layer2
^B|as-n2

Bias-p
Q

Fig. 5-30. A typical four-layered Time Delay Neural Network with a 
symbol ImHniHn20p. Solid lines indicate weights and dashed lines indicate 
biases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



171

0.64

(4,30)
0.62

e©
'3 0.6 -

s

^ 0 . 5 8 -fl©

1
£  0.56 ■
Id
©

u
0.54 •

(5,40)

(2,50) (10,50)
(2, 50)

(5,30)
(2,40)

0.52

Neuron at First Hidden Layer

Fig. 5-31. Comparison o f the correlation coefficient between the 
observed and predicted zero-crossing wave periods using the four- 
layered Time Delay Neural Network. The first and second numbers 
indicate the number o f hidden neurons and iterations, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



172

12
—I- 1 1 Observed 
-O - TDNN

- (a) STA. 44007 
.jDate: 98/2/15.15^

IQ

lO
(b) STA. 44013 T k>

<p> o

(c) STA. 441

120

Time (hr)
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Figure 5-33 shows the correlation coefficient between the observed and predicted 

wave periods. The correlation coefficient improved slightly from 0.58 to 0.61 when 

two hidden layers were used. For the correlation coefficient at each wave station for 

the three-layered and four-layered TDNN, again see Table 5-10.

Only one additional hidden layer was tested. Theoretically, the number of 

hidden layers can increase infinitely according to the complexity o f a given wind- 

wave system. But the improvement obtained with one additional hidden layer was 

small (about 5%), implying that further increase in the number of hidden layers may 

not be warranted.
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Fig. 5-33. Correlation coefficient between the observed and predicted zero- 
crossing wave periods for the four-layered Time Delay Neural Network. The 
number o f training data and iterations was 403 and 30, respectively.
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5.9. Conclusions

The prediction results of ANN wind-wave models are satisfactory for wave 

heights. Compared with simulated non-linear wind waves, the prediction o f real- 

storm waves is more difficult because there are many possible patterns. The 

prediction accuracy o f wave periods was much lower than that o f wave heights for the 

TDNN model.

The prediction accuracy obtained by using the TDNN algorithm is much better 

than that for the other two approaches. This is because of the time delay function. 

The ERN algorithm has a limited short-term memory, thus produces a result that is 

better than the BPN, but cannot compete with the TDNN. Regarding model 

efficiency, ANN prediction results improved for both wave heights and periods as the 

number of training data and hidden neurons was increased.

The range of normalized wind speed is another factor that affects the results of 

wind-waves prediction. When global maximum and minimum winds were increased 

to ±80 m/s, the TDNN could predict peak wave height more accurately at station 

44013 and 44025, and had no negative wave height at station 44007. Moreover, the 

correlation coefficient between the observed and predicted wave height increased to 

0.88 (r2 = 0.77), from the 0.85 (r2 = 0.72) for ±20 m/s global wind. However, the 

prediction results were less accurate for wave periods when ±80 m/s was used.

The prediction results o f wave height and period for all types o f ANN models 

were much less accurate at station 41009 because of the possibly different wind fields 

in the southern part o f the Northwest Atlantic Ocean. The prediction results o f wave

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



height for the TDNN are expected to improve if the training data set size is sufficient. 

This implies that the winter storms affecting more northern stations do not produce 

severe seas at station 41009 at all. The severe waves at station 41009 may be 

generated from somewhere else.
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CHAPTER VI 

ANN MODEL FOR HURRICANE WAVES

6.1. Introduction

Cyclones have high wind speed with organized cloud systems and are 

differently named, depending upon the region in which they occur (Neumann, 1993). 

A hurricane is the name in the North Atlantic Ocean, the Northeast Pacific Ocean east 

of the International Date Line (DDL), or the South Pacific Ocean east o f 160°E. 

Cyclones in die Northwest Pacific Ocean west o f the IDL or a severe tropical cyclone 

in the Southwest Pacific Ocean west o f 160° E and Southeast Indian Ocean east of 

90°E  are called typhoons. It is called a severe cyclonic storm in the North Indian 

Ocean and a tropical cyclone in the Southwest Indian.

In general, tropical cyclones are categorized according to the maximum wind 

speed. A tropical depression has an organized cloud system with thunderstorms and a 

maximum sustained wind of 33 kts or less. A tropical storm is an organized cloud 

system with strong thunderstorms, and a maximum sustained wind speed from 34 kts 

to 63 kts. A hurricane is an intense tropical weather system with strong 

thunderstorms, and a m axim um  sustained wind speed greater than 64 kts.
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Atlantic hurricanes are further subdivided into the 5-category SafFir- Simpson Scale, 

which is used to give an estimate o f the potential property damage and flooding along 

the U.S. east coast. Category 1 has wind speeds of 64 -  82 kts, which may cause 

minimum damage. Category 2 has wind speeds o f 83 -  95 kts, which may cause 

moderate damage. Category 3 has wind speeds of 9 6 - 1 1 3  kts, which may produce 

extensive damage. Category 4 has wind speeds of 114 -  135 kts, which may generate 

extreme damage. Category 5 has wind speeds o f over 135 kts, which may cause 

catastrophic damage.

Unlike winter storms, hurricanes move quickly with time, but their speed is not 

constant The Hurricane Prediction Center (HPC) has provided the plots o f hurricane 

tracks over the Northwest Atlantic Ocean since 1958. Their results show that some 

hurricanes accelerate as they move from tropical areas to subtropical and mid-latitude 

areas. Other hurricanes move slowly in tropical areas, faster in sub-tropical areas, 

and slow again in the mid-latitudes. The irregularity o f the moving speed of 

hurricanes changes the duration o f hurricanes at each particular site. The different 

duration at a particular site changes the waves because wave period and height are 

directly determined by the duration o f hurricanes.

It is important to understand the characteristics o f hurricanes before using an 

ANN model. If hurricanes have the same characteristics as those o f winter storms, 

then the ANN technique developed in the previous chapter can be used directly. If 

not, the different characteristics o f the hurricanes and the way to use those features of 

hurricanes must be understood and established.
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Summer hurricanes and winter storms are similar in that both of them have 

high wind speeds. The characteristics o f the wind systems and dynamics, however, 

are extremely different. The winter storm wind fields appear over a large domain. 

The wind speeds are relatively evenly distributed in the corresponding areas, and the 

wind speed and direction o f the storm are nearly constant during each event. Also, 

the front of winter storm wind systems usually moves slowly. For these reasons, 

winter storm waves become fully developed seas. (For more information on winter 

storms, see chapter 5.1.)

In contrast, hurricanes usually move rapidly, and the area affected by 

hurricanes is restricted to a small domain when compared with winter storms. In the 

northern hemisphere, the maximum wind speed always lies in the northeast quadrant 

of hurricanes because wind speed to the right o f hurricanes is greater than that to the 

left. Wind speed and direction at a specific location change drastically according to 

the time and location of hurricane centers. The effects o f the hurricane motion on the 

wind field decrease as the distance from the area of maximum wind speed increases 

(Shore Protection Manual, 1977).

For this reason, the effects o f wind energy on waves differ between hurricanes 

and storms. The wind energies o f storms are transferred over large areas, so the 

distributions of wave heights can be observed in a wider area at a given time. 

Hurricane waves, however, are restricted to a small region because hurricanes have 

small but strong wind fields.
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Moreover, because of the relatively fast movement of hurricanes, wave heights 

vary greatly depending upon the corresponding wind energy. The area in which wind 

speed and direction are reasonably constant is always very small, and so generated 

waves are rarely fully developed seas. Thus, prediction of hurricane waves is much 

more difficult than prediction o f storm waves.

For instance, Fig. 6-1 shows the wind field of hurricane Floyd, which occurred 

from September 12 to 18,1999, over the Northwest Atlantic Ocean. Only a restricted 

small domain was affected by strong hurricane winds. Figure 6-2 shows the observed 

significant wave heights at the five stations along the east coast o f the U.S. during 

hurricane Floyd. The change of wave height at different wave stations corresponded 

with the hurricane track. For instance, as hurricane Floyd moved northward along the 

east coast, wave height rapidly increased at the nearest station (41009) to 10 m on 

September 15, 1999, while other stations showed low wave heights. Wave height 

gradually increased in the sequence of station 44009, 44025, 44013, and 44007. 

Hence, the only place at which the hurricane wind significantly affected the wave 

heights was over the area at the hurricane front line.

In this chapter, the results of hurricane waves prediction are given. Data 

description is given in section 6.2, input in section 6.3, proposed ANN structure in 

section 6.4, results o f significant wave height prediction and discussion in section 6.5, 

results of peak wave period prediction and discussion in section 6.6, and conclusions 

in section 6.7.
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6.2. Data Description

6.2.1. Wind and Wave

The National Hurricane Center (NHC) has provided information on the 

maximum wind speed, central pressure, and latitude and longitude of hurricane 

centers since 1958. The Risk Prediction Initiative (RPI) has provided the Radius of 

Maximum Wind (RMW) as well as the above information since 1989.

The NHC and RPI presented the data in time intervals o f six hours (e.g., 00,06, 

12 and 18). The National Data Buoy Center (NDBC) has provided wave records 

since 1975 for station 44025, 1982 for station 44007, 1984 for station 44013 and 

44009,1988 for station 41009.

This study assembled available hurricane information from the Northwest 

Atlantic Ocean. The maximum wind speed, central pressure, location of hurricane 

centers, and the RMW were used as input conditions. The reasons why those inputs 

are essential for hurricane predictions are explained in the next section.

Both the HPC and RPI have presented those input data since 1989. The 

NDBC, however, had no completed hurricane wave records in 1989 and 1990. For 

this reason, only 23 hurricanes from 1991 to 2001 were used in this study (Table 6-1).
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Table 6-1

Historical cyclonic events over the northwest Atlantic Ocean from 1988 to 2001

Year No. Name Date
Wind 

Speed (kts)

Saffir-
Simpson

Scale
RMW

Wave

Record

1988 1 Alberto 8/6-8/7 35 - No Yes

2 Chris 8/26-8/29 80 1 No Yes

1989 1 Hugo 9/19-9-22 140 5 Yes No
1990 1 Bertha 7/24-8/1 70 1 Yes No

2 Lili 10/11-10/15 65 1 Yes No

1991 1 Ana 112-HA 45 - Yes Yes

2 Bob 8/16-8/19 100 3 Yes Yes

1992 1 Danniel 9/22-9/26 45 - Yes Yes

2 Earl 9/27-10/3 55 1 Yes Yes

1993 1 Emily 8/27-9/2 100 3 Yes Yes

1995 1 Erine 7/30-8/2 80 1 Yes Yes

2 Marilyne 9/17-9/20 100 3 Yes Yes

1996 1 Bertha 7/9-7/14 100 3 Yes Yes

2 Edourd 8/29-9/3 125 4 Yes Yes

3 Fran 9/2-919 105 3 Yes Yes

4 Hortense 9/11-9/14 120 4 Yes Yes

1997 1 Ana 6/30-7/5 60 1 Yes Yes

1998 1 Bonnie 8/21-8/28 100 3 Yes Yes

2 Danniel 8/28-9/2 90 2 Yes Yes

1999 1 Dennis 8/24-9/8 90 2 Yes Yes

2 Floyd 9/12-9/18 130 4 Yes Yes

2000 1 Florence 9/10-9/16 70 1 No Yes
2001 1 Humberto 9/22-9/24 90 2 No Yes
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6.2.2. Hurricane Track Pattern

The effects of hurricane waves on the U.S. east coast differ according to the 

tracks followed by the hurricanes. For this reason, the selected 23 hurricane events 

were analyzed in six patterns o f direction and location of the hurricane. Pattern 1 

comes from the Bahamas and passes along the East Coast of the U.S. from Florida to 

Maine. Hence, the effects of this hurricane can be felt along the coast from the south 

to the north (Fig. 6-3a). Pattern 2 has a similar track to Pattern 1, but it crosses the 

continent between 30°N and 40°N and moves further North or Northeast. Thus, the 

effects o f these hurricanes are restricted to the southern coastal area (Fig. 6-3b). 

Pattern 3 hurricanes come from Bahamas. It, however, bends to the Gulf of Mexico 

near Florida station 41009. Thus, the effects o f ‘Pattern 3’ hurricanes would be 

restricted on the Florida region (Fig. 6-4a).

Pattern 4 includes many different types o f hurricanes, which are generated far 

away from the East Coast in the Atlantic Ocean, move toward one particular coastal 

area, and then go back offshore or make landfall. The effects o f these hurricanes 

concentrate on one particular region that depends on the hurricane track (Fig. 6-4b). 

Pattern 5 hurricanes form at southern and eastern locations far offshore and move 

parallel with the east coast o f the U.S. Thus, they have little or no direct effect on the 

east coast o f the U.S. (Fig. 6-5a). Pattern 6 has similar locations o f hurricane 

formations as Pattern 5, but they move eastward toward open ocean. Thus, no effects 

of this pattern of hurricane are expected on the east coast of the U.S. (Fig. 6-5b).
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6.3. Input

In order to find optimum input conditions for an ANN model, currently used 

hurricane models were examined {e.g., the Bretschneider wave model, and the Sea, 

Lake and Overland Surges from Hurricanes (SLOSH) model).

The following Bretschneider wave model estimates wave height and period at 

the position o f maximum wind speed o f a slowly moving hurricane (Shore Protection 

Manual, 1977):

where Hs = significant wave height (in feet)

Ts = corresponding significant wave period (in seconds)

RMW = radius of maximum wind (in nautical miles)

AP = Pn - P0, where Pn is the normal pressure of 29.92 inches of mercury, and 

P0 is the central pressure o f the hurricane 

VF = forward speed of the hurricane in knots

Ur = maximum sustained wind speed in knots, specified at 10 m above mean

0.20SaVF
•3 (6-1)

0.104 aVF
(6-2)

sea surface at radius R where

Ur -  0.865 Umax (for a stationary hurricane)

UR= 0.865 Umax + 0.5VF (for a moving hurricane)
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Umax= maximum gradient wind speed at 10 m above the water surface 

Umax ~ 0.868 [73(Pn-P0)1/2 -  R (0.575f)] 

f  = coriolis force (= 2co sintj))

a  = a coefficient depending on the forward speed of the hurricane and the 

increase in effective fetch length, because a hurricane is moving. It is 

suggested that a  = 1.0 for a slowly moving hurricane 

The Hurricane Prediction Center (HPC) currently uses the SLOSH model to 

estimate storm surge heights and winds from historical, hypothetical, or predicted 

hurricanes. The SLOSH model uses the maximum wind speed, difference between 

central and normal pressures (29.92 inches o f mercury), latitude of the hurricane 

centers, and RMW as inputs (Jelensnianski, 1984; Jarvinen and Lawrence, 1985).

The above two models have several important parameters in common: the 

maximum wind speed, central pressure, location o f hurricane centers, and RMW. In 

other words, those parameters are the keys to understanding the hurricane 

characteristics of rapid temporal-spatial changes. For this reason, those four 

parameters were selected as major inputs for an ANN model in this study.
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6.4. Proposed ANN Structure 

The Time Delay Neural Network (TDNN) with the scaled conjugate gradient 

learning algorithm was used to predict hurricane significant wave height and peak 

period at the five wave stations (i.e., station 44007,44013, 44025, 44009, and 41009) 

along the east coast of the U.S. Thus, the number of output neurons was five (p = 5).

The maximum wind speed, central pressure, and position o f the hurricane 

centers were used as ANN inputs. The latitude and longitude of hurricane centers 

were converted into x- and y-directional distances (km) from the five wave stations, 

i.e., 10 data points for each position, increasing the total input neurons to 12 (m = 12). 

If the RMW were additionally used as an input, the number of input neurons would 

be 13 (m = 13). A trial and error method was used for finding the optimum number 

of hidden neurons (n) by checking the ANN performance.

In contrast to winter storms, hurricanes are strongly non-stationary because of 

dramatic change in the maximum wind speed and central pressure with time and 

location. For this reason, instead o f fixing one time-delay for hurricane waves, zero, 

six, 1 2 ,1 8 ,24-hour time delays were tested to find the best for ANN hurricane-waves 

prediction modeling. Hence, the TDNN structures o f Ii2jHn0 5 and Ii3jHn0 5, where J 

= 1,2, 3 ,4 , and 5, were established.
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6.5. Results of Significant Wave Height Prediction and Discussion 

As previously mentioned, prediction results differ according to different input 

parameters, number of training data, and time-delay. For this reason, the effects of 

input parameter (e.g., the Radius o f Maximum Wind), training data points, and time- 

delay were observed in this section.

The RMW is one o f the major input parameters used to estimate hurricane 

wave height and period, as previously discussed. However, no equations can estimate 

the RMW exactly. For instance, Jelesnianski et al. (1992) and Vickery et al. (2000) 

provided some equations that use the central pressure and latitude of hurricanes as 

input to estimate the RMW, but the correlation coefficient between observed and 

predicted RMW was unacceptably low (less than 0.3). This indicates that those 

models not only are inaccurate for predicting the RMW, but also that the RMW is not 

closely related to the central pressure and latitude o f hurricanes. However, the RMW 

is still essential to generate predictions o f hurricane waves in the ocean. This 

problem may raise the question, “Can the RMW improve the prediction accuracy of 

an ANN model?” For this reason, the effects of the RMW were tested in next section.

6.5.1. Effects o f RMW as Input

The Radius of Maximum Wind (RMW) is the distance from hurricane centers 

in which wind speed is usually zero to the place in which a maximum wind speed 

occurs. Jelesnianski et al. (1992) provided an equation to estimate the RMW along 

the east coast of the U.S. The equation was based on the fact that the RMW is
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directly changed according to the position o f the hurricane center and central 

pressure. They proposed two equations for two different cases: one applies when 

hurricane centers are at 30°N and the other applies when hurricane centers are south 

or north o f 30“N.

Vickery et al. (2000) combined two different formulas into one comprehensive 

equation, the so-called global model. Hence, users can use only one equation to 

calculate the RMW, regardless o f the location of hurricane centers. They provided 

three different global models to estimate the RMW along the east coast o f the U.S.: 

In(RWM) = 2.636 -  0.00005086AP2 + 0.0394899^, r2 = 0.2765 (6-3)

In(RWM) = 2.097 -  0.0187793AP + 0.00018677AP2 + 0.0381328^, r2 = 0.2994 (6-4)

In(RWM) = 2.173 + 0.0056748AP + 0.0416289rjr, r2 = 0.2544 (6-5)

where In = natural log

P = central pressure

t|f = latitude of the hurricane center.

According to the above equations, the RMW is determined by the central 

pressure and latitude o f hurricanes. However, notice that the correlation coefficients, 

r, of the three equations are relatively low, indicating that the RMW is poorly 

correlated those inputs.
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Wind-generated waves are mainly affected by the intensity of maximum wind 

speed and central pressure o f hurricanes. If the RMW is not directly related to wind­

generated waves, then there is no reason to include it as an input for an ANN 

hurricane wave prediction model.

Another question still remains. “Is the role o f the RMW for an ANN model 

and the SLOSH wave model the same?” For the SLOSH model, the RMW is used to 

compute numerical processes. If other inputs are uncertain, the initial RMW can be 

adjusted to fit the model outputs. Therefore, it is relatively unimportant whether the 

RMW is correct or not for use in the SLOSH model.

On the contrary, an ANN model uses the RMW as an independent input. In 

this study, the central pressure, maximum wind speed, position of hurricane centers, 

and the RMW were used as inputs for the ANN model to find the importance of 

RMW compared with other inputs.

In case that the RMW is not a major factor that affects wind-waves, to use the 

RMW as input may not be necessary. Moreover, the ANN model might produce 

irrelevant weight values if  the RMW is used unnecessarily. The result might have 

higher error or lower correlation coefficient value between observed and predicted 

waves.

For this reason, the objective o f this experiment is to identify whether the 

RMW is, in fact, an important input for an ANN wind-wave prediction model. 

Sixteen hurricane events with 327 data points were collected from 1991 to 1999. 

Among those 327 data points, 21 points for hurricane Bertha in 1996 were used for a
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validation data set to compare with the prediction. The other 306 points were used as 

a training data set. Hence, prediction data points comprise 6.9 % of the training data 

points.

A 24-hour time delay (J = 5) was used for a Time Delay Neural Network 

(TDNN) model. The maxi mum wind speed, central pressure, and longitudinal and 

latitudinal distances between hurricane centers and the five wave stations were used. 

Thus, the TDNN structure of hsoHnOs was established. For another input condition, 

the RMW was added to the basic 12 inputs with the same duration of time delay. 

Thus, the total number of inputs was increased to 13 yielding another TDNN structure 

o f l 6 5H n0 5.

For finding the best correlation coefficient between the observed and predicted 

hurricane wave heights, the number of hidden neurons was changed from three to 10 

with an increment of one hidden neuron, and the number o f iterations was changed 

from 10 to 100 with increments o f 10 iterations between each trial. The optimum 

number of hidden neurons was nine or 10, whether the TDNN used the RMW, or not.

Figure 6-6 shows the observed and predicted significant wave heights together 

at five wave stations for the TDNN structure of I65H9Os at 70 iterations when the 

RMW was used as an input or at 60 iterations without the RMW. The time

series o f predicted wave heights generally agreed with that o f observed wave heights.

Figure 6-7 shows the correlation coefficient (r) between the observed and 

predicted wave heights. The best r was 0.75 (r2 = 0.56), and the Mean Square Error 

(MSE) was 0.0516 when the RMW was used as an input. The best correlation
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Fig. 6-6. Comparison o f the observed and predicted significant wave heights 
using the Time Delay Neural Network with a structure o f I65H9O5 with Radius 
of Maximum Wind (RMW) as Input at 70 iterations or I60H10O5 without RMW 
at 60 iterations, (a) For station 44007, (b) station 44013, (c) station 44025, (d) 
station 44009, and (e) station 41009. A 24-hour time-delay was used.
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coefficient increased up to 0.80 (r2 = 0.64), and the MSE decreased to 0.0503 when 

the TDNN did not use the RMW.

Although the RMW is one of the important input parameters for the 

mathematical and numerical models, it does not improve the prediction capability of 

an ANN model for hurricane wave heights. The reason why the RMW does not help 

to improve prediction is that, as previously explained, the RMW has no strong 

relationship between the position o f hurricane centers and central pressure (Vickery et 

al. 2000). For this reason, the RMW is not an essential input condition for an ANN 

hurricane wave prediction model. On the other hand, the maximum wind speed 

clearly increases as the central pressure o f hurricanes decreases (Fig. 6-8).

6.5.2. Effects o f Number of Training Data Point

Theoretically, an ANN model can predict more accurately if  it was trained with 

more data. For a validation data set, 21 data points from hurricane Bertha in 1999 

were used. For training data, two different training data sets were prepared: (1) 15 

hurricanes from 1991 to 1999 with 306 data points; (2) 12 hurricanes from 1995 to 

2001 with 287 data points. Therefore, the ratio of the number o f training data to 

validation data is 6.9 % and 7.3 % respectively.

The maximum wind speed, central pressure, and longitudinal and latitudinal 

distances o f  hurricane centers from the five wave stations were used as input factors 

(excluding the RMW).
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A 24-hour time delay (J = 5) was used for input conditions. Thus, the TDNN 

structure o f l6oHnOs was used.

The number of hidden neurons was changed from three to 10 with an increment 

of one hidden neuron between each trial to find the best correlation coefficient 

between observed and predicted hurricane wave heights. The number of iterations 

was changed from 10 to 100 in increments of 10. The optimum number of hidden 

neurons was observed as nine or 10 when 12 or 15 hurricanes were used for training, 

respectively.

Figure 6-9 compares the observed and predicted wave heights at the five 

stations. The TDNN structures o f I60H9O5 at 100 iterations or I60H10O5 at 60 

iterations were used when 12-hurricanes with 287 data points or 15-hurricanes with 

306 points were used for training, respectively. In general, the temporal variation of 

predicted wave height is similar to that o f observed wave height.

Figure 6-10 shows the correlation coefficient between the observed and 

predicted wave heights. The best correlation coefficient was 0.82 at nine hidden 

neurons and 100 iterations, with a Mean Square Error (MSE) of 0.0394 when 12 

hurricane events were used as training data. The correlation coefficient, however, 

was 0.80 and the MSE increased to 0.0451 when 15 hurricanes with 306 points were 

used with 10 hidden neurons and 60 iterations.

The number of data points o f the 12-hurricane data set is 7 % less than that 

from the 15-hurricanes data set. Theoretically, an ANN should predict wave heights 

better as the number o f training data increases. The test results here, however, do not
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Fig. 6-9. Comparison of the observed and predicted significant wave heights 
using the Time Delay Neural Network with a structure o f  IgoHgOs for 12 
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Fig. 6-10. Correlation coefficient between the observed and predicted 
wave heights. Triangles indicate the results when 15 hurricanes were 
used as training data, and circles indicate the results with 12 hurricanes.
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agree with this basic rule o f an ANN model.

This discrepancy can be explained by distinguishing between a simple increase 

in the number of training data points and possible changes in the similarity of 

hurricane tracks used in training and validation sets. A quantitative increase o f  

training data does not always guarantee that the increased data include hurricane 

tracks to those in the validation data set.

In other words, even though the number o f training data increases, the 

qualitative pattern similarity o f training data may not increase proportionally or even 

might decrease. Thus, similarity o f hurricane track pattern between training and 

validation data sets should be considered as an important condition when using a 

larger data.

Fifteen hurricanes include five hurricanes (Ana and Bob in 1991, Danniel and 

Earl in 1992, and Emily in 1993) different than those in the 12 hurricanes data set. 

However, the extra five hurricanes have complete different tracks from Hurricane 

Bertha in 1999 (Fig. 6-11). Thus, the data domain increased, but not the data 

similarity. For this reason, the prediction accuracy did not improve in spite o f more 

training data. On the other hand, if  all the patterns were included in the training data 

set, more training data would produce better prediction.
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6.5.3. Effects of Duration of Time Delay

Group velocity o f deep-water waves is determined by wave period (Ippen, 

1966b). For hurricanes, because the maximum wind speed, central pressure, and 

location of hurricane centers change drastically with time, and there is no evidence to 

assume that the duration of hurricanes is constant, hurricane-wave period might also 

change more frequently. This changes the group velocity of hurricane waves as well 

as duration to have a fully developed sea, which can affect wind-waves observed at 

the five stations. For this reason, it is not possible to set a fixed time delay of 

hurricane wind waves for an ANN modeling.

The optimum time-delay has not been determined yet in this region. Moreover, 

identifying the optimum duration is difficult due to the non-stationary characteristic 

of hurricanes. For this reason, it was decided to use a trial and error method using 

different time-delays: zero, six, 12,18,  and 24 hours. The results of those time-delays 

were compared at the same conditions to find the optimum of this study area.

Thirteen hurricanes with 304 data points from 1995 to 2001 were prepared. 

Among 304 data points, 21 points for Hurricane Bertha in 1999 were used as the 

validation data set. The other 283 data points were used for training. Thus, the total 

number o f validation data is only 4.2 % o f the number of the training data.

The maximum wind speed, central pressure, longitudinal and latitudinal 

distances o f hurricane centers from the five wave stations were used as inputs; the 

Radius o f Maximum Wind (RMW) was excluded. Thus, the Time Delay Neural
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Network (TDNN) structure o f InjHnC>5 was employed, where J = 1, 2, 3, 4 and 5 

corresponding to zero, six, 12,18, and 24-hour time delays, respectively.

In order to find the maximum correlation coefficient between the observed and 

predicted hurricane wave heights, the number of hidden neurons was increased from 

three to 10  by increments of one, and the number of iterations was changed from 10  

to 100 with increments o f 10 iterations between each trial. The optimum hidden 

neurons were 10, seven, eight, and nine for zero and 18, six, 12, and 24-hour time 

delays, respectively.

Figure 6-12 plots the observed and predicted wave heights at five stations when 

only zero, 12, and 24-hour time-delays were used because the results of six and 18- 

hour time-delay were similar to the other predictions. The results indicate that a zero- 

hour time-delay may have underestimated wave height at station 44025 and 44009 

remarkably. The other two time-delays have similar and satisfactory results.

Figure 6-13 shows the correlation coefficient (r) between the observed and 

predicted wave heights when a zero-hour time-delay with 10 hidden neurons and 70 

iterations, a 12-hour time-delay with eight hidden neurons and 80 iterations, and a 24- 

hour time-delay with nine hidden neurons and 100 iterations used. The correlation 

coefficient 0.82 (r2 = 0.67) was better when a 24-hour time-delay was used, while the 

TDNN with a 12-hour time-delay shows a lower correlation coefficient, 0.80 (r2 = 

0.64). All the results o f zero to 24-hour time delay can be seen in Table 6-2.
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Fig. 6-12. Comparison o f the observed and predicted hurricane significant wave 
heights using the TDNN with a structure o f I12H10O5 for a zero-hour time-delay, 
I36H8Q5 for a 12-hour time delay, and I60H9O5 for a 24-hour time delay, (a) For 
station 44007, (b) station 44013, (c) station 44025, (d) station 44009, and (e) 
station 41009. The radius o f maximum wind speed was not used as input.
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Table 6-2

Maximum correlation coefficients between the observed and predicted significant 

wave heights, iterations, computing time, and Mean Square Error (MSE) when zero, 

six, 12,18, and 24-hour time-delays were used

Time Delay 0-Hour 6-Hour 12-Hour 18-Hour 24-Hour

Iteration 70 70 80 60 100

Time 15.5 15 17 16 21.3

MSE 0.0478 0.0531 0.0483 0.0479 0.0394

Correlation
Coefficient 0.78 0.72 0.80 0.80 0.82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



214

The correlation coefficient between the observed and predicted significant 

wave heights for each station is given in Table 6-3. The maximum correlation 

coefficient (r) was 0.87 (r2 = 0.76) at station 41009, while the lowest was 0.37 (r2 = 

0.14) at station 44013. In general, the correlation coefficient was better (greater than 

0.80) at southern stations (44025, 44009, and 41009) that have large wave heights 

than at northern stations (44007 and 44013) with smaller wave heights.

An ANN model should accurately predict if  the validation data set has 

hurricane tracks similar to training data sets, so the similarity between training and 

validation data sets was examined. Hurricane Bertha occurred from July-9, 06:00 to 

July 14, 06:00, 1996. The duration is five days and the total data points are 21 with 

an interval of six hours. It moved from Florida to Maine along the east coast o f the 

U.S. The maximum wind speed varied from 55 kts to 100 kts and central pressures 

changed from 960 mb to 995 mb.

Hurricane Floyd, which was one o f training data sets occurred from September 

12 to 17, 1999. The duration was also five days, providing a total of 21 data points. 

Hurricane Floyd had a track similar to Hurricane Bertha from Florida to Maine (Fig. 

6-14). The variation in x and y distances between hurricane center and five wave 

stations was almost the same for Bertha and Floyd (Fig. 6-15).

The maximum wind speed of Floyd varied from 50 kts to 125 kts, and the 

central pressures decreased from 983 mb to 921 mb before increasing again to 983 

mb. Figure 6-16 shows the temporal variation o f the maximum wind speed and
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Table 6-3

Comparison of the correlation coefficient between the observed and predicted

significant wave heights and peak wave periods at the five wave stations

Type 44007 44013 44025 44009 41009

Wave Height 0.51 0.37 0.84 0.81 0.87

Wave Period 0.44 0.45 0.51 0.55 0.37
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Fig. 6-14. Hurricane tracks for hurricanes Bertha from July 9 to 14,1996 
and Floyd from September 12 to 18,1999.
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central pressures of Floyd and Bertha. Hurricane Floyd has a much higher m axim um 

wind speed and lower central pressure than hurricane Bertha. It can be noticed that 

the maximum wind speed decreases as the central pressure increases.

The wave records obtained from the National Data Buoy Center indicate that 

the maximum wave heights for hurricanes Floyd and Bertha were 8.41 m at station 

41009 and 4.72 m at station 44025, respectively. Hurricane Floyd had a higher 

maximum wave height than Hurricane Bertha, however the temporal variation of 

wave height is similar. The wave height at station 41009 began to rise first, followed 

in order by stations 44009,44025,44013, and 44007 (Fig. 6-17).

Figure 6-18 marked hurricanes tracks to compare the time o f the maximum 

wave height recorded at a wave station and the corresponding location o f hurricane 

centers. Notice that intervals between two consecutive locations of hurricane centers 

become large at higher latitudes. This indicates that the moving speed o f hurricane 

accelerates as the hurricanes moves toward the north.

Dates and hours in Fig. 6-18 indicate the time when the maximum wave heights 

were observed at station 41009, 44009, and 44025. The maximum wave height at 

station 41009 occurred when the location of the hurricane center o f Floyd and Bertha 

moved toward the station. However, at station 44009 and 44025, the m axim um  wave 

height occurred after the hurricanes had passed those stations. That is to say, when a 

hurricane is located in low latitudes, it moves slowly and allows more time for the 

strong wind forces to generate large waves. In contrast, when a hurricane located in
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Fig. 6-17. Plots o f the observed significant wave heights at the five wave 
stations caused by (a) hurricane Bertha in 1996 and (b) Floyd in 1999.
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high latitude areas, it moves more rapidly and there is a shorter time for the weaker 

wind forces to generate large waves. It was the previously generated large waves that 

moved to the wave stations to produce maximum wave heights. Because of the slow 

wave propagation speed, the maximum wave occurred later, after passage o f the 

hurricane center.

Thus, general features o f Hurricane Bertha in 1996 and Floyd in 1999 can be 

summarized as follows: (1) the maximum wind speeds were mainly determined by 

the differences in central pressures; (2) the stronger the maximum wind speed, the 

longer the distance a hurricane affects; (3) the stronger the maximum wind speed, the 

higher the wave height at a given condition; (4) the further north the hurricane moves, 

the faster its progress.

The TDNN model predicted the significant wave heights accurately except for 

station 44013 because hurricane Floyd and Bertha were in the same pattern (Pattern 

1). When compared with winter-storm waves, the prediction accuracy was relatively 

small for the hurricane waves. For instance, the maximum correlation coefficient 

between the observed and predicted winter-storm waves was 0.96 (r2 = 0.92) at 

station 44013, while the m axim um  coefficient for hurricane waves was 0.87 (r2 = 

0.76) at station 41009.

One o f possible reasons is the slight difference in tracks between training 

(Hurricane Floyd in 1999) and validation data (Hurricane Bertha in 1996). For 

instance, hurricane Floyd passed closer to Florida than the Bertha, but between 3Q°N 

and 40°N, hurricane Floyd moved along the East Coast shoreline, while hurricane
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Bertha moved much farther inshore (see Fig. 6-14). Hence, Floyd could affect the 

five wave stations more strongly than Bertha.

If Hurricane Bertha and Floyd had the same pattern, an ANN could predict 

Hurricane Floyd-generated wave height well, as it did for SMB-simulated wind- 

waves that had only one pattern. However, because the pattern of hurricanes for 

training was different than that for the validation data set, hurricane-waves prediction 

accuracy was slightly less than storm-waves prediction accuracy.

6.6. Results of Peak Wave Period Prediction and Discussion

Both peak wave period and zero-crossing wave period are important for 

practical applications. Earlier, an Artificial Neural Network (ANN) model was used 

to predict the zero-crossing period for winter storms (Chapter 5.8). In spite o f a low 

correlation coefficient between observed and predicted wave periods, the ANN model 

predicted similar temporal variations compared with that o f the observed. This 

indicates that the ANN model may be used to predict the zero-crossing wave period 

in this region.

However, there have been no studies on the capabilities o f the ANN model to 

predict peak wave periods in the western Atlantic. For this reason, we present here 

the prediction results of peak wave periods using the Time Delay Neural Network 

(TDNN).
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Information on peak periods can be obtained from the National Data Buoy 

Center at the five wave stations. Thirteen hurricanes from 1995 to 2001 with 283 

data points were assembled for the training data set, and Hurricane Bertha in 1999 

with 21 data points was used for the validation data set. Thus, the ratio of the number 

of validation data to training data is only 4.2 %.

The maximum wind speed, central pressure, and longitudinal and latitudinal 

distances of hurricane centers from the five wave stations were used as input factors. 

A 24-hour time delay (J = 5) was used for input conditions, again excluding the 

Radius o f Maximum Wind speed (RMW). Hence, the TDNN structure of l6oHn0 5 

was employed.

In order to determine the correlation coefficient between observed and 

predicted hurricane wave periods, the number of hidden neurons was changed from 

three to 10 in increments of one. The number of iterations was increased from 10 in 

increments of 10 iterations between each trial until the correlation coefficient again 

declined. Because a 24-hour time-delay showed the best prediction results from the 

previous hurricane wave height prediction, a one-day time delay was used (J = 5).

Figure 6-19 plots the observed and predicted peak wave periods at five stations 

(44007, 44013, 44025, 44009, and 41009). Except in the initial 24 hours, predicted 

peak wave period was almost a constant, about 10 seconds. Figure 6-20 shows the 

correlation coefficient (r) between the observed and predicted peak wave periods. 

The best correlation coefficient was 0.50 (r2 = 0.25), and the Mean Square Error
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Fig. 6-19. Comparison o f the observed and predicted peak wave 
periods using the Time Delay Neural Network with a structure o f  
I60H4O5 at 110 iterations, (a) For station 44007, (b) station 44013, (c) 
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(MSE) was 0.1184 when four hidden neurons and 110 iterations were used. For more 

information about the correlation coefficient at five stations, see Table 6-3.

The best correlation coefficient o f 0.50 is slightly less than that o f 0.58 for 

winter-storm zero-crossing wave period prediction. The TDNN model did not 

accurately predict wave periods for hurricane Bertha in 1996. But it is difficult to 

decide which result is better because the TDNN model was used to predict peak wave 

period n this study of hurricanes, instead of the zero-crossing wave period. The 

prediction of zero-crossing wave periods for hurricanes should be addressed in further 

studies.

Hurricane Bertha (the validation hurricane) produced a maximum wave period 

of about 20 seconds at station 41009 and 15 seconds at the other stations at the 

beginning of the event. But the predicted wave period was almost constant with time 

as about 12 seconds at station 41009 and 10 seconds at the other four stations. The 

major reason can be revealed from Fig. 6-21. This figure presents the variations of 

wave period with time for Hurricane Bertha and Floyd (the training data). The peak 

wave period of Hurricane Floyd did not change as much, and varied only between 10 

to 15 seconds at the five wave stations. From this fact, it is apparent that the TDNN 

model cannot predict the wave periods for hurricanes Bertha because the patterns of 

wave periods are different between Hurricane Bertha and Floyd.
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6.7. Conclusions

The TDNN wave model produced reasonably good predictions of hurricane­

generated wave height when the maximum wind speed, central pressure, and location 

of hurricane centers were used as input. The required computing time was less than a 

few minutes for both hurricane wave height and period predictions. The best time- 

delay was 24-hours. But the prediction results for hurricane-generated peak wave 

periods were still not satisfactory. Increasing the number of training data points did 

not greatly improve prediction accuracies because of difference in patterns between 

training and validation data sets.

The prediction accuracy o f hurricane waves at each station was much less than 

that o f winter-storm waves, and this disparity in forecast accuracy due to the major 

differences between hurricanes and storms. Slight differences in hurricane patterns 

between training (hurricane Floyd) and validation data (hurricane Bertha) may reduce 

accuracy in hurricane wave prediction.

This study shows the feasibility o f using ANN techniques for hurricane-wave 

prediction model. If more hurricane data becomes available, and prediction o f  

hurricane tracks is possible, we can forecast real-time hurricane waves more 

accurately with less computing time.
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CHAPTER VII 

DISCUSSION AND CONCLUSIONS

The following subjects are discussed in this chapter: (1) convergence rate 

including most affecting factors for accurate prediction (e.g., simulation o f a time- 

delay, similarity between training and validation data, and pre-processing); (2) die 

quantity o f data needed for training; (3) the reason for an excellent simulation of the 

SMB model; (4) possible improvement o f wave period prediction; (5) possible 

extension o f ANN prediction results to areas with no data; (6) possible future 

improvements on wave modeling, and (7) application o f ANN wind-wave prediction 

model to other places.

7.1. Convergence Rate 

In this study, we have seen that ANN model convergence rate and prediction 

accuracy changed according to the size o f training data set, the similarity in patterns 

between training and validation data, and the complexity of a physical process. The 

causes and effects o f convergent rates are summarized and discussed in the next 

section.
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Which Learning Algorithm Is Better?

In this study, the two most updated learning algorithms: the Scaled Gradient 

Descent (SCG) and the Gradient Descent with a Variable Learning Rate and 

Momentum (GDX) show little difference in computing time. However, in terms of 

the mean square error, the SCG was better than the GDX. This implies that the SCG 

approach has a better algorithm (i.e., using the maximum of error gradient, 9E/dW = 

0, to find the optimum solution) to update the weights for finding the least square 

error.

What Is the Best Wav for Finding the Optimum Number of Hidden Neurons and 

Iterations?

Learning curves, error gradient curves, bias, and variance were available for the 

Back-Propagation Network (BPN) and Elman Recurrent Network (ERN) for finding 

the optimum number of hidden neurons and iterations. For die Time Delay Neural 

Network (TDNN), there was no clear index to find the optimum number o f hidden 

neurons and iterations except the Mean Square Error (MSE) and the correlation 

coefficient (r) between observed and predicted values. Thus, these two parameters 

(MSE and r) were used. For more information about these indices, see Chapter 2.7.4 

and 2.8.3.

Using MSE and r between the observed and predicted values, the optimum 

number of hidden neurons and iterations can be determined for a given wind-wave 

events (data set), however, the optimum does not necessary always good for other
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events. There is one possible way to reduce uncertainty in the check o f the optimum 

number o f hidden neurons and iterations by swapping the training and validation data 

if  this data set is sufficiently large. Theoretically, the optimum number of hidden 

neurons and iterations should be different if  the training and validation data have a 

different pattern. In this case, we might try to use the average o f the two cases and 

check if a better prediction result can be achieved. So far, this is just a possible 

approach. Further study to verify this possibility is pending for more studies.

Which ANN Algorithm Is the Best?

The prediction accuracy was best with the TDNN with long-term memory, 

progressively poorer for the Elman Recurrent Network (ERN) with short-term 

memory and the Back-Propagation Network (BPN) with no-memory. This implies an 

external time-delay is necessary for using ANN to do wind-wave predictions. 

However, because the prediction accuracy among the three models were not 

compared using the same conditions, a slight change of this conclusion is possible. In 

terms of computing time, the difference in computing speed was negligible small 

among the three ANN wind-wave prediction algorithms.

What Is the Difference in ANN Inputs for Winter-Storm and Hurricane Wave 

Prediction?

For winter storm-wave predictions, wind components (u and v) specified at the 

selected 40-wind stations must be used to include the effects o f a large wind field on
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wave generation. For hurricane-wave prediction, the maximum wind speed, pressure 

o f hurricane centers, x- and y-directional distances from the hurricane centers to these 

five wave stations were ANN inputs for simulating the characteristics o f hurricanes: 

have strong wind within a relatively small domain (i.e., about 100 km), move quickly, 

change dramatically with time and location and thus, affect only the nearest small 

area.

Simulation of Time-Delav

The importance of considering time-delay for an ANN wind-wave prediction 

model was already explained with examples based on the Sverdrup-Munk- 

Bretschneider (SMB) method given in Chapter 5.5. Depending on wind speed, the 

duration time required for the waves to be fully developed seas differs.

For winter-storm wave prediction, we used one representative time-delay (24 

hours) because wind fields are relatively evenly distributed and stationary. That is to 

say, the duration for a corresponding wind speed is possible. When a 24-hour time 

delay was used, the prediction of storm-wave height was fairly accurate (r = 0.88), 

but the wave period prediction was much less (r = 0.61).

However, hurricanes are different. For instance, the wind field for a hurricane 

is small, the wind speed within the domain is high, and a hurricane usually moves 

very fast. Because hurricanes are more dynamic, the duration for a fully developed 

sea also changes drastically with time. For this reason, setting a fixed time-delay for 

an ANN hurricane-wave prediction model was not possible. In this study, five
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different time-delays (i.e., zero, six, 12, 18, and 24-hour) were tested. When a 24- 

hour time-delay was used, the TDNN showed the best prediction accuracy (r = 0.82) 

for hurricane wave height, while the prediction accuracy for wave periods was not 

satisfactory (r = 0.50). This might be a coincidence. The correlation coefficient o f  

wave height was 0.80 when a 12-hour time-delay was used. This indicates that there 

is no much difference in prediction accuracy between a 12 and 24-hour time-delays.

Pre-Processing Is Needed?

When pre-processing was used, the model efficiency o f the BPN and ERN has 

a significant improvement, i.e., the computing time is less and prediction accuracy is 

better. Because the TDNN has a different learning algorithm, such as an external 

time-delay, the pre-processing efficiency was not compared with the other two 

models. In general, the wind input was pre-processed using a global maximum and 

minimum o f ±20 m/s, which normalized the input wind velocity between -1 and 1.

However, the ANN performances were sensitive to the global maxiirmitn and 

minimum wind speeds. When using ±80 m/s as the global winds, the correlation 

coefficient between the observed and predicted wave heights increased from 0.85 to 

0.88. The predicted peak-wave height also improved at station 44013 and 44025, and 

station 44007 no longer showed negative wave heights.

When further examining the ANN modeling, it is noticed that the non-linear 

transfer function might play a role in carrying this result. For the selected non-linear 

transfer function (l/l+exp(-W X), where X is the normalized wind speed and W is the
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weight matrix), the change o f output is flattened even when the input has a significant 

change. For example, for two input WX = 2 and 4 (a change of one fold), the output 

will be 0.88 and 0.99 (a change of only 14 %), which is not reflecting the big change 

in input.

When ±20 m/s was used, the change o f wind speed from 15 m/s to 20 m/s only 

causes a small change in the output. In contrast, if ±80 m/s o f global winds was used, 

the normalized wind input will be much less, but the slope of response function is 

much high, so the ANN may still be able to produce a noticeable change in the output 

Hence, the ANN could produce a higher wave height corresponding to a strong wind.

Why Station 41009 Has Much Less Prediction Accuracy

When comparing the correlation coefficient between the observed and 

predicted wave height, station 41009 had much less prediction accuracy than the 

other four wave stations located at northern areas. As previously explained in chapter 

5.7.1 and 5.7.3, insufficient training data points, complicated wind-wave patterns, and 

another wind field system that was not considered in this study are the possible 

reasons.

At the beginning of this study, winter-storm waves at the selected five stations 

were assumed to be affected by the strong winds from the northwest part o f the 

Atlantic Ocean. For this reason, not many wind stations on the southeast side of 

station 41009 were considered for wind stations. However, from this study, it is clear 

that observed waves at station 41009 are not generated by winter storm wind from
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northwest of the Atlantic Ocean blowing toward the west, but they were generated 

from wind fields between 0°N and 20°N. For this reason, more wind stations off 

southern Florida should be used for a better prediction at station 41009.

One may argue that the effects o f the Gulf Stream, which flows from the south 

to the north, may affect the wind-waves generation pattern, so the ANN prediction is 

not good. However, those effects were already represented as die observed waves. In 

other words, because an ANN model was trained with wind-waves data affected by 

the Gulf Stream, the ANN should include those effects already, so, this effect might 

not the reason of a low accuracy.

Why the Prediction Accuracy Is Lower for Hurricane Waves

The prediction accuracy for hurricane waves (with a correlation coefficient r = 

0.82 and 0.58 for wave height and wave period) was less than that for winter-storm 

waves (r = 0.88 and 0.61, respectively). The difference may be caused by the reason 

o f lack o f sufficient training data for hurricanes. Considering the dramatical 

difference among hurricanes, it is difficult to have two closely similar hurricanes. For 

example, we only used 15 hurricanes during 13 years, but none o f these hurricanes 

were similar enough to provide a clear pattern for ANN to remember and use. This 

problem may be overcome when there are more hurricanes, or when a well- 

established numerical model based on physical processes can be used to provide more 

data for training.
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7.2. How M any Data Are Needed for Training?

In nature, many different types o f winter-storm wave generation patterns can be 

expected, and it is clear that the prediction accuracy of winter-storm wave height 

increases as the number of training data is increased (e.g., the correlation coefficient, 

r, improved from 0.82 to 0.88 when training data increases from 218 to 403 points).

Nonetheless, one must draw a line on how many data for training is sufficient 

The only possible way to determine the number o f sufficient training data points is to 

select a threshold correlation coefficient between the observed and predicted waves. 

Tentatively, if  the correlation coefficient exceeds 0.90, the number o f training data 

points should be satisfactory. Based on this statement, a little more data set for 

training is needed for both winter storm and hurricane wave predictions.

For winter-storm waves, because the difference in wind-wave patterns is 

relatively small among each event, one more year’s data should be enough.

In contrast, for hurricane waves, the difference in pattern between each event is 

very different. Therefore, the prediction accuracy o f hurricane wave height did not 

increase with an increase in the number of training data (e.g., from 12 hurricanes to 

15 hurricanes) because the pattern of those three additional data sets were different 

from those o f the validation data set. For this reason, to find sufficient patterns is 

more important than to find more events. A similar pattern between training and 

validation data sets is the key to increase the accuracy of predictions. If only 

measurements are allowed to use, one may expect that data from many more years are 

needed to meet the r = 0.9 criterion.
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7.3. Reason for an Excellent Simulation of the SMB Model 

When using non-linear wind-wave data sets simulated from the Sverdrup- 

Munk-Bretschneider (SMB) method, the TDNN model predicted wave height and 

period accurately, even though it used only four o f eight data sets as training data, 

which did not cover the validation data set at all. In this test, we assumed only one 

wind-field system, which has one wind direction but different wind speed and fetch to 

the imagined five wave stations. That is to say, only one wind-wave pattern was 

considered.

For this reason, the TDNN easily understood the wind-wave pattern and was 

able to recognize untrained events. That is to say, although the validation events were 

not used for training, the ANN predicted wave height and period accurately because it 

already knew the non-linear relationship.

7.4. Possible Improvements on Wave Period Prediction 

The prediction accuracy o f wave period was much poorer than wave height for 

both winter storms and hurricanes because o f complicated physical processes in wave 

period generation. There may be two possible ways to improve ANN performances 

for wave period prediction: (1) by using a large number of hidden layers and (2) by 

implementing an ANN technique that can handle different time-delays for the 

multiple wind-wave patterns in nature.
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For the first case, we have already tried the TDNN with two hidden layers. 

When a four-layered TDNN was used, the correlation coefficient between the 

observed and predicted wave periods were r = 0.61, which was a little better than 0.58 

for a three-layered TDNN. However, because the improvement was so small, a test 

with more hidden layers was not attempted.

As previously mentioned in Chapter 5.5, considering time-delay is important 

because o f the time needed for waves to be fully developed seas. Currently, to 

simulate multiple time-delays for all possible wind speeds, however, is not possible. 

If this problem can be resolved in the future, wave period prediction should be able to 

be improved.

7.5. Possible Extension o f ANN Prediction Results to Areas with No Data

The major condition for being able to use an ANN wind-wave prediction model 

is that sufficient data are available for training. If that condition is not met, an ANN 

technique is not helpful. For this reason, I tried to introduce two methods for areas 

with no or insufficient data: (1) ANN models can be used in combination with other 

type of numerical wind-wave prediction models, a so-called ‘hybrid model’. For 

example, the SWAN or WAM can produce wave heights and periods using wind 

speed and direction, then after collecting the wind and model generated wave data set, 

an ANN model can be trained and used to predict future events; (2) linear 

interpolation: assuming the difference in spatial domain between the nearest wave
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stations can be obtained by linear interpolation, then ANN model is still useful. For 

instance, a wave station in Rhode Island is located between stations 44013 and 44025. 

Let’s suppose a 4 m-wave height for station 44025 and a 10 m-wave height for station 

44013, and Rhode Island is located in the center of the two stations. If the linear 

interpolation o f 7 m wave height at the station in Rhode Island is applicable, then the 

ANN is still a fast technique to estimate wave condition at the Rhode Island station.

7.6. Possible Future Improvements on ANN Wave Modeling 

In the future, the ANN will be more valuable for real-time wind-waves 

prediction because of more available data. The prediction accuracy will continue to 

improve as the efforts to measure wind waves continue.

An ANN model that can handle several natural wind-wave systems together is 

needed. Currently, fixed wind stations are provided by users, and not changeable 

during the training and prediction. It would be better if  an ANN model can be used to 

identify wind stations and group them as an effective wind fetch during the training 

and validation. If this development happens, the ANN technique will be much more 

powerful and valuable to predict winter-storm and hurricane waves.

As previously mentioned in Chapter 5.5, a hybrid model that combines an ANN 

and other physical processes based numerical models shall be used together to 

supplement each other.
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An ANN model can be used to improve the efficiency o f currently used 

numerical models that are based on simulation of physical processes. For instance, 

an ANN technique may substitute for one part of numerical processes as a so-called 

embedded model. For the numerical wind-wave models such as the SWAN and 

WAM, simulating the wave-wave interaction is very complicated and requires much 

computing time. Although they use discrete interaction approximation but still 

require significant computing time. That is where an ANN approach can be used for 

the recognition of wave-wave interactions pattern and save much computing time.

7.7. Application o f ANN Wind-Wave Prediction Model to Other Places

An ANN wind-wave prediction model can be relatively easily applied to other 

places. However, because each area may have different physical environments for 

wind-wave generations (e.g., different fetch), different considerations and even 

different ANN structures should be considered.

Suppose we need to forecast wind-generated wave heights at Honolulu, Hawaii, 

then we need to know that winds blowing near New Zealand may generate large 

waves at Honolulu after a few days because the physical distance between the two 

places is over 5000 km. Thus, a much long time-delay and a much large areas are 

needed.

In contrast, suppose we need to predict wind-generated waves at North 

Chesapeake Bay area in Maryland. The average length and width o f the Chesapeake
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Bay is about 400 km and 30 km respectively, much less than the domain o f the 

northwest Atlantic Ocean. The northern part o f the Chesapeake Bay is closed and 

only the southern area is connected with the Atlantic Ocean. The effects of winter 

storms can be negligible at the Baltimore harbor because the winter-storm winds 

usually come from the north and thus, the wind fetch is very limited. However, 

hurricanes can affect many cities on the coastline along the Chesapeake Bay because 

strong winds might come from the south and generate large waves because of 400 km 

fetch. The duration of a time-delay must be less than that given in this study.

For harbors in the Hampton, we also must consider the effects o f the 

Chesapeake Bay mouth. The open Bay mouth can allow the transfer o f waves 

generated in the southern part o f the northwest Atlantic Ocean into the Chesapeake 

Bay. For this reason, this effect must also be considered for this particular 

application.

7.8. Conclusions

From this study, we reached the following conclusions about ANN wave 

prediction model for winter storms and hurricanes:

(1) The Scaled Conjugate Gradient learning algorithm is better than the 

Gradient Descent with a Variable Learning Rate and Momentum.

(2) The performance of Time Delay Neural Network is better than the Back- 

Propagation Network and Elman Recurrent Network model.
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(3) In order to select the optimum number of hidden neurons and iterations, the 

trial and error method is better than the Mean Square Error (MSE) or Root Mean 

Square Error (RMSE).

(4) U and v wind components are the necessary wind inputs for ANN 

prediction model. Wind speed and direction cannot be used because o f the 

ambiguity.

(5) The maximum wind speed, longitudinal and latitudinal distance between 

hurricane centers and wave stations, central pressure of hurricanes can be used as 

ANN inputs for hurricane-generated wave prediction because of the relatively small 

wind field and fast moving characteristics.

(6) Pre-processing is necessary to improve model efficiency and performance. 

Especially, the sensitivity of ANN prediction accuracies to the global wind speed has 

to be checked.

(7) An increase in training data set size improves the prediction accuracy for 

winter-storm waves. A reference correlation coefficient (i.e., rmm = 0.9) between 

observed and predicted waves can be used for determining the optimum number of 

training data points.

(8) Station 41009 is not affected by winter-storms but by a different wind field. 

For accurate prediction, the wind information at areas further south of Florida must be 

considered.
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(9) The prediction accuracy o f wave heights is better than that o f wave periods 

for both winter storms and hurricanes. For more accurate wave period prediction, 

time-delays for different wind-wave patterns should be included in ANN modeling.

(10) Hurricane waves prediction is more difficult than winter storm waves 

prediction because of the lack o f hurricane wave data.

(11) The prediction accuracy depends on the similarity in hurricanes between 

training and validation data.

(12) The ANN prediction result can be extended to areas with no data if a 

proper interpolation technique can be used.

(13) A hybrid model can be used to help for overcoming some of the 

drawbacks of ANN modeling. A hybrid modeling using the strength o f both 

modeling technique should be the next effort.
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APPENDIX 

I. Source Code for the SMB Method

1. SMB Method for Wave Predictions at Deep Water, Open Ocean
%
% 1 nautical mile = 6080 ft = 1853.658 m 
% 1 knots = 1 nautical mile/hr = 0.5149 m/s
%
infile = 'c:\waveprediction\inp';
[fid, message] = fopen(infile);
if fid =  -1
message
end
%
% Read data 
%
title = fgetl(fid); 
disp(title);disp(fgetl(fid));
disp(fgetl(fid));
a = fscanf(fid, '%d %d % d\ [3,inf]); 
fclose(fid);
fetch Jin = a(3,:); % in meter 
u jn  = a(2,:); % in m/s
time_given_in = 3600*a(l,:); % in seconds
ncase = length(u_in);
outfile = 'e:\smbmodel\smb _test.out';
[fid, message] = fopen(outfile,W); 
iffid =  -l 
message 
end 
%
fprintf(fid,'%s\n', title);
fjprintf(fid,' Time Wind Speed Fetch Dur_min; _act Hs_f T_f Hs T\n'); 
Q)rintf(fid,' hr knots (m/s) NM (km) hr hr m s m s\n');
fetch = fetchjn(l); 
u = u jn (l);
duration = time_given_in(l);
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time_elp = time_given_in(1 )/3600;
cont= 0;
for ic = 1 :ncase-l
disp(['elapse tim e-, num2str(time_elp)]);
f_nm = fetch/1853.658;
f_km = fetch/1000;
u_kt = u/0.5149;
dur_a = duration/3600.0;
min_dur = minimum_duration(fetch, u);
min_a = min_dur/3600.0;
[Hs, Period] = HandT(feteh, u);
%
% Find the equivalent wind fetch if  the given duration is less than the required 
% for a fully developed sea 
%
if duration < min_dur
fetch_try=fetch -100; % reduce the fetch by 100 m 
time_try = min__dur; 
while time_try > duration 
time_try=minimum_duration(fetch_try, u); 
fetch_try=fetch_try -100; 
end 
%
% Duration limited wind wave
%
[Hs_l, Period_l ]= HandT (fetch_try, u); 
else
Hs_l=Hs;
Period_l=Period;
end
%
% Save the results 
%
format='%5.1f %4.1f%4.1f %6.1f%6.1f %5.1 f  %5.If %6.2f %6.2f %6.2f 
fprintf(fid, format, time_elp, u_kt, u, f_nm, f_km, min_a, dur_a, Hs, Period, H s_l, 
Period 1);
%
% Check if it is needed to calculate wave energy and shaft to a different wind speed 
% for the same wind velocity, move to the next step 
%
if  u_in(ic+l) =  u_in(ic) 
fetch=fetch_in(ic+1);
u=u_in(ic+l);
duration=duration + time_given_in(ic+l) - time given in(ic);
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time j3lp=time_given_in(ic+l )/3600.0; 
else 
%
% For a different wind speed, move to the middle o f the two time step, upgrade 
% wave height and period first, then find the energy and then find the corresponding 
% wind speed, fetch, and duration
%
fetch = fetch Jn(ic); 
u = u_in(ic);
duration = duration + 0.5 *(time_given_in(ic+1) - time_given_in(ic)); 
time_elp = time_elp + 0.5 *(time__given_in(ic+l) - time_given_in(ic) )/3600.0; 
min_dur = minimum_duration(fetch, u);
[Hs, Period] = HandT(fetch, u);
%
% Find the equivalent wind fetch if the given duration is less than the required 
% for a fully developed sea
%
if  duration < min_dur
fetchjry = fetch -100; % reduce the fetch by 100 m
time_try = min_dur;
while time_try > duration
time_try = minimum_duration(fetch_try, u);
fetch_try = fetch_try -100;
end
%
% Duration limited wind wave 
%
[Hs_l, Period_l] = HandT (fetch_try, u);
dur_new = time_try/3600.0;
else
Hs_l =Hs;
Period_l = Period; 
durjnew = duration/3600.0; 
end
f_nm = fetch/1853.658; 
fJem = fetch/1000; 
u_kt = u/0.5149;
%
% fprintf(fid, format, time_elp, u_kt, u, f_nm, f_km, min_a, dur_new, Hs,Period,
% Hs_l, Period_l);
energy = Hs_l *Hs_l *Period_l *Period_l;
%
% Find out the corresponding wind fetch and duration for the new given wind speed
%
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u = u_in(ic+l); 
fetch = 0; 
energ_new = 0;
No_of_itr = 0;
while energ_new < energ 
%
f  energ_new > energ; 
break
end
if  No_ofJ.tr > 180000; 
break 
end 
%
fetch = fetch+100;
[Hn, Period_n] = HandT(fetch, u); 
energ_new = Hn *Hn *Period_n*Period_n; 
end
duration = minimum_duration(fetch, u); 
dur_new = duration/3600.0; 
f_nm = fetch/1853.658; 
f  km = fetch/1000; 
u~kt = u/0.5149;
%
% Print the equilibrium wave condition at the middle of two consecutive elapse time 
% fprintf(fid, format, time_elp, u_kt, u, f_nm, f_km, dur_new, dur_new, Hs,Period, 
% Hn,Period_n);
% find the equilibium fetch at the end of the second wind velocity
%
time_elp = time_elp + 0.5 *(time_given_in(ic+l) - time_givenjn(ic) )/3600.0; 
fetch_try = fetch +100; % increasee the fetch by 100 m 
timejry = duration;
duration = duration + 0.5*(time_given_in(ic+l) - time_given_in(ic) );
while tim ejry < duration
time_try = minimum_duration(fetch_try, u);
fetch_try = fetch_try + 100;
end
%
if  fetchjry > fetch_in(ic+l) 
fetch_try = fetch_in(ic+l); 
else
fetch_try = fetch_try; 
end
%
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fetch=fetch_try;
end
end

fclose(fid);

2. Minimum Duration

function [time_req] = minimum_duration(fetch, speed);
%
% This function use the SMB wave prediction method to calculate 
% the minimum duration (in second) required to reach a fully developed 
% sea for a given wind speed (in m/s) and fetch (in meters)
%
% 1 nautical mile = 6080 ft = 1853.658 m 
% 1 knots = 1 nautical mile/hr = 0.5149 m/s
%
K = 6.5882;
A = 0.0161;
B = 0.3692;
C = 2.2024;
D = 0.8798; 
grav = 9.8;
p = grav*fetch/(speed*speed);
terml = A*log(p)*log(p);
term2 = B*log(p);
term3 = D*log(p);
term4 = sqrt(terml - term2 + C);
term5 = K*exp(term4 + term3);
time_req = term5 *speed/grav;
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3. Wave Height and Period

function [Hs, Period] = HandT(fetch, speed)
%
% Calculate wave height H (m) and period T (s) for a fully developed wind wave 
% using SMB method. The input parameter fetch is in meter and wind speed is in
% m/s
%
% 1 nautical mile = 6080 ft = 1853.658 m 
% 1 knots = 1 nautical mile/hr = 0.5149 m/s
%
grav~ 9.8;
p = grav*fetch/(speed*speed);
term6 = 0.0125*pA0.42;
Hs = 0.283 *speed*speed/grav*tanh(term6); 
term? = 0.077*pA0.25;
Period = 2.40 *pi *speed/grav*tanh(term7);
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II. Source Code for an ANN Wind-Wave Prediction Model

%
% Set input and output
%
input = [wind]; 
output = [wave];
%
% Set global maximum and minimum wind
%
max = 20; % Global maximum 
min = -20; % Global m inim um  
%
% Pre-Processing
%
pn = 2 *(inp-min)/(max-min)-l;

%
% Set Time Delay Neural Network with the Scaled Conjugate Gradient learning 
% algorithm, eight hidden neurons (SI), five output neurons (S2), non-linear and 
% linear transfer function at first and second processing % layers
%
net = newfftd(pn, [number of time delay], [SI S2], {'tansig', 'purelin'}, 'trainscg');
%
net = init(net); % Start training an ANN 
net.trainParam.epochs = 30; % Number of iterations = 30 
y = sim(net, pn); % Produce ANN model results 
%
% Post-Processing
%
pp = postmnmx(y);
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