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INTRODUCTION

Dissolved organic matter (DOM) in estuaries is derived
from diverse allochthonous and autochthonous
sources, and its cycling is controlled by various bio-
logical, chemical and physical processes. Although
bacteria have long been recognized as a primary control
on DOM cycling (Pomeroy 1974, Azam et al. 1983),
photochemical effects have been more recently found to
both stimulate and inhibit DOM turnover (Benner &
Biddanda 1998, Obernosterer et al. 2001, Tranvik &
Bertilsson 2001). The majority of early photochemical-
microbial studies were conducted in blackwater rivers,

streams, and lakes with light-limited primary production
(De Haan 1993, Lindell et al. 1996, Bano et al. 1998), and
stimulatory effects of light exposure were generally
observed. More recent studies, however, have included
systems other than high humic/high dissolved organic
carbon (DOC) environments. For example, recent find-
ings in subtropical lagoons and non-point sources to
temperate rivers suggest that pre-exposure to light may
have little impact on DOC bioavailability in certain
natural waters (Ziegler & Benner 2000, Wiegner &
Seitzinger 2001). Nonetheless, the restriction of most
photochemical studies to high humic nearshore or in-
shore environments has resulted in ‘… little comparative
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ABSTRACT: The effects of natural sunlight and microbial decomposition on DOC, DON, and DOP
were investigated along the salinity gradient of a temperate coastal plain estuary. The impact of sun-
light-irradiated DOM on bacterial properties (bacterial abundance, production, bacterial growth effi-
ciency [BGE]) was also followed. Surface-water light levels resulted in no detectable abiotic produc-
tion of NH4

+ or PO4
3– or loss of DOC. Bacterial decomposition of DOC was enhanced by 27 to 200%

in irradiated relative to dark treatments. There was, however, no corresponding enhancement in
DON and DOP remineralization. Significant differences in bacterial decomposition of light-exposed
DOC were frequently observed following prolonged incubation (>7 d), suggesting that enhanced
reactivity may result from photochemical modification of higher molecular weight organic matter.
BGE in light relative to dark treatments was positively correlated (r2 = 0.38, p < 0.01) with in situ NH4

+

concentrations. In light treatments, significantly lower N and P remineralization in August 1999 cor-
responded with low in situ inorganic nutrient concentrations and bacterial growth efficiency (BGE)
and with elevated bacterial DOC utilization. In contrast, enhanced DOC reactivity in April 2000 dur-
ing nutrient-replete conditions corresponded with net immobilization of inorganic N and P by bacte-
rial biomass production, but without a concomitant impact on BGE. These findings suggest that the
combination of photochemical and microbial alteration of DOM may increase bacterial demand for
inorganic nutrients, alter BGE, and influence the partitioning of C between bacterial biomass and
respiration.
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information available for estuarine DOM that is lower in
vascular plant and soil influences and higher in contri-
butions from younger (recently produced) or algal-
derived organic matter’ (Moran et al. 2000).

The effects of sunlight-exposure on DOM cycling in
estuaries are difficult to quantify. Variations in initial
bioreactivity, age, sources and structural character
(e.g. aromaticity) of DOM may affect its biological and
photochemical fate during seaward transit (Mopper &
Kieber 2002, Moran & Covert 2003 and references
therein). In general, the balance between photoinhi-
bition and photostimulation of DOM cycling may hinge
on the initial reactivity of various subcomponents of
DOM (Moran & Covert 2003). Thus, prediction of
sunlight effects on DOM bioavailability and fate on a
system scale is limited by the ability to characterize
and predict the bioreactivity of the majority of organic
compounds comprising the bulk DOM pool (Hedges et
al. 2000). This has sometimes been circumvented by
the use of microbial activity (e.g. bacterial abundance,
growth and production) as a proxy for integrating both
positive and negative photochemical impacts on C
flow (Lindell et al. 1995, Miller & Moran 1997, Benner
& Biddanda 1998).

An important and potentially confounding factor in
studies of DOM cycling is that measures of net bacte-
rial production typically used in such studies account
only for the portion of C assimilated into biomass and
do not include changes in respiration (Jahnke &
Craven 1995, del Giorgio & Cole 2000, Mopper &
Kieber 2002). Bacterial growth efficiency (BGE), or the
fraction of C incorporated into biomass relative to gross
bacterial production (i.e. biomass production plus res-
piration), is generally less than 50% in most aquatic
systems, and is subject to control by such factors as
substrate quality, inorganic nutrient availability and
cellular maintenance energy, all of which may vary
independently as a result of photochemical impacts
(del Giorgio & Cole 2000, Mopper & Kieber 2002).
Thus, the factors controlling bacterial growth and pro-
duction may not ultimately regulate total DOC utili-
zation and its partitioning into cellular synthesis and
maintenance pathways (Kirchman & Rich 1997).
Nevertheless, to date, the effect of sunlight-exposed
DOM on bacterial metabolism (e.g. respiration, BGE
etc.) has been limited to relatively few studies (Reche
et al. 1998, Mopper & Kieber 2002).

While the importance of photochemical processes on
DOC cycling is well-documented, effects of sunlight on
dissolved organic nitrogen (DON) and dissolved
organic phosphorous (DOP) have not been examined
to a comparable extent (e.g. Bertilsson et al. 1999,
Tranvik et al. 2000, Wiegner & Seitzinger 2001). The
present study was designed to explore the relation-
ships between microbial and potential photochemical

decomposition of DOM, and the specific role of natural
sunlight in DOC, DON and DOP bioavailability and
bacterial metabolism in a temperate coastal plain estu-
ary having significant allochthonous and autochtho-
nous organic matter inputs. By further measuring BGE,
alterations in total carbon utilization by bacteria were
also evaluated (Jahnke & Craven 1995), thus allowing
greater differentiation and quantification of the inter-
active effects of physico-chemical and biological pro-
cesses on estuarine carbon flow.

MATERIALS AND METHODS

Experimental approach. Large-volume time series
incubations were conducted at different times of the
year using samples of varying salinity from the York
River estuary, Virginia (Fig. 1A) that had either been
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locations are designated by arrows and approximate salini-
ties. (B) Monthly mean river flow statistics for the Pamunkey
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2000 and July 2000
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pre-exposed or not exposed to natural sunlight.
Although sunlight exposure may have direct detri-
mental effects on bacterial growth and survival, this
study was not designed to evaluate those potential
impacts. Incubation times approximated water resi-
dence times in the estuary (~1 to 2 mo), and the
bioavailability of DOC, DON, and DOP was monitored
throughout the incubations.

Study site and sample collection. The York River
estuary is a moderately stratified sub-estuary of the
Chesapeake Bay and has distinct DOM sources and
reactivity relative to other sub-estuaries in the Chesa-
peake system (Raymond & Bauer 2001, McCallister
2002). This is reflected in the changing stoichiometry
of bulk DOM during estuarine transport and mixing,
whereby freshwater DOM (C:N:P = 2150:92:1) is
depleted in both N and P relative to the mouth of the
York (C:N:P = 550:38:1; McCallister 2002).

Sampling periods bracketed extremes in monthly
mean river flow and seasonal productivity (Fig. 1B).
Surface water (~0.2 m depth) was collected in August
1999 (mean river flow 2.5 m3 s–1), April 2000 (52.2 m3

s–1) and July 2000 (9.4 m3 s–1) from 3 sites: (1) the
mouth of the estuary where it enters the Chesapeake
Bay (salinity [S] ≈ 20); (2) the Pamunkey River (S ≈ 0);
and (3) an intermediate site (S ≈ 10) which was near the
estuarine chlorophyll maximum. The annual mean
river flow for the Pamunkey River in 1999 (13.9 m3 s–1)
represented the 10 yr minimum from 1990 to 2000
(available at: http://waterdata.usgs.gov).

Experimental set-up and treatments. Sample water
for incubations was filtered sequentially through com-
busted (500°C, 4.5 h) GF/D (2.7 µm) and GF/F (0.7 µm)

filters and then through a 0.2 µm acid-soaked
(10% HCl) Gelman capsule filter to remove POM and
bacteria. Filtered water was stored at 4°C in the dark
for no more than 2 d prior to the incubation. As a pre-
cautionary measure, samples were filtered an addi-
tional time through a 0.2 µm capsule just prior to the
start of an experiment and examined to ensure that
bacterial abundances were negligible.

Prior to sunlight pre-exposure, subsamples were col-
lected for DOC, NH4

+ and PO4
3–. The starting bacteria-

free filtrate was subsequently distributed between
triplicate 1 l dark (foil-wrapped borosilicate bottles)
and natural sunlight-exposed (quartz tubes) treat-
ments. The quartz tubes received 9 h of sunlight expo-
sure on a cloudless day, following which all controls
and treatments were again sub-sampled for DOC,
NH4

+ and PO4
3– to determine the abiotic effects of sun-

light exposure. All sample and control tubes were
maintained between 5 to 10°C throughout pre-expo-
sure. Table 1 lists ultraviolet radiation measurements
for the days of exposure.

DOM decomposition incubations (1 l) were initiated
by addition of a natural bacterial (0.7 µm filtrate) inocu-
lum at a 100-fold dilution that was obtained from the
same study sites. Incubations were maintained in the
dark at room temperature (22°C) over both short (<7 d)
and long (7 to 28 d) timescales, and subsamples were
collected periodically to assess potential differences in
the microbial response to sunlight-exposed DOM
between these periods. All subsamples were frozen
at –20°C until DOM and inorganic nutrient analyses. 

Samples from the high-salinity site in August 1999
were compromised due to contamination. Bacterial
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Date Streamflowa UVb Salinity Water temp. Chl a NH4
+ PO4

3– DOC DON C:N
(m3 s–1) (W m–2) (°C) (µg l-1) (µM) (µM) (µM) (µM)

Aug 99 2.5 801
0 30 5.9 0.4 0.16 445 23.2 19.2
10 29 26.9 0.9 0.97 410 22.4 18.3

Apr 00 52.2 872
0 13 4.5 2.7 0.34 438 20.6 21.3
11 11 29.2 3.1 0.30 369 16.5 22.4
22 11 7.0 0.6 0.08 250 15.2 16.5

Jul 00 9.4 910
0 28 5.7 0.5 0.29 452 24.6 18.4
10 27 23.5 1.4 0.61 518 29.9 17.3
20 27 17.9 4.2 0.19 239 18.7 12.7

aData obtained from US Geological Survey (http://waterdata.usgs.gov). Pamunkey River freshwater flow reported for the
York River estuary 

bUltraviolet (UV) irradiation data from Edgewater, Maryland, obtained from the Smithsonian Environmental Research Center
in collaboration with the National Institute of Standards and Technology (http://www.ebiks.com/solarnet/database.html).
Data are presented as the integrated daily average of incident solar UV-B and short-wavelength UV-A (290 to 324 nm)

Table 1. Site and water column characteristics of York River estuary during sampling periods. C:N values were calculated from
DOC/DON concentrations
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production measurements from August 1999 were per-
formed only at 36 h post-inoculation and are not pre-
sented as the time interval is inconsistent with subse-
quent samplings (36 h vs. 7 d).

Bacterial production and growth efficiency. Bacte-
rial growth efficiency (BGE) is defined as the efficiency
with which bacteria convert DOC into bacterial bio-
mass (BB), expressed as BGE = [∆BB/∆DOC] × 100,
where ∆BB was estimated from time-dependent
changes in bacterial abundance. Cell abundance was
converted to BB using a cell-specific C content of 20 fg
C cell–1 (Lee & Fuhrman 1987). Changes in DOC con-
centration (∆DOC) were measured directly (see next
subsection).

Analytical methods. DOM and inorganic nutrients:
Thawed subsamples were analyzed for DOC, total dis-
solved N and P (TDN and TDP, respectively), DIN
(NO3

– + NO2
– + NH4

+) and DIP (PO4
3–). Phosphate was

analyzed spectrophotometrically using a 5 cm path-
length cell and the acidified molybdenum blue method
(Koroleff 1983) having an analytical precision of
± 0.017 µM P. Inorganic nitrogen species were
analyzed on a Technicon Autoanalyzer, and the analyt-
ical precision associated with these measurements was
0.1 µM for NO3

–, NO2
– and NH4

+. TDN and TDP (10 ml
each) were analyzed by alkaline persulfate oxida-
tion (Koroleff 1983), with an analytical precision of
± 1.2 µM and 0.2 µM, respectively, and the organic
fraction (DON and DOP) was determined by the differ-
ence between the total dissolved and inorganic nutri-
ent fractions. DOC was determined by high tempera-
ture Pt-impregnated alumina combustion using a
Shimadzu TOC-5000. Analytical precision was de-
termined from multiple injections (n = 3 to 5) per sam-
ple and ranged from ± 3.1 to 6.8 µM for the range of
concentrations found in the York. 

Bacterial biomass and activity: Subsamples (10 ml)
for bacterial abundance were preserved with 0.2 µm
filtered 25% glutaraldehyde diluted to a final concen-
tration of 2%. Bacterial abundance for August 1999
was determined by acridine orange epifluorescence
microscopy (Hobbie et al. 1977) with a Zeiss Axiophot
microscope. Duplicate slides were counted for each
treatment at each sampling time, with a minimum
of 350 cells counted per slide. Bacterial cell numbers
for April and July 2000 samples were enumerated
using a Becton-Dickinson FacsCalibur benchtop flow-
cytometer and the nucleic acid stain Syto-13 following
the methods of del Giorgio et al. (1996). Bacterial cells
and microspheres were separated in a log–log
cytogram of green fluorescence intensity and side
scatter. Samples were run for 30 s or until a minimum
of 20 000 events was counted. Bacterial cell numbers in
the sample were calculated using microspheres as an
internal standard. Previous work by del Giorgio et al.

(1996) has shown a strong agreement between
cytometric and epifluorescence counts. 

Bacterial productivity was measured by 3H-leucine
(Kirchman et al. 1985) incorporation as modified by
Smith & Azam (1992). A sample aliquot (1.7 ml) was
added to a screw-top microcentrifuge tube, followed
by addition of 3H-leucine at saturating concentrations
(40 nM, Schultz et al. 2003). Procedural blanks con-
sisted of simultaneous additions of sample water, 3H-
leucine, and 100 µl 100% trichloroacetic acid (TCA).
Triplicate live samples and a single blank were run for
each assay. Tubes were incubated in the dark at in situ
temperatures for approximately 1 h and then termi-
nated by the addition of 100 µl of 100% TCA. Samples
were radioassayed in a liquid scintillation counter
(Wallac, Model 1409). 

Data analysis. Data were imported into JMP 5.0.1
(SAS Institute) and an analysis of variance (2-way
ANOVA) was used to examine statistical differences
between sunlight-exposed and dark treatments and
with salinity (with the exception of BGE, see ‘Results’,
4th subsection). Tukey’s multiple comparison test was
used to conduct pairwise comparisons between sites.
Statistical differences in BGE were calculated only
between sunlight-exposed and dark treatments (1-way
ANOVA). Unless otherwise noted, all confidence inter-
vals are expressed at the 95% (p = 0.05) level.

RESULTS 

Water column characteristics

Water samples along the salinity continuum of the
York River estuary were variable with respect to nutri-
ent and DOM concentrations (Table 1) and sources.
Chlorophyll a (chl a) was uniformly low at all sampling
times at the freshwater site (~ 4 to 5 µg l–1), and
maximal levels (29 µg l–1) were observed at the mid-
salinity site in April 2000, corresponding with peak
annual streamwater discharge (Table 1). Low NH4

+

and PO4
3– (0.4 and 0.16 µM, respectively) for the fresh-

water site coincided with minimum discharge in
August 1999. Concentrations of DOC varied between
~240 and 520 µM and generally decreased seaward
(Table 1). Elemental ratios of DOC:DON ranged from
~13 to 22 and were lowest at the mouth of the estuary
in July 2000 (Table 1).

DOM remineralization

Dark and sunlight-exposed treatments from all York
sites exhibited no significant post-exposure differ-
ences (p > 0.05) in DOC, NH4

+ and PO4
3– as a result of
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sunlight-induced abiotic effects (Fig. 2A to C, respec-
tively).

No differences within analytical error were de-
tected in DON and DOP metabolism between light vs.
dark treatments from all seasons and locations (e.g.
Figs. 3B,C & 4B,C). Time course incubations of bac-
terial decomposition of DOM from the freshwater site
in August 1999 (Fig. 3A) indicated that light and dark
DOC losses were indistinguishable up to Day 7, then
~8 µM additional DOC was consumed in the light

treatment. DOC was utilized at mean rates of 0.7 (±0.3)
µM d–1 and 1.4 (±0.3) µM d–1 over 14 d in light and
dark treatments, respectively (Table 2). No significant
differences in (NOx) concentrations were observed
between light and dark incubations (Fig. 3E). How-
ever, net production of NH4

+ (0.7 µM) occurred in dark
treatments (Fig. 3D), and a small (0.02 µM) but signifi-
cant (p < 0.05) production of PO4

3– (Fig. 3D,F). In com-
parison, NH4

+ production decreased by ~80% (p <
0.01) in sunlight-exposed treatments (Fig. 3D). No net
production of PO4

3– was observed in the light
treatments.

In April 2000 (Table 2, Fig. 4A), a 40% increase in
DOC utilization was observed in light treatments at the
mid-salinity site by the end of the experiment. Mean
rates of DOC utilization for dark (2.9 µM d–1) and light-
exposed treatments (3.9 µM d–1) in April were more
than 2 times greater than their August counterparts.
While there were no significant light vs. dark differ-
ences in DON and DOP over the time course, increases
in both DON and DOP were observed during incuba-
tion (Fig. 4B,C). Concomitant with this increase in
DON and DOP was a decline in all inorganic nutrients
(Fig. 4D to F). Production of NH4

+ and PO4
3– in light

relative to dark treatments was significantly reduced
(p < 0.05, Fig. 4D,F).

In July 2000, rates of DOC utilization at the
head of the estuary (1.4 and 4.0 µM d–1 for dark- and
light-exposed treatments, respectively) were the
highest freshwater rates across all sampling periods.
In sunlight-exposed treatments both the rate (4.0 µM
d–1) and percentage (49%) of DOC utilization was
more than 2 times greater than the dark treatment
(Table 2). Initial concentrations of NH4

+ (0.5 µM)
were comparable to the August sampling time period
(0.4 µM) (Table 1). There were no significant light vs.
dark differences in DON and DOP over the time
course; however, there was a significant decrease in
NH4

+ production in light-exposed relative to dark
treatments (Table 3).

Bacterial production and growth 

Estimates of bacterial net production rates, calcu-
lated from changes in bacterial abundances over 7 d,
were significantly (p < 0.05) lower in light relative to
dark treatments from the freshwater and intermediate
salinity sampling locations in August 1999 (Table 3).
Net production rates were not significantly different
between light and dark treatments at any of the sam-
pling locations in April 2000. In July 2000 there was a
significant (p < 0.05) increase in net production rates in
light-exposed treatments from the freshwater end-
member.
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Relative bacterial production estimates based on
3H-leucine incorporation rates in light relative to
dark treatments showed significant differences
between the April and July 2000 sampling periods
(Table 3). In July 2000, there was a 76 to 152%
increase (p < 0.01) in integrated bacterial production
in light treatments relative to dark over the initial
7 d incubation period (Table 3). In 2 of the 3 July
experiments a corresponding increase in the cell-
specific incorporation rate was observed with the
increase in integrated production (Table 3). Although
a 76% increase (p < 0.0001) in integrated production
in light-exposed treatments was measured at the
mouth of the York in July, there was no correspond-
ing response in the specific incorporation rate
(Table 3). In April, no significant differences were
found in integrated production, nor were specific
incorporation rates significantly altered at the fresh-
water and mid-salinity sites. However, a significant
reduction in the specific incorporation rate was
measured at the most saline site (Table 3).

Impact of sunlight exposure of DOM on
BGE

Estimates of BGE calculated from in-
creases in bacterial cell numbers are
summarized in Table 3. We note that syste-
matic differences in cell size resulting from
changes in nutrient and C quality along the
salinity gradient may result in variations in
the C content per cell. Accordingly we
compare BGE only between light and dark
treatments where nutrient and DOC con-
centrations are comparable. Significantly
lower bacterial cell abundance in light-
exposed relative to dark treatments in
August resulted in significant decreases
in BGE of ~40 and 70% for the freshwater
and mid-salinity location, respectively
(Table 3). BGE in light relative to dark treat-
ments was positively correlated (r2 = 0.38,
p < 0.01) with in situ NH4

+ concentrations
(Fig. 5). Concomitant with declines in BGE
was a significant reduction in inorganic
nutrient remineralization (Table 3). Similar
findings of significant declines in BGE in
light-exposed relative to dark treatments
and concurrent decreases in the bacterial
production of either NH4

+ or PO4
3– were

found for the high-salinity location in April
and the freshwater end-member in July
(Table 3).

DISCUSSION

The present study examined the effects of sunlight-
exposure on microbial DOM decomposition and bacte-
rial metabolism in a temperate estuary. The integrated
impact of photolytic processes is complex in estuaries
due to the varying proportion of humic and algal
sources, inorganic nutrients inputs, and DOM bioreac-
tivity. For example, it has been hypothesized that the
net effect of photochemically altered DOM on bacterial
production and growth is related to the relative pro-
portions of reactive algal-derived DOM and allochtho-
nous humic DOM (Benner & Biddanda 1998, Tranvik &
Bertilsson 2001, Mopper & Kieber 2002, Moran &
Covert 2003).  Thus, the impact of photochemistry on
bacterial C processing may be complicated not only by
multiple estuarine OM sources but also through addi-
tional metabolic constraints (inorganic nutrients, cellu-
lar maintenance costs, del Giorgio & Cole 2000) that
regulate the balance between bacterial respiration and
production (i.e. BGE).  By following both DOM degra-
dation and bacterial metabolic parameters (e.g. bacte-
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rial abundance, production, BGE) we may better dif-
ferentiate the potential positive and negative photo-
chemical feedbacks on OM turnover and fate (pro-
duction vs. respiration) by heterotrophic bacteria.
Our findings for the York system suggest a scenario
where sunlight in general increases DOC utilization,
decreases inorganic nutrient remineralization and ulti-
mately decreases the efficiency of C utilization (BGE).

Effects of sunlight on DOM utilization
by estuarine bacteria

Between ~5 and 17% of the DOC was utilized in
light-exposed incubations from along the York salinity
gradient, representing up to a 2-fold increase in the
bioreactive DOC pool relative to dark treatments
(Table 2). The rate of DOC utilization in dark treat-
ments declined relative to light treatments after 7 d
(Figs. 3A & 5A). The lag time (7 d) prior to the diver-
gence of DOC decomposition in light vs. dark treat-

ments supports previous findings by Miller
& Moran (1997) attributing an increase in
DOC bioavailability to photochemically
induced structural modifications in humic
or HMW DOC, rather than solely by direct
photochemical cleavage of DOM to LMW
compounds. Thus photo-sensitization of
DOM may confer greater bioreactivity over
timescales of days to weeks. However, this
prolonged enhancement in DOM bioreac-
tivity may not be detected by short-term
(hours to days) bacterial production mea-
surements. 

During periods of lower river flow and
longer water residence time (August 1999
and July 2000, Table 1), the increase in
DOC utilization in light-exposed relative to
dark treatments from the freshwater and
intermediate salinity sites was significantly
(p < 0.05) greater at the high-salinity site.
DOC degradation at the high salinity site in
light vs. dark treatments was greatest
during the higher flow period of April
when riverine/humic OM tends to be
more homogenously mixed along the estu-
ary (McCallister 2002). Humics are con-
densed organic compounds, highly colored
due to their high degree of aromaticity and
strongly light adsorbing relative to their
autochthonous counterparts (Miller 1998).
The capacity of humic substances for light
absorption drives their photochemical reac-
tivity (Miller 1998). Thus, because our sam-
pling period coincided with the 10 yr mini-

mum in river discharge and correspondingly low
riverine/humic OM input (McKnight & Aiken 1998),
our estimates of the photochemical impact on DOC de-
gradation (Table 2) are potentially underestimates for
average flow years.

In previous studies, sunlight-induced condensation
reactions were thought to be responsible for significant
increases in the formation of refractory DOC and
decreased bioavailability of algal-derived DOC (Keil &
Kirchman 1994, Naganuma et al. 1996, Tranvik &
Kokalj 1998). Despite the more than 6-fold differences
in chl a concentration across sampling sites and times
(Table 1), DOC degradation was an average of only
2 fold greater in sunlight-exposed treatments than
non-irradiated treatments (see Table 2 for significance
levels). Our findings therefore suggest that either
riverine DOC was relatively undiluted by reactive
algal sources of DOC or that the stimulatory effect
of sunlight on DOC reactivity overwhelmed any
inhibitory effects that may have occurred. Further-
more, chl a normalized to total DOC (chl a/DOC) at
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each sampling site was not correlated
with bacterial production estimates in
light vs. dark treatments (p > 0.05, data
not shown). Chl a/DOC did, however,
show a weak but significant negative
correlation with DOC utilization in
light-exposed relative to dark
treatments (r2 = 0.31, p ≤ 0.01). Like
other estuarine systems, the York is
unique in that bacterial production is
decoupled from algal sources (Schultz
et al. 2003). Accordingly, the use of
indirect parameters (e.g. bacterial
production, chl a concentration) may
not accurately reflect the role of photo-
chemistry in C flow.

While rates of DOC decomposition
were significantly greater in pre-irradi-
ated vs. dark treatments (Table 2), no
corresponding change in microbial uti-
lization of the associated DON and
DOP fractions was observed (Figs. 3B,C
& 4B,C). These findings suggest that
the reactivity (both photochemical and
bacterial) of DON and DOP to in this
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Date Salinity Treatment Net prod. rate Integrated Leu Sp. inc. rate BGE Direction of Direction of
(cells l–1 d–1 incorporation (10–20 mol (%) significant significant

× 10–8) (nmol Leu l–1) Leu cell–1) changes in changes in
NH4

+ PO4
3–

Aug 99 S = 0 Light 1.6 (0.04) n.d. n.d. 18.8 (3.9) (–) (–)
Dark 2.3 (0.02) n.d. n.d. 32.8 (3.7)

S = 10 Light 2.1 (0.3) n.d. n.d. 19.8 (4.2) (–) n.s.
Dark 2.8 (0.1) n.d. n.d. 65.1 (14.0)

Apr 00 S = 0 Light 4.2 (0.9) 32.7 (34.7) 7.9 (4.1) 18.0 (11.1) (+) n.s.
Dark 2.8 (2.1) 13.9 (10.5) 9.5 (2.5) 44.4 (18.6)

S = 11 Light 4.0 (1.4) 59.5 (13.8) 15.8 (4.1) 27.8 (24.5) (–) (–)
Dark 3.5 (0.2) 86.7 (46.2) 16.7 (3.4) 22.1 (9.7)

S = 22 Light 1.8 (2.2) 10.1 (1.7) 5.3 (0.4) 24.2 (5.0) n.s. (–)
Dark 3.4 (1.5) 10.5 (1.2) 10.2 (0.8) 67.9 (0.3)

Jul 00 S = 0 Light 13.4 (4.3) 489.5 (80.2) 11.9 (4.4) 34.1 (14.8) (–) n.s.
Dark 7.1 (2.4) 246.4 (17.2) 7.3 (0.6) 85.7 (2.3)

S = 10 Light 4.2 (0.3) 247.2 (32.4) 99.6 (8.4) 35.5 (8.8) n.s. (+)
Dark 5.4 (2.9) 98.0 (21.6) 45.3 (12.9) 32.2 (10.2)

S = 20 Light 2.8 (1.5) 119.3 (3.3) 5.0 (0.4) 24.4 (15.1) n.s. n.s.
Dark 1.6 (1.7) 67.6 (3.7) 4.1 (1.1) 23.0 (27.5)

Table 3. Summary of bacterial net production rate, integrated bacterial production, BGE and inorganic nutrient production for
York River estuary samples collected in August 1999, April and July 2000. Net production rate (Net prod. rate) was calculated
from increases in cell abundance over time. Integrated production was calculated from estimates of 3H-leucine incorporation
integrated over 7 d (daily intervals) for April and July 2000 by means of trapezoidal integration. Specific incorporation rate 
(Sp. inc. rate) was calculated by measuring 3H-leucine incorporation per cell. BGE was calculated from net cell production and
DOC decline over a 7 d time interval. Significance was calculated by ANOVA (p <0.05) and is denoted by (–) or (+) to indicate
values for light-exposed treatments that are either smaller or greater than dark treatments. Boldface italics denote significant dif-
ferences (p <0.05) in light vs. dark treatments using ANOVA. Numbers in parentheses are ±1 SD of mean. n.d.: not determined. 

n.s.: results that are not significant

Date Salinity Treat- DOC remin- Total DOC re- Rate of DOC util-
ment eralized (µM) mineralzed (%) ization (µM d–1)

Aug S = 0 Light 19 (1.7) 4.8 (0.4) 1.4 (0.1)
99a Dark 10 (2.2) 2.5 (0.5) 0.7 (0.2)

S = 10 Light 26 (0.9) 6.5 (0.2) 1.9 (0.1)
Dark 16 (0.7) 3.9 (1.4) 1.1 (0.1)

Apr S = 0 Light 28 (20.1) 6.6 (4.3) 1.9 (1.2)
00 Dark 15 (2.5) 3.5 (0.6) 1.1 (0.2)

S = 11 Light 67 (6.9) 17.0 (3.5) 3.9 (0.6)
Dark 48 (3.4) 12.8 (0.8) 2.9 (0.6)

S = 22 Light 21 (4.4) 7.7 (1.7) 1.1 (0.04)
Dark 7 (2.0) 2.5 (0.7) 0.4 (0.1)

Jul S = 0 Light 49 (3.1) 11.0 (0.7) 4.0 (0.2)
00 Dark 21 (1.4) 4.5 (0.4) 1.4 (0.2)

S = 10 Light 35 (7.2) 6.7 (1.3) 2.2 (0.1)
Dark 20 (15.1) 3.9 (2.9) 0.9 (0.2)

S = 20 Light 14 (6.3) 5.3 (2.3) 0.8 (0.2)
Dark 11 (2.4) 4.6 (1.0) 0.7 (0.2)

aDOC data from high-salinity site is unavailable due to contamination

Table 2. DOC losses in York River estuary microbial utilization assays. Numbers
in parentheses are ±1 SD of mean. Boldface italics denote significant differences
(p <0.05) in light vs. dark treatments using ANOVA. Total amount of DOC
remineralized was calculated for the duration of the experiments as follows:
August 1999 (14 d); April and July 2000 (28 d). The rate of DOC utilization was 

calculated over the first 14 d of all incubations
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system may be uncoupled from that of DOC. Effects of
sunlight on DON and DOP reactivity have been exam-
ined in a limited number of previous studies. For exam-
ple, Bertilsson et al. (1999), in agreement with the pre-
sent study, found that sunlight exposure increased the
bioavailable pool of DOC from a boreal watershed,
while DON remained unaffected. Wiegner & Seit-
zinger (2001) further determined that light-exposure of
agricultural and forest run-off did not alter the micro-
bial reactivity of DON. Thus, photochemical enhance-
ment of DOC reactivity without a concomitant increase
in DON and DOP reactivity may result in a greater
bacterial demand for inorganic nutrients.

Impact of sunlight-exposed DOM on bacterial
metabolism and inorganic nutrient demand

DOC decomposition was decoupled from bacterial
production in light vs. dark incubations (Table 3;
Tranvik & Bertilsson 2001). This variability may
require a closer examination of the geochemical,
microbial and photochemical factors (and their
synergism) controlling OM turnover in aquatic, and
especially, estuarine environments (Mopper & Kieber
2002).  For example, although there were no sig-
nificant changes in bacterial production in April 2000
(S = 10) in light-exposed treatments (Table 3), cor-
responding bacterial DOC decomposition showed
increased reactivity (Table 3, Fig. 4A) after 7 d. Bacte-
rial production and DOC utilization in light relative to
dark treatments were independent (r2 = 0.08, p >
0.05), further suggesting that impacts of photo-
chemistry on bacterial growth and total C flow may
be uncoupled. 

The majority of previous studies assessing photo-
chemical effects on bacterial DOC decomposition have
not addressed the potential differential partitioning of
DOC to anabolic (i.e. production) and catabolic path-
ways (i.e. respiration; Mopper & Kieber 2002). Varia-
tions in bacterial metabolic expenditures (i.e. as mani-
fested in BGE) may significantly alter the ecological
fate of photochemically altered DOM (i.e. retained
within the system or exported to the atmosphere). The
most important variables thus far identified as
affecting BGE in aquatic systems include inorganic
nutrients, C:N of substrate, cellular maintenance
cost, oxidation state of DOM, and temperature (see
review by del Giorgio & Cole 2000). However, at the
cellular level there are 2 primary controls on BGE:
(1) the quantity and quality of organic and inorganic
substrates and (2) maintenance cost (del Giorgio &
Cole 2000).

In the York River, the impact of sunlight-exposure on
BGE was positively correlated with in situ NH4

+ con-
centrations (r2 =0.38, p < 0.01, Fig. 5), suggesting that
the net influence of photolytic reactions on C flow is
partially dependent on NH4

+ availability. Significant
decreases in BGE in sunlight vs. dark treatments for
August 1999 (Table 3) at both locations coincided with
a period of low river flow and depleted stocks of NH4

+

and PO4
3 (Table 1). Furthermore, the increase in DOC

reactivity was not balanced by a corresponding in-
crease in DON or DOP degradation (Fig. 4B,C). In
April 2000, inorganic nutrient concentrations were
several times greater than August 2000 at the zero and
mid-salinity sites (Table 1). As shown in Fig. 4, DOC
was rapidly metabolized in April, and was paralleled
by a corresponding uptake of inorganic nutrients. No
significant difference in BGE was discernible between
light and dark incubations at the zero and mid-salinity
sites (Table 3), presumably because starting con-
centrations of inorganic nutrients were able to balance
the increased availability of DOC in contrast to August
1999 incubations. However, at the high-salinity end-
member, ambient inorganic nutrients were signi-
ficantly lower in comparison to the mid- and zero-
salinity sites (Table 1), and the 65% enhancement in
DOC utilization (Table 2) in light vs. dark treatments
was not paralleled by an analogous increase in bac-
terial biomass, but resulted in decreased growth
efficiency (Table 3).

Previous findings have suggested that BGE may be
controlled to a greater extent by inorganic nutrient
availability than by DOC supply in riverine and coastal
systems (Benner et al. 1995, Zweifel et al. 1993). One
possible explanation for this relationship between BGE
and nutrients is that the light-driven production of re-
active DOC compounds necessary for biomass produc-
tion must be stoichiometrically balanced by available
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sources of N and P in order to meet cellular require-
ments. However, neither the potential photolytic subsidy
of NH4

+ and PO4
3– (Fig. 2) nor enhanced reactivity of

DON and DOP (Figs. 3B,C & 4C) provided this stoichio-
metric equivalent in the York. Consequently, the respi-
ratory demands of bacteria may have increased in the
absence of the requisite N and P to construct biomass.
Under conditions of inorganic nutrient limitation, bacte-
ria may shift their metabolism such that excess DOC is
catabolized, thus increasing their respiration rate and
decreasing biomass synthesis or BGE (Hessen 1992). The
net effect of sunlight in this system may therefore have
been the transient formation of ‘excess’ reactive DOC
(Table 2), thus diminishing the role of bacteria as
remineralizers of inorganic nutrients (Table 3). 

Acknowledgements. We are grateful to M. Schrope, P. Ray-
mond, C. Pollard, E. Keesee and A. N. Loh for field and labo-
ratory assistance. We would also like to thank P. del Giorgio
and J. Apple for flow cytometry measurements. We acknowl-
edge the Smithsonian Environmental Research Center,
Edgeville, Maryland, in partnership with NIST for UV irradi-
ation values. This manuscript was greatly improved by the
thoughtful critiques of several anonymous reviewers. This
work was supported by grants from NSF (OCE-9810669,
OCE-0327423) and U.S. Department of Energy Ocean Mar-
gins Program (FG05-94ER61833) to J.E.B. and NSF (DEB-
0073243) to S.L.M.

LITERATURE CITED

Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA,
Thingstad F (1983) The ecological role of water-column
microbes in the sea. Mar Ecol Prog Ser 10:257–263

Bano N, Moran MA, Hodson RE (1998) Photochemical forma-
tion of labile organic matter from two components of dis-
solved organic carbon in a freshwater wetland. Aquat
Microb Ecol 16:95–102

Benner R, Biddanda B (1998) Photochemical transformation of
surface and deep marine dissolved organic matter: effects
on bacterial growth. Limnol Oceanogr 43:1373–1378

Benner R, Opsahl S, Chin-Leo G Jr, Forsberg B (1995) Bacter-
ial carbon metabolism in the Amazon River system. Limnol
Oceanogr 40:1262–1270

Bertilsson S, Stepanauskas R, Cuadros-Hansson R, Granéli W,
Wikner J, Tranvik L (1999) Photochemically induced
changes in bioavailable carbon and nitrogen pools in a
boreal watershed. Aquat Microb Ecol 19:47–56

De Haan H (1993) Solar UV-light penetration and pho-
todegradation of humic substances in peaty lake water.
Limnol. Oceanogr. 38:1072–1076

del Giorgio PA, Cole JJ (2000) Bacterial energetics and
growth efficiency. In: Kirchman D (ed) Microbial ecology
of the oceans. Wiley-Liss, New York, p 289–325

del Giorgio P, Bird DF, Prairie YT, Planas D (1996) Flow cyto-
metric determination of bacterial abundance in lake
plankton with the green nucleic acid stain SYTO. Limnol
Oceanogr 41:783–789

Hedges JI, Eglinton G, Hatcher PG, Kirchman D and 8 others
(2000) The molecularly-uncharacterized component of
nonliving organic matter in natural environments. Org
Geochem 31:945–958

Hobbie JE, Daley RJ, Jasper S (1977) Use of Nucleopore filters
for counting bacteria by epifluorescence microscopy. Appl
Environ Microbiol 33:1225–1228

Jahnke RA, Craven DB (1995) Quantifying the role of hetero-
trophic bacteria in the carbon cycle: a need for repiration
rate measurements. Limnol Oceanogr 40:436–441

Keil RG, Kirchman DL (1994) Abiotic transformation of labile
protein to refractory protein in seawater. Mar Chem 45:
187–196

Kirchman DL, Rich JH (1997) Regulation of bacterial growth
rates by dissolved organic carbon and temperature in the
equatorial Pacific Ocean. Microb Ecol 33:11–20

Kirchman D, K’nees E, Hodson R (1985) Leucine incorpora-
tion and its potential as a measure of protein synthesis by
bacteria in natural aquatic systems. Appl Environ Micro-
biol 49:599–607

Koroleff F (1983) Determination of nutrients. In: Grasshoff K,
Ehrhardt M, Kremling K (eds) Methods of seawater ana-
lysis. Verlag Chemie, Weinheim, p 125–187

Lee S, Fuhrman JA (1987) Relationships between biovolume
and biomass of naturally derived marine bacterioplank-
ton. Appl Environ Microbiol 53:1298–1303

Lindell MJ, Granéli W, Trankik L (1995) Enhanced bacterial
growth in response to photochemical transformation of
dissolved organic matter. Limnol Oceanogr 40:195–199

Lindell M, Granéli W, Tranvik LJ (1996) Effects of sunlight on
bacterial growth in lakes of different humic content.
Aquat Microb Ecol 11:135–141

McCallister SL (2002) Organic matter in the York River Estu-
ary, Virginia: an analysis of potential sources and sinks.
PhD dissertation, The College of William and Mary,
Gloucester Point, VA

McKnight DM, Aiken GR (1998) Sources and age of aquatic
humus. In: Hessen DO, Tranvik LJ (eds) Aquatic humic
substances. Springer-Verlag, Berlin, p 9–39

Miller WL (1998) Effects of UV radiation on aquatic humus:
photochemical principles and experimental considera-
tions. In: Hessen DO, Tranvik LJ (eds) Aquatic humic sub-
stances. Springer-Verlag, Berlin, p 125–143

Miller WL, Moran MA (1997) Interactions of photochemical
and microbial processes in the degradation of refractory
dissolved organic matter from a coastal marine environ-
ment. Limnol Oceanogr 42:1317–1324

Mopper K, Kieber DJ (2002) Photochemistry and the
cycling of carbon, sulfur, nitrogen and phosphorus. In:
Hansell DA, Carlson CA (eds) Biogeochemistry of marine
dissolved organic matter. Academic Press, Orlando, FL,
p 455–508

Moran MA, Covert JS (2003) Photochemically mediated
linkages between dissolved organic matter and bacte-
rioplankton. In: Findlay SEG, Sinsabaugh RL (eds)
Aquatic ecosystems: interactivity of dissolved organic
matter. Academic Press, San Diego, CA, p 243–262

Moran MA, Sheldon J, Wade M, Zepp RG (2000) Carbon loss
and optical property changes during long-term photo-
chemical and biological degradation of estuarine dis-
solved organic matter. Limnol Oceanogr 45:1254–1264

Naganuma T, Konishi S, Inoue T, Nakane T, Sukizaki S (1996)
Photodegradation or photoalteration? Microbial assay of
the effect of UV-B on dissolved organic matter. Mar Ecol
Prog Ser 135:309–310

Obernosterer I, Sempere R, Herndl GJ (2001) Ultraviolet
radiation induces reversal of the bioavailability of 
DOM to marine bacterioplankton. Aquat Microb Ecol 
24:61–68

Pomeroy LR (1974) The ocean’s food web, a changing para-
digm. BioScience 24:499–504

34



McCallister et al.: Effects of sunlight on DOM decomposition

Raymond R, Bauer J (2001) DOC cycling in a temperate estu-
ary: a mass balance approach using natural 14C and 13C
isotopes. Limnol Oceanogr 46:655–667

Reche I, Pace ML, Cole JJ (1998) Interaction of photobleach-
ing and inorganic nutrients in determining bacterial
growth on colored dissolved organic carbon. Microb Ecol
36:270–280

Schultz GEJ, White EDI, Ducklow HW (2003) Bacterioplank-
ton dynamics in the York River estuary: primary influence
of temperature and freshwater inputs. Aquat Microb Ecol
30:135–148

Smith D, Azam F (1992) A simple and economical way for
measuring bacterial protein synthesis rates in seawater
using 3H-leucine. Mar Microb Food Webs 6:107–114

Tranvik LJ, Bertilsson S (2001) Contrasting effects of solar UV
radiation on dissolved organic sources for bacterial
growth. Ecol Lett 4:458–463

Tranvik L, Kokalj S (1998) Decreased biodegradability of
algal DOC due to interactive effects of UV radiation and
humic matter. Aquat Microb Ecol 14:301–307

Tranvik LJ, Olofsson H, Bertilsson S (2000) Photochemical
effects on bacterial degradation of dissolved organic mat-
ter in lake water. In: Bell CR, Brylinsky M, Johnson-Green
PC (eds) Microbial biosystems: new frontiers. Proc 8th Int
Symp Microb Ecol (1998) Halifax, Nova Scotia

Wiegner TN, Seitzinger SP (2001) Photochemical and micro-
bial degradation of external dissolved organic matter
inputs to rivers. Aquat Microb Ecol 24:27–40

Ziegler S, Benner R (2000) Effects of solar radiation on dis-
solved organic matter cycling in a subtropical seagrass
meadow. Limnol Oceanogr 45(2):257–266

Zweifel UL, Norrman B, Hagström Å (1993) Consumption of
dissolved organic carbon by marine bacteria and demand
for inorganic nutrients. Mar Ecol Prog Ser 101:23–32

35

Editorial responsibility: Jed Fuhrman, 
Los Angeles, California, USA

Submitted: October 20, 2004; Accepted: February 21, 2005 
Proofs received from author(s): July 13, 2005


