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abstract: Understanding why individuals within altruistic socie-
ties forgo reproduction to raise others’ offspring has fascinated scien-
tists since Darwin. Although worker polymorphism is thought to have
evolved only in sterile workers, worker subcastes appear to be com-
mon among social invertebrates and vertebrates. We asked whether
sterility accompanies eusociality and morphological differentiation in
snapping shrimps (Synalpheus)—the only knownmarine eusocial group.
We show that workers in Synalpheus elizabethae are reproductively to-
tipotent and that female—but notmale—gonadal development andmat-
ing are mediated by the presence of a queen, apparently without phys-
ical aggression. In queenless experimental colonies, a single immature
female worker typically became ovigerous, and no female workers ma-
tured in colonies with a resident queen. Thus, eusocial shrimp work-
ers retain reproductive totipotency despite signs of morphological spe-
cialization. The failure of most female workers to mature is instead
facultative and mediated by the presence of the queen, ensuring her re-
productivemonopoly.

Keywords: eusociality, reproductive skew, reproductive conflict, re-
productive suppression, sterility, totipotency.

Introduction

Societies characterized by cooperation and reproductive al-
truism occur across the animal tree of life in a range of ver-
tebrate and invertebrate taxonomic groups (Wilson 1971;
Buskirk 1981; Brown 1987; Duffy 1996; Solomon and French
1997; Strassmann et al. 2000). Eusocial societies character-
ized by cooperative offspring care, overlapping generations,
and reproductive division of labor (castes; Michener 1969;
Wilson 1971) represent the pinnacle of social evolution but
share many characteristics with other forms of altruistic
groups. Although social animals have been suggested to form

a continuum based on reproductive skew (Keller and Reeve
1994; Keller and Perrin 1995; Sherman et al. 1995), the
monopolization of breeding positions appears to be main-
tained differently in different taxa (Crespi and Yanega 1995).
Worker sterility—a defining characteristic of caste differen-
tiation in eusocial species (Crespi and Yanega 1995; Boom-
sma 2007, 2009)—occurs in a variety of obligatorily euso-
cial insects (e.g., several ant genera, corbiculate bees, vespine
wasps, and higher termites; Wilson 1971; Fletcher and Ross
1985; Thorne et al. 2003; Ratnieks et al. 2006), where work-
ers are irreversibly committed to their nonreproductive roles
(Boomsma 2013). In contrast, helpers in all cooperatively
breeding vertebrates (birds and mammals), as well as work-
ers in most facultatively eusocial insects (e.g., halictid bees,
gall-forming thrips, and lower termites; Faulkes 1990; Chap-
man et al. 2002; Hart and Ratnieks 2005; Hartke and Baer
2011), are totipotent and retain the ability to reproduce.
Most facultatively eusocial species outside of the Hyme-

noptera are fortress defenders (Queller and Strassmann 1998)
that nest within rich, concentrated food sources (e.g., clonal
gall-forming aphids, ambrosia beetles, wood-dwelling ter-
mites, thrips, and two species of mole rats). However, very
few—if any—of these fortress defenders, other than the
higher termites, have evolved obligatory eusociality with an
irreversible worker caste (Abe 1987; Noirot and Pasteels
1987). Why obligatory eusociality has evolved in higher
termites but not in other fortress defenders remains unclear
but may be related to food resources. Unlike most other
fortress defenders, termites are central place foragers that
obtain food from outside of the nest (Higashi et al. 1991;
Heinze and Korb 2008; Boomsma 2013). Additionally, long-
lived host fortresses have been hypothesized to play a key
role in the evolution of obligate eusociality (e.g., the am-
brosia beetle Austroplatypus incompertus; Kent and Simpson
1992; Boomsma 2013), though this idea has not been tested.
The evolution of an irreversible worker caste is thought

to be an important precursor to the evolution of morpho-
logical polymorphism of workers in eusocial species (i.e.,
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the presence of specialized worker subcastes), because it
allows colony-level selection to enhance worker efficiency
and reproductive fitness of the colony (Oster and Wilson
1979). In support of this hypothesis, sterile workers in ants
and higher termites show the most extreme forms of worker
morphological and ecological polymorphism (Wilson 1971).
Yet some fortress defenders express morphological differ-
entiation among nonreproductives that are reproductively
totipotent, including soldier neotenics in lower termites
(Thorne et al. 2003) and the dispersive morph in naked mole
rats (O’Riain et al. 1996). Therefore, it has been hypothe-
sized that the presence of polymorphic reproductive sol-
diers may represent a natural transition toward obligate
eusociality (Thorne et al. 2003; Boomsma 2013). However,
it is not yet clear whether worker sterility is a necessary con-
dition for the evolution of irreversible worker castes (i.e.,
obligatory eusociality), especially when observations have
been limited to only a few lineages of insects and a single ver-
tebrate group.

Exploring the generality of the relationship between
worker sterility and worker polymorphism requires study-
ing a range of animal lineages with a diversity of social sys-
tems. An ideal study species would be a noninsect, eusocial
fortress defender such as the snapping shrimp Synalpheus
elizabethae. Synalpheus shrimps live obligatorily within ca-
nals of live marine demosponges, which are stable, predator-
free, and typically long-lived fortresses (McMurray et al. 2008).
Like most other fortress defenders, Synalpheus shrimps do
not forage outside of the host sponge. Instead, they feed
on host sponge tissues (Ďuriš et al. 2011) that may contain
a significant amount of sponge-associated bacteria (Hentschel
et al. 2006; Webster and Taylor 2012). Within the Caribbean
gambarelloides clade of sponge-dwelling Synalpheus, euso-
ciality appears to have evolved independently at least four
times (Duffy et al. 2000; Morrison et al. 2004; Duffy and
Macdonald 2010). Eusocial Synalpheus species live in groups
that can contain up to several hundred individuals and one
or a few breeding queens (Duffy 2007). In Synalpheus regalis,
workers are related on average by 0.5 and are likely to be
the offspring of a single queen (Duffy 1996). However, whether
these eusocial Synalpheus have sterile workers and are oblig-
atorily eusocial has not been tested.

Some eusocial Synalpheus species exhibit morphologi-
cal differentiation between queens and workers (Duffy and
Macdonald 1999) as well as among workers (as subcastes;
Duffy 1998; Duffy et al. 2002; Tóth and Duffy 2008), sug-
gesting that this group may be very similar to other oblig-
atory eusocial species. For example, in Synalpheus filidigitus,
the queen’s major chela (snapping claw) is replaced with a
smaller minor chela (Duffy and Macdonald 1999). More-
over, queens in most species have a brood pouch (i.e., ex-
tended pleura on the abdomen) that is not observed in
female workers (Chak et al. 2015a). This degree of morpho-

logical differentiation between queens and workers is sug-
gestive of a true worker caste, similar to that observed in
the eusocial ambrosia beetle (Kent and Simpson 1992). Ad-
ditionally, large colonies of eusocial Synalpheus in several
species exhibit a morphologically specialized group of large
individuals that possess a bigger weapon (fighting claw) than
other workers and who are more active in colony defense
but show no external signs of reproductive maturity (Duffy
1998; Duffy et al. 2002; Tóth and Duffy 2008). These shrimp
workers resemble the morphologically specialized caste in
many obligatory eusocial insects, such as ants and higher
termites, or facultatively eusocial species, such as lower ter-
mites and naked mole rats, that have reproductively toti-
potent workers.
Here we explore whether the fortress defender S. eliza-

bethae shows parallels with other social insects and verte-
brates in how eusociality, worker sterility, and morpholog-
ical differentiation have coevolved. Our primary goal is
to determine whether a eusocial species of Synalpheus has
either reproductively totipotent workers that might repre-
sent an early stage of social evolution or sterile workers that
might facilitate evolution of worker polymorphism, as in the
Hymenoptera (Crespi and Yanega 1995; Boomsma 2013).
We first test whether workers in S. elizabethae have lost
or maintained the ability to reproduce by examining go-
nadal development. We then report on experiments designed
to determine whether workers are capable of mating in the
absence of the queen and whether mediation of worker de-
velopment involves aggression on the part of queens or
workers. Ultimately, our results will be important for un-
derstanding the nature of reproductive altruism and con-
flict in a taxonomic group that is similar to but distinct from
other eusocial fortress defenders.

Material and Methods

Gonadal Development of Workers in Wild Colonies

To assess whether workers are sterile or totipotent, we ob-
tained samples of the eusocial species Synalpheus eliza-
bethae (Ríos and Duffy 2007) from five colonies in the
Bocas del Toro region of Panama. Synalpheus elizabethae
are most abundant in the demosponge Lissodendoryx co-
lombiensis (Zea and Van Soest 1986) in this region of the
Caribbean (McGrew and Hultgren 2011). We collected
whole sponges with scuba from depths of 2–8 m from
subtidal sandy patches near the west coast of Isla Colon,
Bocas del Toro (9.397127N, 82.317607W), between August
and October 2011. Sponges were transported while sub-
merged in seawater to the Smithsonian Tropical Research
Institute’s Bocas del Toro Research Station, where all shrimps
inhabiting the sponges were removed and identified under
light microscopy. Ovigerous individuals (hereafter, queens)
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possessed visible embryos under the abdomen.Non-ovigerous
individuals (hereafter, workers) lacked visible embryos and
were preserved in Davidson’s fixative (3∶3∶2∶1 of distilled
water, 95% ethanol, 37% formaldehyde, and glacial acetic
acid) for subsequent histological analysis to assess gonadal
development. From the three largest colonies, we confirmed
that S. elizabethae has a morphologically specialized group
of large workers that possesses stronger weapons like its
close relatives (Tóth and Duffy 2008; app. B; apps. A and B
available online).

We chose 20 workers from each colony for histological
examination. All workers were above the maturation size—
the size of the smallest individual in the population that had
mature gonads (app. B). Carapace length (CL) andmajor chela
length were measured from photographs as described by
Tóth and Duffy (2008) using ImageJ, version 1.48 (Schneider
et al. 2012). Specimens were decalcified overnight (in 0.1 g/mL
sodium citrate in 22.5% formic acid), dehydrated, and then
infiltrated and embedded in paraffin using standard pro-
tocols (Humason 1979). Sagittal sections (3–5 mm) were cut
with a rotary microtome and mounted onto glass slides be-
fore staining with hematoxylin and eosin. Depending on
an individual’s CL, we examined six to 12 sets of three to five
continuous sections, each separated by 20–30 mm, until at
least half of the specimen was sectioned.

We scored each specimen for the presence of sperm, tes-
tes, developing oocytes, young ova, or mature ova (Bell and
Lightner 1988). Mature ova had lipid-filled cytoplasms and
were distinctively larger cells than young ova. Sperm were
highly basophilic, with the distinct umbrella shape charac-
teristic of decapod crustaceans, and were located in the tes-
tis, vas deferens, or an enlarged sac near the gonad opening
(gonopore) at the base of the fifth walking leg. Individuals
were ultimately categorized as (i) mature males with sperm
and testis, (ii) immature males with testis lacking sperm,
(iii)mature femaleswithmature ova, or (iv) immature females
with developing oocytes or young ova. We quantified the
amount of sperm in mature males as the proportional area
occupied by sperm cells in the enlarged sac located in the
section that had the highest number of sperm for each spec-
imen.

Experimental Analysis of Worker Reproductive
Capacity and Physical Aggression

To determine the reproductive capacity of workers and
whether breeding monopolization involves aggression on
the part of queens or workers in S. elizabethae, we exam-
ined experimentally how the presence of the queen and the
number of workers in the colony influenced worker go-
nadal development. We created vacant sponges as semi-
natural habitats for the shrimps (app. B) in the lab at the
Smithsonian Tropical Research Institute’s Bocas del Toro

Research Station between June and August 2013. A pilot
experiment showed that 22 days was the optimal experi-
mental duration to observe worker development and re-
production (app. B). We report combined data from the
pilot and main experiments, since results did not differ be-
tween the two.
We initiated the experiment by collecting S. elizabethae

from 16 sponges and dividing the shrimp from each sponge
into three groups: (i) one queen and six workers (1Q/6W),
(ii) queenless with six workers (0Q/6W), and (ii) one worker
only (0Q/1W). Each of these shrimp composition treatments
had 16 replicates. After 22 days, we preserved all shrimps
in Davidson’s fixative for histological examination of go-
nadal development. To determine whether the workers that
became ovigerous had fertilized eggs, we compared the his-
tology of eggs from ovigerous workers and from queens that
remained ovigerous after the experiment. Finally, we re-
corded whether workers had lost their major chela as a mea-
sure of within-colony aggression.

Statistical Analysis

For the examination of gonadal development in workers
from wild colonies, we determined whether mature and
immature females differed in CL using a generalized linear
mixed model, with maturity as a fixed factor and colony
as a random block (slopes and intercepts were allowed to
vary among colonies). The P values were obtained from
likelihood ratio tests. We also examined the relationship
between CL and sperm amount, with colony as a random
block. We then determined whether the percentage of ma-
ture workers in each colony differed between males and fe-
males using a Student’s t-test. All analyses were performed
with R, version 3.0.1 (R Development Core Team 2014).
Our analyses of the experimental manipulation were based

on 24 replicate groups (i.e., groups of different shrimp com-
position treatment, each in a cup of vacant sponge), with an
experimental duration of 22 days from both the pilot and
the main experiments. Although we initially had 48 groups
(16 replicates each for three treatments), we excluded 24
groups that either had vitellogenic workers at the begin-
ning of the experiment, contained a queen that died during
the experiment, or contained workers that were determined
to have been all males or all females based on subsequent
histological analyses (table A2; tables A1–A3, B1 available
online). Vitellogenic workers had a visible mass of small de-
veloping ova internally within the cephalothorax between
the stomach and the heart—we removed these replicates
so that all workers at the beginning of the experiment had
only immature gonads; thus, no worker had any head start
in development. To analyze the results of the experiment,
we first determined how many females in each group be-
came reproductively mature (i.e., mature gonads as shown
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by histology). At the end of the experiment, most groups had
only a single mature or ovigerous female worker (typically
either ovigerous or with mature gonads; fig. A1; figs. A1–
A4, B1–B4 available online); hence, we categorized each
group by the most developed female into ovigerous, ma-
ture, or immature. We then used two-tailed Fisher’s exact
tests to test whether worker development (of the most de-
veloped female in each sample) was affected by the absence
of a queen (0Q/6W vs. 1Q/6W) or by social interactions (i.e.,
presence or absence of potential mate or potential compe-
tition with other same-sex individuals; 0Q/6W vs. 0Q/1W).
Specifically, we tested whether the observed proportions of
the three nominal groups (ovigerous, mature, and imma-
ture, focusing on the most developed female in each sam-
ple; fig. 1B; table A1) were independent between treatments,
using groups (as opposed to individual shrimps) as repli-
cates. The P values were adjusted according to the Holm-
Bonferroni method for multiple comparisons (Holm 1979).
In the 0Q/6W treatment, we tested for a difference in CL
between immature, mature, and ovigerous female workers
using a one-way analysis of variance (ANOVA).

To investigate the effect of treatment on levels of social
conflict among workers, we used data for experimental du-
rations of 7, 11, and 22 days from the pilot and main exper-
iments. We tested whether worker mortality (i.e., the pro-

portion of dead workers) differed between the 1Q/6W and
0Q/6W treatments using Poisson regression.We then tested
whether worker injury (i.e., the proportion of workers that
had lost a major chela) differed between treatments using
a generalized linear mixed model with binomial response.

Results

Gonadal Development of Workers in Wild Colonies

The five field-collected Synalpheus elizabethae colonies
ranged in size from 84 to 344 individuals, containing one
to seven queens each (table A1). Based on histology, none
of the 112 adult workers we examined was sterile. Instead,
all female (np 52) and male (np 60) workers examined
histologically showed signs of gonadal development in
which sperm, testis, or various stages of ova were present.
However, the level of gonadal maturity differed by sex; only
17 of 52 female workers were mature (mean5 SDp 38.45
20.9%), whereas 58 of 60 male workers were mature
(mean5 SDp 97.55 5.6%). Thus, significantly fewer fe-
male workers than male workers had mature gonads (t5 p
6.06, Pp .0023; table A1; fig. 1A). Gonadal maturity was
not related to size in either sex; immature and mature fe-
males were similar in CL (x2

1 p 0.13, Pp .72; fig. A2), and
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Figure 1: Gonadal development of workers in wild colonies (A) and in experimental colonies (B) of Synalpheus elizabethae. A, Mean (5SE
proportion) of mature workers (mature1 ovigerous) per colony was significantly higher for males than for females in wild colonies (t5 p 6.06,
Pp .0023). B, Degree of gonadal development of the most developed female worker in experimental groups after 22 days. Presence of a queen
significantly suppressed worker gonadal development (1Q/6W vs. 0Q/6W: Pp .029), and female workers usually failed to mature when held
alone (0Q/6W vs. 0Q/1W: Pp .17). Workers became ovigerous only in the absence of a resident queen and a potential mate (0Q/6W). Data are
available in the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.6vb73 (Chak et al. 2015b).
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the amount of sperm did not correlate with CL in males
(x2

1 p 1.48, Pp .22).

Experimental Analysis of Worker Reproductive Capacity

We analyzed each experimental group according to the
degree of gonadal development of the single most developed
female worker in the group. Of the 12 queenless groups
of workers (0Q/6W) included in the final analysis, three
groups developed a single mature ovigerous worker (fig. 2A,
2B), and six developed a mature but nonovigerous worker
(figs. 1B, 2C, 2D; table A2). In contrast, in the six groups
with multiple workers and a single queen (1Q/6W), no
workers reachedmaturity. Thus, the presence of a queen sig-
nificantly affected worker gonadal development, and when

queens were removed, workers started transitioning into
new queens in significantly more groups than in those
where queens were left intact (1Q/6W vs. 0Q/6W: Pp
.029; fig. 1B). Finally, female workers usually failed to ma-
ture when held alone (0Q/6W vs. 0Q/1W: Pp .17; fig. 1B);
only one of six cups in this treatment developed a mature
worker. This pattern was consistent even in the few cases
in which workers had initial gonadal development (i.e., with
visible gonads at the start of the experiment), as ovigerous
workers were still found only in queenless groups (0Q/6W:
1 of 4; table A3). Carapace length (CL, an index of body
size) did not differ among mature, immature, and ovigerous
female workers in the treatment where they co-occurred
(0Q/6W: one-way ANOVA, F2, 26 p 0.41, Pp .67).
Histological examination showed that workers that be-

came ovigerous had fertilized eggs. Eggs from queens and

A B

C D

Figure 2: Reproductive development of two Synalpheus elizabethae workers from immature (A) into mature (B) and from immature (C ) into
ovigerous (D) in queenless experimental colonies. Arrows indicate developing gonad in B and eggs in D. In our experiment, the reproductive
developments of all workers were further examined histologically.
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from ovigerous workers showed no structural difference:
all eggs had differentiated cells characteristic of fertilized
eggs (fig. A3). Although females in some species of alpheid
shrimp can ovulate without mating, unfertilized eggs are
much smaller than fertilized eggs and have a chalky appear-
ance, making unfertilized eggs easily recognizable (Knowl-
ton 1973; Felder 1982). In our study, all ovigerous female
workers examined had large, nonchalky eggs, similar in ap-
pearance to eggs of other queens in captivity and the wild,
suggesting that they were fertilized.

Experimental Analysis of Physical Aggression

Across experimental durations from 7 to 22 days, worker in-
juries (i.e., the loss of the major chela) were more frequent
in queenless groups (0Q/6W) than in groups containing
a queen (1Q/6W: x2

1 p 9.87, Pp .0017). However, worker
mortality did not differ among treatments (x2

1 p 1.44, Pp
.23; fig. 3).

Discussion

The combination of our field studies and lab experiments
demonstrates that (i) workers in the eusocial snapping shrimp
Synalpheus elizabethae are not sterile, with individuals of
both sexes showing signs of gonadal development, and
(ii) immature workers can mature and reproduce when
the queen is absent. Our experimental results support obser-
vations of gonadal development in workers of four other
eusocial species of Synalpheus (Chak et al. 2015a). There-
fore, worker sterility does not appear to have evolved in

eusocial snapping shrimps, which is consistent with what
has been found in other facultatively eusocial fortress de-
fenders that show some degree of morphological speciali-
zation despite having reproductively totipotent workers (e.g.,
gall-forming thrips, lower termites, and naked mole rats;
O’Riain et al. 1996; Chapman et al. 2002; Thorne et al. 2003;
Boomsma 2013). Thus, the similarity among Synalpheus and
these quite distinct lineages of facultatively eusocial animals
supports the generality of a model for evolution of social
organization that bears strong similarities among disparate
animal taxa. Moreover, the recent evolution of eusociality in
Synalpheus (Morrison et al. 2004) suggests that worker poly-
morphism may indeed evolve before workers achieve per-
manent sterility.
Although most male workers in S. elizabethae were re-

productively mature (98%), most female workers were re-
productively immature (160%). These reproductively im-
mature females were similar in size to the mature females
and were not sterile, since our experimental manipulation
revealed that they could develop into mature ovigerous in-
dividuals with fertilized eggs in as little as 3 weeks after
queen removal. These sex-specific patterns of gonadal de-
velopment in S. elizabethae suggest that female—but not
male—workers show reduced gonadal development. Our
experimental manipulations further demonstrated that this
reduced reproductive development is mediated by the pres-
ence of the queen. That is, in the presence of a mature
queen, all female workers remained immature, but when the
queen was experimentally removed, a single female worker
in most colonies became ovigerous or at least developed
mature gonads. Moreover, in nearly all cases, only one of
the six workers became mature after queen removal, indi-
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Figure 3: Mortality (A) and injuries (i.e., loss of major chela; B) among workers in treatments of different experimental duration with and
without a queen (mean5 SE). Presence of queens did not significantly influence worker mortality, but worker injury was more frequent in the
absence of a queen.
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cating that once a worker becomes a replacement queen, she
can affect others’ reproductive development.

Our results also suggest that workers are able and will-
ing to mate with their nestmates in an artificial setting,
highlighting potential hidden reproductive conflict in euso-
cial colonies of S. elizabethae. Despite the presence of re-
productively immature female workers, we found that many
female workers in this species had mature gonads in wild
colonies (38.4%). However, none of the female workers in
these wild colonies had breeding dress, a typical morpho-
logical modification in breeding female caridean shrimps
in which a brood pouch forms to hold spawned eggs under
their abdomens (Bauer 2004). Therefore, despite being re-
productively mature, all female workers remained unmated;
only queens produced fertilized eggs in the wild. Therefore,
eusocial Synalpheus are similar to many facultative eusocial
species in which workers are hopeful reproductives that only
reproduce when the opportunity arises (Thorne et al. 2002).

Interestingly, although half of the natural colonies of S.
elizabethae at our site in Panama had a single queen, some
had as many as 20 (mean5 SDp 3.585 4.09%). In fact,
there was a strong positive correlation between colony size
and the number of queens among 72 colonies of S. eliza-
bethae collected from Bocas del Toro from 2007 to 2013
(fig. A4). This may suggest that the degree to which queens
can mediate worker development and monopolize breed-
ing varies among colonies (Hultgren et al. 2016) and is prob-
ably limited by the number of individuals that the queen
can influence (Michener 1990; Keller and Nonacs 1993;
Strohm and Bordon-Hauser 2003), whether via behavior
or chemical signals. In other words, as colony size increases,
breeding monopolization becomes more difficult, and other
females are able to reproduce, as has been hypothesized pre-
viously (Rubenstein and Shen 2009). On the other hand, the-
ory also predicts that reproductive sharing (i.e., having mul-
tiple queens per sponge) may help to reduce reproductive
conflict, either between queens andworkers or amongworkers,
when larger colonies provide greater reproductive benefits
(Rubenstein and Shen 2009; Rubenstein 2012). However, eco-
logical constraints on queen mortality, queen longevity, dis-
persal, and independent colony founding may also explain
the presence of multiqueen colonies (Bourke and Heinze
1994; Keller 1995).

Finally, our observation that worker injuries were lower
when the queen was present than when the queen was re-
moved indicates that the mechanism of worker breeding
monopolization by queens in S. elizabethae and probably
other eusocial Synalpheus species is not mediated by the
queen’s physical aggression toward workers, as is also true
of various social invertebrates and vertebrates (Clarke and
Faulkes 2001; Liebig et al. 2005; Cronin and Field 2007;
Young and Bennett 2013; Bell et al. 2014; Cant et al. 2014).
Chemical mechanisms such as pheromones (Keller and

Nonacs 1993; Le Conte and Hefetz 2008; Holman et al.
2010; Matsuura et al. 2010) from the queen seem likely to
be responsible for suppressing female worker maturation
given their widespread presence in crustaceans (Breithaupt
and Thiel 2010) and arthropods in general (Blomquist and
Bagnères 2010). Indeed, direct queen aggression and po-
licing (Ratnieks et al. 2006; Hoffmann and Korb 2011) are
unlikely in Synalpheus because queens in eusocial species
tend to have smaller major chelae than workers (Tóth and
Duffy 2008) and because colonies of most eusocial shrimps
are likely too large for a queen to behaviorally prevent other
pairs frommating. Additionally, the observation that worker
injuries (but not mortality) increased in queenless groups
of workers where a single worker eventually became oviger-
ous or mature suggests that there is indeed overt aggression
when a queen dies and an opportunity arises for others to
breed. In other words, workers appear to fight for succes-
sion to become the dominant breeder when a queen dies;
this is similar to naked mole rats (Clarke and Faulkes 1997)
but not lower termites (Hoffmann and Korb 2011).
In summary, we have shown that workers of both sexes

in the eusocial snapping shrimp S. elizabethae have re-
tained reproductive capacity, as is true in many fortress
defender eusocial species that exhibit food-shelter coinci-
dence (Crespi 1994), but also that the presence of a healthy
queen can mediate gonadal development only in females.
Breeding monopolization by the queen evidently occurs
without physical aggression, but in queenless experimen-
tal colonies, workers fought for vacated breeding positions,
and ultimately only one filled the reproductive vacancy.
Therefore, in facultatively eusocial shrimp, some degrees of
ecological and morphological polymorphism can evolve in
the absence of sterility (as is also true of nonsocial animals;
West-Eberhard 2003). Moreover, the sex-specific pattern of
reduced worker development in eusocial shrimps appears to
be unique among invertebrates. With a better understand-
ing of the mechanisms that govern reproductive skew and
colony dynamics in eusocial shrimps, we are moving to-
ward a more unified appreciation of animal sociality across
diverse lineages—vertebrates and invertebrates—and ecosys-
tems, from the terrestrial to the marine.
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