
W&M ScholarWorks W&M ScholarWorks 

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 

1997 

Climatologically forced coherence between diverse juvenile Climatologically forced coherence between diverse juvenile 

populations in the Virginia tributaries to the Chesapeake Bay populations in the Virginia tributaries to the Chesapeake Bay 

Thomas C. Mosca III 
College of William and Mary - Virginia Institute of Marine Science 

Follow this and additional works at: https://scholarworks.wm.edu/etd 

 Part of the Ecology and Evolutionary Biology Commons, Fresh Water Studies Commons, Marine 

Biology Commons, and the Oceanography Commons 

Recommended Citation Recommended Citation 
Mosca, Thomas C. III, "Climatologically forced coherence between diverse juvenile populations in the 
Virginia tributaries to the Chesapeake Bay" (1997). Dissertations, Theses, and Masters Projects. William & 
Mary. Paper 1539616783. 
https://dx.doi.org/doi:10.25773/v5-x13n-7416 

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at 
W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an 
authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539616783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/14?utm_source=scholarworks.wm.edu%2Fetd%2F1539616783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/189?utm_source=scholarworks.wm.edu%2Fetd%2F1539616783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Fetd%2F1539616783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Fetd%2F1539616783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/191?utm_source=scholarworks.wm.edu%2Fetd%2F1539616783&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.25773/v5-x13n-7416
mailto:scholarworks@wm.edu


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type o f  computer printer.

The quality o f this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back o f  the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 



Climatologically forced coherence between diverse juvenile populations 

in the V irginia tribu taries to the Chesapeake Bay

A Dissertation 

Presented to 

The Faculty  of the School of Marine Science 

The College o f W illiam  and Mary in Virginia

In P artia l Fulfillment 

of the  Requirem ents for the Degree of 

Doctor of Philosophy

by

T hom as C . Mosca III 

August, 1997

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9805159

Copyright 1998 by Mosca, Thomas Carmine, III
All rights reserved.

UMI Microform 9805159 
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Approved, August, 1997

Approval sheet

This dissertation is subm itted in partial fulfillment of 

the requirements for the degree of 

Doctor o f Philosophy

Thom as C. Mosca III

M.>a
Herbert M. Austin, Co-Chairman

o

fairman

John Milliman

-Mark Luckenbach

yp? yy
Gregory Garman 

Virginia Commonwealth Univeristy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table of Contents

Page

Dedication iv

Acknowledgements V

List of Tables vi

List of Figures ix

Abstract xiii

Introduction 1

M aterials and M ethods 6

Results 21

Discussion 55

Conclusions 65

Appendix 6 6

References 84

Vita 109

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dedication

This dissertation is dedicated to  m y Mother, and the m em ory of my Father.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

This project could not have been completed w ithout the constant support o f m y wife, Denise. 

My co-major advisors, Herb Austin and David Evans were unfailing in their support, help, and 

encouragement. T he members of my com m ittee, Bill Hargis, John Milliman, M ark Luckenbach. and 

Greg G arm an from VCU provided helpful input from beginning to end. The beach seine team  and  the 

traw l survey team , which partly  supported me with funding through W allop-Breaux, were all helpful to 

me, and in particular Chris Bonzek and P a t Geer were unfailing in their support. I thank  the VIMS 

Com puter group, in particular Gary Anderson, P a t Hall, and Steve Clukey. I extend thanks to  Gloria 

Rowe, Louise Lawson, Diane W alker, Chuck M cFadden, and Joe Brown. In addition, the entire VIMS 

com m unity has been kind and helpful throughout my stay, and I thank each and every one of you.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List o f Tables

Page

Table 2.1. 7

Configurations of the various traw l survey gears, by gear code. All gears except 035 are 

30 feet nets; gear 035 is 16 feet. T he m etal C hina-V  o tter board doors are thought 

to be equivalent to  the 54” x 24” wooden doors.

Table 2.2. 9

The weights used in construction of the traw l survey indices. All weights are based 

upon the num ber of trawlable 1/4 square mile quadran ts within each stra tum .

Table 2.3. 10

List of species by VIMS species code, common nam e, and scientific name. T he 

letters accom panying the species code indicate the species is collected in the t-traw l survey 

and s-beach seine survey.

Table 2.4. 12

Months and s tra ta  used in trawl survey indices, by species.

Table 2.5. 13

Gear types used to construct juvenile indices from  the traw l survey data, by VIMS species 

codes and year. For all years before 1972 gear type 10 was used for all species, from  1981 

until 1990 gear type 70 was used, and  from 1991 until 1995 gear type 108 was used for all species.

Table 2.6. • 15

Pearson correlation coefficients between individual oyster rocks. Rocks are identified by 

Fall Oyster Survey station  number, which are as follows: S 123-Point of Shoals on Jam es 

River, S175-Wreck Shoals, offshore on Jam es River, SOOl-Aberdeen Rock on Y ork River,

S067-Hog House Bar on Rappahannock River, S180-M orattico Bar on R appahannock River,

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and S181-D rum m ing Ground on R appahannock River. The notation * indicates p <  0.05, 

and ** indicates p  <  0.01.

T ab le  2.7.

Long term  (1965 - 1995) mean w ater tem peratu re  by m onth, as measured off th e  VIMS pier, 

and the difference between each m onth  and th e  previous m onth (A T).

T ab le  3.1.

Principal com ponent analyses on the 16 traw l survey indices, Eigenanalysis of the  

Correlation M atrix , given in descending order of the eigenvalues. Components 

containing a  proportion o f variance less th an  1/16 of to ta l (0.0625) are considered insignificant 

and  are no t presented.

T ab le  3.2.

Principal com ponent analyses on the 17 beach seine survey indices, Eigenanalysis of the 

Correlation M atrix , given in descending order of the eigenvalues. Components 

containing a  proportion o f variance less than  1/16 of to tal (0.0588) are considered insignificant 

and  are not presented.

T ab le  3.3.

Principal com ponent analyses on the residuals of the 16 loess-smoothed traw l survey 

indices, Eigenanalysis o f the Correlation M atrix , given in descending order of the 

eigenvalues. C om ponents containing a  proportion of variance less than 1/16 of to ta l 

(0.0625) are considered insignificant and are no t presented.

T ab le  3.4.

Principal com ponent analyses on the residuals of the 17 beach seine survey indices, Eigenanalysis 

of the  C orrelation M atrix , given in descending order of the eigenvalues. Com ponents 

containing a  proportion of variance less than  1/16 of to ta l (0.0588) are considered insignificant 

and  are no t presented.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.5. 41

Principal com ponent analyses on the 16 loess-smoothed traw l survey indices, Eigenanalysis 

o f the C orrelation M atrix, given in descending order of the eigenvalues. Com ponents 

containing a  proportion of variance less than  1/16 of to ta l (0.0625) are considered insignificant 

and are not presented.

Table 3.6. 42

Principal com ponent analyses on the residuals o f the  17 beach seine survey indices, Eigenanalysis 

of the C orrelation M atrix, given in descending order of the eigenvalues. Components 

containing a  proportion of variance less than  1/16 of to ta l (0.0588) are considered insignificant 

and are not presented.

Table 3.7. 48

Pearson correlations of P C # 1  on the loess-smoothed indices for each of the three river and 

both surveys. T h e  coded variables are t-traw l survey, s-beach seine survey, followed by 

j-Jam es River, y-York River, and r-Rappahannock River.

Table 3.8. 49

Correlations (Pearson) between the loess-smoothed biological indices vs. the loess- 

sm oothed January-F ebruary  tem perature index.

Table 3.9. 50

Correlations (Pearson) between the loess sm oothed biological indices vs. the loess sm oothed 

January-F ebruary  tem perature index. T he biological indices are given by species codes (see Table 

2.3).

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

Figure 2.1. 19

Long term  (1965 - 1995) m onthly mean water tem peratures, measured a t the VIMS pier. The 

m onths are in chronological order beginning with January , and January and February  are repeated 

a t the end for reasons of symmetry.

Figures 3.1, 3.2. 22

Juvenile indices for A tlantic croaker and spot in the Jam es, York and R appahannock Rivers, from 

d a ta  collected by the VIMS trawl survey. Each index is smoothed by loess.

Figures 3.3, 3.4. 23

Juvenile indices for sum m er flounder and weakfish in the Jam es, York and R appahannock Rivers, 

from d a ta  collected by the  VIMS trawl survey. Each index is smoothed by loess.

Figures 3.5, 3.6. 24

Juvenile indices for white catfish and channel catfish in the Jam es, York and R appahannock 

Rivers, from d a ta  collected by the VIMS trawl survey. Each index is sm oothed by loess.

Figures 3.7, 3.8. 25

Juvenile indices for alewife and blueback herring in the Jam es, York and R appahannock Rivers, 

from d a ta  collected by the VIMS trawl survey. Each index is smoothed by loess.

Figures 3.9, 3.10. 26

Juvenile indices for striped bass and white perch in the Jam es, York and R appahannock Rivers, 

from d a ta  collected by the VIMS trawl survey. Each index is smoothed by loess.

Figures 3.11, 3.12. 27

Juvenile indices for blackcheek tonguefish and silver tonguefish in the Jam es, York and 

Rappahannock Rivers, from d a ta  collected by the VIMS traw l survey. Each index is sm oothed 

by loess.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figures 3.13, 3.14. 28

Juvenile indices for hogchoker and bay anchovy in the Jam es, York and Rappahannock Rivers, 

from d a ta  collected by the  VIMS traw l survey. Each index is sm oothed by loess.

Figures 3.15, 3.16. 29

Juvenile indices for bluecrab from d a ta  collected by the VIMS traw l survey, and oyster from 

data  collected by the VIMS fall dredge survey, in the Jam es, York and Rappahannock Rivers.

Each index is sm oothed by loess.

Figures 3.17, 3.18. 30

Juvenile indices for A tlantic croaker and spot in the Jam es, York and  Rappahannock Rivers, from 

d a ta  collected by the VIMS sum m er beach seine survey. Each index is smoothed by loess.

Figures 3.19, 3.20. 31

Juvenile indices for striped  bass and white perch in the Jam es, York and  Rappahannock Rivers, 

from d a ta  collected by the  VIMS summer beach seine survey. Each index is smoothed by loess.

Figures 3.21, 3.22. 32

Juvenile indices for A tlan tic  m enhaden and gizzard shad in the  Jam es, York and 

Rappahannock Rivers, from d a ta  collected by the VIMS sum m er beach seine survey. Each index 

is sm oothed by loess.

Figures 3.23, 3.24. 33

Juvenile indices for hogchoker and channel catfish in the Jam es, York and Rappahannock Rivers, 

from d a ta  collected by the  VIMS summer beach seine survey. Each index is smoothed by loess.

Figures 3.25, 3.26, 3.27. 34

Juvenile indices for banded killifish, mummichog and eastern silvery minnow in the Jam es, Y ork 

and Rappahannock Rivers, from  d a ta  collected by the VIMS sum m er beach seine survey. Each 

index is smoothed by loess.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figures 3.28, 3.29, 3.30. 35

Juvenile indices for satinfin  shiner, spottail shiner an d  tessellated darter in the Jam es, York 

and R appahannock Rivers, from d a ta  collected by th e  VIMS sum m er beach seine survey. E ach 

index is sm oothed by loess.

Figures 3.31, 3.32, 3.33. 36

Juvenile indices for inland silverside, Atlantic silverside and bay anchovy in the Jam es, Y ork 

and Rappahannock Rivers, from d a ta  collected by th e  VIMS sum m er beach seine survey. Each 

index is sm oothed by loess.

Figure 3.34. 43

Coefficients of principal com ponent analyses for loess-smoothed indices from the traw l survey 

data . Speceis are identified by species codes in T able 2.1.

Figure 3.35. 44

Coefficients of principal com ponent analyses for loess-smoothed indices from the sum m er beach 

seine survey d a ta . Speceis are identified by species codes in Table 2.1.

Figure 3.36. 45

The first three principal components of the PCA analyses on the loess-smoothed indices for th e  

traw l survey and sum m er beach seine survey data , for each of the Virginia rivers. Only the  first 

PC (shown in red) is used in this study.

Figure 3.37. 47

The annual indices of seasonal water tem perature constructed from the VIMS pier tem peratu res. 

Each index is sm oothed by loess a t the k =  0.4 and k  =  0.5 levels.

Figure 3.38. 51

Scatterplots o f loess-smoothed winter tem perature vs. PC ’s # l  on the loess-smoothed biological 

indices, for traw l survey and sum m er beach seine survey d a ta  from each of the V irginia rivers.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 3.39.

Cross correlations on the loess-smoothed traw l survey PC’s # l  vs. loess-smoothed w inter 

w ater tem perature.

Figure 3.40.

Cross correlations on a  subset of the d a ta  in Figure 3.39, the years of anom alous tem peratures. 

T he period 1969 - 1982 was chosen to span the anomalous years.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

Long term  trends in juvenile recruitm ent of oyster, bluecrab, and  24 species o f Gnfish in a large 

tem perate estuary (lower Chesapeake Bay, USA) are coherent across the three m ajor tribu taries (the 

Virginia rivers Jam es, York, and Rappahannock). The driving force for these long term  trends is 

geographically large in scale. Anomalous winters in the m id 1970’s, w ith the w arm est years on record 

followed im mediately by the coldest, caused a severe perturbation  in population dynam ics. The 

extreme conditions caused the system  to shift, with recruitm ent patterns following tem peratures by a 

one year lag. Following this anomalous episode, smoothed m ean winter w ater tem peratures have 

increased steadily from 1979 until 1995 (3.9 - 5.7*C, long-term T =  4.6*C), closely followed (w ith zero 

lag) by the first principal com ponent (PC) from each set of smoothed biological indices.

Annual indices of juvenile abundance (means of log-transformed catch per un it effort) were 

calculated by river for the Jam es, York and Rappahannock Rivers. Two collections of different 

tem poral lengths are analysed, oyster, bluecrab and 14 species of finfish (1965 - 1995) and 17 species of 

fmfish (1980 - 1995), w ith an  overlap of seven species of finfish. T he indices are sm oothed by loess 

(locally weighted scatterplot sm oother), and analyses are performed on the indices, th e  loess-smoothed 

indices, and the residuals.

Principal com ponents analysis (PCA) on the indices indicates coherence in  the  population 

fluctuations by a  relatively sm all num ber of PC ’s. Weak relationships are found in  the unsm oothed 

indices and the residuals. Smoothed long-term trends eliminate m uch of the noise, thus exposing the 

underlying behavior of populations. PCA on the loess-smoothed indices were rem arkably  cohesive, 

with only three or four P C ’s significant in each of the six treatm ents, accounting for 93 to  98% of total 

variance, with 44 to 70% in P C # 1 . Correlations on the first P C ’s of the loess-sm oothed indices, 

between rivers, within and  between surveys, yielded 87 - 99% agreem ent; such coherence indicates the 

underlying causal factor is geographically broad. Cross correlations and scatterp lo ts of sm oothed 

winter water tem perature and P C # 1  identify the lag during the perturbation  years.

xiii
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Introduction

“C lim ate plays an im portan t part in determ ining the average number of a  species, and 

periodical seasons of extrem e cold or drought seem to be the m ost effective o f all checks. I 

estim ated (chiefly from  the greatly reduced numbers of nests in the spring) th a t the w inter of 

1854-55 destroyed four-fifths of the birds in my own grounds; and this is a  trem endous 

destruction, when we remember th a t ten  per cent, is an extraordinarily severe m ortality  from 

epidemics with m an” (Darwin 1859).

M ost ecologists agree th a t the physical environm ent (e.g., tem perature, freshw ater discharge), 

its inhabitan ts, their interactions, and inter- and intraspecific interactions (e.g., com petition and 

predation) collectively should be thought of as a  system. It is often not difficult to discover some 

connection between a  physical param eter and th e  population dynamics of a single species (e.g., salinity  

and the oyster disease MSX, Abbe 1992). M any predator/prey (e.g., white perch /bay  anchovy. Luo 

1991) and com petition (e.g., resource partition ing  among species of mummichogs, YVeisberg 1986) 

relationships have been dem onstrated. However, because of the immense complexity of the biosphere, a  

unifying theory has not been established.

An im portan t step tow ards a conceptual understanding of ecosystems is to  understand the 

broader system  of species-environment relationships. This can be accomplished in the  Chesapeake Bay 

by considering juvenile recruitm ent of a large group of species in conjunction with characteristics of the 

environm ent they inhabit.

The debate over the relative im portance of density-dependent (e.g., disease, parasitism , parent 

stock size, m alnutrition and predation) and density-independent (e.g., tem perature, salinity) (Ricker 

1954) factors to  juvenile recruitm ent and m orta lity  is longstanding and unresolved. For example, for 

many species juvenile recruitm ent is normally independent of spawning stock size (W alters and Ludwig 

1981).
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T he distinction between density-dependent and density-independent factors affecting juvenile  

stock size is often blurred. C lim ate sometimes indirectly controls juvenile recruitm ent th rough  a  less 

direct biological interm ediate stage. For example, M erriman (1941) noted tha t striped  bass 

recruitm ent was often greatest following cold winters. D etritivore copepod population size in A pril and 

May depends upon very harsh (cold, with high precipitation) winters, so th a t detritus in th e  salt 

marshes is ground up by shifting ice, and the subsequent high volume of fresh water discharge moves 

the m aterial out into the  rivers (Heinle el al. 1976). Abundance of copepods as a  food supply 

contributes directly to survival o f larval striped bass. C lim ate has been dem onstrated to exert direct 

control over plankton production (Colebrook 1978, 1982, Chelton el al. 1982, Koslow 1983), which in 

tu rn  regulates larval fish recruitm ent (Cushing 1980, 1982, Smith and Eppley, 1982). Therefore, 

climatic control of one species m ay be reflected in the population abundance o f another.

M any direct physical controls of juvenile abundance of marine species have been dem onstrated . 

For example, croaker and spot spawn in the A tlantic Ocean and recruitm ent to  the juvenile stock  in 

Chesapeake Bay depends on  the tim ing, duration and velocity of wind driven currents (Norcross 1983, 

Bodolus 1993). Similarly, an eleven year cycle in the strength  of westerly winds off A ustra lia  m ay 

control recruitm ent cycles of fish, lobsters and scallops (Thresher 1994). Locally, northw ard wind 

controls recruitm ent of Chesapeake Bay bluecrabs. W hen winds are favorable bluecrab larvae are 

positioned in the northeastw ard quad ran t of the Chesapeake Bight of the western North A tlan tic . This 

location is advantageous for surface currents to later return larvae to Chesapeake Bay (Johnson 1995), 

with June through Septem ber wind patterns accounting for about 36% of harvest varia tion  in 

subsequent years (Johnson 1989).

Changes in the G ulf stream  m ay have profound effects on recruitm ent of certain m arine- 

esturaine species of the N orth A tlantic. For instance, in the 1980’s a  reduction in Am erican and 

European eel recruitm ent m ay have been related to weakening of the G ulf S tream  (Castonguay ei al.

1994). Changes in  the oceanic environm ent sometimes can have large effects on recruitm ent, as

2
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happened in the late 60’s and 70’s when a  body of cold w ater m igrated from Greenland to Labrador to 

Newfoundland, and then down to the G ulf Stream , and  affected stock recruitment everywhere it went 

(Blindheim  1993).

Environm ental factors, including stream  flow and tem perature explain 80-90% of the varia tion  

in American shad recruitm ent in the Connecticut River (Crecco et al. 1986) and survival of larvae of 

several species of salm on depends on fall and w inter stream  flow (Kocik and T aylor 1987). 

R ecruitm ent of juveniles of the Indian oil-sardine is thought to  depend on the intensity of the 

southw est monsoon (R aja 1973).

An unusually favorable physical condition m ay have a  beneficial effect on recruitm ent, while 

m oderate to poor expressions of the sam e factor m ay not necessarily depress recruitm ent. Some years 

m ultip le cohorts of juvenile dungeness crabs have been observed in Puget Sound (Dinnel el al. 1993). 

M ultiple cohorts of juvenile striped bass, as evidenced by size\frequency analysis, were observed in 

Chesapeake Bay in the sum m er of 1993 (H erbert Austin, VIMS, pers. comm.). Perhaps some favorable 

environm ental factor induced spawners to  rem ain on or return  to  the spawning grounds for a  second (or 

even third, in Puget Sound, 1988) spawning event, or perhaps some unfavorable event in terrup ted  

spawning, as has been reported for striped bass (Rutherford 1992).

Biological effects, particularly predation and prey abundance, often affect recruitm ent. 

T urb id ity , has been shown to be more im portan t than  tem perature or salinity in the recruitm ent of 

m any species of South African fishes, because it reduces predation (Blaber and Blaber 1980). P redation 

by epibenthic fauna has been dem onstrated to be the m ost im portant source of m ortality  of juvenile 

starfish (Keesing and Halford 1992). Recruitm ent of barnacle larvae from kelp forests to  rocky 

in tertidal hab itat can be 50 times higher if predation by juvenile rockfish is absent (Gaines and 

Roughgarden 1987). In the rocky in tertidal, predation by birds m ay control recruitm ent of juvenile 

mussels (Marsh 1986). T he presence of mussel beds m ay control recruitment of sea anemones, which 

when m ature will prey upon dislodged mussels (Sebens 1981, 1982).

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The relationship between the tim ing of the spring phytoplankton bloom and the abundance of 

bay anchovies in th e  M aryland half of Chesapeake Bay was evaluated by linear regression (Mosca. T .C . 

Ill, unpublished d a ta ) . About 83% of the variation in the anchovy juvenile index com puted by 

M aryland D epartm ent of N atural Resources could be accounted for by the difference between the 

annual date and th e  m ean date of the phytoplankton spring bloom. The absolute difference between 

the dates was found to  have an insignificant effect. This combination of results and the negative 

regression coefficient of the signed differences indicates that a  late spring bloom had  a  deleterious effect 

on recruitm ent, while an  earlier bloom m ay have enhanced survival.

Each of th e  studies discussed above focused on single species relationships. Recruitm ent 

patterns of m any species across a  broad geographical region are evidence that geographically large-scale 

environm ental forcing functions are in partial control (e.g., ENSO and recruitm ent of rock lobster, 

Pearse and Phillips 1988). The existence of such patterns can be dem onstrated by using m ultivariate 

analysis tools, such as principal component analysis (PCA). Patterns in recruitm ent were found in the 

tim e series of 14 northw est Atlantic fish stocks, including cod, haddock and herring. A similarly 

positive correlation was found in another group, including cod, haddock and redfish. Further, a 

negative relationship was identified between offshore spawners and inshore spawners. These patterns 

were identified using PCA (Koslow 1984).

W hat controls interannual variation in juvenile population abundances? Do fluctuations of one 

species, bluecrabs, for example, occur in synchrony with others, like oyster or flounder? It is obvious 

th a t the size of paren t stocks influences reproduction, but it is also clear th a t extrinsic effects cause 

changes in juvenile abundance. Which clim atic variables are responsible? W hich fluctuations are 

measurable across the  Chesapeake Bay basin, and which are river-specific?

In this paper I investigated coherence in the annual abundances of juvenile fishes, oysters, and 

bluecrabs w ithin th e  Virginia portion o f the Chesapeake Bay th a t are well represented in the trawl, 

beach seine, and  fall dredge surveys. The list of species is given in Table 1. These are the species for

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



which we have sufficient d a ta  from which to  construct meaningful, long-term  indices (C. Bonzek. pers. 

comm.).

The hypothesis tested  is twofold; 1) th a t  recruitm ent of the different species for which the Bay 

system is nursery ground is no t random, and  the “non-randomness” of recruitm ent can be detected as 

coherence between species population fluctuations, and 2) that the environm ent a t  least partially  

controls the recruitm ent process, and through coherence with physical param eters we can detect this 

control.

The biological d a ta  used here are indices of annual juvenile abundance for oyster (VIMS fall 

oyster dredge survey, 1965 - 1995), bluecrab and  14 species of finfish (VIMS o tter traw l survey. 1965 -

1995), and 17 species of finfish (VIMS beach seine survey, 1980 - 1995). Seven species of finfish are 

collected in both the traw l and  beach seine surveys.

Species th a t fluctuate in synchrony (in phase or out of phase) do so because of an extrinsic 

reason, which was the object of this search. Is there some broad-scale environm ental control of juvenile 

abundance in the Virginia half of Chesapeake Bay? If there is coherence w ithin rivers, but not between 

rivers, a  local control is im plicated, such as freshwater discharge or sum m ertim e dissolved oxygen, 

which vary widely between the  very different watersheds and basins. A t the sam e tim e, if there is 

coherence in population abundance fluctuations w ithin and between rivers, local signals are not in 

control, and a  geographically broad forcing function, such as drought or regional tem perature, probably 

regulates recruitm ent.

The interspecies com ponent of this s tudy  is unique. There is great diversity in the life histories 

of the selected species. Some have an offshore component in the juvenile or larval stage, such as 

menhaden, croaker, spot and bluecrab. O thers reproduce entirely within the Chesapeake Bay, such as 

the catfish, striped bass, w hite perch and oysters. Some are restricted to the  upper reaches of rivers 

where salinity is very low, including white perch, the minnows, shiners and darters, while others like 

the weakfish, hogchoker, silversides, anchovies and silver perch are found farther downstream .

5
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M aterials and  M ethods

In this chapter th e  relationship between the environm ent and biota will be exam ined by 

com paring indices of abundance of juvenile finfish, the decapod crustacean, bluecrab and  the  bivalve 

mollusc, oyster, and indices of seasonal tem perature. The individual species used in th e  study  are 

profiled in the appendix.

T he Juvenile Indices

The d a ta  used to  construct annual indices of abundance are time series of juvenile abundance 

for oyster spat collected year-round in the VIMS fall oyster dredge survey (1965 - 1995), bluecrab and 

14 species of finfish collected by the VIMS trawl survey (1965 - 1995) and 17 species of finfish collected 

in the VIMS sum m er beach seine survey (1980 - 1995). Seven species of finfish are collected in both 

the trawl and beach seine surveys, providing redundant estim ates of juvenile abundance a t  two 

tem poral and spatial locations (Table 2.1). Species are frequently identified in this s tu d y  by VIMS 

species codes (Table 2.1). Because the tim e series were tem porally coincident, the oyster d a ta  were 

grouped with the traw l survey d a ta . Indices of annual abundance of each species within each V irginia 

river were constructed.

The indices were annual m eans of log-transformed catch per unit effort, by river for th e  three 

principal Virginia Chesapeake Bay tributaries, the Jam es, York, and Rappahannock rivers. T h e  indices 

were smoothed by loess (locally weighted scatterplot smoother, Cleveland 1979), and analyses were 

performed on the indices, the loess-smoothed indices, and the residuals. Two d a ta  sets were employed 

and  treated separately: the  beach seine indices, and the trawl survey indices. Because the oyster d a ta  

have the sam e period of record, oyster indices were grouped w ith the traw l survey data .

Eighteen sets of d a ta  resulted: the trawl survey and beach seine indices for each o f th ree rivers, 

the  six sets of loess sm oothed indices, and six sets of residuals o f the smoothed indices. Each set was be

6
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Gear code Lined Tickler chain Bridle Otter boards

010 No No 30’ 48" x 22

033 Yes No 30’ 48" x 22

043 No Yes 30’ 54" x 24

068 Yes Yes 30’ 54” x 24

070 Yes Yes 60’ 54" x 24

108 Yes Yes 60’ China-V

035 Yes No 23’ 24" x 12

Table 2.1. Configurations o f the various trawl survey gears, by gear code. All gears 
except 035 are 30 feet nets; gear 035 is 16 feet. The metal China-V otter board doors 
are thought to be equivalent to the 54" x 24" wooden doors.

7
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examined for tem poral coincidence. Principal com ponents analysis (PCA) of a  set of indices was used 

to indicate coherence in population fluctuations by a  relatively sm all number of significant com ponents. 

Comparisons were m ade within rivers using P C A  to  detect coherence between species. T h e  results of 

PCA were com pared across the three rivers to determ ine the scale of the effect.

Traw l survey da ta

VIMS conducts a  year-long o tte r traw l survey of the lower portion of the Chesapeake Bay and 

the m ajor Virginia tributaries. Sites in the Jam es, York, and Rappahannock rivers, and  th e  Bay 

proper, were visited m onthly and sam pled w ith a  10 m semi-balloon otter trawl (Bonzek et al 1993). 

The survey was designed “to produce annual indices of juvenile (young-of-year) abundance of 

commercially, recreationally and ecologically im p o rtan t m arine and estuarine finfish and crustaceans” 

(Bonzek et al. 1993). While the VIMS traw l survey program  was not designed to sam ple adult 

populations, in some cases it does so very well (e.g. white perch).

The trawl survey provides a  nearly continuous record from 1955 to the present, though  some 

changes have been m ade over the years in gear and  methodology (Table 2.2). In 1965 the survey was 

expanded from the York River to include the Jam es and  Rappahannock rivers; this is the d a te  a t  which 

the d a ta  become useful for inter-river com parisons. The changes in gear (boats and nets) and 

methodology have been documented (Geer and A ustin  1995, Geer et al. 1995).

To produce a  meaningful tim e series, the  effects of different gear types m ust be rem oved. For 

some years d a ta  from more than one gear type exist. Only d a ta  for one gear type were used for any 

particular year (Table 2.3). The subsets of the d a ta  set by gear type were standardized to  zero m ean 

and unit variance. Since indices for the different species were derived from d a ta  collected during 

different months, and  gear changes occurred in m idyears, it was necessary to segregate the d a ta  by gear 

type and decide which gear type to use for a  particu la r year. The decision was made based on num ber

8
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River Stratum I Stratum II

James

York

Rappahannock < = 2 0

< =  15

< = 1 7

> 2 0  <  =  42

>  17 <  =  42

>  15 <  =  42

Table 2.2a. River miles of strata on the three Virginia rivers.

River Stratum I Stratum II

Rappahannock

James

York

687 (.654) 

372 (.669) 

283 (.598)

364 (.346) 

184 (.331) 

190 (.402)

Table 2.2b. The number of 1/4 square mile, trawlable, quadrants per stratum and the 
weight assigned to each stratum for use in indices for species for which both up and 
down river strata are used.

Tables 2.2. The weights used in construction of the trawl survey indices. All weights 
are based upon the number of trawlable 1/4 square mile quadrants within each stratum.

9
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Species code Common name Scientific name

oyster Crassostrea virginica

3 t summer flounder Paralichthys dentatus

5 ts Atlantic croaker Micropogonias undulatus

7 t weakfish Cynoscion regalis

26 t alewife herring Alosa pseudoharengus

27 t blueback herring Alosa aestivalis

31 ts striped bass Morone saxcailis

32 ts white perch Morone americana

33 ts spot Leiostomus xanthurus

37 s Atlantic menhaden Brevoortia tyrannus

39 t white catfish Ictalurus catus

40 ts channel catfish Ictalurus punctatus

51 s gizzard shad Dorosoma cepedianum

89 s tssellated darter Etheostoma olmstedi

103 ts bay anchovy Anchoa mitchilli

107 s eastern silvery Hybognathus regius
minnow

109 s satinfin shiner Cyprinella analostanas

110 s spottail shiner Notropis hudsonius

121 s banded killifish Fundulus diaphanus

122 s mummichog Fundulus heteroclitus

149 s inland silverside Menidia beryllina

150 s Atlantic silverside Menidia menidia

151 ts hogchoker Trinectes maculatus

1 5 2 1 blackcheek Symphurus plagiusa
tonguefish

213 t silver perch Bairdiella chrysoura

6 1 4 1 bluecrab Callinectes sapidus

Table 2.3. List o f species by VIMS species code, common name, and scientific name. 
The letters accompanying the species code indicate the species is collected in the t-trawl 
survey and s-beach seine survey.
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of observations by gear type and year, and continuity  of gear type across years. Three gear types (68, 

70 and 108) were used from 1980 to 1995, bu t they were sufficiently sim ilar th a t they  were grouped 

together. Also, it was necessary in a  few cases to  group gear types 33 and 35; these were both  lined 

nets, bu t 35 is sm aller, has a shorter bridle, and lacks a  tickler chain. However, in no case was more 

than  one year o f gear type 35 included, and it was felt th a t the inclusion of a dissim ilar gear type was 

preferable to  missing a  year of data .

T he young-of-the-year counts for each species were log-transformed (log[x+ l]), and annual 

means were calculated for each river. The rivers were divided into two s tra ta  each, w ith  the division 

based upon traw lable surface area (Table 2.4a, b). Each river was divided into two equal s tra ta  (Geer 

ct al. 1995) T he d a ta  from upper s tra ta , lower s tra ta , or both s tra ta  for each river were used, 

depending on the habits of the fish. D ata from the m onths of greatest availability for a  particu lar 

species were used to construct the indices for th a t species (Table 2.5). T he sums of the w eighted s tra ta  

means make th e  index. The weights depend upon the traw lable stations per s tra tu m  (T ab le 2.4). In 

all cases app ropria te  weights have unit sums; for within river indices in which only one s tra tu m  was 

used, un it weight was assigned.

Beach Seine D a ta

VIMS conducts a  summer beach seine survey to  evaluate the abundance of young-of-the-year 

(YOY) striped bass (Colvocorresses 1984). The beach seine survey was conducted from  1967 to  1973, 

and from 1980 to  the present. Observations were made m onthly at several locations on each of the 

Virginia rivers from July through September (A ustin  el al. 1993). Counts and lengths on all species in 

the seine were recorded.

The abundance data (counts per haul) were log-transformed, and w ithin-river m eans were 

calculated. D a ta  were segregated according to the station type (primary or auxiliary) and  tow. Only 

prim ary stations were used, and because the first and  second tows were not independent, only the first

11
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Species Data months Strata used

summer flounder Sept. - Nov. lower

Atlantic croaker Oct. - Dec. both

weakfish Aug. - Oct. both

alewife herring Dec. - Mar. upper

blueback herring Dec. - Mar. upper

striped bass Dec. - Feb. upper

white perch Dec. - Feb. upper

spot Jul. - Oct. both

white catfish Jan. - Apr. upper

channel catfish Jan. - Apr. upper

bay anchovy Jul. - Dec. both

hogchoker May - Jul. both

blackcheek tonguefish Apr. - Jun. both

silver perch Aug. - Nov. both

bluecrab Aug. - Nov. both

Table 2.4. Months and strata used in trawl survey indices, by species.
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Yr 3 5 7 26 27 31 32 33 39 40 103 151 152 213 614

72 10 10 10 10 10 10 10 10 10 10 10 10 10 10 43

73 43 43 43 35 35 35 35 43 35 35 43 43 43 43 43

74 43 43 43 33 33 33 33 43 33 33 43 43 43 43 43

75 43 43 43 33 33 33 33 43 33 33 43 43 43 43 43

76 43 43 43 33 33 33 33 43 33 33 43 43 43 43 43

77 43 43 43 33 33 33 33 43 33 33 43 43 43 43 43

78 43 43 43 33 33 33 33 43 33 33 43 43 43 43 43

79 68 68 68 33 33 33 33 68 33 33 68 68 68 68 68

80 70 70 70 33 33 33 33 70 33 33 70 70 70 70 70

Table 2.5. Gear types used to construct juvenile indices from the trawl survey data, by 
VIMS species codes and year. For all years before 1972 gear type 10 was used for all 
species, from 1981 until 1990 gear type 70 was used, and from 1991 until 1995 gear type 
108 was used for all species.
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tow was used (Rago et al. 1995). Because o f the considerable tem poral gap and m oderate changes in 

gear, only the 1980 - 1995 da ta  were used.

Fall oyster survey

Each fall, the VIMS oyster dredge survey samples the public oyster “rocks” (or “reefs” ), known 

as Baylor Grounds, with a  standard  dredge (Morales-Alamo and M ann 1997). In the past, one bushel 

o f “clutch” (mixed grab of oysters and em pty  oyster shells) was examined, and the num ber of recently 

attached  spat, yearling, sub-m arket sized (usually <  2 y old), m arket sized oysters (usually >  2 y old) 

and  two categories of “boxes” (recently killed and oysters dead for a  longer time) were recorded. In 

m ore recent years, the sample size was reduced to  |  bushel, and the  yearling category was dropped 

(yearlings and sub-markets are now grouped together as sub-m arkets). Doubling recent d a ta  adjusts 

for the change in sample size.

W ithin the three Virginia rivers 35 stations have been visited over the interval 1965 - 1995. 

However, only six of these have been sam pled with sufficient regularity to be useful in this study. 

These stations were missed by the survey some years, but the num ber of missing observations was 

sm all (16 of 186, 8.6%) and only twice were consecutive years missed. Two stations were on Jam es 

River (W reck Shoal Offshore, and Poin t of Shoals), three were on the Rappahannock (M orattico Bar, 

Hog House Bar, and Drumming Ground), and one was on the York R iver (Aberdeen Rock).

Indices of juvenile (spat-on-shell) abundance were constructed for each Baylor G round, and 

consist of the means of the log-transform ed counts per bushel. Correlations between oyster rocks 

w ithin each river and the location of th e  oyster rock in the river were used to  determ ine which da ta  

should be included in the index for Jam es and Rappahannock rivers. Wreck Shoal and Point of Shoals 

are geographically close, and are relatively far upriver, but are in sections of the Jam es River th a t have 

different circulation patterns (Haven an d  Fritz 1985). Hog House B ar and Drum m ing Ground on the 

R appahannock are near each other, b u t M orattico Bar is much farther upriver.

Correlations of oysters within rivers (Table 2.6) indicated th a t the two Jam es River stations

14
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Station S175 S001 S067 S180 S181

S123 .44* ns .52** ns .44*

S175 ns .41* ns ns

S001 ns ns ns

S067 ns .51**

S180 ns

Table 2.6. Pearson correlation coefficients between individual oyster rocks. Rocks are 
identified by Fall Oyster Survey station number, which are as follows: S 123-Point of 
Shoals on James River, S175-Wreck Shoals, offshore on James River, SOOl-Aberdeen 
Rock on York River, S067-Hog House Bar on Rappahannock River, S180-Morattico Bar 
on Rappahannock River, and S181-Dramming Ground on Rappahannock River. The 
notation * indicates p <  0.05, and ** indicates p <  0.01.

15
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and two of the R appahannock River stations were coherent. T he third station on the R appahannock 

was M orattico, which is also geographically d is tan t from the others. Based on proxim ity and 

correlations, the two stations on the Jam es River (P o in t o f Shoals and the Offshore W reck Shoals bars) 

and two of the sta tions on the Rappahannock R iver (D rum m ing Ground and Hog House Bar) were 

combined to produce Jam es and Rappahannock R iver oyster indices. York River was represented by a 

single s tation  (Aberdeen Rock). The means of th e  log-transformed spat per bushel (standardized, as 

above) for the appropriately  pooled d a ta  comprise the  index for each river. Because these indices span 

the period 1965 - 1995, they were grouped and analysed w ith the trawl survey indices.

Loess

Each of the  indices used in the study was sm oothed by the loess (locally weighted scatterplot 

sm oother) m ethod (Cleveland 1979). Loess calculates a  new smoothed y^-value for each (x, y) pair, 

and plots the (x, y ' ) pairs with a connecting curve. The loess smooth reveals the long-term  trend in 

data . A param eter was set between zero and one to  determ ine the degree of flexibility of the  sm ooth; a 

medium flexibility was chosen (k =  0.5).

A t the k =  0.5 level, loess uses 50% (or w hatever k% is chosen) of the d a ta  to calculate each 

new sm oothed value. T he d a ta  that were used were weighted by

- - [ ‘ • ( d b ) * }
where D was the  distance along the x-axis from th e  selected point to each point in the  weighting group. 

W eighted linear regression was then performed on the  selected points. The y-value of the regression 

line corresponding to the x-value of the original po in t becomes the new y '.  To reduce the influence of 

outliers, the process was repeated twice, this tim e using

w =  [  1 - G .m e d ia n  Irl) 2]^  

where r is the value of each respective residual from the previous step.
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Principal com ponent analysis

The m ajor th rust of this project was to identify possible coherent fluctuations in the m agnitude 

of juvenile populations o f flnfish, bluecrab and oyster. Principal component analysis (PCA ) calculates 

the ranked eigenvectors (eigenvector bases and eigenvalues) of the square m atrix  o f correlations or 

covariances o f the  tim e series. The correlation m ethod was used here. The m ethod summarizes a 

m ultivariate d a tase t using the minimum num ber components, by finding a quan tita tive  association 

between the variables, and partitions the variance o f the da ta  set.

The d a ta  were linearly transformed from the  original variables Xy -♦ Ty, the eigenvectors. The 

Ty have variance Ay, the respective eigenvalues ranked from largest to sm allest. The relative 

m agnitudes of the Ay describe the degree to which the data  are coherent. If the first few At- are “large” 

and At+1...An are relatively sm all, then the da ta  are very coherent. If the variance is more or less 

evenly distributed am ong the A,-, then the d a ta  are uncorrelated.

Correlations were performed on the first P C ’s of each index within the two sets of loess 

smooths for traw l an d  beach seine surveys, and between surveys.

W ater tem perature

W ater tem perature is perhaps the most often cited physical causal factor in the regulation of 

Chesapeake Bay populations ( e.g., Ford 1996, Shaih 1994, Cargo 1990, Coutant and Benson 1990, Van 

Engel 1987, Norcross 1983, Cook 1981). Tem perature controls the metabolic rates of cold-blooded 

animals. An expression of this control is Van’t H offs equation, which indicates th a t change in 

metabolic ra te  (given as Q 10) in poikilotherms will increase or decrease by a factor of two to  three for 

each 10*C increase or decrease in ambient tem perature, respectively. A Q l0 value outside of the range 

of two to  three indicates some other process is in control (Vernberg and Vernberg 1972). The animals 

considered in this s tudy  are all cold-blooded , so w ater tem perature was selected for com parison with

17
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trends in overall population abundance, as identified through PCA.

Indices of seasonal m ean water tem perature were chosen as the variables. The VIMS pier 

tem peratures were chosen for index construction, as they are long-term d a ta  th a t span the periods of 

interest w ith relatively few, short-term  interruptions (usually due to equipm ent failures (Gary 

Anderson, VIMS, pers. com m .). Although frequency of sampling has increased over the years (2 /d  to 

240/d), seasonal means can be constructed over the period of record. T he VIMS pier tem peratures 

(York River) were considered to be an  adequate surrogate for water tem peratures on the Jam es and 

Rappahannock rivers {e.g., Austin ei al. 1995).

T o decide which m onths to include in the index for each season, long-term (1965 - 1995) 

monthly means (Figure 2.1), and the differences (A T ) between the m onthly  means were calculated 

(Table 2.7). In Figure 2.1 the m onths January  and  February appear twice, a t  the beginning and end, 

for reasons of sym m etry.

Based on the decision above, indices of seasonal mean water tem perature for the period 1965 - 

1995 were constructed. The tem perature indices were smoothed by loess a t  the k =  0.5 and k =  0.4 

levels.

Scatterplots were constructed of w inter w ater tem perature loess vs. P C # 1 . Based on the 

appearance of these, cross correlations were performed on winter water tem perature loess vs. trawl 

survey P C # 1 . Another set of cross correlations were performed on a  subset o f these d a ta  (1969 - 1982).

As an aid in interpreting each species contribution to  the sm oothed indices PCA and the 

relationship with winter water tem perature, correlations were performed between each smoothed 

biological index and the sm oothed winter tem perature index.

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 2.1. Long-term (1965 - 1995) monthly mean water temperatures, measured at the VIMS pier.

The months are in chronological order beginning with January, and January and February are repeated

at the end for reasons of symmetry.
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i th T A T

1 5.2

2 5.2 0

3 7.9 2.7

4 13.6 5.7

5 19.0 5.4

6 24.0 5.0

7 27.1 3.1

8 27.2 0.1

9 24.5 2.7

10 19.3 5.2

11 13.5 6.8

12 8.0 5.5

1 5.2 2.8

Table 2.7. Long-term (1965 - 1995) mean w ater tem perature by m onth, as measured off the  VIMS 

pier, and the difference between each m onth and the  previous m onth (A T ).
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Results

Indices of 16 species in the trawl survey group and 17 species in the beach seine group were 

constructed for each of the three Virginia rivers. Each index was smoothed by loess (Figures 3.1a. b. c 

- 3.33a, b, c).

Principal component analysis

The 18 groups of data, consisting of indices, residuals, and loess trends for each of three rivers, 

from two survey da ta  sets (oyster indices were grouped with trawl survey indices) were partitioned by 

PCA. T he eigenvalues, proportion of varia tion  for each, and cumulative proportions of variation were 

given in Tables 3-1 - 3.6. The coefficients by which the loess smooths on the indices were transform ed 

into new variates are given graphically in Figures 3.34 - 3.35. The first three scores (the transform ed 

variables) for the loess smoothed indices contain  alm ost all of the variance (Figure 3.36), of which the 

first PC (P C # 1 ) is used in these analyses.

Given N variates, a  principal com ponent (PC) is considered significant if N -1 of the variance is 

contained in th a t PC. Thus, for the 16 traw l survey indices, any PC with variance >  0.0625 o f to tal 

variance is significant (for beach seine survey N =  17, with significance level >  0.0588). A lternately, 

with the correlation m ethod of PCA used here, one can consider the eigenvalues themselves. If the 

eigenvalue is >  1, the PC is significant.

W eak but significant relationships were found in the unsmoothed indices (Table 3.1) In the 

trawl survey indices less than  half (six or seven of 16) of the PC ’s were significant for any  river, 

explaining up to 84% of variance. The analysis on the beach seine indices indicated even stronger 

relationships (Table 3.2), w ith about one-third o f the PC  significant, accounting for 82 to  86% of to tal 

variance. P C # 1  accounted for about one-fifth of variance in the trawl survey indices, and one th ird  in 

the beach seine indices. PCA on the residuals were sim ilar in magnitude (Table 3.3, 3.4).
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Figures 3.1, 3.2. Juvenile indices for Atlantic croaker and spot in the James, York and Rappahannock

rivers, from data collected by the VIMS trawl survey. Each index is smoothed by loess.
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Figures 3.3, 3.4. Juvenile indices for summer flounder and weakfish in the James, York and

Rappahannock rivers, from data collected by the VIMS trawl survey. Each index is smoothed by loess.
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Figures 3.5, 3.6. Juvenile indices for white catfish and channel catfish in the James, York and

Rappahannock rivers, from data collected by the VIMS trawl survey. Each index is smoothed by loess.
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Figures 3.7, 3.8. Juvenile indices for alewife and blueback herring in the James, York and

Rappahannock rivers, from data collected by the VIMS trawl survey. Each index is smoothed by loess.
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Figures 3.9, 3.10. Juvenile indices for striped bass and white perch in the James, York and

Rappahannock rivers, from data collected by the VIMS trawl survey. Each index is smoothed by loess.
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Figures 3.11, 3.12. Juvenile indices for blackcheek tonguefish and silver tonguefish in the James. York

and Rappahannock rivers, from data collected by the VIMS trawl survey. Each index is smoothed by

loess.
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Figures 3.13, 3.14. Juvenile indices for hogchoker and bay anchovy in the James, York and

Rappahannock rivers, from data collected by the VIMS trawl survey. Each index is smoothed by loess.
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Figures 3.15, 3.16. Juvenile indices for bluecrab from d a ta  collected by the VIMS traw l survey, and 

oyster from d a ta  collected by the VIMS fall dredge survey, in the James, York and R appahannock 

rivers. Each index is smoothed by loess.
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Figures 3.17, 3.18. Juvenile indices for Atlantic croaker and spot in the James, York and

Rappahannock rivers, from data collected by the VIMS summer beach seine survey. Each index is

smoothed by loess.
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Figures 3.19, 3.20. Juvenile indices for striped bass and white perch in the James, York and

Rappahannock rivers, from data collected by the VIMS summer beach seine survey. Each index is

smoothed by loess.
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Figures 3.21, 3.22. Juvenile indices for Atlantic menhaden and gizzard shad in the James, York and

Rappahannock rivers, from data collected by the VIMS summer beach seine survey. Each index is

smoothed by loess.
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Figures 3.23, 3.24. Juvenile indices for hogchoker and channel catfish in the Jam es, Y ork and

Rappahannock rivers, from d a ta  collected by the VIMS summer beach seine survey. Each index is

smoothed by loess.
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Figures 3.25, 3.26, 3.27. Juvenile indices for banded killifish, mummichog and eastern silvery minnow

in the James, York and Rappahannock rivers, from data collected by the VIMS summer beach seine

survey. Each index is smoothed by loess.
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Figures 3.28, 3.29, 3.30. Juvenile indices for satinfin shiner, spottail shiner and tessellated darter in the

James, York and Rappahannock rivers, from data collected by the VIMS summer beach seine survey.

Each index is smoothed by loess.
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Figures 3.31, 3.32, 3.33. Juvenile indices for inland silverside, Atlantic silverside and bay anchovy in

the James, York and Rappahannock rivers, from data collected by the VIMS summer beach seine

survey. Each index is smoothed by loess.
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Eigenvalue 3.2784 2.5426 2.0875 1.7762 1.5431
Proportion 0.205 0.159 0.130 0.111 0.096
Cumulative 0.205 0.364 0.494 0.605 0.702

Eigenvalue 1.1675 1.0095
Proportion 0.073 0.063
Cumulative 0.775 0.838

Table 3.1a. James River, 25 icases used, 6 cases contained
missing values.

Eigenvalue 3.6149 2.5430 1.9541 1.6054 1.3945
Proportion 0.226 0.159 0.122 0.100 0.087
Cumulative 0.226 0.385 0.507 0.607 0.694

Eigenvalue 1.1165 
Proportion 0.070 
Cumulative 0.764

Table 3.1b York River, 23 cases used, 8 cases contained 
missing values.

Eigenvalue 2.9755 2.3331 2.0913 1.4696 1.2858
Proportion 0.186 0.146 0.131 0.092 0.080
Cumulative 0.186 0.332 0.462 0.554 0.635

Eigenvalue 1.1367 1.0750
Proportion 0.071 0.067
Cumulative 0.706 0.773

Table 3.1c Rappahannock River 24 cases used, 7 cases 
contained missing values.

Table 3.1. Principal component analyses on the 16 trawl 
survey indices, Eigenanalysis of the Correlation Matrix, 
given in descending order of the eigenvalues. Components 
containing a proportion of variance less than 1/16 of 
total (0.0625) are considered insignificant and are not 
presented.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Eigenvalue 6.2018 3.1331 2.2068 1.2879 1.0386
Proportion 0.365 0.184 0.130 0.076 0.061
Cumulative 0.365 0.549 0.679 0.755 0.816

Table 3.2a. James River,

Eigenvalue 5.6620 3.1867 1.8139 1.6623 1.2124
Proportion 0.333 0.187 0.107 0.098 0.071
Cumulative 0.333 0.521 0.627 0.725 0.796

Eigenvalue
Proportion
Cumulative

1.1004
0.065
0.861

Table 3.2b. York River.

Eigenvalue
Proportion
Cumulative

5.8011
0.341
0.341

3.3383
0.196
0.538

1.8205
0.107
0.645

1.5283
0.090
0.735

1.4144
0.083
0.818

Table 3.2c. Rappahannock River

Table 3.2. Principal component analyses on the 17 beach 
seine survey indices, Eigenanalysis of the Correlation 
Matrix, given in descending order of the eigenvalues. 
Components containing a proportion of variance less than 
1/17 of total (0.0588) are considered insignificant and are 
not presented.
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Eigenvalue 3.3922 2.7725 2.0321 1.5575 1.4898
Proportion 0.212 0.173 0.127 0.097 0.093
Cumulative 0.212 0.385 0.512 0.610 0.703

Eigenvalue 1.2925
Proportion 0.081
Cumulative 0.784

Table 3.3a. James River, raw, 25 cases used, 6 cases 
contained missing values.

Eigenvalue 3.3137 2.3288 1.9468 1.7310
Proportion 0.207 0.146 0.122 0.108
Cumulative 0.207 0.353 0.474 0.583

Eigenvalue 1.1990 1.1280
Proportion 0.075 0.071
Cumulative 0.657 0.728

Table 3.3b. York River, raw, 25 cases used, 6 cases 
contained missing values.

Eigenvalue 3.2503 2.3821 1.7616 1.6122 1.3434
Proportion 0.203 0.149 0.110 0.101 0.084
Cumulative 0.203 0.352 0.462 0.563 0.647

Eigenvalue 1.1328 1.0184
Proportion 0.071 0.064
Cumulative 0.718 0.781

Table 3.3c. Rappahannock River, 24 cases used, 7 cases 
contained missing values.

Table 3.3. Principal component analyses on residuals of 
the 16 loess smoothed trawl survey indices, Eigenanalysis 
of the Correlation Matrix, given in descending order of 
the eigenvalues. Components containing a proportion of 
variance less than 1/16 of total (0.0625) are considered 
insignificant and are not presented.
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Eigenvalue 6.4416 2.3909 1.9627 1.3410 1.261
Proportion 0.379 0.141 0.115 0.079 0.074
Cumulative 0.379 0.520 0.635 0.714 0.788

Eigenvalue 1.1328
Proportion 0.067
Cumulative 0.855

Table 3.4a. James River.

Eigenvalue
Proportion
Cumulative

3.9656
0.233
0.233

2.6926
0.158
0.392

Eigenvalue
Proportion
Cumulative

1.3583
0.080
0.829

0.9948
0.059
0.888

Table 3.4b. York River.

Eigenvalue
Proportion
Cumulative

5.3151
0.313
0.313

3.1408
0.185
0.497

Table 3.4c. Rappahannock Rr

2.3574 2.0262 1.6964
0.139 0.119 0.100
0.530 0.650 0.749

2.5122 1.7150 1.0332
0.148 0.101 0.061
0.645 0.746 0.807

Table 3.4. Principal component analyses on residuals 
of the 17 loess smoothed beach seine survey indices, 
Eigenanalysis of the Correlation Matrix, given in 
descending order of the eigenvalues. Components 
containing a proportion of variance less than 1/17 
of total (0.0588) are considered insignificant and 
are not presented.
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Eigenvalue 8.7622 3.1327 2.1894 1.5912
Proportion 0.548 0.196 0.137 0.099
Cumulative 0.548 0.743 0.880 0.980

Table 3.5a. James River, 25 cases used, 6 cases contained 
missing values.

Eigenvalue 6.9573 4.7253 2.6328 1.0168
Proportion 0.435 0.295 0.165 0.064
Cumulative 0.435 0.730 0.895 0.958

Table 3.5b. York River, 25 cases used, 6 cases contained 
missing values.

Eigenvalue 7.6473 4.3673 2.1683 1.3806
Proportion 0.478 0.273 0.136 0.086
Cumulative 0.478 0.751 0.886 0.973

Table 3.5c. Rappahannock River, 24 cases used, 7 cases 
contained missing values.

Table 3.5. Principal component analyses on the 16 loess 
smoothed trawl survey indices, Eigenanalysis of the 
Correlation Matrix, given in descending order of the 
eigenvalues. Components containing a proportion of 
variance less than 1/16 of total (0.0625) are considered 
insignificant and are not presented.
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Eigenvalue 11.911 2.539 1.579
Proportion 0.701 0.149 0.093
Cumulative 0.701 0.850 0.943

Table 3.6a. James River.

Eigenvalue 10.147 3.080 1.747 1.250
Proportion 0.597 0.181 0.103 0.074
Cumulative 0.597 0.778 0.881 0.954
Table 3.6b. York River.

Eigenvalue 10.817 3.146 1.824
Proportion 0.636 0.185 0.107
Cumulative 0.636 0.821 0.929

Table 3.6c. Rappahannock River.

Table 3.6. Principal component analyses on the 17 loess 
smoothed beach seine survey indices, Eigenanalysis of the 
Correlation Matrix, given in descending order of the 
eigenvalues. Components containing a proportion of variance 
less than 1/17 of total (0.0588) are considered insignificant 
and are not presented.
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Figure 3.34. Coefficients of principal component analyses for loess-smoothed indices from the trawl

survey data. Speceis are identified by species codes in Table 2.1.
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Figure 3.35. Coefficients of principal component analyses for loess-smoothed indices from the summer

beach seine survey data. Speceis are identified by species codes in Table 2.1.
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Figure 3.36. The first three principal com ponents of the PCA  analyses on the loess-smoothed indices 

for the traw l survey and sum m er beach seine survey d a ta , for each of the Virginia rivers. Only the  first 

PC (shown in red) is used in th is study.
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PCA on the loess sm oothed indices were rem arkably cohesive. Only three or four P C 's  were 

significant in any analysis, explaining up to 98% of to tal variance (Tables 3.5, 3.6). In the  traw l 

survey, up to 55% of variance is contained in P C # 1 , and P C # 1  accounts for up to 70% to ta l beach 

seine variance.

Correlations between the first P C ’s of the loess sm ooths are given in Table 3.7. C orrelations 

between rivers, within surveys, yielded 87 - 96% correlations for trawl survey, and 96 - 99% correlations 

for the beach seine survey. Between river, between survey correlations varied from 87 - 99%.

Tem perature

As can be seen in Figure 2.1, January  and February were uniformly cold, and were chosen as 

the m onths that constitute w inter (Figure 3.37). M arch, April and May were transition m onths during  

which the tem perature is rising rapidly (Table 2.7); this transition was chosen to represent spring 

(Figure 3.37). The m onths June, July, August and  Septem ber were uniformly hot, and include the 

peak of summer water tem perature, with little  change (Figure 2.1, Table 2.7); these were determ ined  to 

be sum m er (Figure 3.37). October, November and December were clearly transition m onths (F igure 

2.1, T able 2.7), showing the change from sum m er to  winter temperatures; they were determ ined to  be 

the fall season (Figure 3.37). Each of the seasonal tem perature indices is sm oothed by loess (F igure 

3.37).

Correlations between the mean seasonal water tem peratures, loess sm ooth a t k =  0.5, an d  loess 

sm ooth a t k =  0.4 and the first PC on the biological indices were calculated (Table 3.8). O nly  one 

index of water tem perature shows a  significant relationship to the first principal component (P C # 1 )  of 

all six groups of biological indices. The winter loess sm ooth a t k =  0.5 correlates from 0.89 (traw l 

survey, James River) to 0.99 (beach seine survey, Jam es and Rappahannock rivers). The w in ter loess 

sm ooth a t k =  0.4 also significantly correlates w ith P C #  I of the biological indices, with coefficients 

ranging from 0.86 (trawl survey, York River) to 0.96 (beach seine survey, Jam es and R appahannock
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Figure 3.37. The annual indices of seasonal w ater tem perature constructed from the VIMS pier 

tem peratures. Each index is sm oothed by loess a t the k =  0.4 and k =  0.5 levels.
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tj-pcal ty-pcal tr-pcal sj-pcal sy-pcal

ty-pcal 0.963

tr-pcal 0.919 0.865

sj-pcal 0.867 0.943

sy-pcal 0.869 0.946

sr-pcal 0.914 0.975

0.984

0.987 0.988

0.989 0.979 0.964

Table 3.7. Pearson correlations of PC#1 on the loess smoothed indices for each o f the 
three river and both surveys. The coded variables are t-trawl survey, s-beach seine 
survey, followed by j-James River, y-York River, and r-Rappahannock River.
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tjpcal typcal trpcal sjpcal sypcal srpcal
TW 0.461 0.360 0.344 0.497 0.491 0.441
TS 0.125 0.117 -0.097 -0.137 -0.175 -0.169
TU 0.344 0.219 0.070 0.017 -0.034 0.029
TF -0.002 0.020 - 0 .1 1 1 -0.007 -0.095 -0.014
TW. 5 0.890 0.870 0.925 0.986 0.983 0.987
TS.5 0.160 0.204 -0.249 -0.946 -0.923 -0.918
TU. 5 0.416 0.479 0.094 0.139 0.045 0.263
TF. 5 0.249 0.295 -0.187 -0.626 -0.702 -0.546
TW.4 0.900 0.855 0.867 0.963 0.954 0.957
TS .4 0.126 0.153 -0.251 -0.612 -0.643 -0.592
TU.4 0.420 0.460 0.134 0.166 0.059 0.290
TF.4 0.113 0.091 -0.200 -0.144 -0.217 -0.162

Table 3.8. Correlations (Pearson) between the trawl 
survey (t) and beach seine (s) survey PC's#l for James (j), 
York (y) and Rappahannock (r) rivers vs. indices of 
seasonal water temperature (T). The indices of water 
temperature are by season (W-winter, S-spring, U-summer, 
and F-fall). Smoothed indices are indicated by the 
appended k-value of the loess smooth (k “ .4 or .5).
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Trawl survey

3 5 7 26 27 31 32

James -0.799 0.885 0.819 -0.716 -0.830 0.084 -0.727 -0.573

York -0.840 -0.335 -0.088 -0.531 -0.970 0.498 -0.833 -0.418

Rapp -0.457 0.889 0.048 -0.652 -0.373 -0.800 -0.250 -0.696

39 40 103 151 152 213 614 oyster

James 0.283 0.016 0.754 0.722 0.601 0.833 0.692 -0.256

York 0.915 0.113 0.422 0.092 0.393 0.933 0.863 -0.462

Rapp 0.702 -0.420 0.905 -0.608 0.293 0.878 0.662 -0.527

Beach seine survey

5 31 32 33 37 40 51 89

James 0.817 0.927 0.944 -0.961 -0.938 0.684 0.868 -0.652

York 0.801 0.474 -0.959 0.018 -0.901 0.534 0.695 -0.815

Rapp 0.861 0.961 0.777 -0.733 -0.187 0.839 0.861 0.772

103 107 109 110 121 122 149 150

James -0.742 -0.351 0.951 0.898 -0.821 0.912 -0.878 -0.618

York 0.269 -0.859 -0.643 0.829 -0.964 0.948 -0.909 -0.582

Rapp -0.815 0.880 0.993 0.946 0.722 0.948 0.041 0.000

151

James 0.852

York 0.969

Rapp 0.972

Table 3.9. Correlations (Pearson) between the loess smoothed biological indices vs. the 
loess smoothed January-February temperature index. The biological indices are given 
by species codes (see Table 2.3).
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rivers). There were three other significant correlations, the loess sm ooth o f the springtime tem perature 

index a t k =  0.5 on the three P C # l ’s o f the beach seine survey, ranging from -0.92 (York and 

Rappahannock rivers) to -0.95 (Jam es River). Correlations between w inter tem perature loess a t  k =  

0.4 ranged from 0.86 (trawl survey, York River) to 0.96 (beach seine, Jam es and Rappahannock rivers).

Scatterplots of winter water tem perature loess vs. P C #1 were constructed for all six P C 's # l  

(Figure 3.38). T h e  scatterplots for the traw l survey P C ’s # l  reveal an unusual behavior (best seen in 

York River) during the mid to late 1970’s.

This behavior prompted further investigation, in the form of cross correlations. Scatterplots 

for the beach seine P C ’s # l  were obviously not lagged, so no cross correlations were performed. W inter 

w ater tem perature loess vs. trawl survey P C # 1  were cross correlated and  a  lag of zero was identified as 

most im portant in  each case (Figure 3.39). Cross correlations on a  subset of these d a ta , the 

“perturbation years,” revealed th a t P C # 1  for York and Rappahannock rivers lagged w inter 

tem perature loess by one year (Figure 3.40), with both having correlation coefficient 0.87. Jam es River 

showed the highest correlation coefficient a t lag 0 (0.85) but the lag 1 coefficient was very close a t  0.82.

Most of the correlations between sm oothed w inter water tem perature and smoothed biological 

indices were significant (Table 3.9). A value of r >  0.70 was som ewhat arbitrarily chosen to  be 

significant. For m ore than half of the species (58%) correlations for two out of three rivers were 

significant and agree in sign, while the th ird  either agrees in sign or is no t significant. In addition , for 

six more species (cumulatively 76%), there was a  significant correlation for one river an d  no 

disagreement in another river. In only four species was there a conflicting result, with significant 

correlations of opposite sign, leaving four species for which no correlations were significant.
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Figure 3.38. Scatterplots of loess sm oothed w inter tem perature vs. PC ’s # l  on the loess sm oothed 

biological indices, for traw l survey and sum m er beach seine survey d a ta  from each of the V irginia 

rivers.
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Figure 3.39. Cross correlations on the loess smoothed traw l survey PC ’s # l  vs. loess sm oothed w inter 

w ater tem perature.
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Figure 3.40. Cross correlations on a subset of the d a ta  in Figure 3.39, the years of anom alous 

tem peratures. T he period 1969 - 1982 was chosen to span the anom alous years.
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Discussion

The relation of reproductive success of fish populations to  environmental variability is a 

longstanding, difficult, and generally unresolved problem (B akun 1986). The m ajor conclusions drawn 

from this work are th a t Principal Components Analysis (PC A ) of indices of juvenile abundance 

indicates a  geographically broad coherence in the fluctuations of widely disparate populations, and 

winter water tem perature is the environm ental factor in control.

Tem perature and dissolved oxygen are considered identifying characteristics of suitable hab itat 

for juvenile striped bass in fresh and  low-salinity waters (C outant and Benson 1990). It has been very 

difficult to separate clim ate effects on population fluctuations and trends from intrinsic, density 

dependent factors and those of anthropogenic origin (Austin 1992, Manson and Patrick 1992). Some of 

the implicated factors are clim atic in scale (Austin 1992), including a  recent warming trend in winter 

tem peratures implicated in the spread o f the oyster disease caused by Perkinsus marinus (Ford 1996), 

and tem perature has been found to be am ong the m ost im portan t factors affecting disease progression 

(Chu 1994). The decline in oyster is thought to have a  significant deleterious effect on water quality 

and estuarine health (G ottlieb and Schweighofer 1996, Ulanowicz 1992) and modeling exercises have 

suggested th a t recovery of the once huge oyster populations in Chesapeake Bay could lead to  recovery 

of benthic prim ary production, and fish stocks (Ulanowicz 1992). Tem peratures in the nonsum m er 

months have been shown to regulate heterotrophic bacterioplankton abundance, production, and 

specific growth rates in Chesapeake Bay (Shaih 1994), and plankton abundance (not necessarily 

bacterioplankton) has been correlated w ith settlem ent of bluecrab megalopae (Lipcius ei al. 1990). In 

turn, predation by bluecrab and  spot partly  regulates Chesapeake Bay benthic infaunal populations 

(Virnstein 1977). Springtim e tem perature in conjunction with freshwater discharge seems to regulate 

sea nettle infestations (Cargo 1990). Seagrass meadows had declined as of the 1980’s in the Virginia 

half of Chesapeake Bay (O rth  and Moore 1983), and are considered im portan t nursery grounds for 

decapod crustaceans in lower Chesapeake Bay, leading to  speculation th a t further decreases seagrass
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beds will result in reduction of bluecrab populations (Heck and Thom an 1984). The seagrass Zostera  

marina is a  northern species near its southern geographical extreme in Chesapeake Bay, b u t rising 

winter w ater tem peratures could result in an extension of the growing season (Kenneth Moore, VIMS, 

pers. comm.). W inter water tem perature is considered an  im portant controlling influence on juvenile 

croaker populations, with lower tem peratures leading to increased winter m ortality  (Norcross 1983, 

Cook 1981). Periodicities have been observed in the population dynamics of some species, including 

striped bass (Van-W inkle and Kirk 1979) and bluecrab (H urt ei al. 1979), and are probably re la ted  to 

density-independent factors such as tem perature.

PCA is becoming more widely used as a  m ultivariate analysis tool. A lthough the 

m athem atical concept of PCA  has been long known to statisticians, it was not until the proliferation  of 

computers th a t the tool became truly useful to ecologists. The roles of chemical characteristics of 

habitat and anthropogenic influences in the distribution o f diatom s have been identified using PCA 

(Sabater and Sabater 1988). Chemical pollutants have been linked to assemblages of benth ic  fauna 

(Vogt 1990). PCA on field d a ta  for 316 species and life stages of animals in Delaware B ay and 

Chesapeake Bay has identified five salinity zones in which these animals are likely to occur (B ulger et 

al. 1993). Similarly, hab ita t gradients for freshwater stream s are also identified by PCA  (M effe 1988). 

Assemblages of birds on sm all Finnish islands have also been characterized by geographical location 

and ecological gradients (Von Numers 1995).

Pacific upwelling, sea level height, and surface tem perature were analysed by PCA , an d  the 

P C # 1  was found to reflect the effect of an ENSO the previous winter. This PC  was found to 

significantly correlate with chinook salmon abundance their final year before leaving the ocean to 

spawn, and indicated a  negative influence of ENSO on survival (Kope and Botsford 1990). The 

usefulness of PCA in partitioning and identifying components of ecological systems is well established.

T he technique is used here t a  quantify the degree to  which population fluctuations in juvenile 

finfish, bluecrab, and oyster are coherent, much in the m anner by which Koslow (1984) identified
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cohesive fluctuations in N orth A tlantic fish stocks. The strength of PCA  is the ability  to  determ ine the 

num ber of significant signals w ithin a  set of variates. Using annual population  indices for the variates 

allows us to ask, are population  abundances varying according to intrinsic characteristics o f the 

individual species, or are they fluctuating in response to extrinsic influences? Two groups of indices are 

used, the longer (1965 - 1995) being constructed from da ta  collected by the  VIMS traw l survey and  the 

VIMS fall oyster dredge survey, while the shorter (1980 - 1995) da ta  set was collected by the VIMS 

beach seine survey.

PCA of the indices reveals a  relatively weak but nevertheless rem arkable relationship between 

the indices (Tables 3.1, 3.2). T he cohesiveness of this analysis, with only six or seven significant P C ’s 

ou t of 16 or 17 (traw l and  beach seine, respectively), each repeated across three rivers, is a  clear 

indication th a t som ething extrinsic is a t work. Given the disparity of life histories within this 

collection of species, we could conclude otherwise only if most of the PC ’s were significant.

On the other hand, the analysis on the unsmoothed indices is no t strong enough to be used to 

identify a  controlling influence. T he relative amount of variance in the first P C ’s of the six analyses is 

an  indicator of how clearly we can “see” the most influential signal. Based on this observation, the 

indices were partitioned by the loess (locally weighted scatterplot sm oother) m ethod into long-term  

trend and interannual variation . Loess has been used with considerable success for analyses as varied 

as identifying growth curves for g ian t squid (Gauldie 1994), and the sm oothing of rainfall d a ta  for 

identification of rainfall and  m oisture stresses on white clover (Hutchinson 1996). In Chesapeake Bay 

long term  indices of juvenile oyster abundance have been successfully sm oothed by loess for the purpose 

of com paring population fluctuations w ith environmental variables (A ustin et al. 1995).

W hile it appears to the eye (Figures 3.1 - 3.33) th a t the interannual variation (loess residuals) 

of the juvenile indices used here m ay be mostly noise, PCA on these features of the indices reveals 

coherence of m agnitude com parable to  the whole indices (Tables 3.2, 3.4). T he sim ilarity  of analysis 

on the residuals to the unpartitioned  indices suggests that we are really seeing the sam e things. A t the
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sam e tim e, the weakness of the analyses indicates th a t interannual variation is m asking a  more 

im portan t signal. T h a t signal turns out to be the long-term  behavior of the systems, as revealed by 

the sm oothed indices.

T h e  m ost rem arkable set of analyses are the PCA on the smoothed indices (T ables 3.5. 3.6). 

By sm oothing we filter out interannual variation, leaving behind the long term trend in behavior of the 

populations. T his partitioning of the d a ta  provides a  very clear view of underlying signed. PCA on the 

sm oothed indices shows a  degree of coherence in the long term  trends that can only be the  result o f a  

long-term  trend  in the physical environment. It is beyond reason to suppose th a t coherence this strong 

could be a  result of sim ilarities in the life histories of species this diverse, so a  physical forcing function 

is im plicated.

F urther, by correlation of the First PC (P C # 1 ), w ithin and between surveys, across the  three 

V irginia rivers, we see th a t this forcing function is geographically large, not some feature of the 

individual rivers (Table 3.7). If an environmental factor th a t was unique to each of the  rivers was in 

control, such as freshwater discharge which is a  function o f the respective watersheds, then these 

correlations would have been weak. The fact th a t some of these species reproduce offshore, and  a  single 

population splits up and m igrates into the three rivers, accounts for some of the very strong  correlation 

between th e  rivers. However, most of the species in this s tudy  have separate juvenile populations; for 

example, w hite perch spawned in York River are collected as juveniles in York River. T he very strong 

correlations between rivers can only be explained by a  single signal th a t is reflected in all three sets of 

indices.

By considering the PCA coefficients used to construct the First PC (Figures 3.34 and  3.35), we 

can gain som e insight into how the various species contributed to  this signal. However, it m ust be 

rem em bered th a t the direction (+ /- )  of the coefficients is arb itra ry . The PC curves could ju s t  as easily 

be inverted; direction has no meaning in PCA. T h a t is, the correlations might as easily be negative, 

and rem ain ju s t  as significant. This is not to say than  any one coefficient might be changed, b u t th a t
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if all of them  are changed a t once, the PCA is equally valid. We can com pare the direction of 

individual coefficients to  others within an analysis. To compare between analyses, we m ust consider 

the group to which a  coefficient belongs, and ask if th a t affiliation persists. For example, consider the 

trawl survey coefficients (Figures 3.34) for bay anchovy, hogchoker, tonguefish, silver perch, bluecrab 

(species code 103, 151, 152, 213, 614, respectively) and oyster. In James River all bu t oyster are 

positive, while in the York all but oyster are negative. This is consistent behavior; the analyses 

assigned different signs bu t the grouping remains the same. The environmental forcing function that is 

a t work here has the opposite effect on oyster and this group of finfish. Now consider the sam e group 

of anim als in Rappahannock, compared to the o ther rivers. Again the relationship holds, except that 

hogchoker has changed. It m ight be that some geographical feature of the R appahannock is sufficiently 

different from the o ther rivers to explain this change, or it m ay be uncertainty in the data .

Exam ination o f Jam es and York rivers sm oothed PCA coefficients for P C # 1  (F igure 3.34) 

reveals th a t the grouping of the species by sign m akes identical groups of species; no t a single species 

migrates to the o ther group when comparing the tw o rivers. T he effect of the single most influential 

environmental forcing on croaker, weakfish, striped bass, white catfish, hogchoker, tonguefish, silver 

perch, and bluecrab is opposite the effect on sum m er flounder, alewife, blueback herring, w hite perch, 

spot, channel catfish, and oyster. Comparing these groups to Rappahannock River, we find several 

changes. Besides hogchoker noted above, weakfish and striped bass have m igrated out, and channel 

catfish has m igrated in to  the first group.

The contribution to  P C # 1  made by oyster (indicated by bar height in Figure 3.34) is small, 

and the correlations between smoothed oyster abundance and smoothed winter w ater tem perature 

(Table 3.9) are insignificant, suggesting th a t oyster m ay not be responding to  water tem perature.

In the beach seine survey analyses the results persist. Croaker, striped bass, channel catfish, 

gizzard shad, spottail shiner, mummichog, and hogchoker are in one group for all three rivers, and 

likewise spot and m enhaden are in the other group. T he other eight species (white perch, tesselated
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darter, bay anchovy, eastern silvery minnow, satinfin  shiner, banded killifish, inland silverside, and 

A tlantic silverside change positions (Figure 3.35). T he species that persistently group together are 

responding to environm ental forcing consistently.

Because it is the sim plist explanation, and given th a t only three species changed relative sign 

within the traw l survey analyses, we shall assume sam pling uncertainty as the cause. Loess is used 

here to partition  interannual variation from long-term  trends, but random error persists. This is 

remarkably consistent behavior, given the broad spectrum  of species under consideration. However, 

although an indepth  investigation into single-species relationships is beyond the scope o f th is work, 

given the sim ilarities of York and Jam es Rivers, there m ay be a  fundamental difference between them  

and the Rappahannock th a t causes some species to be affected differently. This should be the subject 

o f a future work.

T he relative m agnitudes of the respective coefficients determines the contribution each species 

makes to the PC. W ithin the traw l survey analyses we find th a t the relative contributions of croaker, 

weakfish, alewife, white catfish, hogchoker and oyster change between rivers. In the beach seine 

analyses, spot, bay anchovy, menhaden, and the tw o silversides change m agnitudes. Most of the 

species make relatively large or small contributions consistently, indicating th a t the  com m on 

environmental signal is unfailing in its effect.

Tem perature

PCA on the two sets of juvenile indices agree and indicate that there is a  coherent signal in 

Chesapeake Bay juvenile recruitm ent. After sm oothing by loess, PCA on the residuals continues to 

support the conclusion, while PCA on the loess sm ooths themselves very strongly indicates there is a 

long term  signal th a t  is driving a t  least a  significant p art of the recruitm ent of a  wide spectrum  of 

animals within each of the three Virginia tributaries to  the Bay. Further, this signal is the sam e in 

each of the three rivers, dem onstrating that the underlying signal is geographically broad. Not only
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did the forcing function span the three rivers, b u t it spanned a  distance from the river m ouths to  abou t 

40 miles upstream . Only an  environmental factor such as regional tem perature could so uniform ly 

affect such a  spatially  large system. Given the broad support in the literature for tem perature as a 

forcing function, w ater tem perature is a  natu ra l choice. Tem peratures for the four seasons were 

considered. Many authors point to winter tem peratures as causal factors in recruitm ent {e.g. Norcross 

1983, Cook 1981, M assm an and Pacheco 1060), and  it was winter w ater tem peratures th a t surfaced in 

this analysis.

It was because of the springtim e correlation on the beach seine index P C # l ’s th a t the  

additional smooths were calculated a t the k =  0.4 level. The more flexible sm ooth is less likely to  

correlate well with th is num ber of data, m aking a  more difficult test. At the k =  0.4 level the  

springtim e water tem perature correlations on th e  beach seine indices faded away. However, the 

correlations of all six P C ’s # l  on winter tem perature remained strong a t the k =  0.4 level, indicating 

th a t the relationship is robust, and more likely to  be real. Based on the correlations, no further 

consideration was given the spring, sum m er and fall tem perature indices.

As used here, PC A  is based on the correlation m atrix  (the alternative is the covariance m atrix ) 

of each species w ith every other species. In order to  clarify the relationship between individual species 

and tem perature identified by PCA, correlations were performed between each individual sm oothed 

index and smoothed w inter water tem perature (T able 3.9). Of 33 (x 3) cases, 19 (58%) have two or 

three significant correlations and agree in sign across all three rivers. In six additional cases there is 

one significant correlation with none conflicting. Four cases are nonsignificant, and in only four cases 

is there a  conflict of signs (in trawl survey datase t croaker/York, weakfish/York and R appahannock, 

channel catfish/all three rivers, and in the beach seine dataset spot/Y ork River), indicating th a t for 

those for species (white perch, tesselated darter, eastern silvery minnow, and banded killifish) th e  

analyses are inconclusive. If  we group the species by sign (+ /-) ,  we find th a t these groups agree alm ost 

perfectly with the groups formed from the PCA coefficients. It is im portan t to point out here th a t the
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PCA coefficients are based on correlations between species w ith themselves, and the correlations here 

are between each species and tem perature. These correlations between species and w ater tem p era tu re  

group individual species by sign into the same groups as PCA does, within each river. T he 

corresponding groups are very strongly delineated.

In one set of biological indices, the trawl survey data , an anomaly of tem perature is cap tured . 

The effects of the extrem ely warm winters of 1974-5 (T  =  7.6, 7.8*C, respectively) followed by the 

coldest w inter in the record in 1977 (T  =  1.2 "C) are seen in the scatterplots (Figures 3.38). Long term  

mean tem perature is 4.6*C. The indications are th a t w arm  winter tem peratures perturbed th e  system , 

causing it to  oscillate, and  the following cold winter was a  further push to the system. T he long term  

trend in the biological system  seems to  have returned to  its undisturbed state  som etim e around  1980, 

when the gradual warm ing trend took over. It is tru ly  unfortunate th a t the VIMS beach seine survey 

was term inated during this period of tem perature anom aly. However, the da ta  from all three rivers in 

the trawl survey support the perturbation hypothesis, giving strong corroboration.

W inter w ater tem peratures bottom ed out in 1977, and have been higher ever since. Loess 

sm oothed tem perature tu rns upward in 1981, and continues monotonically upward through 1995 

(Figure 3.37), for a  rise of 1.8’C from  3.9 - 5.7’C over the period. This trend in w inter w ater 

tem perature is strongly reflected in the scatterplots for all six PC ’s # l  (Figure 3.38). The sca tte rp lo ts  

o f winter water tem perature loess vs. the P C ’s # l  revealed an interesting behavior in the traw l survey 

data . In 1974 and 1975 the highest m ean winter tem peratures were recorded, followed by the  lowest 

tem perature of the record in 1977. This shows up as a  loop in the scatterplot, and is best seen in York 

River (Figure 3.38). Behavior such as this indicates th a t  a  lag has been introduced into th e  system . 

T he system  was responding to a  controlling influence and the behavior of the influence ab rup tly  

changed. The biological system was then out of sync w ith the forcing signal.. It was not possible for 

recruitm ent to adjust to  such large input changes in such a  short period of time.

Cross correlations did not indicate any lag in the  relationship, but the correlations on either

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



side o f lag 0 were so large th a t they do not provide evidence disproving the lag either (Figure 3.39). 

Cross correlations on the years 1969 - 1982 revealed a  lag of one year, with biological indices following 

tem peratu re in York and Rappahannock rivers. Jam es River was so close, tha t given the behavior 

dem onstrated  in the other rivers, an d  the fact th a t there were several years of missing d a ta  in this 

period for Jam es River, we can safely conclude th a t the lag is present for James too (Figures 3.40).

Thus we have two indications th a t back to back severe anomalies in an environm ental forcing 

function caused a  lagged response in  overall juvenile recruitment. The loop seen in the scatterplo ts 

indicate a  perturbation in the physical system  caused a  lagged response in the biological system . Cross 

correlations on the “perturbation years” quantita tively  confirm this conclusion. This is an im portan t 

observation in general. Random bu t observable events such as wild tem perature swings have 

predictable influence on recruitm ent in future years.

After the years of strong tem perature anomaly, the P C ’s # l  strongly follow the winter 

tem perature loess curve, which is itself m onotonically increasing. From 1980 onward in the traw l 

survey d a ta , and in all the beach seine d a ta  (which begin in 1980), the correlation between the long 

term  trends is alm ost perfect.

T he strength of the correlations between smoothed tem perature and PC ’s # l  is unusual in 

biology, where significant but weaker correlations are more common. The reason biological correlation 

analyses do not typically dem onstrate th is level of association is because random fluctuations are a 

prom inent feature in the data. T he correlations presented here are between smoothed d a ta  sets; the 

random  “jitte r” has been removed. G iven the sm ooth nature of the correlates, we should expect either 

strong associations or very weak ones; significant bu t moderate correlations would be unexpected in 

this situation.

Given the lag th a t appeared during years of extreme conditions (1975-75, 1977), we m ust 

conclude th a t tem perature is exerting influence through the parent stock/recruitm ent relationship. The
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indices of abundance used here are based on age 0 anim als, which did not exist a t the  tim e of the 

preceding winter.

The relationship between parent stock and juvenile recruitment is not discounted by this 

analysis, because although the mechanics of recruitm ent control are not tested or explored, there can be 

no explanation th a t om its parent stock. The reason for this is th a t the water tem peratures correlated 

with abundance tem porally precede the b irth  of the anim als. W hatever mechanism, be it enhanced or 

decreased m ortality, effects on fecundity, or whatever, it probably operated directly on some parent 

stocks, and is revealed indirectly in this analysis of juvenile abundance. This is not always the case 

though. As an example, larval striped bass are known to benefit from a  cold wet w inter. Ice in the 

marshes grinds up detritus, and high discharge flushes it into the nursery areas, where it  serves as food 

for copepods. The copepods in turn  serve as food for th e  stripers.
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Conclusions

This study highlights the im portance of considering long term  trends, or behavior, in the s tu d y  

of populations. There is certainly a  long term  trend in overall juvenile recruitm ent in Chesapeake Bay. 

There is also a  strong trend in w inter water tem perature, particularly from 1980 onward. C orrelations 

by themselves do not prove a  causal relationship. However, we have several lines of evidence th a t  

point to  tem perature as a  regulating physical factor w ithout contradiction. PCA strongly suggests th a t  

juvenile population fluctuations w ith in  all three rivers are coherent. This indicates th a t a  physical 

forcing functions is in control. T he first P C ’s of all six sets of smoothed indices are strongly correlated, 

which tells us th a t three river system s are under the control of a single, geographically broad factor, as 

opposed to more localized factors such as freshwater discharge, or anoxia. Correlations between 

tem perature and P C ’s # l  are very strong. Scatterplots of tem perature and traw l survey P C ’s # l  reveal 

a perturbation  in the biological system  th a t coincides w ith severe, back to back, opposite anom alies in 

tem perature. Cross correlations on th e  period of the anomalies confirms th a t the biological system  lags 

tem perature during this period of perturbation , while cross correlations on the entire period of record 

show th a t the systems are in sync (0 lag) in general. W inter water tem perature is an im portan t factor 

controlling juvenile population fluctuations and abundance in Chesapeake Bay.
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A ppendix

Species profiles

The species used in th is study represent several groups w ith substan tia l differences in life 

histories and locations w ithin the Chesapeake Bay. Some are harvested com m ercially and by 

recreational fishermen; others are not. Some are found only in upper, low salin ity  regions, som e are 

found in upper regions as well as lower, higher salin ity  areas and some m igrate between the two zones 

as adults while others m igrate as juveniles.

T he harvested species with an  offshore com ponent in the juvenile life history:

All of these species Me im portan t to th is study  in th a t they have sim ilarities in life history th a t 

m ay cause them  to behave alike. The dependence on shelf wind is a  common th read  th a t m ay result in 

common behavior in recruitm ent dynamics.

Atlantic m enhaden

The m enhaden (Brevoortia tyrannus) is one of the  most intensely harvested  species in the 

Chesapeake Bay system, and together with the conspecific Gulf m enhaden (B . pa ir  onus) accounts for 

up to 40% of U.S. commercial landings (Sm ith 1991). Menhaden are used directly  as food for hum ans 

(outside of the U.S.), terrestrial animals, and  aquacultured fish, as well as in the production of 

agricultural crops. The fish is used for uncountable industrial applications, an d  in  particu lar th e  oil 

extracted from this species has widespread uses.

M enhaden spawn offshore, south of C ape H atteras, NC. After transporta tion  to estuarine 

nursery grounds, larvae m etam orphose into the  juvenile stage. Movement is a  result of w ind-driven 

currents, and like spot and croaker, the num ber of larvae reaching the nursery grounds is directly 

related to the prevalence of favorable winds (Govoni and Pietrafesa 1994). However, there is evidence 

th a t menhaden respond to changes in salinity by moving upward in the w ater colum n, with sufficient
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vigor to facilitate cross continental shelf transport by moving into currents w ith favorable direction (De 

Vries et al. 1995). G row th of m enhaden m ay be regulated by storm  activ ity , which mixes the w ater 

column and reduces concentrations o f plankton available to this obligate filter feeder (M aillet and 

Checkley 1991). G row th o f the conspecific Gulf menhaden is inversely related to  freshwater discharge, 

and directly related to tem perature, while m ortality is directly related to  discharge and  inversely 

related to tem perature (Deegan 1990). Relations between commercial landings of m enhaden and sea 

level anomalies (Morris et al. 1990) and the 18.6 year nodal cycle of the tides (Cabilio et al. 1987) have 

been dem onstrated. Sea level affects the nursery grounds available in tidal marshes, and also affects 

production of Spartina allem aflora , which in turn m ay have an effect on prim ary production. T he 

tidal nodal cycle m odulates by a  few percent the strength of tidal currents, and may have a  significant 

effect on surface tem peratures in shallow seas (Loder and G arret 1978). Adults m igrate along the 

coast, and fishing takes place both  in the Bay and outside. Although landings declined in  the 1960’s, 

under ASMFC m anagem ent the fishery recovered during the 1970’s and 1980’s (Houde and R utherford 

1993, Smith 1991, Lewis et al. 1987), despite continued harvest pressure.

Croaker

Croaker (Micropongonias undulaius) spawn offshore in the late fall and winter m onths, and 

recruitment into the estuary  depends upon the timing, duration and velocity of wind driven currents 

(Norcross 1983, Govoni and  Pietrafesa 1994). While outside of the m outh  of the Chesapeake Bay as 

pelagic plankton, larvae apparently  exert some control over transport through vertical m igration , as 

they are found near the m outh  of Chesapeake Bay in greater concentrations in inward flowing water 

(Norcross 1991, Cook 1981). However, some spawning also m ay occur in the estuary (B arbieri et al. 

1994).

Winds also play a  role in the locations chosen for spawning, as onshore winds retain  cool w ater 

near the m outh of the Bay. W hen this happens, croaker m igrate farther south to locate sufficiently 

warm water (Norcross and A ustin 1988).
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Population abundance of A tlantic croaker was in decline, due in part to overfishing (M cHugh 

and  Conover 1986). As with weakfish, bycatch of the shrim p fishery was im plicated (B ranste tter 1995, 

Hendrickson and Griffin 1993, Murray et aL 1992). However, the croaker population has recovered.

Spot

Spot (Leiostomus xanihurus) spawn in the A tlantic Ocean in the late fall and winter m onths, 

and depend upon the timing, duration and velocity o f wind driven currents to transport larvae to  the 

Chesapeake Bay nursery grounds (Bodolus 1994, Govoni and Pietrafesa 1994). Spawning is probably 

restricted to areas south  of Cape Hatteras by availability  of suitably w arm  bottom  water (Bodolus 

1994), and it is in these waters th a t larvae are most often found (Govoni and Pietrafesa 1994).

Sum m er flounder

Summer flounder (Paralichlhys dentatus) spawn offshore on the continental shelf in the early 

fall. Spawning generally begins in September (Able et al. 1990, Grimes et al. 1989), and m ay continue 

through January, although the peak is in the fall (Able et al. 1990). Juvenile (age 0) fish enter nursery 

areas, including the Bay, as transforming larvae in th e  fall, as early as October and as late as April 

(Norcross and W yanski 1994, Keefe and Able 1993).

Nursery ground water tem peratures play im portan t roles in the population dynam ics. 

Rapidity of m etam orphosis and growth are directly related to tem perature (Keefe and Able 1993, 

Malloy and T argett 1991), and metamorphosis can take several months from the tim e larval fish en ter 

the nursery (Szedlmayer et al. 1992). Greatly reduced winter water tem perature is fatal to age 0 

sum m er flounder (<  4 ' C - Keefe and Able 1993, <2* C - Szedlmayer et al. 1992, <  3* C - Malloy and 

T argett 1991).

Bluecrabs

The bluecrab ( Callinectes sapidus) is another species for which an  im portan t com m ercial 

fishery exists, one th a t probably over harvests. Most crabs are taken in pots (Erik Barth, VM RC, 

Newport News, Va. pers. comm.), and the number of crab pot perm its shows a  very strong positive
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linear trend over tim e if one outlier (1982) is removed (Mosca, work in progress). T he num ber o f pots 

per fisherman has probably also increased (Erik B arth , VM RC, Va. pers. comm.). In ad d itio n  to  pots, 

commercial harvest m ethods include winter dredging, scrapes (a type of dredge used in grass beds to 

capture crabs due to  m olt), traps (pealer pounds), and  tro t lines (infrequently used in V irgin ia but 

im portant in M aryland). The species also supports a  large recreational fishery. Increasing harvest 

pressure m ay be due in p art to decreasing harvestable stocks of other species.

A lthough reproduction of the blue crab is no t contained entirely in the Bay, and year class 

strength is also not entirely determined w ithin the Bay, m any im portant com ponents of the 

determ ination of year class strength do exist within the Bay. Early larvae are transported offshore in 

the surface layers to the Continental Shelf where larvae m ature, and postlarvae are returned to  the Bay 

(Goodrich et al. 1990) in the lower estuarine circulation layers. Because freshwater discharge is a 

component of estuarine circulation, discharge also m ay influence blue crab recruitm ent. T he postlarvae 

then m etam orphose through numerous megalopal stages w ithin the Bay, principally w ithin th e  m ajor 

rivers. The re tu rn  of postlarvae is probably m ost heavily influenced by meteorological conditions 

(M cConaugha 1990), notably wind driven currents (Johnson and Hester 1989, Goodrich el al. 1990). 

The postlarvae play an active role in transport by m igrating  vertically to place themselves in  currents 

of favorable direction (M aris 1990). Juvenile blue crabs probably overwinter in grassbeds the  first year 

(Oesterling 1985), as well as deep-water portions of the rivers where they are collected by the  traw l 

survey.

Predation on blue crabs may play an im portan t role in population dynamics, bu t it is not clear 

th a t predation controls population. The shrimp Crangon sepiemspinose and Palaemonetes pugio are 

voracious predators of megalopae, with the former consuming almost 100% of prey presented in 

laboratory trials (Olmi 1988). Predation on juvenile crabs by striped bass is docum ented, b u t this 

source of m ortality  has not been shown to be a  controlling influence (Mosca et al. 1995). A du lt crabs 

are prey to the oyster toadfish, Opsanus tau (Gibbons and C astagna 1985, Bisker and C astag n a  1989),
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and in molt stages are preyed upon by m any finfish. C annibalism  also has been identified as a  

potentially im portan t controlling influence on blue crab populations (Lipcius and van Engle 1990).

Blue crabs are themselves im portant predators, particularly  of shellfish such as oysters (K rantz 

and  Chamberlin 1978, Bisker and  C astagna 1987, Eggleston 1988) and various species of clams, 

including the hard clam M ercenaria m tTctnaria  (Gibbons and C astagna 1985). C rab predation is 

thought be a controlling influence on populations o f the soft-shelled clams Mya arenaria and  Macoma 

balthica (Lipcius and Hines 1986, Hines and Lipcuis 1990, Eggleston et al. 1992).

Harvested species with inshore juvenile  life stages:

The catfish, striped bass, white perch and oysters share the common characteristic of being 

dependent upon upstream  physical processes. These species are m ost likely to show sim ilar dependence 

upon freshwater discharge and tem perature.

The weakfish is in this group because it is a  commercially harvested species th a t spawns within 

the  Bay, bu t it favors deeper w ater for nursery grounds, and is therefore somewhat different from the 

others.

Catfish

Two species of catfish will be considered in this study, the channel catfish (Icialurus punctatus) 

and the white catfish (I. caius). Channel catfish are extensively farm ed for hum an consum ption, and 

much of the literature describes feeding and preparation for m arket. There is an  active fishery for wild 

fish in the Virginia portion of Chesapeake Bay, particularly on the Jam es and Rappahannock Rivers. 

Catfish are found in abundance in low salinity waters, which serve as nursery grounds for m any fish 

species. Juveniles of both species of catfish are known to prey upon yolksac larvae of striped bass and 

white perch under laboratory conditions, and  have been found to  consume eggs of w hite perch 

(McGovern and Olney 1988).
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Striped bass

T he striped bass (Morone saxitilis) is am ong the  m ost studied of fishes on the east coast, due 

in large part to  the im portance of the com m ercial and recreational fisheries for this species. Striped 

bass are an  anadrom ous species with a  well known m igratory pattern. In Chesapeake Bay and  Hudson 

River, striped bass less than two years old (<  300 m m ) do not migrate extensively from  their natal 

rivers (Vladykov and Wallace 1938, Raney 1952, M assm an and Pacheco 1961, M ansueti 1961, Setzler 

el al. 1980). A pproxim ately 10% of two year old striped bass usually leave the Bay (R aney 1952), 

although m ore two year-old striped bass leave the Bay when their cohort is strong (A ustin and  Hickey 

1978). Extensive m igration out of the Chesapeake Bay and northward along the A tlan tic  Coast 

norm ally begins a t 3 +  years of age (M ansueti and  Hollis 1963). Maryland female bass typically  m ake 

their first oceanic m igration a t an early age (3-f), whereas males may not leave the Bay for the first 

tim e until they are 5 or 6 years old (Setzler et al. 1980). Most of the striped bass on the  east coast 

originate in Chesapeake Bay, w ith minor contributions from  the Hudson and Roanoke Rivers (Berggren 

and Lieberman 1978). During the winter, adu lt striped  bass remain relatively inactive, reduce food 

consum ption, and  congregate in deep w ater portions (10-50 m) of river m ouths and the  Bay (Raney 

1952). As w aters warm in early spring, m ature fish move upstream to freshwater spawning grounds. 

After spawning in April and May, m igratory bass rapidly leave the Bay and move northw ard along the 

A tlantic Coast (Raney 1952). This m igratory stock moves southward in the autum n, re tu rn ing  to  the 

Bay in November and December to overwinter w ith younger bass that remained during th e  sum m er.

Striped bass are opportunistic feeders (Scofield 1931, Merriman 1941, Hollis 1952, B oynton et 

al. 1981), usually preying on most abundant food item s (Raney 1952, Calhoun 1953, T hom as 1967). 

The m ost im portan t foods of striped bass are schooling fishes such as anchovies, silversides, m enhaden, 

spot, and killifishes (Scofield 1928, Hollis 1952). Invertebrates also constitute a  portion o f the d iet of 

striped bass (Hildebrand and Schroeder 1928, C urran  and  Ries 1937, Townes 1937, M errim an 1941, 

Hollis 1952, Stevens 1966, Thom as 1967). The frequency of occurrence and percent volum e of
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invertebrates in th e  diet of striped bass are small (Hollis 1952, Manooch 1973) and decrease w ith  bass 

size (Stevens 1966, Schaefer 1970). In Chesapeake Bay, striped bass stomachs contained negligible 

quantities o f blue crabs (Hollis 1952), though striped bass are known to consume blue crabs in qu an tity  

when the opportun ity  presents itself (Mosca et al., 1995). In Albemarle Sound, NC crustaceans were 

less than 3% of th e  volume of striped bass food item s, though small blue crabs (18-30 m m ) were the 

most frequently occurring crustaceans and were found in greater than 5% of striped bass stom achs 

(Manooch 1973).

Predicting future stock size is an im portan t concern for striped bass m anagers, so it is not 

surprising th a t th is  receives much attention. However, it is difficult to estim ate ad u lt stock size 

directly, so surrogates are used. The presence or absence of striped bass eggs in springtim e plankton 

tows is an indicator of spawning stock size (Uphoff 1993), as is the number of eggs per tow (OIney et 

al. 1991). However, the most commonly accepted predictor is the relative abundance of juvenile striped 

bass in the sum m er, and though calculated in more th an  one way, the measure is usually called the 

juvenile index. Juvenile indices are believed to predict as m uch as 83% of the variation in com m ercial 

landings (G oodyear 1985). Modeling exercises indicate th a t temperature and toxic chemicals m ay 

affect survival of eggs and striped bass larvae (Rose el al. 1992). On the other hand, sewage has been 

found to  have a  beneficial effect in the Potom ac River, with high sewage discharge correlating 

positively with striped  bass indices (Tsai et al. 1991). River discharge has been dem onstrated to  have a 

measurable effect on juvenile indices in the Roanoke River; flow correlates inversely with juvenile index 

(Rulifson and M anooch 1990). Simulations using tem perature, size distribution of female parent stock, 

prey availability, and competition pressure from the  congeneric white perch have dem onstrated  a 

possible 150-fold variability  in juvenile recruitm ent in  the Potom ac River (Cowan et al. 1993). This 

study further supports the contention th a t determ ination  of the size of striped bass year classes 

precedes m etam orphosis. In addition to competition, juvenile white perch are known to prey on larval
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striped bass (M onteleone and Houde 1989), as does the copepod Acantkocyclops vernalis (McGovern 

and Olney 1988).

Weak fish

W eakfish ( Cynoscion regalis) along th e  east coast of North America share a  common gene pool 

and are thought to  form a  single stock (Graves 1992, Crawford 1989). W eakfish (also known as grey 

trou t) m atu re  a t age 1, and spawn in coasted waters and estuaries from March through September, and 

the deeper portions of estuaries, including the Bay, serve as nursery grounds (Mercer 1989). 

Chesapeake Bay serves as a nursery for weakfish, with upstream, lower salinity locations favored during 

sum m er (M ercer 1989). Weakfish tend to m ove farther upstream  as they grow (Szedlmayer et al. 

1990). Feeding and growth rates are directly related to water tem perature (Lankford and T argett 

1994). Larval weakfish are known to feed upon copepods, as well as larvae and  eggs found in the water 

column (G oshorn and Epifanio 1991), while juveniles feed largely upon mysid shrim p and anchovies 

(Mercer 1989).

Stock size of weakfish has been declining, and reduced catches are a ttrib u ted  to overharvesting 

McHugh and Conover 1986, VIMS and VM RC 1995), a t least part of which is bycatch of the shrim p 

industry (B ranste tte r 1995, Murray et al. 1992).

W hite perch

W hite perch {Morone americana) are im portan t in the river ecosystems both as predator and 

prey. As predator, juvenile white perch have been identified as potential contributors to m ortality  of 

striped bass larvae (McGovern and Olney 1988, Monteleone and Houde 1992) and the larvae of the two 

species have been identified as resource com petitors (Cowan et al. 1993). Prey of adult white perch 

include killifishes (M organ and Godin 1985), other small fish, and a  variety of invertebrates (pers. 

obs.). Several species of fish are known to consume the eggs of white perch (McGovern and Olney

1988), the larvae are eaten by bluegill (Lepomis macrochira) (Margulies 1990), and the copepod 

( Cyclops bicuspidatus ihomast) (Smith and Kernehan 1981), and adults are food for bluefish
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{Pomatomus saltairix) (Juanes et al. 1993).

G row th of w hite perch larvae is positively correlated with tem perature (Houde an d  M orin 

1990), while hatching and  duration of the yolk sac stage are inversely correlated (M argulies 1989). 

O ther physical environm ental factors that affect white perch are suspended sediment, which reduces 

hatching success (A uld and Schubel 1978), and river flow, which affects growth rate (YVeisberg and 

Burton 1993).

W hite perch overw inter in deep holes in the rivers, where they may comprise 85% o f the fish 

found (Kasul et al. 1992). Since white perch and striped bass occupy some of the same territo ry  in the 

winter, and spawning and  nursery grounds overlap extensively, it is not surprising to find occasional 

hybrids (Harrell et al. 1993) and similar patterns of YOY between these congenerics. T he early  life 

history is strongly dependent upon juvenile recruitm ent. Indices of abundance of age 0 w hite perch 

collected in the nursery grounds predict the index of abundance of age 1+  fish collected by o tte r  traw l 

a  year later, in downriver locations (Mosca et al. 1994).

Oysters

One of the m ost studied species in Chesapeake Bay is the American oyster, Crassostrea 

virginica. Overfishing has substantially reduced stocks and is considered a  more im portant cause o f the 

observed decline in oyster population than disease or water quality  (Hargis and Haven 1995, Rothschild 

et al. 1994). W hile disease, which is uncontrollable, reduces stocks in all but the least saline areas, 

overharvesting continues everywhere the oyster persists in Virginia. However, other influences also 

affect oyster life history.

Oyster setting  in the James River is related to  circulation patterns and fortn ightly  

stratification (Haven and  Fritz 1985). Viability of eggs, fecundity (M ann 1993), spatfall (Newell et al.

1989), and condition index (Austin et al. 1993) are related to  salinity or riverflow. River discharge has 

been related to  adult oyster population size in Apalachicola Bay, Florida (W ilber 1992).
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T em perature controls several aspects of oyster biology. Oysters begin feeding when w ater 

tem peratures rise above 10*C (Galtsoff 1964), and  condition index generally increases until 

tem peratures surpass 22’C, a t  which point spawning begins (Austin et al. 1993). Condition index has 

two peaks, one preceding spawning and another preceding overwintering (Haven 1960, A ustin et al.

1993).

Freshw ater discharge is influential in the life h istory  of oyster. High flow in w inter and  spring 

can greatly reduce spat population, as happened when overwintering 1957 yearclass sp a t were killed by 

freshets in the spring o f 1958 (Andrews et al. 1959), and  again when m ortality  of the 1979 yearclass 

Jam es River spat was induced by prolonged periods of low salinity (Haven 1982).

Extrem e sum m er drought also will result in reduced spat populations. T he 1960 drought in 

Tidewater, Virginia as reflected in the Palmer Drought Index is significantly reflected in  reduced spat 

counts in the Jam es an d  Rappahannock Rivers (Austin e t al. 1995). The oyster diseases MSX and 

Dermo are im portan t sources of oyster m ortality, and are under the influence of salinity . In the period 

1986-87 drought caused increased salinity in the V irginia rivers, and with the salin ity  increase both 

diseases proliferated up-river and up-Bay, causing extensive m ortality  (Hargis and Haven 1988). MSX 

has long been linked to  oyster m ortality  in parts of the Bay where salinity averages 15+ ppt (Hargis 

and Haven 1988).

Oyster sp a t settlem ent, survival and growth are very dependent upon the dissolved oxygen 

(DO) content of the w ater column. Spat have been found to  settle and grow little, and  m orta lity  is 

high under hypoxic conditions, and settlem ent and grow th are nearly nonexistent, again with very high 

m ortality  during anoxia, com pared to normoxic conditions (Baker and Mann 1992).

Predation plays an  im portan t part in oyster population dynamics. Blue crabs are known to 

consume juvenile oysters, w ith sm aller animals being preferred prey (Krantz and C ham berlin  1978, 

Bisker and C astagna 1987, Eggleston 1988). Another im portan t predator is the oyster drill. Drill 

predation is dependent upon w ater tem perature and salinity , with refuges existing below tem peratures
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of about 12.5"C an d  salinities of about 7.5 °/oo  (G arton and Stickle 1980). Further, prolonged 

exposure to salinities of less than 9°/oo is fa ta l to oyster drills, while oysters can withstand 

considerably lower sa lin ity  (G unter 1979). Low river discharges (and therefore increased salinities) 

probably result in increased predation pressure on oysters (W ilber 1992). Oyster drills locate prey by 

following chemical trails in the water (R ittschof et al. 1982). Oyster drills, especially sm all drills, feed 

most efficiently on sm all oysters (G arton 1986). A nother im portant oyster predator is the flatworm 

Stylochus ellipticus (e.g. Landers and Rhodes 1970, Christensen 1973, Morales-Alamo et al. 1988). The 

sea anemone Diadumene leucolena is considered a  controlling predator of oysters in the Maryland 

portion of the Bay (M acKenzie 1977). While n o t a  predator, the relationship with the pea crab 

Pinnotheres osireum  is som ewhat less than sym biotic, w ith crabs being associated with a  lower oyster 

condition index (Haven 1959).

Species for which there is no fishery:

Because there is no fishery for these species, and  the group to follow, they are im portan t to this 

study precisely because the population dynamics lack harvest pressure as a  source of m ortality. This 

study will concentrate on forcing attribu tab le  to th e  physical environment, and comparisons between 

these species and harvested species with sim ilar juvenile hab itats will be im portant.

T he minnows, gizzard shad, shiners and d arters  share nursery grounds w ith the catfishes, 

striped bass and white perch. Juveniles of these species exist in regions where freshwater discharge and 

tem perature are likely to  be im portant factors.

Eastern silvery m innow

T he eastern silvery minnow (Hybognathus nuchalis), a  freshwater species found in the nursery 

grounds of m any estuarine species, is a  phytophagous herbivore that crops algae (Harnois 1992, 

Cavender and Coburn 1988). There is also evidence th a t all members of the genus filter diatom s and 

other sm all food objects w ith an  arrangement of pharyngeal taste buds (Coburn and Cavender 1989).
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Gizzard shad

Gizzard shad ( Dorosoma cepedianum) is an  im portan t forage fish, the recruitm ent dynam ics of 

which are not well known (Allen and DeVries 1993). In experim ental settings, growth of larval gizzard 

shad has been shown to be directly related to food availability  and inversely related to  population 

density, although grow th did not correlate with density in the field (Welker et al. 1994). In closed 

systems, such as lakes, gizzard shad are known to have a  controlling influence on the population 

dynamics of zooplankton, which are the forage of this open w ater planktivore (Beaver et al. 1994, 

Welker et al. 1994, D ettm ers and Stein 1992, DeVries and Stein 1992, Lazzaro et al. 1992).

Shiners

The spottail shiner ( Noiropis hudsonius) and satinfin  shiner ( Cyprinella analostanus) inhab it 

freshwater portions of the m ajor Virginia tributaries, and are collected in the VIMS beach seine survey. 

Both species are known to consume yolksac larvae of striped bass and white perch (M cGovern and 

Olney 1988). They are  am ong the host species used by freshwater mussels (Hove and Neves 1994, 

Weaver et al. 1991), m any of which are endangered. Shiners are im portant bioindicator species in the 

study of w ater-quality and  pollution (e.g. Suns et al. 1991, Heming et al. 1989).

Tessellated darter

The tessellated darte r (Etheostoma olmstedi) is a  sm all fish found in the upstream  portions of 

the m ajor Virginia tribu taries, areas used as nursery grounds for m any fish species. Under laboratory  

conditions the darter is known to prey upon larvae of striped bass, and will also probably consum e 

white perch larvae (M cGovern and Olney 1988). Tessellated darter is a  host for the glochidia stage of 

some freshwater mussels (Michaelson and Neves 1995). T he darter is tolerant of a wide range of 

environm ental conditions and is widespread in distribution (Goodchild 1993), and unlike m any 

congeneric species is neither endangered nor threatened.
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Blackcheek tonguefish

The blackcheek tonguefish (Symphurus plagiusa) is an  inhabitan t of the lower C hesapeake Bay 

(Olney and G ran t 1976) and the river mouths. This flatfish is not com m ercially harvested. 

Representatives of the  genus are found off both coasts o f North America, in deep oceanic (Yevseyenko 

1990, Munroe and M ahadeva 1989) and shallow coasted water (Hendrix Kram er 1991, Brown et al. 

1987). The blackcheek tonguefish is found a t least as far south as Puerto Rico (Van D er Veer et ai.

1994).

Bay Anchovy

The bay anchovy (Anchoa mitchilli) has trem endous reproductive potential. T h e  species 

reproduces for up to  a  third of the year (Olney 1983, Luo and Musick 1991), with individuals spawning 

from once every one and a  half to four days (Luo and  Musick 1991). The abundance o f food suitable 

for anchovy larvae determ ines the duration of the peak spawning season (Castro and Cowen 1991). A 

single female may produce over 45 thousand eggs in a  season (Luo and Musick 1991). Bay anchovy 

larvae and eggs are am ong the most abundant of species in the ichthyoplankton, often dom inating 

collections (Olney 1983, Setzler-Hamilton 1987).

Bay anchovy is a  vital element of the Chesapeake Bay food chain (Tucker 1989). P redators 

include striped bass (Scofield 1928, Hollis 1952), bluefish (Friedland 1988, Juanes et al. 1993), 

ctenophores (M onteleone and Duguay 1988, Cowan and  Houde 1990, Cowan and H oude 1991), and 

jellyfish ( Chrysaora quinquecirrha) (Dorsey and Houde 1992). It has been estim ated th a t  bay  anchovy 

could provide over 30 thousand kg of biomass per km 2 per year (Luo and Brandt 1993). Anchovies 

school during daylight, bu t no t a t  night, perhaps in avoidance of predators (Luo 1993).

O ther interspecies interactions involving bay anchovy are known, such as com petition  w ith or 

displacement by A tlantic silversides, and a  positive relationship (perhaps enhancing of h a b ita t by one 

species, or a  benefit o f mixed schooling) with the A tlantic brief squid (O gburn-M atthew s and Allen 

1993).
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Hogchoker

The hogchoker ( Trinectes maculaius) is a  species o f considerable abundance in the  V irginia 

rivers, and is well represented in the VIMS traw l survey d a ta . Hogchoker eggs were am ong the  three 

most abundant fish egg species in an eight year collection on the upper Chesapeake B ay (Setzler- 

Hamilton 1987). Spawning occurs in June in Elizabeth R iver (Sm ith 1986), and while spaw ning occurs 

in midsummer in the Hudson River, it m ay occur over a  longer period of tim e in C hesapeake Bay 

(Koski 1978).

Geographic range and abundance are im p o rtan t considerations in choosing an im als as 

indicators of w ater quality  (Eisler 1986), and these characteristics m ay have been influential in 

choosing the species for a  PAH study on Elizabeth River where hogchoker were found to  exh ib it skin 

lesions, fin erosion and hyperanem ia in response to PAH exposure (Hargis and Zwerner 1984).

Hogchoker m ay be im portan t controlling predators of soft-shelled clams (M y a arenaria  and 

Macoma balthica). T he influence is indirect, for the whole clam  is not eaten, nor is it killed; siphons 

are “nipped” (Haddon et al. 1990, Hines and Lipcius 1990), causing clams to move closer to  the surface 

where they are more vulnerable to predation by other species, in particular blue crabs, a  whole-clam  

consumer (Hines and Lipcius 1990). Predation by hogchokers alone does not reduce infaunal densities 

(Virnstein 1977).

Meteorological and hydrological influences are known to affect hogchokers, particu la rly  the 

survival of larvae (M ihursky et al. 1981). Adults are known to  be driven out of deep w ater by hypoxic 

events, bu t usually return  with the resumption of norm oxia (P ih l et al. 1991). Fish of g rea ter size and 

m aturity  are associated w ith greater salinity, and gradients of reduced salinity m ay restric t the 

geographical range and  movements of hogchoker (Sm ith  1986). Although Sm ith  (1986) was 

unconvinced of the im portance of tem perature as a  signal to begin or end spawning, an d  though 

spawning site selection was found to  be based on salinity, he found th a t upriver m igration was in itia ted  

by a  tem perature decline to 12*C, and was completed by the  tim e tem perature fell to  10*C. T h e  close
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interaction o f th is  species with tem perature and salin ity  makes it a  natural choice for this study . 

Killifishes

Two species of killifishes are common in beach seine collections in the Virginia C hesapeake Bay 

tributaries, the striped killifish (Fundulus majalis) and the mummichog (F. heieroclitus). Killifishes 

are fairly well stud ied  in scientific literature, bu t much of this attention is focused upon the role o f the 

mummichog as an  environmental indicator species (e.g. Eisler 1986). As a  com m on sa lt m arsh 

inhabitant, m um m ichogs, as prey, are an im portan t link in the trophic structure of the m arsh , as well 

as providing a  controlling influence on infaunal com m unity structure through predation on sm aller 

predators (Kneib 1986).

T he m ost im portant principles of theoretical ecology are dem onstrated in the genus, for in 

addition to being predator and prey, and dem onstrating  a  predation avoidance/foraging balance 

(Godin 1986), th e  four-species guild of Fundulus also exhibits interspecific com petition w ithin the 

Chesapeake Bay. W hile F. heieroclitus co-occurs w ith all members of the clan, F . magalis, F. 

diaphanus and F . luciae exclude each other from  hab itats delimited by tidal height and salin ity  

(Weilberg 1986).

W hile killifishes are tolerant of a  wide range of environmental conditions (W eisberg 1986), 

water tem peratu re appears to have a  controlling influence on reproductive timing (Hirshfield and  Morin 

1984). However, once water tem perature is sufficiently elevated, killifish reproduce frequently (Lipcius 

and Subrahm anyam  1986). Eggs are deposited in  the high m arsh on spring tides, in ribbed mussel 

shells, and this m ay be the prim ary source of in terannual variation for these species (A ustin , pers. 

comm.). Like bay  anchovy (Luo 1991), killifishes rarely a tta in  an age of two years (Lipcius and 

Subrahm anyam  1986).

A lthough it is known th a t young killifishes avoid predation by inhabiting depressions and 

burrows in the in tertidal zone during low tide (K neib 1987), the role of these species in the  sa lt m arsh 

is considered to be poorly understood and in need o f further study (Kneib 1986).

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Silver perch

The silver perch ( Bairdiella chrysoura) inhabits the higher-salinity (downriver) portions of the 

Virginia tributaries, and spawn concurrently with other sciaenids, such as weakfish and black drum  

(Daniel and Graves 1994). However, silver perch is also found in low-salinity waters (Rogers et al.

1984), and usually inhabits and spawns in relatively shallow areas (Ross and Epperly 1985, Sogard 

1989, Rogers et al. 1984).

Silversides

The silversides (Menidia sp.) are an environmentally sensitive group, and the A tlantic 

silverside (Af. menidia) has been selected as a  bioassay organism by the  Environmental Protection 

Agency because it is particularly sensitive to  pollution (Poole 1978). Members of the genus have been 

used in bioassay studies of pH (Dunson et al. 1993), brom ochlorinated estuarine water (Roberts and 

Gleeson 1978), and cadm ium  toxicity (Voyer et al. 1979). Menidia sp. are widespread (Conover and 

Present 1990) and abundan t (Cadigan and Fell 1985), im portant characteristics of bioassay organisms.

The various species of Menidia are im portant to the trophic dynam ics of salt m arsh/estuarine 

systems, moving considerable energy outw ard from the marshes (Conover and Ross 1982, Cadigan and 

Fell 1985). They are im portan t in the diets of predatory fish, such as the bluefish (Pomatomus 

sallairix), for which a  fish diet has been found to result in a  higher condition factor than a  diet of 

invertebrates (Friedland et al. 1988). Menidia are also im portant in the diets of birds, such as snowy 

egrets (Egretta thula), g reat egrets ( Casmerodius albus) (T akita  et al. 1984), and black skimmers 

(Rhynchops niger) (King 1989). The inclusion of Menidia in the diets of these birds m ay be related to 

the habitat preference of silversides in salt marshes. Silversides are found in great abundance in salt 

marsh creeks, as opposed to  under cover of vegetation such as eelgrass (Zostera marina) and sea lettuce 

( Ulva lactuca) (Sogard and Able 1991).

Silversides are probably opportunistic feeders, and have been shown to take copepods (Poole 

1978, Lucas 1982, Grover 1983, Cadigan and Fell 1985), p lant m aterial (Lucas 1982, Cadigan and Fell
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1985), sm all fish (Cadigen and Fell 1985) including larval silversides (Lucas 1982), cypris (barnacle 

larvae) and  am phipods (Lucas 1982), shrim p (Cadigan and Fell 1985), rotifers (Poole 1978), and crab 

larvae (M organ 1990). In is interesting to  note th a t silversides m ay be an  im portan t contributor to the 

population control o f some crabs, a t least in North Carolina (M organ 1990). Feeding is thought to 

occur on ebb tides, perhaps because feeding is interrupted by turb id ity  on flood tides (G ilm urrav and 

Daborn 1981). M any aspects of the life histories of Menidia sp. are related  to tem perature. Growth 

rate correlates positively w ith tem perature; fish reared at tem peratures typical of shallow salt marshes 

grow faster than  fish reared a t tem peratures more typical of open bay waters (N arangansett Bay : 

26—29 'C , 18—21 *C, respectively) (Bengtson and Barkman 1981). However, along the East Coast, 

A tlantic silversides grow faster a t higher latitudes in shorter growing seasons, a tta in ing  the same size a t 

the end of the growing season regardless o f latitude, due to genetic differences am ong populations 

(Conover and Present 1990). Growth ra te  is also positively correlated w ith food availability (Letcher 

and Bengtson 1993). B atch fecundity (no. advanced ripeness eggs /  g ovary-free body weight) increases 

from the beginning to  the middle of the  spawning season, then declines to the end of the season 

(Conover 1985), and a t  least the “turn  off” mechanism seems to be tem peratu re  related (Hubbs and 

Bailey 1977). T em peratu re also controls the sex of silversides; young reared a t  cooler times of year 

predom inantly become female, and those reared during warm m onths become m ale (Conover 1984, 

Conover and Fleisher 1986, Middaugh and  Hemmer 1987). Menidia a re  also known to m igrate to 

deeper w ater in w inter (Conover and Ross 1982, Jessop 1983, W arkentine and Rachtin 1989), 

presum ably based on tem perature. In spite of this adaptive strategy, w inter m ortality  can be as high 

as 99% (Conover and Ross 1982).

W hile the onset and term ination of spawning season m ay be related  to tem perature, patterns 

of reproductive behavior w ithin the season are tied to other environm ental signals. Although spawning 

has been observed on the  surface in som ewhat deeper water (Moore 1980), it usually takes place in the 

intertidal zone during high tide (Middaugh et al. 1981, Middaugh and T ak ita  1983, Conover and
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Kynard 1984, M iddaugh et al. 1984, M iddaugh and Hemmer 1984). Spawning occurs in daylight 

(Moore 1980, M iddaugh and  T ak ita  1983, M iddaugh et al. 1984, Middaugh and H em m er 1984) and is 

triggered by curren t velocity (Middaugh and T ak ita  1983, M iddaugh and M em m er 1984). However, 

spawning coincides fortnightly  with new and  full moon, while frequency and in tensity  correlate with 

tidal height (Conover and Kynard 1984). Even more com plicating is the observation th a t peaks of 

females with hydrated  eggs occur when high tide occurs within one hour of sunrise (M iddaugh et al. 

1984). Eggs a re  deposited on plant stems or roots, and m ats of detritus (M iddaugh et al. 1981). and 

use of high in tertidal regions seems to  be related to predator avoidance ra th e r th an  physical or 

chemical factors (Tewksbury and Conover 1987).

A lthough com m ercial fisheries exist for silversides a t northern latitudes, no tab ly  Prince Edward 

Island and A nnapolis River, Nova Scotia (Jessop and M orantz 1982, Jessop 1983), there are none in 

Chesapeake Bay. This, and the considerable and convoluted interactions w ith the physical 

environm ent, m ake silversides an attractive choice for this study.
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