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INTRODUCTION

Oceanic dissolved organic matter (DOM) is one of
the largest active reservoirs of reduced carbon at the
earth’s surface (Hedges et al. 1997). Seawater DOM
consists of a wide array of C-, N-, and P-containing
organic compounds (see reviews by Benner 2002,
Bronk 2002, Karl & Bjorkman 2002) ranging from
highly refractory, aged humic material which is turned
over on the order of thousands of years (Williams &

Druffel 1987, Bauer et al. 1992, Cherrier et al. 1999,
Bauer 2002), to quasi-refractory material having
turnover times of months to years (Ogura 1972, 1975,
Søndergaard et al. 2000), to highly reactive and
recently produced components that cycle on the order
of hours to days (see Carlson 2002 for a thorough
review of this topic). Surface seawater bulk DOM may
therefore be viewed as an assemblage of co-occurring
organic components possessing continua in both re-
activity and age.
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ABSTRACT: The majority of bacterial growth and respiration in the upper ocean is thought to result
from coupling between microheterotrophic populations and the reactive soluble components of
planktonic primary and secondary production. However, we know little about the potential turnover
of these components and the concomitant growth of bacteria under conditions of intermittent or
transient inputs of natural dissolved organic matter (DOM) compared to quasi-steady state, low DOM
conditions. The present study evaluated the short-term (~3 d) rates and net extents of utilization (as
measured losses) of selected constituents of plankton-derived DOM (DOMPD) by indigenous
bacterioplankton populations in eastern North Pacific surface waters, and assessed bacterial growth
efficiencies (BGE) during temporarily non-limiting DOM conditions. Approximately 28% of the
starting dissolved organic carbon (DOC) and 34% of the dissolved organic nitrogen (DON) in incu-
bations supplemented with DOMPD could be characterized as dissolved free and combined amino
acids (DFAA and DCAA, respectively) and monosaccharides (MCHO). Up to 31% of the added DOC
and 26% of the added DON was utilized in +DOMPD incubations; however, BGE under supplemented
conditions (~4 to 5%) was similar to estimates for ambient oligotrophic waters. Of the net DOC
consumed, 75% was accounted for by DFAA (which alone was 61% of the total), DCAA, and MCHO,
while the remaining non-characterizable 25% may represent an inherent or rapidly formed compo-
nent of lower reactivity. In contrast to DOC, net DON utilization was supported entirely by DFAA and
DCAA, with DFAA alone accounting for the vast majority (up to 99%). Together, DCAA and MCHO
accounted for only ~13% of the DOC consumed and ≤~5% of the DON (i.e. as DCAA) utilized. These
findings are consistent with bacterial growth in the open ocean being controlled predominantly by
inputs of a small fraction of bulk DOM, and further suggest that bacteria may function primarily as
remineralizers even during transient periods where labile DOC and DON is relatively available.
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The relatively small degree of variability in surface
ocean DOM concentrations (i.e. bulk dissolved organic
carbon and nitrogen [DOC and DON] as well as some
component compound groups) both spatially and tem-
porally suggests that DOM production and consump-
tion processes are ultimately coupled. As a result, the
‘background’ standing stock of bulk DOM may be
dominated by constituents of lower biological reactiv-
ity remaining after (1) the selective removal of more
reactive components by bacterial heterotrophs (Kirch-
man et al. 1991, Noorman et al. 1995, Carlson & Duck-
low 1996, Cherrier et al. 1996, Amon et al. 2001, Carl-
son et al. 2002), and (2) the bacterially mediated
formation of refractory DOM from previously labile
DOM (Brophy & Carlson 1989, Tranvik 1993, Heis-
senberger et al. 1996, Ogawa et al. 2001). For example,
using seawater cultures Carlson & Ducklow (1996)
found that bacterial growth in surface Sargasso Sea
waters was stimulated only when DOC concentrations
became elevated above ambient mixed-layer back-
ground concentrations (67 to 69 µM C). They also sug-
gested that the ‘surplus’ DOM, while only ~6 to 7% of
total mixed layer DOM, represented the component of
bulk DOM that was utilized for bacterial growth and
maintenance.

When evaluating the potential turnover of DOM in
pelagic systems, consideration of such factors as sub-
strate quality and reactivity (e.g. C:N, molecular
makeup and weight, and age; Goldman et al. 1987,
Williams 2000) may be especially important due to the
oftentimes large energetic constraints placed on
indigenous bacterial populations (Cherrier et al. 1996,
Morita 1997, del Giorgio & Cole 1998, 2000, Carlson et
al. 2002, del Giorgio & Duarte 2002). Both temporal
and spatial variability in substrate quality and avail-
ability may have an important influence on the physio-
logic status and phylogenetic makeup of pelagic bacte-
rial communities (Jørgensen 1987, Cherrier et al. 1996,
Weiss & Simon 1999, Cottrell & Kirchman 2000, Carl-
son et al. 2002). Bacterial cycling of reactive DOM
constituents is based largely on studies of analytically
recognizable compounds such as amino acids (e.g.
Williams et al. 1976, Keil & Kirchman 1993, 1999,
Rosenstock & Simon 1993, 2001, Middelboe et al. 1995;
see Kirchman 2003 for review) or carbohydrates (e.g.
see Jørgensen & Jensen 1994, Tranvik & Jørgensen
1995, Hanisch et al. 1996, Rich et al. 1996, Jørgensen et
al. 1998, Skoog et al. 1999, Kirchman 2003). However,
to assess the contributions of various C- and N-
containing constituents, their concurrent utilization
along with that of DOM must be followed.

A growing body of evidence suggests that the
soluble products of primary and secondary production
are key for sustaining the microbial loop in oceanic
systems. However, much less is known about the

temporal nature of these inputs and the responses of
microbial communities to intermittent or transient
forms of reactive DOM (see, e.g., Hansell et al. 1995)
resulting from such factors as exudation and excretion
by primary and secondary producers (Baines & Pace
1991, Kirchman et al. 1991, Nagata 2000, Søndergaard
et al. 2000, Carlson 2002 and references therein), graz-
ing activities (Jumars et al. 1989, Nagata & Kirchman
1992, Nagata 2000, Steinberg et al. 2000), and viral
lysis of photoautotrophs (Suttle 1994, Fuhrman 1999;
see Wommack & Colwell 2000 for a review). The over-
all objectives of the present study were to evaluate the
potential rates and extents of utilization of specific con-
stituents of a transient pulse of fresh, plankton-derived
DOM by indigenous bacterial populations in surface
ocean waters, and how each of these constituents con-
tributed to overall DOC and DON turnover. Given the
carbon, nutrient, and energy constraints under which
heterotrophic bacteria often subsist in oligotrophic
waters (Carlson & Ducklow 1996, Morita 1997, del
Giorgio & Cole 2000, Williams 2000), we hypothesized
that (1) N-enriched components would be preferen-
tially utilized relative to less enriched components due
to N-limitation in oligotrophic waters, and (2) bacteria
would be released from their typical degree of sub-
strate limitation when plankton-derived DOM was
available, thus allowing for proportionately greater
allocation of C and N toward biomass relative to
substrate remineralization. 

MATERIALS AND METHODS

Experimental design. Experiments were conducted
in July 1993 at a hemi-pelagic site (Stn M, 34° 50’ N,
123° 00’ W; water depth of ~4100 m) in the northeast
Pacific, ~220 km west of Point Conception, CA. The
southward-flowing California Current influences sur-
face productivity here (Michaelson et al. 1988, Smith et
al. 1988), resulting in the highest fluxes of particulate
organic carbon (POC) in early to mid-summer and a
smaller secondary maximum in late fall (Smith et al.
2001).

Shipboard time-series incubations were conducted
to assess how different soluble organic constituents of
the bulk plankton may support bacterial growth in
quasi-oligotrophic waters. Briefly, seawater was col-
lected from the chlorophyll a (chl a) maximum at 85 m
(Bianchi et al. 1998) using acid-cleaned 12 or 30 l Go-
Flo bottles. The seawater was gravity-filtered through
a pre-combusted GF/F filter (nominal pore size
~0.7 µm), to remove particles and bacterial grazers.
The filtered water was then distributed into 2 l acid-
cleaned polycarbonate incubation bottles. Because in
situ O2 concentrations could not be maintained with
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gravity filtration, unfiltered water for oxygen measure-
ment was dispensed directly into a series of pre-
combusted 60 ml BOD bottles (Wheaton). Thus,
reported changes in O2 concentration are potential
estimates of overall ‘micro-community’ (i.e. all micro-
organisms) respiration, rather than heterotrophic
bacterial respiration exclusively (Griffith et al. 1990).
However, earlier work indicated that nearly all of the
O2 utilization in these waters was due to the <0.8 µm
fraction (Cherrier et al. 1996, Cherrier 1997). Plankton-
derived DOM (DOMPD) was obtained from a zooplank-
ton-dominated assemblage from the cod end of a
335 µm Nitex mesh net after an 85 m depth evening
net tow. The assemblage was warmed to ~30°C, to
induce DOM release, and was then filtered through a
pre-combusted (525°C for 4 h) GF/F filter to remove
plankton debris and other particulates. The resultant
concentrate (DOC = 32 mM, total dissolved nitrogen
[TDN] = 7.2 mM) was stored at –20°C in a pre-com-
busted amber glass bottle until use (within 2 to 3 d).

Incubations were carried out in the dark at in situ
temperature (13 ± 0.5°C) following supplementation of
bottles with DOMPD (‘+DOMPD’) to give starting DOC
and DON concentrations of 230 µM C and 35 µM N,
respectively. The rationale for adding elevated DOMPD

was (1) to attempt to mimic episodic DOM release
reflective of bloom, grazing, or other events, (2) to
release bacteria from reactive DOC and DON limita-
tion, and (3) to ensure that starting concentrations of
individual DOMPD constituents were great enough to
detect changes over short time intervals (hours to
days). Experimental controls consisted of non-supple-
mented incubation bottles having mean ambient sea-
water DOC concentrations of 66 µM C and ambient
DON below detection. A series of BOD bottles either
supplemented with DOMPD to the same final concen-
trations as the 2 l bottles, or maintained at ambient
DOC and DON levels, were incubated in parallel with
the polycarbonate bottles. Triplicate polycarbonate
and BOD bottles for each treatment were monitored at
6 to 12 h intervals over 3 d for dissolved combined
amino acids (DCAA), dissolved free amino acids
(DFAA), dissolved monosaccharides (MCHO), nitrate
plus nitrate, ammonium, oxygen, and heterotrophic
protist and bacterial abundances. For purposes of net
mass balances, only initial and final concentrations of
DOC and DON were measured.

Analyses. Dissolved combined and free amino
acids: Subsamples from all incubations were pre-
filtered through 0.2 µm polycarbonate filters (Poretics)
under a sterile hood using an all-glass filtration appa-
ratus and collected into glass scintillation vials
equipped with acid-washed Teflon-lined closures and
stored at –20°C for subsequent analyses. All glass-
ware, filters, and other materials contacting the

samples were pre-combusted for 4 h at 550°C. Total
dissolved amino acids (TDAA, as DCAA + DFAA) and
corresponding blanks were determined following
vapor-phase hydrolysis as outlined by Tsugita et al.
(1987) as described in Keil & Kirchman (1991a). Both
TDAA and DFAA were quantified by reverse-phase
HPLC using modifications of the o-phthaldialdehyde
(OPA) method outlined by Lindroth & Mopper (1979),
with a buffering system and elution gradient modified
from Hill et al. (1979) as described by Shultz (1994),
and having a detection limit of better than1 pM. Sam-
ples were analyzed using a Shimadzu (Shimadzu
Instruments) HPLC system with a LPM 600 pump, RF
535 fluorescence detector, and 250 mm Adsorbosphere
column (Alltech). DCAA were estimated by subtract-
ing DFAA from TDAA concentrations following blank
correction of TDAA and DFAA.

Total amino acid concentrations were determined by
summing the concentrations of each individual amino
acid calculated using Pierce amino acid mixture H
(Pierce Biochemical) as the analytical standard. Proce-
dural blanks for DFAA and DCAA averaged 3 and
18 nM, respectively, while system blanks averaged
≤0.5 nM. Analytical replication was better than ~±1%
of the mean, while sample replication averaged ±8%
of the mean for both DFAA and DCAA. The elution
gradient used during HPLC analysis prohibited the
separation of glycine and threonine. α-amino butyric
acid (Sigma Chemical) was used as the internal stan-
dard. Average C and N contents for amino acids were
estimated by summing the respective molar equiva-
lents of C and N in each amino acid, and averaging
these values on a relative percentage basis of individ-
ual amino acid abundance to obtain conversion factors
for amino acids of 5 and 1.5 for C and N, respectively.

Dissolved monosaccharides: Monosaccharides
(MCHO) and corresponding blanks were quantified
spectrophotometrically as standard glucose equivalents
using the modified (Pakulski & Benner 1992) 3-methyl-
2-benzothiazolinoe hydrazone (MBTH) method of
Johnson & Sieburth (1977) and Johnson et al. (1981).
Blank absorbances were subtracted from all sample ab-
sorbances to correct for free aldehydes and turbidity,
and sample precision averaged ≤±10% for triplicate
analyses. A molar conversion factor for MCHO to
glucose-C equivalents of 6 was used.

DOC and TDN: DOC and TDN were measured using
modifications of the high temperature (680°C) flow-
through catalytic oxidation methods outlined by Bauer
et al. (1993) and Williams et al. (1993). Standard DOC
calibration curves were generated using both glucose
and CO2 gas, and DON calibration curves used EDTA,
urea, and NO gas. The resultant CO2 produced from
DOC oxidation was detected using a Beckman model
880 non-dispersive IR detector. Nitric oxide produced
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from TDN oxidation was detected using an Antek
(Houston TX) chemiluminescence detector. Mean
overall standard deviations for DOC and TDN were 3.5
and 0.5 µM, respectively. Nitrate and nitrite were
determined on a Thermo-Environmental Instruments
model 42 chemiluminescence NO-NO2-NOx analyzer,
using the method outlined by Garside (1982) and Bra-
man & Hendrix (1989). Ammonium was determined by
the standard colorometric techniques of Solorzano
(1969). DON was determined as the difference
between TDN and the sum of nitrate plus nitrite plus
ammonium.

Dissolved oxygen: Oxygen was monitored at each
time point by harvesting triplicate 60 ml BOD bottles
containing the same bacterial consortia and DOM con-
centrations as the polycarbonate incubation bottles. A
YSI Dissolved Oxygen Meter (model 58) with a self-
stirring BOD Bottle Probe (YSI model 5730), and
having an analytical precision of ±1.5 µM, was used.

Heterotrophic bacteria and protists: Subsamples for
bacterial and protist enumeration were collected at dif-
ferent time points and preserved in the dark in 4% fil-
tered (0.2 µm polycarbonate filters, Poretics) buffered

formalin. Cells were stained using 4,6-diamidino-2-
phenylindole (DAPI, Sigma Chemical; Porter & Feig
1980) at 0.1 µg ml–1 DAPI (Cherrier et al. 1996), and
counted by epifluourescence microscopy within 1 mo.
This lag in counting may have resulted in slightly
lower numbers than immediate counting (Turley 1993).
Heterotrophic protist abundances were determined
using the primulin (Sigma Chemical) staining method
of Caron (1983). Bacterial C and N biomass was esti-
mated from the product of bacterial abundance and
constant biomass conversion factors of 19.6 fg C and
5.6 fg N per cell (Lee & Fuhrman 1987). The factor for
C is virtually identical to the average for oceanic and
coastal bacteria measured by Fukuda et al. (1998), and
thus assumed to be reasonable for this hemi-pelagic
environment.

RESULTS

Time-series incubations of seawater, either supple-
mented with DOMPD or maintained at ambient DOM
levels, were carried out to evaluate bacterial utilization
of DFAA, DCAA, and DCHO as a function of bulk
DOC and DON utilization and bacterial growth. No
measurable increases in heterotrophic protist abun-
dances were observed in any of the incubations (data
not shown). Bacterial abundances and O2 concentra-
tions in non-supplemented incubations remained rela-
tively constant throughout the incubation period
(Fig. 1A,B, Table 1). Bacterial growth in +DOMPD incu-
bations followed a typical batch culture pattern of lag,
exponential, and stationary phases with exponential
growth occurring between Days 1 and 2 (Fig. 1A).
Oxygen utilization in supplemented incubations
showed a 1 d lag, followed by rapid consumption
between Days 1 and 2, then slower rates of utilization
after Day 2 (Fig. 1B).

No utilization of bulk DOC or DON was detected in
non-supplemented incubations (Table 1). However, in
+DOMPD incubations, net 3 d decreases in DOC and
DON averaged 51 ± 9 µM C and 9 ± 2.8 µM N, respec-
tively (Table 1). No changes were observed in nitrate
or nitrite for any of the treatments (mean NO2

– + NO3
–

in both treatments was 11 ± 0.8 µM, data not shown).
Initial concentrations of MCHO, DCAA, and DFAA

in +DOMPD incubations were 1.4 ± 0.02, 2.2 ± 0.8, and
6.4 ± 0.6 µM, respectively, compared to those in ambi-
ent seawater of 0.30 ± 0.03, 0.55 ± 0.13, and 0.039 ±
0.02 µM, respectively (Fig. 2A–C). No changes in
MCHO, DCAA, DFAA, and NH4

+ concentrations were
observed during the course of the experiment in the
non-supplemented incubations (Fig. 2A–D, Table 1). In
C and N equivalents, the DFAA accounted for 19 ±
0.4% of the added DOCPD (i.e. +DOCPD minus ambient
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Fig. 1. Changes in (A) bacterial abundances and (B) oxygen
over time for non-supplemented ambient seawater (M) and
DOMPD-supplemented (s) incubations. Error bars represent

±1 SD of triplicate samples
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treatments) and 27 ± 0.9% of the added DONPD, while
DCAA represented 5 ± 2.8 and 7 ± 0.4%, respectively.
The MCHO represented only ~4 ± 0.02% of the added
DOCPD. Small decreases in MCHO and DCAA were
observed in seawater supplemented with DOMPD

following the initial 1 d lag period (Fig. 2A & B, respec-
tively). In contrast to all other measured parameters, a
slight decrease in DFAA concentration was observed
during Day 1 of incubation, followed by rapid utiliza-
tion into Day 2 (Fig. 2C). Only 2% of the DFAA
remained by the end of the 3 d incubation. Concurrent
with DFAA loss and bacterial growth was ammonium
production (Fig. 2D), which, with the exception of
Day 1, was balanced stoichiometrically by DFAA-N
remineralization (Fig. 3, Table 1).

Rates of MCHO, DCAA, DFAA, and O2 utilization
(–µM d–1), and NH4

+ and bacterial C and N production
(+µM d–1) were determined by least-squares linear
regression of each parameter against incubation time
for all data points in triplicate samples (Table 1). Lag
periods were not observed consistently in all measured
parameters (e.g. DFAA). Thus, for purposes of compar-
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Measured parametera +DOMPD +DOMPD

Net change Rate
(µM)b (µM d–1)c

Bacterial carbon 1.9 (0.20) 0.7 (0.08)
Bacterial nitrogen 0.54 (0.06) 0.2 (0.02)
Oxygen –30.0 (1.5) –1.3 (0.6)
DOC –51.0 (9.0) nd
DON –9.0 (2.80) nd
NH4

+ 9.1 (1.70) 3.5 (0.8)
MCHO –0.87 (0.34) –0.26 (0.06)
C equivalents –5.22 (2.04) –1.56 (0.36)
DCAA –0.35 (0.9) –0.14 (0.2)
C equivalents –1.75 (4.5) –0.70 (1.0)
N equivalents –0.52 (1.4) –0.21 (0.3)
DFAA –6.22 (0.63) –2.5 (0.4)
C equivalents –31.1 (3.15) –12.5 (2.0)
N equivalents –9.33 (0.94) –3.75 (0.7)
Uncharacterizedd –13.0 (5.8) nd

aNet changes and rates of parameters were below detec-
tion in all ambient treatments (i.e. not supplemented with
DOMPD)

bNet changes in +DOMPD treatments represent differ-
ences in concentrations between initial and final incuba-
tion time points

cRates in +DOMPD treatments were determined by the
slopes of least-squares linear regressions of parameters
against time

dUncharacterized component estimated as DOC – (MCHO
+ DCAA + DFAA), all in C equivalents; see text for details

Table 1. Net changes and rates of utilization (–) or production
(+) of parameters measured in 3 d seawater incubations with
DOMPD added. Errors in parentheses represent ±1 SD for

triplicate incubations. nd = not determined

Fig. 2. Changes in (A) MCHO, (B) DCAA, (C) DFAA, and
(D) NH4

+ over time for non-supplemented ambient seawater
(M) and DOMPD-supplemented (s) incubations. Error bars

represent ±1 SD of triplicate samples
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ison and consistency between parameters, the lag
period was not taken into account in the regressions.
Maximal rate estimates of the various parameters are
therefore considered conservative.

In the +DOMPD incubations, utilization rates of
MCHO (0.26 ± 0.06 µM glucose d–1 or 1.56 ± 0.36 µM C
d–1) and DCAA (0.14 ± 0.2 µM amino acid d–1 or 0.7 ±
1.0 µM C d–1 and 0.21 ± 0.3 µM N d–1 equivalent) were
1 order of magnitude lower than DFAA rates (2.5 ±

0.4 µM amino acid d–1 or 12.5 ± 2.0 µM C d–1 and 3.75 ±
0.7 µM N d–1) (Fig. 2A–C, Table 1). The utilization rate
of DFAA (i.e. in N equivalents) was equivalent to NH4

+

production (i.e. 3.5 ± 0.8 µM N d–1). Bacterial C and N
production rates in +DOMPD incubations were 0.7 ±
0.1 µM C d–1 and 0.2 ± 0.02 µM N d–1, respectively,
with a corresponding O2 utilization rate of 13.1 ±
2.1 µM O2 d–1 (Table 1).

Concentrations of individual DFAA in the +DOMPD

treatment for selected time points (i.e. initial, and Days
1, 2, and 3; Fig. 4) were initially as low as 0.17 ±
0.03 µM for methionine to 1.96 ± 0.18 µM for
glycine/threonine. No significant changes were ob-
served for any of the individual DFAA during Day 1 of
the incubation. However, dramatic decreases for all
DFAA occurred between Days 1 and 2 (Fig. 4). After
Day 2, no further significant changes in individual
DFAA concentrations were noted. In addition, statisti-
cally significant differences in individual amino acid
uptake rate constants were not observed (data not
shown), suggesting non-selective utilization of indiv-
idual DFAA.

DISCUSSION

Previous investigations of bacterial DOM utilization
in temperate eastern North Pacific surface waters
(Cherrier et al. 1996) found that bulk DOCPD and
DONPD were utilized at relatively low bacterial growth
efficiencies (BGE ≈ 4%), suggesting that the majority
of seawater DOC and DON is used to meet the ener-
getic needs of the microbial community. The present
study expanded upon the earlier findings by assessing
how specific DOM constituents of the planktonic com-
munity potentially support bacterial production and
remineralization in pelagic waters.

Starting +DOMPD incubations contained ~163 µM
added DOC (i.e. 229 µM DOC total minus 66 µM DOC
ambient) and 35 µM added DON. We were able to suc-
cessfully characterize 28 ± 3% of this DOCPD as DFAA
(19 ± 0.4%), DCAA (5 ± 0.6%), and MCHO (4 ± 0.02%;
Figs. 2A–C & 5, Table 1). The remaining ‘uncharacter-
ized’ DOCPD accounted for 72 ± 3.4% of the carbon,
estimated as the difference between the total added
DOC (163 µM C) and the sum of MCHO, DCAA, and
DFAA carbon. Approximately 34 ± 4.7% of the DON in
the added DOMPD could be accounted for by DFAA
(27 ± 2.7%) and DCAA (7 ± 3.8%) nitrogen, with
the remainder (66 ± 7.2%) being uncharacterized
(Fig. 2B,C). Compounds associated with zooplankton
ingestion, digestion, death, and initial decay poten-
tially contributing to the uncharacterized fraction in
DOMPD may include urea, amino sugars, lipids, nucleic
acids, and methlyamines, colloids and, depending on
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Fig. 3. Total DFAA utilization (s) and ammonium production
(h) in N equivalents for DOMPD-supplemented seawater.

Error bars represent ±1 SD of triplicate samples

Fig. 4. Concentrations of individual DFAA (in µM amino acid)
in DOMPD-supplemented seawater at Time 0, Day 1, Day 2,
and Day 3 of the incubation. Error bars represent ±1 SD of

triplicate samples
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formation rates, possibly humic-bound organics (Hub-
berton et al. 1995, Kaiser & Benner 2000, Nagata 2000,
Benner 2002, Bronk 2002, Carlson 2002).

Net DOC utilization (51 ± 9 µM C), O2 consumption
(30 ± 1.5 µM O2), and bacterial C production (1.9 ±
0.2 µM C) in +DOMPD incubations were similar to net
changes observed by Cherrier et al. (1996; 48 ± 9 µM
DOC, 31 ± 9 µM O2, and 1.7 ± 0.4 µM bacterial C,
respectively) in June 1992 for similarly supplemented
samples. However, net DON utilization (9.0 ± 2.8 µM
N) in the present study was about 3-fold greater than
in June 1992 (2.9 ± 1.8 µM N), suggesting that the
degree of C and/or energy limitation may have been
greater in July 1993. Such limitation may be due to the
relatively lower concentrations of bioavailable sub-
strates (e.g. DFAA and MCHO) in seawater at 85 m at
Stn M in July 1993 (0.039 µM DFAA and 0.300 µM
MCHO; this study) compared to June 1992 (0.26 µM
DFAA and 2.3 µM MCHO; Shultz 1994).

Microheterotrophic utilization of plankton-derived
DOM constituents

Approximately 31 ± 5% of the added DOC and 26 ±
8% of the added DON in the DOMPD-supplemented
seawater was utilized during the course of the 3 d incu-
bation (Table 1). The degree of labile DOC reactivity
(i.e. having turnover times on the order of minutes to
days) is within the range reported for other marine
systems under conditions of transiently elevated DOM

(Ogura 1972, 1975, Kirchman 1990, Amon & Benner
1994, 1996, Søndergaard & Middelboe 1995, Weiss &
Simon 1999). Approximately 50% of the MCHO, 14%
of the DCAA, 98% of the DFAA (Fig. 2A–C, respec-
tively) and 25% of the uncharacterized DOC (Fig. 5) in
the +DOMPD incubations were utilized over the course
of 3 d, indicating a wide range in the availabilities of
these different constituents in fresh plankton-derived
material. It is also interesting to note that despite the
differences in bulk DOC concentrations in ambient
(66 µM) and +DOMPD (112 µM) incubations by Day 3,
the relative proportions of characterized and unchar-
acterized DOM were similar for both (Fig. 6). This
implies that refractory DOM may either be an inherent
component of ‘fresh’ plankton (Williams 2000) or form
rapidly upon release to seawater (Brophy & Carlson
1989, Ogawa et al. 2001).

While DFAA, DCAA, and MCHO together repre-
sented only ~28% of the added DOC in the +DOMPD

incubations, their collective utilization accounted for
75 ± 11.5% of the total DOC consumed (Fig. 5). Rates
of DFAA utilization (2.4 ± 0.4 µM amino acid d–1 or
12.5 ± 2.0 µM C d–1) in +DOMPD incubations were
comparable to those in other studies (e.g. Carlucci et
al. 1986, Fuhrman 1987, Middelboe et al. 1995, Rosen-
stock & Simon 2001). However, the relative contribu-
tion of DFAA to overall bacterial carbon demand (BCD,
61 ± 6%; Fig. 5) in +DOMPD incubations is significantly
higher than that in other oligotrophic systems (≤20%
for the Sargasso Sea; Suttle et al. 1991, Keil & Kirch-
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Fig. 5. Relative proportions of carbon constituents in DOMPD-
supplemented seawater at Time 0 (black bars) and consumed
during the 3 d incubation period (gray bars). Error bars

represent ±1 SD of triplicate samples

Fig. 6. Relative proportions of uncharacterized and character-
ized carbon constituents in non-supplemented ambient
(cross-hatched bars) and DOMPD-supplemented (black bars)
seawater at the conclusion of the 3 d incubation period. Error

bars represent ±1 SD of triplicate samples
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man 1999), but within the range of diel and seasonal
maxima reported in some non-marine systems (i.e.
Jørgensen 1987, Tranvik & Jørgensen 1995, Rosen-
stock & Simon 2001). Thus, N-rich substrates such as
DFAA may, when available in adequate concentra-
tions, fulfill as much or more bacterial C demand as
non-N compounds (Rich et al. 1996, 1997, Keil & Kirch-
man 1999, Skoog et al. 1999, Kirchman et al. 2001).

The relative contribution of DCAA to BCD was
slightly lower (3 ± 8%; Fig. 5) than what has been
found in other marine systems (i.e. ~10 to 25%; Jør-
gensen et al. 1993, Keil & Kirchman 1993, 1999, Mid-
delboe et al. 1995). The BCD estimate derived for
MCHO in the present study (10 ± 4%; Fig. 5) is similar
to Gulf of Mexico bacterioplankton (5 to 10%; Skoog et
al. 1999), but lower than observed for the equatorial
Pacific (15 to 45%; Rich et al. 1996). One reason for
these differences may be that our measurements
reflect changes in the total MCHO pool, whereas Rich
et al. (1996) and Skoog et al. (1999) examined changes
in the neutral sugars sub-fraction of the MCHO pool,
which is believed to be the most bioavailable fraction
of the total MCHO pool (Benner 2002 and references
therein). The MBTH method used here measures all
monosaccharides (including neutral sugars), and thus
net changes in MCHO may be due almost exclusively
to neutral sugars, leading to lower than expected BCD
estimates.

In contrast to carbon, all of the DON consumed could
be accounted for by DFAA (99 ± 10%) and DCAA (6 ±
15%) utilization (Table 1). Thus, DFAA and DCAA met
100% of the bacterial N requirements and accounted
for 100% of the DON remineralized to NH4

+. These
observations are similar to those of Fuhrman (1990)
and Jørgensen et al. (1993) who reported that DOM, in
the form of DFAA, supported greater than 64% of the
C demand and 100% of the N demand of coastal bac-
terial populations. However, the essentially complete
fulfillment of N demand by DFAA at Stn M in +DOMPD

incubations also contrasts with a number of other open
ocean environments where the range was lower under
ambient conditions (~4 to 41%; Kirchman 2000). It is
possible that when labile substrates such as DFAA are
present at low, ambient levels, bacteria may compete
more intensely for these substrates, thus forcing their
greater dependence on ‘less-preferred’ forms of DON.
In the presence of high, transient DFAA concentra-
tions, however, bacteria may be released from this
competition and reliance on other DON forms, and,
over the short term at least, rely entirely on the more
labile DFAA. The present findings further indicate that
the indigenous populations at Stn M are primarily
remineralizers of N, similar to what has been found in
other aquatic systems (see, e.g., Cotner & Gardner
1993 and Haga et al. 1995), even when labile forms of

DON are presumably non-limiting over short
timescales.

The remainder of the DOC (25 ± 11%) could not be
characterized as 1 of the 3 constituents analyzed in this
study (Fig. 5). Because total hydrolyzable carbohy-
drates (i.e. polysaccharides, PCHO) are often consid-
ered to be a bioavailable component of seawater DOM
(see, e.g., Williams & Yentch 1976, Ittekkot et al. 1982,
Benner et al. 1992, Weiss & Simon 1999, Amon et al.
2001), the consumption of the uncharacterized DOMPD

could be attributable, at least in part, to PCHO, which
were not analyzed as part of this study. Approximately
69 and 71% of the added DOC and DON, respectively,
remained by Day 3 of the incubation. This residual
material potentially represents semi-labile or refrac-
tory fractions of the bulk DOC and DON pools that
cycle on week-month or much longer timescales
(Ogura 1972, Carlson & Ducklow 1995, Cherrier et al.
1996, Carlson et al. 2002). Further work is thus needed
to elucidate the composition and utilization of this
relatively unavailable but geochemically young DOM
fraction.

The higher utilization rate for DFAA relative to
MCHO in +DOMPD seawater (Table 1) is consistent
with observations by Ittekkot et al. (1982) who
reported higher in situ removal rates of TDAA than
total dissolved sugars during a phytoplankton bloom in
the North Sea. These findings are also similar to those
of Williams & Yentsch (1976) who observed higher
turnover rates of amino acids versus carbohydrates
from phytoplankton exudates. Our findings contrast,
however, with those of Amon et al. (2001) who
reported higher utilization rates of total hydrolyzable
neutral sugars (THNS) than total hydrolyzable amino
acids (THAA) during bacterial growth on algal-derived
DOM. They attributed the higher THNS utilization rate
to the ‘higher overall bioreactivity of neutral sugars
relative to amino acids’.

The variable findings from these different studies
may arise at least in part from differences in analytical
procedures. In the present study, the DFAA, DCAA,
and MCHO constituents of DOMPD were monitored,
whereas Amon et al. (2001) evaluated THNS (i.e.
MCHO + PCHO) and THAA (DFAA + DCAA). A possi-
ble advantage of following changes in individual con-
stituents (i.e. MCHO and PCHO; DFAA and DCAA)
versus THNS and THAA is that the relative ratio of the
low molecular weight to higher molecular weight
constituents in each substrate class (i.e. MCHO:PCHO
or DFAA:DCAA) may be ascertained. Without this
knowledge, it is difficult to determine whether a
higher utilization rate associated with one substrate
class over another is due to its overall greater bioavail-
ability or whether it is merely a function of the pres-
ence of a higher proportion of either LMW or HMW
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labile constituents. The variability in findings from dif-
ferent studies may also result from regional and other
differences in the microheterotrophic communities.
Since the physiologic status and taxonomic composi-
tion of bacterial assemblages is known to vary both
temporally and spatially (del Giorgio & Cole 2000, Gio-
vannoni & Rappé 2000), it stands to reason that the fate
of potential substrates (i.e. growth vs respiration) will
also vary. These factors may be especially important in
open ocean systems where the energetic constraints on
bacterial growth and survival may be quite high (del
Giorgio & Cole 2000, Carlson 2002 and references
therein).

BGE under DOM-supplemented conditions

BGE was estimated for the +DOMPD incubations
using net changes in bacterial C production (as esti-
mated from bacterial abundances) and DOC utilization
(Table 1) as BGEDOC = (∆Bcarbon/∆DOC) × 100 yielding a
mean BGE of 3.7 ± 1.8%. An independent estimate of
BGE was also calculated using the sum of the carbon
equivalent net utilization for the DFAA, DCAA, and
MCHO constituents (i.e. 38 ± 5.8 µM C d–1; Table 1),
resulting in a slightly higher value (BGE∑CONSTITS) of 5
± 0.2%. These estimates of BGE, although quite low,
are within the range (~3 to 5%) observed previously
for this region of the Pacific by Cherrier et al. (1996)
using bulk DOC and DON utilization. These values are
also within the range of BGE estimates (2 to 9%) sum-
marized by Carlson (2002) for oligotrophic Atlantic and
Pacific waters using ∆Bcarbon/∆DOC, and are approxi-
mately half of the oceanic median BGE value of 9% as
summarized by del Giorgio & Cole (2000).

There are several possible reasons for low BGE in
this and other oligotrophic ocean regions, including C-
and energy limitation and bulk metabolism of mixed
substrates by a taxonomically diverse population. The
quality of the available substrates as well as the ener-
getic costs associated with surviving in an oligotrophic
environment (Morita 1997, del Giorgio & Cole 2000,
del Giorgio & Duarte 2002) suggest that low growth
efficiencies could be related to the degree of C- and
energy limitation of the indigenous bacterial popula-
tions at Stn M. In addition, the estimated BGE repre-
sents mean bacterial growth on a mixture of substrates
having different degrees of bioavailability. Although
the DOMPD contained significant concentrations of
DFAA, which theoretically should have resulted in
higher growth efficiencies (~9% as observed by Cher-
rier et al. 1996, for Stn M natural bacterial consortia
grown on a pure DFAA mixture), it also contained
DCAA, MCHO, as well as a suite of other uncharacter-
ized and perhaps more complex substrates that were

utilized or co-metabolized (Carlson et al. 2002) over
the course of the incubation. Other factors potentially
contributing to the low observed BGE include sec-
ondary or indirect factors such as depletion of limiting
inorganic nutrients (e.g. N, P, or trace elements).
Finally, as suggested by del Giorgio & Cole (2000), low
BGE values may be an artifact of only a small sub-
population of bacteria in the incubations actually
growing, and a larger component of the population
remineralizing the DOMPD but not actively growing
(see, e.g., Cottrell & Kirchman 2000, Carlson 2002). As
a cautionary note, Turley & Hughes (1992) showed that
formalin-preserved seawater samples stored up to 40 d
resulted in up to a 39% decrease in bacterial cell num-
bers. However, even if we adjust bacterial cell num-
bers and resultant net changes in bacterial C (2.4 µM
C) to account for this maximum potential 39% loss,
the BGE estimates (i.e. 5% for BGEDOC and 6% for
BGE∑CONSTITS) are not altered significantly.

Role of individual DFAA in DOC and DON turnover
and net bacterial production

Ambient levels of DCAA (0.55 µM) and DFAA
(0.039 µM) measured at 85 m at our study site are
consistent with earlier findings of these compound
classes in open ocean surface waters (Lee & Bada 1977,
Mopper & Lindroth 1982, Keil & Kirchman 1991b,
1999). In contrast, in +DOMPD incubations, initial
DCAA abundances were proportionately lower than
DFAA (DCAA:DFAA = 0.34). Due to the often tight
coupling between DFAA production and utilization
processes in marine systems (Billen & Fontigny 1987,
Fuhrman 1987, Suttle et al. 1991, Keil & Kirchman
1999), DFAA are not expected to accumulate to the
high concentrations observed in the DOMPD-supple-
mented seawater. However, within 2 d, the DFAA in
+DOMPD incubations were drawn down to levels
(0.20 µM) close to levels (0.260 µM; Shultz 1994)
observed at this site in June 1992. Additionally, by Day
2 of incubation, DCAA:DFAA in the +DOMPD incuba-
tion had increased to 6.2, and by Day 3 had re-attained
ambient values of approximately 14.

At the start of the incubation, glycine and threonine
were present in the highest concentrations, followed
by lysine, tyrosine, and arginine, respectively (Fig. 4).
Except for tyrosine and threonine, these amino acids
are important zooplankton osmolytes (Jeffries & Alzara
1970), which likely accounts for their elevated concen-
trations in the DOMPD compared to the other amino
acids. The elution gradient used during HPLC analysis
of the DFAAs did not allow for the separation of
glycine and threonine. However, given that (1) oceanic
concentrations of threonine are typically much lower
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than those for glycine (Gardner & Paffenhofer 1982,
Ittekkot et al. 1984a,b) and (2) threonine is not stored
by zooplankton as an osmolyte (Jeffries & Alzara 1970),
the co-eluted glycine/threonine was likely comprised
primarily of glycine.

Approximately 12% of the DFAA were consumed
during Day 1 of incubation without concomitant mea-
surable changes in O2 utilization ammonium produc-
tion (i.e. via deamination), suggesting that DFAA were
either (1) being used primarily for biosynthetic pur-
poses or (2) an artifact of sorptive removal, for example
to the container walls or colloidal particles. The most
significant decrease in all individual DFAA occurred
between Days 1 and 2 (Fig. 4), during which ~97% of
the remaining DFAA were utilized. In contrast to Day 1
of incubation, the uptake of DFAA between Days 1 and
2 coincided with high rates of respiration and NH4

+

production, indicating that the community had
switched to using these amino acids primarily as
energy sources after an initial period of biosynthesis
(del Giorgio & Cole 1998, 2000 and references therein).

The only DFAA above ambient levels by the end of
the +DOMPD incubation were tyrosine, arginine, gluta-
mate, and aspartate (Fig. 7), suggesting that certain
DFAAs may persist longer than others, thus serving
either as an extended source of C, N, and energy, or as
precursors of quasi-refractory or refractory DOM. Final
concentrations of histadine, serine, and glycine in

DOMPD-supplemented seawater at Day 3 were
approximately equal to their respective ambient con-
centrations suggesting that at background concentra-
tions, these DFAA are not utilized effectively due to
threshold or reactivity limitations (Fuhrman & Fergu-
son 1986, Keil & Kirchman 1999). In contrast, methion-
ine, leucine, alanine, isoleucine, and lysine were all
depleted to below detection by the conclusion of the
+DOMPD incubations (Fig. 7), suggesting that these
specific DFAA potentially contribute to the highly
labile fraction of DOM that turns over on the order of
hours to days (Kirchman et al. 1993, Carlson & Duck-
low 1995, 1996, Cherrier et al. 1996).

These findings collectively suggest that in perma-
nently or temporally energy-limited systems such as
Stn M, DFAA and other DOM components from
episodic events (e.g. bloom die-offs, grazing activity,
etc.) may be an important intermittent, short-term
source of C and N for bacterial heterotrophs. Addition-
ally, the rapid depletion to near ambient levels of the
plankton-derived DFAA, DCAA, and MCHO, along
with their relatively low concentrations in ambient sea-
water, support the contention that bacterial growth in
oceanic systems is supported by a relatively small part
of the total DOM (Kirchman et al. 1991, Noorman et al.
1995, Carlson & Ducklow 1996, Cherrier et al. 1996,
Keil & Kirchman 1999, Amon et al. 2001, Carlson 2002,
Carlson et al. 2002). However, despite the elevated
short-term availability of these seemingly reactive con-
stituents in DOMPD-supplemented incubations, BGE
estimates were still very low. Thus, even during short,
transient periods of greater reactive substrate avail-
ability, oceanic bacteria may remineralize the vast
majority of DOC and DON.
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