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Near-synchronous and delayed initiation of long run-out
submarine sediment flows from a record-breaking

river flood, offshore Taiwan
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Received 9 February 2012; revised 18 May 2012; accepted 21 May 2012; published 21 June 2012.

[1] Subsea fiber-optic telecommunication cables can break
under fast sediment flows that travel 100s of kilometers
through the deep ocean in response to earthquakes and
submarine landslides. Similar flows are inferred to form
from major river floods whose sediment-laden waters plunge
and travel along the seabed. However, the complex initiation
of flood-related flows and their hazard potential have not
been observed until now. Here we use cable fault data from
the Gaoping Canyon/Manila Trench off Taiwan to show that
a major river flood, formed during Typhoon Morakot (2009),
generated two, long run-out, destructive sediment flows; one
during peak flood and the other 3 days later. The latter flow
was more damaging with speeds and run-out similar to that
of landslide-triggered turbidity currents formed in the same
catchment. If the second flow was due to remobilized canyon
sediment, it occurred during low earthquake (>M,, 2.0) activity,
suggesting other triggering mechanisms. Citation: Carter, L.,
J. D. Milliman, P. J. Talling, R. Gavey, and R. B. Wynn (2012), Near-
synchronous and delayed initiation of long run-out submarine sedi-
ment flows from a record-breaking river flood, offshore Taiwan,
Geophys. Res. Lett., 39, 112603, doi:10.1029/2012GL051172.

1. Introduction

[2] Submarine landslides and sediment flows (a generic
term used here for hyperpycnal plumes, turbidity currents
and debris flows) are volumetrically one of Earth’s key
transport mechanisms that transfer large amounts of sedi-
ment from coastal seas to the abyssal ocean [e.g., Talling
et al., 2007]. Such flows are also a significant natural haz-
ard for seabed infrastructure. Indeed, it was the breakage of
trans-oceanic telegraph cables in response to the 1929 Grand
Banks earthquake that drew attention to the presence of
landslides, debris flows and turbidity currents in the deep
ocean [Heezen and Ewing, 1952]. However, such flows are
difficult to observe because of their destructive behavior
[[nman et al., 1976] and there are only a few locations
world-wide where such abyssal flows have been measured
[e.g., Mulder et al., 1997; Piper et al., 1999; Khripounoff
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et al., 2003; Vangriesheim et al., 2009; Hsu et al., 2008;
Xu, 2010].

[3] It has also been inferred that river floods form long
run-out sediment flows by the plunging of sediment-laden
flood water to the seabed as a hyperpycnal plume [e.g.,
Mulder et al., 2003]. Using subsea cable breaks, we present
evidence of multiple, long run-out sediment flows from a
major flood to highlight their complex initiation, with one
flow during and another well after the flood’s hyperpycnal
phase. Such observations add to our sparse knowledge of
sediment flow speeds and also reveal the hazard posed by
floods to deep ocean infrastructure, in this case the network
of fiber-optic cables that carries ca. 95% of trans-oceanic
voice, data and internet traffic [Carter et al., 2009].

1.1.

[4] Residing between the Eurasian and Philippine Sea
plates, Taiwan is one of the most tectonically active regions
on Earth [Liu et al., 1997; Ramsey et al., 2006; Wu et al.,
2008]. Taiwan also receives monsoonal rains and ca. 3—4
typhoons annually that erode a human-modified landscape
[Chen et al., 2004]. Consequently, erosion is impressive
[Dadson et al., 2004]; the sediment yield of the island’s
16 largest rivers averages ca.10,000 tkm*/yr [Kao and
Milliman, 2008], ca. 50 times more than the global aver-
age. Moreover, much of the fluvial discharge to the ocean is
at hyperpycnal concentrations [Milliman and Kao, 2005;
Kao and Milliman, 2008, Liu et al., 2012].

[5] The main fluvial source for the Strait of Luzon is the
Gaoping River whose average sediment discharge is ca.
20 Mt/y [Kao and Milliman, 2008]. Historically the Gaoping
River tends to reach hyperpycnal thresholds when its dis-
charge is >15,000 m*/s. This occurred on at least 5 occasions
between 1951-2004. The last time was in 1996, but no cable
damage was reported. Most of the Gaoping discharge enters
Gaoping Canyon [Huh et al., 2009] situated <1 km from the
river mouth (Figure 1). The canyon guides sediment to
abyssal depths [Lee et al., 2009; Liu et al., 2009; Yu et al.,
2009] via a pathway that initially meanders across the con-
tinental shelf and upper slope to ca. 1000 m water depth
where it switches to a linear course running obliquely along-
slope to ca. 2200 m depth (mid-canyon). Here the path
meanders across a submarine fan (lower canyon) that
extends into the Manila Trench at 3400 m where sediment
moves south to >4000 m depth.

Taiwan Setting

2. Data

[6] Non-public information on cable faults comes sepa-
rately from the various owners and operators of subsea
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120°E

Figure 1. Cable faults along Gaoping Canyon and Manila Trench (axes = red line) during Typhoon Morakot. Cable faults
1-9 are numbered sequentially according to the time of damage. F1 (blue polygons and line) and F2 (yellow triangles and
line) refer to Flow 1 and Flow 2 formed from a hyperpycnal plume and remobilized sediments respectively. Cable fault 9
(yellow circle) occurred after Flows 1 and 2 and is discussed in the auxiliary material. Inset is regional metric bathymetry
with the approximate positions of fiber-optic telecommunications cables (red lines), which are uncorrected for displacements
by sediment gravity flows formed in 2006 [Hsu et al., 2008], 2009 (this study) and 2010.

cables with additional data from cable repair authorities.
Locations, depths and times of cable faults are archived in a
GIS information system along with multibeam bathymetry
used to identify the canyon/trench pathway, which is gen-
erally well defined except for the trench south of 20°N
(Table 1 and auxiliary material).' Distances between cable
faults were measured from the canyon head (0 km) along the
canyon/trench axis to yield run-out distances of the sediment
flows. The times and distances between successive cable
faults allowed calculation of flow speeds (i.e., a non-vector
rate of motion) that were assessed in relation to seabed slope
and run-out distance. Flow data and a solitary suspended
sediment measurement for the Gaoping River are from

'Auxiliary materials are available in the HTML. doi:10.1029/
2012GL051172.

Li-Lin Bridge, which covers 89% of the Gaoping catchment
[Water Resources Agency, 2010]. Earthquake magnitudes
and ground-acceleration data are from the Central Weather

Table 1. Cable Fault Data Used in This Study

Fault Date  Time UTC Latitude Longitude Flow  Speed m/s
1 9/08/09 02:28 21.95°  120.17°  FI Mid canyon
2 9/08/09 03:16 21.65 120.22 16.6.
3 12/08/09 01:47 21.32 120.15 F2  Lower canyon
4 12/08/09 02:45 21.08 120.17 10.3.
5 12/08/09 05:34 20.77 120.20 5.4
6  12/08/09 06:56 20.48 120.25 8.2
7 12/08/09 08:01 20.30 120.28 6.5
8  12/08/09 08:02 20.32 120.28 6.6
9  12/08/09 17:31 21.98 120.08 No info.
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Figure 2. Discharge curve for the Gaoping River during Typhoon Morakot. A single measurement made on 9 August,
2009 (black circle) recorded a suspended sediment load of 60 kg/m® [Water Resources Agency, 2010]. Such conditions
favoured hyperpycnal Flow 1 that subsequently caused Faults #1 and 2. Most cable faults (Faults #3—8) occurred 3 days after
the peak flood when the river was near normal. We suggest canyon sediments were remobilized to form the more destructive

Flow 2.

Bureau (Climate statistics and earthquakes, 2011, available
at http://www.cwb.gov.tw/V6e/index.htm).

3. Observations

[7] On 7-9 August 2009, southern Taiwan was struck by
Typhoon Morakot. This was Taiwan’s wettest tropical
cyclone on record yielding up to 2777 mm of rain in 3 days
[Ge et al., 2010]. The Gaoping River discharge exceeded
20,000 m°>/s for over ca. 9 hours and peaked at 27,447 m’/s
(Figure 2). Although reliable data on sediment concentra-
tions are unavailable for those peak conditions, they surely
exceeded the 60 kg/m® that was recorded on 9 August during
waning flood conditions (Figure 2); this concentration sur-
passing the hyperpycnal 40 kg/m?> threshold of Mulder et al.
[2003]. From this single measurement (Figure 2) we tenta-
tively estimate the Gaoping discharged at least 150 Mt of
sediment, most of which entered Gaoping Canyon judging by
the budget of Huh et al. [2009].

[8] On 9 August, the first subsea cables were disrupted by
sediment Flow 1 that formed ca. 8 hours after peak flood in
the Gaoping River (Figures 1 and 2). While failing to fully
break the first cable it met, Flow 1 broke the next 2 cables
down-slope where an interim speed of 16.6 m/s was recor-
ded (Figure 3). However, Flow 1 failed to damage cables
in water depths >2100 m yielding a run-out distance of
ca.168 km, assuming it formed at the canyon head. A sec-
ond, more damaging Flow 2 occurred 3 days later when
the river level was near-normal (Figures 1 and 2). At least

6 cables broke in the lower canyon/trench down to >4000 m
depth. The run-out was 157 km, but this was a minimum
because the flow source and the run-out distance after the
last cable break are unknown. If Flow 2 formed near the
canyon head, the run-out was at least 384 km (Figure 1).
Flow 2’s speed in the lower canyon was 10.3 m/s that
reduced to an average of 6.7 m/s in Manila Trench; this
change coincident with declining seabed slope and increas-
ing run-out (Figures 3 and 4). Five to six days after peak
flood, a 250 m-thick benthic layer of turbid, low-salinity
water was detected at 3000-3700 m depth [Kao et al., 2010].
As these measurements post-date Flows 1 and 2, it is unclear
which flow created the turbid, low salinity layer. Like Kao
et al. [2010] we favour a hyperpycnal origin, i.e., Flow 1
whose coincidence with the main flood infers that its fresh-
water content probably exceeded that of Flow 2.

4. Discussion and Conclusions

[9] Sediment Flows 1 and 2 were related to the extreme
fluvial discharge accompanying Typhoon Morakot, but
under different circumstances. It is unlikely that earthquakes
played a direct role because magnitudes and ground accel-
erations during the typhoon were very low (<My 2.0 and
0.8-2.5 cm?/s respectively (http://www.cwb.gov.tw/V6e/index.
htm)). The coincidence of Flow 1 with hyperpycnal condi-
tions (Figure 2) suggest it formed from plunging river water.
However, its occurrence ca. 8 hours after peak flood and its
apparent high speed (16.6 m/s) does not preclude an ignitive,
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Figure 3. Bathymetric profile along Gaoping Canyon/Manila Trench with flow speeds (underlined and in m/s) between
cable faults (1 to 9) caused by sediment Flow 1 (blue polygons) and Flow 2 (yellow triangles) along the mid Gaoping Can-
yon to Manila Trench. Black circles are cables for which we have no fault data and yellow circle is fault 9, which occurred

after Flows 1 and 2 (auxiliary material).

local remobilisation of flood sediment. Indeed the speed is
similar to maxima of landslide-triggered turbidity currents,
e.g., ca. 19 m/s for 1929 Grand Banks event [Piper
et al., 1999] and 20 m/s for the 2006 Gaoping event [Hsu
et al., 2008]. Even so, the impact of Flow 1 was confined to
2 mid-canyon cables in water depths <2100 m. In contrast,
Flow 2 was more destructive breaking at least 6 cables.
Its initiation 3 days after the flood peak is inconsistent with
a direct hyperpycnal origin. More likely, Flow 2 came from
remobilized sediment. Certainly its speed and associated
cable damage resemble that of turbidity currents formed
from earthquake-triggered landslides, e.g., 6.7 m/s along the
Manila Trench (this study) versus 5.7 m/s along the same
trench in 2006 [Hsu et al., 2008] and 6.2-8.2 m/s over the
Sohm Abyssal Plain [Heezen and Ewing, 1952]. However,
low seismicity during Flow 2 suggests an alternative trigger,
the nature of which is open to speculation, e.g., turbulence
caused by internal or surface waves as observed in Gaoping
Canyon [Lee et al.,2009; Liu et al., 2012] or increased excess
pore pressures formed within rapidly deposited flood sedi-
ment. The source area is also uncertain because mid-canyon
cables were damaged by Flow 1 and could not record sub-
sequent events. However, the upper canyon is a possible
source because it is a known temporary sink of typhoon flood
sediment [e.g., Liu et al., 2006, 2009].

[10] Typhoon Morakot produced the first observed subsea
cable damage by a hyperpycnal flow (Flow 1) presumably
reflecting the exceptional river discharge caused by the extreme
conditions (rainfall 2,777 mm; peak flood 27,447 m’/s, sedi-
ment discharge ca. 150 Mt). The Gaoping River has exceeded
the hyperpycnal threshold on previous occasions, the most
recent in 1996 when Typhoon Herb produced 1,736 mm of rain
[Ge et al., 2010] and the river flow peaked at 19,700 m/s.
An estimated 48 Mt of sediment was discharged, 56% under
hyperpycnal conditions [Milliman and Kao, 2005]. Even so,
Herb apparently failed to break cables, given the limitations
of cable databases (auxiliary material). Hence not all hyper-
pycnal floods form damaging sediment flows in this system.

18 -
Q
w14
~N
E
10 -
O
§ A
w 6 JAN
2 —
1 1 1 1
0 100 200 300 400
Distance [km]
Y = -5e-05x + 23.2; r2=0.81
18 T '
L 14 -
£
- 104A
(]
a
v 6 - N
2 -
1 | 1 1
0 0.2 0.4 0.6 0.8

Slope [degrees]
Y = 14.416x + 5.56; r2 = 0.68

Figure 4. Regression plots for Flow 1 (blue polygon) and
Flow 2 (yellow triangles) and their correlation with run-out
distance and seabed slope. The regressions assume that
Flows 1 and 2 had similar properties, but if the flows were
dissimilar then, the value of the regressions are more limited.
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[11] If Typhoon Morakot is a harbinger of a warmer, more
turbulent climate [e.g., Kao et al., 2010] then determining
the impacts of flood-generated submarine flows on a strate-
gic communications corridor takes on a sense of urgency, as
does ascertaining their impact on the deep ocean environ-
ment through the rapid transfer of heat, nutrients and organic
carbon [Sparkes et al., 2010].
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