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TUERILENCE CLOSODRE ROQDCLS



In recent years, different approaches for podeling Neynelds stresses
have been pursued by various wuthors, Two differeont closure schemes,
representing two schoels of thoupht, lhiave been selected. The first cloxure
scheme is the k-¢ model. The sccond clesure scheme is the level two model.
Each group has cloimad that the proposcd modals are an improvement and an
advapgement over previous models employing the mixing length hypothesis as a
clogure scheme, MNeither groupr however, has made thorough comparisons
between the newly proposed schemes and the mest commonly used appreach tha
mixing length hypothesis,

The main abjective of this paper is teo test the applicability of the
standard k-2 and the level two wodels in buoyant and non-buoyant flows, In
addition, compariscens have been made between these new closure schemes and
an existing mixing lencgth model,

Reeults obtained by enploving the level twe model fer buoyant and non-
buoyant flows are considered to e an improvement over those cbtained Ly
emplaying the mixing lenpth nwodal. A& single set of congtants was used for
all level twe model applicotions, T"nlike the mixing=length ciosure schenme
wihich requircs tuning of the constants enpploved Ly the model for cach
individunl application, there was tno further tuning reguired for the level
twoe model,

Comparisen between model resutts have shown no substantisl improvement

¢f the ki—g model over the leovel two model.,
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ABSTRACT

To recent yenrs, different approaches fer modeling feynolds stresses
have been pursued by vorious authors, Twe differont closure schenes,
rcpresenting two schoels of thoupht, have been selected, The first closure
scheme is the k-e model. The second closure scheme is the level two madel.
Each group hes clained that the proposed models are an imprevement and on
advancement over previous models employing the mizming length hypothesis as a
closure scheme. Nelther group however, his made thorough comparisans
between the newly proposed schemes and the most commonly used approach the
mizxing length hypothesis.

The standard k-e model requires the soluticon of twe partial
difforential equatlans to determine Meynolds strosses and hence claose the
set of equetions that govern the mean flow. The first equation solves far
turbulent kinetic energy., k, while the second solves for its dissipstion
rate, e, The closure is then pccomplished by & simple relstionship as was
first suggested by Rodi (1980a).

Mlike the k-e model, the level two model does not require the solution
of additional enquations. lInstend, Neynclds stresses arc calculnted by &
simple algebraic expression, The level two mode]l can be congidered o
mixing-length hypothesis closure scheme modified by a stability function.

The main cbjective of this paper is to test the applicability of the
standard k-& and the level twe models in buoyant and non-buoyant flows, In
addition, compmrisons have been made betwson these new closure schemes and
an cxlating mixziog length wodel. Reasonable agreemeont was obtained batween
mode]l resuits wnd the analytical solutien for a aonbuoyant cpen channel flow
when ¢mploying the k-¢ model, TBetter results were achieved by adjusting the
constant, C", proposed by Neds {1980a) in the eddy viscosity relationship,

As a segond test., the model was applied to a continuously stratifiled open
channel Flow. Difficulties encounterod during the second application are
identified. PReasons for the problems are discussed and suggestions are made
to overgome the shortocomings.

Tesults obtained by enmploying the level two model for buoyant and non-
huoyent flows are considered to be an improvement over those obtained by
caploving the miring lenpth model., A single set of conctants was used for
211 level two model applications., Unlike the mixipg—length closure schene
which requires tuning of the constants employed by the model for each
individunl application, there wms no further tuning reguired for the level
two model. Additionally, the consistent results obtained by the level two
model are considered an improvemepnt over the mixing—ltength model when
compared with [lume datm colliceled under stratified conditions,

Conpariston betwaen mnodel results have shown no substantial improvenent
gf the k~¢ mode] over the Jevel two model for pos-buoyant channel flow, The
t~¢ model requires far oofe cemputer time thap the level twe medel for the
same test run. The level twe model is sinpler end cssier to apply than the
Lk—¢ model., Since no mode! run can be made employing the k-z madel as a
closure scheme for buoyant flows, no comparison can he made between the two
closure schemes vader this flow condition.
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ADVANCED TURBILENCE CLOSURE MODELS AND TIIEIR

APPLICATION TO DUDYANT AND RWON-BUGYANT FLOWS



Turbulent motion is charecterized s onstendy, highly random, arnd
strongly thres dimensional., A wore precise definition is:  Turbulent
fluid motlon is an ixregular condition of flow ion which the varions
quantities show s random varisation with time and space, so that
statistically distinct mverage valoes can be discerned " {Hinze, 1959},
The state of turbolent wixing motion is responsible not only for am
oxchange of momentom, but alsc for enhepcing the tramsfer of hezxt and
oass tn Flelds of flow associnted with non-voiform distributions of
temperature or concentration.

Estuaries present one of the greatsst challenges to onvironmental
scientists. The complicated oature of differant foreing functions (e.g.
tides, wind, fresh-water e#te.) continuonsly actiog on fluid ip an
irregolar channel results in turbolent flow, Hecause of ite compiicatsd
osture, It is onlikely that sclentists will schieve & complate
understanding of the mechanism of turbolence, yet, it is their task to
predict velecity and trenspoert of hest and mass phenomens sxisting in
the nstoral saovironment.

Due to oscilleting, unsteady oopunlforw flows, estuaries are among

systems for which transport and history sffects of turbulence are not



adequately acoounted for by a mizing length modsl (Smith and Takhar,
1981). For sxzsmples, model zimplations show that low velocity gradisnts
{i.s near alack water) resolt ino low sddy viscosity (Leonard, 1977)
alpo, a valocity reversnl implies s tero oddy viscosity {Blumberg,
1975} both are not observed in prototypes. In addition, the length
scaleo, roguired by the mizing Length hypothesis, 1w difficult to define
in mors ccaplex flows (Rodi, 19B0a).

Pradicting flow beheavicur in & turbulent enviromment by way ol
laboratory and fleld experiments 1a tedious, time-cooscming and very
sxipensive, ©On the other hand, prediction by the way af computational
methods, once formulated, isx ensler to wpply wnd more esconomical. Thua,

mogt scientists and anglneers prefar the sscond approach,

A. Maam—flow squations and the problem of closure

In ordexr to sccurntely compute the turbulent trensport process at
all points in time and cpace, tho complete Navier—Stokes equationas
should be soived, There exists no general solution for the exact
equstions, Thus, to arrive st a computstionelly tractable
copfliguration, spprozimations must be iotreduced for the turbulence
corralaticns in the form of model assmmptions, Predictions of turbunlant
flow fields, tempersture and concentration, devslopad sc far have bean
bansd on ewpirical or semi-smpiricel hypotheses.

In order to sstablish o turbolence model, a relationship Letween
the Reynolds stresses, produced hy the mixing motion and the mean valoes
of the velocity components, should be established as well as & suitable
Lypothesias concerning hesat and mass tranefer., In ather words,

turbnlepce modol shoold relats turbulent traneport quantitios to the



valuse of moan flow, A turbulence model cun be defined am & et of
equations from which turbulent trapnsport terme csn ba determined and
thus close the system governing the mune-flow, Turbulence models
simnlate the effect of turbulent processss on the mean—flow behavioor.
Since they ere not the exact syuatlons, turbuleoces models require
snpirical lopot in the form of constants Oor functions,

Becanse the Navier-Stokes sguations st present, cam not be solved
for turbulest [lows and since we are not interested in the detsils of
fluctusting wotion, o statistical eppreoach ia takan, The ipstantancouos
varisbles are decomposed into two Lerme: & moan variable apd n departure
irom thet mean. In practical application. the mean variables counld be
the sverage valuer over approprinte tamporal wnd/or spatial dowswins.
Takiong the aversge produces the squations governing the mesn variables,
The time poriod {or spatial domain] of sverage sheuld be longer (or
larger} than the turbulent floctustions snd shorter than the time (or
spetial) sonle of mwean flow, The resulting squations desoribe the
distribution of mean velocity, tenperators, and species concentration in
the flow and thus the goantitias of prime laterest, Unfortunatsly, the
aeveraging process creates a new problem. The eguations no longer define
» cloged system since they cootaio mpknown correiation terms
representiag ths tressport of wesn momeotum (Heaynolds stress), and heat
or mass (Beynolds Flux) tressport vis torhnlent wmotion. The closore for
thess equations cun only be schieved by empirical formula or by a

tutbulence model.



B, Intent of this iaveatigation

The intent of this investigation 1s to smploy two different closare
schemes, k-3 and level iwo models. Application and comparisony will bas
made betveen the two sesleocted schomes and sn existing mixing-length
model using the mnalyticel golotion for open chennel flow as s first
test. A2 a sscond test, these schemes will be spplied to a continocusly
stratified open channel flew, Results obtained from the previous tasts
will be coopared nnd discussed.

A number of satusry models sxiat {Cerco, 1981), wost of which pas

mizing~length hypothesis to calculats addy viscosnlty and thus, reguire
seupirical constants, The stendurd k-t model does uot requirs tuning of
all cooxtants employed in the wodel for each individusl spplication.
The k-4 model should wlsc provide more realistic reaults ms sugganted by
Rod{ (1980s). On the other hand, the level two model requires several
empirical constsnts to determine the stability funetion (Mellor and
Yexada, 1982}, These conatants can he dedoced from nentral comditions.

This investigation intends to anewer the [ollowing quastions:

1- Are the proposed models, k-t or level two, esasier to apply than

s mixing—length model T
2= Do the proposed models provide more realistic resunlts then w
nizing=length wodel 7

3- Are rosults improved, if so sre the models worthwhile pursuing ?

To spawer these Questions, the k—¢ and level twe wodels will be
compared with an existing mizing—lesgth-model. Agrecment botween the
zodels with apalytical solntions, and with sxperimental dats will be
examined. Computstion time for all wodels will be poted ax one

benchonark of performance.



CHAFTER 11.

GOVERNING EQUATIONS AMD TURBULENCE

CLOSURE WODELS

A. Msan-flow sguations and the problam of closure

The well established set of differontinl sguations which
describes the dypamics of an estuary are! the momentum balaooe eguatlon,
the ¢ontinuity equation, the conservation of zmlt egquation, wnd the
sguation of stats, For an incompressible Fflow, lo a rotating cecordinats
system, such as the sarth, and by eoploying the Douscinesqg

sppreximation, theose equations cap be eapressed io tensor notatinn as

mowmentun conservation

du do g n
__d __4i - 13p N Ap _
3t T Yy ox, MELTETAIL p 3z * I’a:ja:j ML {(2-1)

mass conservatlion: contipuity equation

—2 =0 (2-2)

selt conservation:

]
ds a d =
as . 3__ R 2-3)
it T ax, (a8 ) =D 53,01, [



sguation of state

P=p, (1. + aT + O} f2-41
ip which

L, = Cartesian space coordinate

b, = ipstantespetous component of voelocity in directtion x,

YV = kinematic viscosity

P, = reforence density, & constant

p = dansity

dp =0 p-p, 1

t = tioe

5 = galinijty

T a temperatore
p = préssurs

a,p = gmpirlcal constants

5 = aoceleration doe to gravity

D = molegular diffupion coefficient

1 = sngular veloclty of the anrth's rotatian
:ijk * alternating isatropic tensor

= +1 If i, ], k are in ¢yclic order

== if i, }J, k are 1o antlcyclic order

0 if any two indlices are repoatsd

Coefficients a and B of cquation (2—4} are funcotions of
temparature. The density of ses water Jdepends on both the salinity and
temporatura, bot in estuaries the salinity range {(spatial gradient} is
large and tempsrature range 1ls generally smell, Consaguently
temperaturs has a ralatively small infloance on the density snd may be

ignored, Furthermore, for u oarrow body of water such asz an estuarine



river, the effect of the carth's rotaticn in the momestum equation can
also be neglected. By lntrodocing the preceding c¢omsiderations,
cquations (2-1 to 2-4) can be simplifised. The regulting equations,
however, cannot at present be solved for the turbulent flows of main
interest 1.0, flow in ewtuaries, [In order to simplify and reach »
solvable sot of equations, Reynolds (¢cited from Schlichring, 1%68)
decosiposed the instantaneous variables Inta & e¢wn variable and a
daparcture from that mean, Thas

ui- Ui + ui

p=P +op {2-5)
s =5 + 3
In which

] P, 8§ = means of velocity, pressnre, salinity snd

L
“l" p: l' = departures from those means

Substituting equations 2-5 into 1-1 to 2-4 and taking the sverage
produces the eguations governing the aean varisbles. The time pariod
{and/or spatiel domain} of aversging, as mentioned in chapter !, abould
bs longer than the time (or spatisl) scale of turbvlent fluctustions aod

shorter than the time (or spatisl) scale of mean flow (a.g tidal pericd

io estuariss), The application of Reynoclds rules of aversging results

in
au U
i . .1ae E.. ‘ ap -
rrali lu 73 o 91 {uinj o+ !i{p ) (2-8)
J i i

Bﬂi
——= a [ (1-=7)
HE

i
J45 d
R e - -8}
3t + 11 {U 5 a:i (n 1 } {2

p=p, (1.0 + pi8) (2-9)



’ ¥

In moat flow regions, the turbulent streasses u,u and fluzes u;s'
sre much larger thap their molecular counterparts which are therefore
neglested in eqoations (2-6) and (2-8}).

The above seét contains the equations goveraning the mean— flow
varisbles. They n¢ looger form a ¢clozed set dne to the presepge of the
turbulent stresses and fluzes. These equations (2-6 to 2-9), contain

more usnkpowans than the equations available to solve them,

The system of equations can only be zolved 1if turbunlence

[} 1 [ [

correlations uu and g, cat be decarminesd, Im fact, the
determipation of these corrslations, or the closure scheme, is the main
problem in enlculating turbulent flows, BSicce the solution of axaet

eguations can aot be carried out in practice at the presont time, ull

closare techiuiquas have bean deaveloped using approximations.

B. Clasaification of torbunlence medels

There exiat two ways to classify turbulent clesure models. The
most coomonly used scheme for cluasifying turbuleoce models i3 sccording
to how many equations are used for closure (Rodi, 198CGa}, The second
approsch is dependent on the tomplexity of the closurs scheme and the
ordering of terms sppearing in Reynolds stregs equations (Meller and
Yamada, 1982), Rodi's classification is sdopted herein with rofarence
ta Mellor and Yamada's classification when approprinte,
B-1 Zerc-agquation models

The simplest mothod to solve the closure problem is to repiace or
sepproxinats Roynolds stresses and fiuxes directly. This technique leads

to Boussinesq's eddy viscosity concept and Prundtl’a mixing length



10

hypothesis (¢cited from Schiichting, 19488). Doussinesg assumed that:
ansiogous to the viccous siresxes in laminar flow, 'turbulent’ ar

Reynolds stresses are proportiosml toc the wean valocity gradient and may

be sxprossed (Minza, 1959) as

—— au, aul )
-u ILuj- I{[E;; + 3;1 ) - 3 k Elj {2-10)

Turbulent heat or meas transport 19 assomed to bhe related to the

gradient of the trapeported quantity

3 L as
- u s =T ae- (2-11)
i
in which

8,y = the Lronecker dalta {biJ =0 for L # j and 5,

L% = the turbulept, or eddy viscosity

J- 1 for 1 = j)
k = turbalent kinetic energy per unit massz

I' = the turboleat diffusivity of salt
The Reyaalds snalogy betwaen momentum and mass transport sogpeat t.]!un."{-1
is closely eslatad to P;

T = ji (2-12}

t T

where a, is ths turbulent Schmidt oamber,

Ooe can ses that the problem of closure has been shifted townrds
the dotermioation of the eddy wviscosity, The Boussinesq assumpticon has
the groat disadvantsge that eddy viscosaity is not a fluid property but
depends on the xtate of turbulence, The eddy viscosity concept ofiers
no solution to describe thie Jependancy.

Two points have to be addressod bafors proceeding any further.

First of wll, the term involving the kronecker Jelta in equatiaon 2-10 i

added to snsmro that the avm of normal stresses 1 twice the kinetic



i1

wnergy (Rodi, 1980a). When i equals } and sums over 1, 2 and 3 in
equation 2~10, the Elrst term on the right hand side becomes z2eroc by

coptinuity leaving us with normai stressss, These normal stresses sct

as pressure terms but do not nocd to be determined since thay are moch
smaller than the pressure term in equation 2-6. The second point
pertains to Reynolds aoslogy which assumes that the magnitude of
tocbulent eddy viscosity aod turbulent addy diffusivity are always the
same. According to this aseumption, the Schmidt pumber in equation 2-12
iz defined as unity, Laonder (1976) reported that a Schmidt number of
.7 ia & ressonabla valus to be usted for inhomogenasaous Froe shesr flows,
On the cther hapd, Jobson and Sayre (19T0), in a study of an open
channel turbulent sheoar flow, reported that the Schmidt number iz aqual
to unity thus meking Reynolds assumption velid, In sstuaries howsvor,
vortical shear predominates, as it does in open channel flaow,

Therefore, 3 Schmidt number of 1.0 will be adopted for thils study.

B-1-1 Constant eddy wiscoslty
Sipnce the Boustsinesg assumption has offered ao relation to

deseribe the dependency of Li on turbolence, & coostant velue for Ut has
been employed as a diroct approximation for Roynolds steess (Pritckard,
1956 § Hansen and Rattray, 19655 Feats and [Tansen, 19765). It is apparent
that the constapt eddy viscosity assumption bas fsiled te comsider the
varistion in u; with respect to spece and time. A constant L&. however,
in some cases has been successfully applied to obtain resolts at a First
crder approximaticn {Le Mehaute, 19761, On tha other hand, a constant

value for Li did not mccurately reproduce the observed vertical velecity
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and salipity profiles ip estuaries (Towden and llamilton, 19753 Elliot,
19763 Hamilton, 19735 Wang and Kravitz, 1980).

The use of & coopstant eddy viscosity bas failed to gain
popularity in the [leld of bydraulics because of its limited range of
application (Rodi, 1980w 5 Reynolds, 19%74). Tor example, in s fully
developed open chunnel flow, eddy viscosity has ano almost parabolic
distribution with depth [Schlichting, 196B), Therefore., a constant eddy
viscosity will predi<t an unremlistic distribution For vertical
turbulont transport processes, The lipited applicability of o constant
eddy viscosity has led workers to discard this spproach and seek other

techniques.

B-1-% Mizing-lenzth model

In crder to improve the preceding method, it is necessary to find
an empirical relation batween the eddy viscosity v% and the mean
volacity, Prandt] made an important advance In this diroction, 1In his
Mizxing Length hypothesis, Prandtl assumed that Li was proporticnal to a
charsctoaristic fluctumting veloecity ?'lnd s charsctaristic length scale
L.
v, = Ve {2-13}
In two-dimensionas] channel flow with flow Jirection parallel to the z-

axis and the y-azls is directed upward, V is related to the mean

veloclity , U. by
4 aU

- - 12'14}
v L iy
Substitnting equation 2-14 in 2-13 results in
3 au
- il (2-15]
Li A L 3y

in which
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A = an empirlecnal constant

It should be poted that the conatant, A, in the sbove equsation
cap now be included with the unknown mizing length, L, {ne cgan alio
observe that Lﬂ, will in geners!, be a function of position wnd time.
For genera! flows, the mixing length hypothesis may be written as

follows {Rodi. 1980s)

1
an ou au -
w1 b ] i -
Dt Lo ox tﬂzj * 35, ) {2-16)

Equation (2-18) cen now ke introduced into equation 2-10 in order
te nceount for sll Reynolds streoss components, The wmizing length
hypothesjs relates the eddy viscosity to the local mesn-velogity
gradieat and mathematically describes this relntionship, Prandtl's
hypothesis introduces s new unknown, L, which must be determined. The
characteristic length scale is not a fluid property hut, as the sddy
viscosity, depends on the states of turbulence and the geometry of the
flaw, Thus, any expression that describes L must sccount for all these
effocts. Various formamlae are availsbhle to approximate the length
scale. Most Iength scale formulae reportad in the literature were
axperimentally obtained. The first approxipetion is purely empirical
and only valid for specinl casas (Le Mehaute, 1976). For example,
against the wall of a pipe, L is assumed to he lineoarly related to the
distasnce ¥ from the wall a3 follows
L =aY {(2-171
in which
1 = pnpirical constant

Von Xarman developsd an oxpression which determines L independent

of flow type {¢ited from Launder and Spalding, 1972 3§ Bradshaw, 1972).
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(fe mtsumed that L is the ratio of tho firat to the second derivative of
the oosn velocity. In n well developed channol flow, s rmazimum velocity
occurs at some distance from the bottom boundary. Agcording to Voo
KEarman's similmrity hypothesis, Li iz zerc at this location, To avoid
sugh & discrepancy. Prandtl proposed m different formula to determioe L.,
iy formula wes soon discarded because of its compllicated neture and due
to the disagresment bestwoon obsorved and predicted valoes away from the
wall (Launder and Spalding., 1972).

Stratificstion zlso hes a pronounced affect on the mixzing length,
The prasence of atable stratification tends to redoce the size of the
characterlstic mizing length. Therefore, In crder to cemove these
doficiencies, investigators have suggested various modifications, DOne
such medification 13 to include a stratifiention parameter {e.g.
Richardson number) to sccount [or buoyancy effacts in a nonhomegenscus
flow [Kent, st el., 1959 Pritchard, 1950 ; Dradshaw, 1572}, Another
improvement is to add sn extra term to the oddy wiscosity formula to
sccount for turbulence whenever w zero velocity gradient exists (Bowden
and Hamilton, 1976).

Models using the ui:iun. langth hypothesis require empirical
inputs which have to be dotermined for cach turbulent flow case, This
is one of the major drawbacks of the mixing length model, A second
disandvantage is that mizing length theory assumer & ttate of local
equlliibrium, i.e the production of enorgy ls aqoal to ity dissipation,
{Rodi, 1980s), According to Mellor and Yameda's classification, this
type of closure i3 equivalent to the level two madel.

The miring leagth model has the advantage of being simple, yot it

requires a prior theoretical knowledge, which is not always availabloe,
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to determine the characteristic mizing length, L, Despite thia
shortcoming, inovastigators preféer to uge the mixing length hypothesiy
bepauae of 4¢3 gimplicity. On the cther band, Oreadshaw {1972}, has
claimed that the main renson for the success of mixing length and =ddy
viscosity theories is attributed to the fact that they wero tested
ageinst simple flow ceses Ln which the flow was in state of local
equilibrium {production of enerpy iz equsl to dissipation! Altheugh
estuaries ure not in & state of locel equilibrium, & medifiad version of
the mizing length {ormula has been shown to cbtain reasonable rescits
when applied to estuaries [Cerco, 12823} Rodi, 19B0x3 Dlumberg. 1977;
Dowden and Namilton, 19T7&}).

The meodifisad version of mixing length formuletion smploys several
empirical constunts which have to be determined for individual csses.
Maore complez and advanced models were developed in order te overcome
those limitations. [In addition, vericns worksrs have concluded that
batter results miy only be obtalned through methods thst employ
transport equations (Rodi, 1980s apd 1980b% Bradshaw, 1572} Launder anod

Spalding, 1971},

B-1-1 Laval-two model

Acpcording to Mellor and Yamada {1%74) the lavel two model is
equivalent to en eddy viscosity comcept, This model) sssumes local
eguilibriom to prevail {i.e. proeduction and dissipation of energy are io
balance), This means that turbulence dissipates at the same rate it i
being generated. Ax will be seen shortly, the level twec model is anm
eddy viscosity concept modified by a stabllity function. If the

bouadary layer approximation is introduced to the lavel two model, i,e.



the vertical component nof the
au

d
pccofding to Mellor snd Ysmads (1982)

a1l compooonts of thes tensor may ba neglected oxcept for

as follows:

16

momenttn equation becomes hydrestatic and

all
3z’ then

the lavel two mode]l can be written

’ —— _—
foroau P
*-?‘- =-uw -3y " Pews (2-18)
m dz
N as
- W & = K'h a;- fl'lﬂb]
Substituting equationt {2-18a) and (2-1Bb) into sguation (2-18) results
in
' au s 35
L S == £2 -
N Km{ 3z P+ Eh g g 3z {2-18c)
in which
Km = L q Sm = momantum eddy ctosfficient {2-184)
Kh = L g Sh = mans oddy coefficiont (2-18e)
1
q‘ = U, = gwice of turbulent kinetic enecgy per uznit mass
1 = B, L
L = master length scale
Sm nod Sh are the stability fonctions and depend on flu:x
Richardson number [Rf]. Theso functions are defined as follows :
A, By~ CO-IB,ly,- C)3* 6(A,+ 3A))]) R, s
5 = A Byvy - [ B0 v,* v,) = 3A T R, h
- Cyy* ) Ry
Sh = JA, --——gmoomrorem————s-
f
in which
2 &)
Yy " T3° ~ "
1 B,
R, A,
Ty ™ {—ﬁ-l + (6 *ﬁ-}
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J8
R - - E—E-EE_—EE-H—_
i at 2l
Km {5;} {&z]
&5
L
i T 7 T,
di dz
. ] 1 . ]
A= B Sm
b =18 !
t 5h Sm
AL, B, A, €, = enpirical constants

Substituting equations (2-13d) and [(Z-18e} into sguation (2-1Bc) as well

as the dofined gquantities Ri and Rf it can be shown thnet

ral

Km = AL 3z (1~ Rf} {2-19)
£ Al

Hh =b L 3z {1- Ef] (2-10)

Equstions (2-19) and (2-20) mre slemilar to equation {(2-15). The
only difference is that this equaticn is modified by o fluz Richardson
numbar, For meutral conditicns, Hf is aqual to rero and equations {2-
19) and (2-10) are reduced to theo mizing lemgth hypothesis. One can oow
se¢e¢ that the lovel two model is essentially an eddy viacosity concept
with the stratificeticon effect included via the stakllity functicon. The
stability function is an algebraic exprossion and cao be found in Mellor
and Yamada {1974, 1981). {Constants needod for thia function can be
deduced from turbulent measurements wade in the absence of buoyant
forces. Once obtained, no Ffurther adjnsement is required {Mellor and
Yamadse, :982). Asx for the lengeh scale they argued that most valid
peescribed formulae will perform adequatoely.

Alternativoly, these authors have shown that the leval two model

can slso be exprassed in terms of mean flow quantities rather than

turbulent guantities. Therefore, in a more traditional wpprosch, i.e.
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mixing length format, the level two model can be ¢xpressed as (Mellar

and Yamada, 1974):

———

-u'w' = L‘ Sm( gg }‘ (2-31)
s o=t s, ( gfi ( gg ) (2-22)
in which
s -m' (3 1 t1-rp*
m 1 m 3
] - - H £
S, =B S, (85) (1-RY’
where
) ¥, €, - {6A,» 3A,) /B,
Sa = dA, o FIITITTTIOAL IR (e !
§h = 3A, (y,- 71, )

Mellor and Yamada {1974) have iptroduced a turbulence closure
schome labellod as level one model, This model is not substantially
different from their level two model., The main difference betweon the
two models are the stability function and the critical Richerdson fluz

oumber at which mizing ceases.

B-2 Onsequatiom modal

In an oddy viscostty—~diffusivity model, transport and history
sffacts of turbulence c¢an be accounted for by sclvimg a tranasport
squaticn for a suitsble parameter which characterizes the turbulence,
The turbulent kinetic enecgy per unit mass, k, is tuch a parameter in
that it characterizes the intensity of the fluctusting motion.
Turbulent kinetic enerpgy is contariped mainly in large—scale
Fluctustions. The square reot of k is the velocity scule for this
motion, An ¢zact cquatiomn describing the dynamics of turbulence kinetic

encrcgy, k, can be derived from the Navier-Stokes equations by simple
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nanipulations (Hinze, 1959), The k equation contains a higher order
corrolation, &2 will be peen in & later chapter. As a result,
assumptions have to be iotroduced to model these terms.

One—equation models account for transport amd history effects on
the turbulent kinetic energy but pot for the mixing leagth, Therefore,
these models have offerod no additiconsl improvement with regard to the
characteristic leogth saale. On the other hand, thesec models allow
enecgy generated at & point to be tcensported slsewhare. Thus, these
models appcar to be superior to moedels using the mixiaog-length
hypothesis (Launder amd Spalding. 1972).

¥hile Prandtl’'s concept ix a physicully attractive simple idea,
it is only capable of describing very sinple flows to & vsefol level of
approiilmation, DPuee to the shortcomings of the mizing length hypothesis,
a new and wmore suitable velocity scale was favoured over the moan

velocity gradient employed in zero~equation models. The naw

| §
3
charactoristic velocity scule, k, is defined by Modi {1%8Da} ns
S R S (2-23
k 7 { u;, + 0 u; ?

Substituting this velocity seule in equatien (2-13) leads to

V= ¢ x L {2-241
t n
In which

Cp = gn empirical constant

This expression is genernlly known ms the Kolmogorav-Frandtl
capression, Prandtl, (19235) suggested solving 2 transpart equation to
determine the distribotion of X, In order to calculate the turbulent

eddy viscosity., an expression for L is also regquired, The length scule,
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L, is always mathematically preseribed, in a similar manner to the
zero-equation models. Thus, one can now caleculate eddy viscosity using
¢guatinon 2-14%,

The transport expression for k can be deriv. ! oxactly from the
Navier—Stokas cquaticn {(fMinze, 195%), The k #gusticon accounts for

cunvective transport as well ns history effects on the characterizinag
L

3
velocity scale, k¥ . Tor high Roynolds pumber, this oquation reads

{Rodi,15980a)

_———— Al —
ok dk a__ Mty pr, TR F
5t * U ax 3% (u, (== + 0 ¥y 3 MECTUIL
aul aul 3
V5 5 e (2-23)
1% "%

Since pew unkpown coarreiations appear in the above eguation,
mode] assumptions must be introduced so tha ecgquation can be solved,
These model assumptions are listed in detail in Rodil (1980a).
Intreducing these sassumptions to terms in the R.N.5 of the above

pquation yields the following

dk ok | Mook 1) oy, aui 4y,
3t Uias t e Gl MGy T A
i i ko i i
|
u 1
L 45 k _
- ﬂ!i ;— az. CD L (2-26)
t i
in which

g - are empirical constants
Tf Egoation 2-26 is applied to ap open~channel flow in which the
mean velogity U is parallel to the x axis and by neglecting convective,

diffusive trapsport as well as the local rato of changs, then
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prodyction and Jlssipation terms mre in balance, Thus, equation (2-18)

is simplified to

) = € —-r {2-27)

When agquation 3~24 is uvsed in eguation 2-17 to eliminats k, & mizing

length formuola will eesule,

L2y (2-28)

This demonstrates that the mizing length hypothesis is indeed a
special case of opne~equaticn models, In genernl, the ono~equation modeil
is more applicable to & wider range of flow caves than the mizing length
hypothesis becmuse thess models sccount for transport and history
effacts (Rodi, 1980a and 1980b 3 Reyncolds, 13765 DNiradahaw, 1972),

One-equation models have offered ne improvement with regard to
the cheracteristlic lenpgth scale. This difficulty resides in the
necessity to prescribe the distribution of L. This is oot an casy Lask
to accompl ish, espacially in a complex flow, Different mizing length
seale formulae, however, have been proposed to generally calculate L,
the length scale. These expressions are rather cooplexr and to date have
been teated very little {Rodi, 1980a; Reynolds, 1976). In addition,
subgtantian] computer tims is required toc solve the newly proposed
formala when compared to more advenced models (Rodi, 1980a). Thersfore,
the trand has been shifted towarde two—equation models in which a

transport equation is solved for both the charactecistic lenpth scule L,
b )

FH
and the velogity scale k ,
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B-3 Two-equation modsl

Decaves mixing length scale ia influenced by transpert wnd
history effects in the ssme manner as turbulent velecity. sdditicasl
¢equations for the charscteristic length scale can be develcoped., Two-
equetion wmodels sccount for both the transport of turbulent velocity and
thoe length scale by solving two trsasport eguations. In contrast to
zero and goe—sgquation models, the employment of a transport eguation for
the mixing length in s two-equation mode! allows an sccurate
determination of the langth scule distribution even in » compiex flow.

Savernl workars bhave explored the uae of a socond turbutonce
transport equation which, when solved, determines the distribution of L.
Far the second tcsnsport equsticon, L dees not have to be the depandent
variable. Any representation of L, for exampls kL or /L, would yield
the desired eguation.

Various two-sgquation models exist o,g. k-kl, %-¥, and k-, {ior a
complete 1ist see Launder wnd Spalding, 1974) in which:

1 = a length sc¢ale ropresenting the macro—scale of turbnlence

W = s guantity thaving the dimensions of [tlme”}, which reprosents the
time=gverage square of vorticity floetumtions, end

¢ = rate of diaelpation of turbulent cnergy.

The various length-3cele cguations proposed im the literature
perform similarly te ¢ach octher. The ¢ equution, doveloped by Rodi
(1980s), has become popular among model developers Eor several reasouns,
Workers have concluded that the ¢ sguation is relatively simple,
containos fewer terms than other length sgmle equations, and e appears
paturslly as an unknown in the turbulent kinetic energy equation (Rodi,

1980a and b Launder and Spalding. 1974 and 1972}. The r pquation c¢an
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aleo be derived oxactly from the Navier-Stokes eguations (Reynolds and
Cabeci, 1978).

There exist a feaw transport equations that determine the length
scala by themselves or when rcombined with the k equation i.e, k1, ¥, sml
e {for ¢ vomplots list zee Launder and Spalding, 1972}. The = cquation

is selected for this study and cends (Rodi, 1980a}

L Y
e de_ 3t 3 £ e
T T 1 ‘S g T G g (PG RY -G (2-29)
In which
C,, - c‘c r Cyp o g, * ire empirical constants
Y as
] -- g, — =—- + booyancy production of k [2-29a)
ia, ﬂ:i

P = U 37 + -4 ) Pl energy production by shear stress (2-29h)

RE = flux Richardson number [ - —g- i (2~29¢a)

and the eddy viscosity can be galcnlsted from
voo. ¢ -k {2-30}
The k-t closure model is eguivalent to {lefier and Yemada's (12820

level two and a half model. TIn this model, closure {s obtsined by
3
salving an equation for turbulent kinetic onergy, k or -g— . nnd an

cquation for ql. in which L is the mester length scale. All length
scales needed [or level two and & hal f mode]l wre assumed to be linearly
related to the mester length scale, 1.,

Level two and haif can also be considered a cne—oguaticn model iIf
an empirical formuls is employed as tha characteristic mizing length
scale. Equations thet comprise the level two and a helf model were

first presented and discussed in Mellor and Yemada (19B82),
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P-4 Stresarequation model

One— and two-gquation modela sassome that the local state of
turbulence c¢an be cheracterized by a aingle velocity scale.
Consequently, the individual Neynolds stresses can be relstad to this
scales, This relation often indicates that the transport of the
individow]l stresses ias not adeguately accounted for, even L[ the
transapart of the characterizing velocity hes been taken into account
{Rodi, 1%80a and 1980b). In order tu acconnt for the magnitude of
individual Meynolds strecsses (represonting varicus velocity scales in
complex flews), and to properly acceount for their transport, more

elaborate models have been developed. Most of these mdvanced models

! L]
employ tramsport equations for the individual atresses u,n, . Analogous

i)
transport equations have been introduced for the¢ turbulent mass fluzes

1 L
n.= .
i

Models basod on these ¢quutions are often referred to as stress—
flux—equation modeis or segond-order closure schemas, Stress— flua-

equation models mre wnaed primarily if the need exists to determine the

=T
individoal stresses u u .

174

lowor=levsl] or newly proposed models. Stress-flux-equation oodels are

A pacond use of thease models is to ansoss

still under intensive development and sre not yot in use for practical
or engioeering spplications.

Basod on Rottn's enargy redistribution hypothesis as well as
local isotropy, Mallor and Yamadas (1974) have introduced the level [our
model. This model consist of solving 13 simulteneocus partisl

differential oquations, In mdditiaon, they alsoc assumed that sli leagth
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scales are lioearly related. All constants employed for the length
scales wers obtained [rom noutral turbulence data,

The atross—cquation models do not use Doussinesqg’s analoay.
Instead, they wodel the stross terms directly. Ezmct equations for
Roynolds stress can be derived from the Navier-Stokes equations
(Tenockes and Lumley, 1%72). The stross-equuticn models are pequired in
flow situatcions whero the knowledge of transport mnd fluozes are
essential and cen not he approximmted well by relatipg them to the
tcanspozt ¢f k., In free flows, the stress—agquation mode]l proposed by
Launder, Reece and Rodi {1975). does pat appasr ta perform significantly
batter than the standard k-e model {Rodi. 1980a). The stress—equation
models can bhe psed as sn approach te improve the simplaer one— mnd two-
equation models, This moere complex stress—equationm medel can be dsed asx

a guide to the neture of pew terms which should be included,

C, Exinting estuary models

Numerous estuarine models oxist., Among those of interest are
tine—-dependent multi-dimensional smodels which calcuolate vertical eddy
viscosity and diffusivity. These models can be classified accordlng te
their closare scheme,
-1 Zsaco—oquation model

In this class of models, n coastant eddy viscoslty or a mizing
lesgth formuletion is employed for the closure of the governing
equaticns., Thisz empiricasl constant was found eithor by trial and error
or from observational data., A constant eddy viscosity, employed ia most
hydraulic epplications, resulted ip veey poor agreement with

observations (Bowden and llamilton, 1975; Wang and Kravitz, 1980).
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Tient et al, (1959% and Pritchard (1960), showed that the effects
of vertical stability on mizing cosefficients can be metched by inciuding
an cxtra factor in the eddy viscosity formulae, This new factor
accounts [or stratification effect via local Richardson numbser, Hl' and
the edldy coefficient can Ye calculated a3 follows

tﬂ
R (2-31)
{1+ u.Ri )

in which
tgfiﬂ-)

Ri local Ricbardson aumber = - E-----—;- {2-311]

p {EEL

dz

¢, ¢ = arec ecopirical constants, and
Li = eddy coefficient under neutral stability.

Prltchard's enpirical formula is dividad inte two parts. The
first part nccovnts for n mean~flowinduced turbulence snd the second
part accounts for the wind-induced turbulence et the surface, This
fomula was developed to fit the observational results for mass sxchange
cocfficient in the Jamss River Estuacy and was untilized later by other
workers for their mizing length models {e.g. Ruo et al., 1L978),

Bowden and Hamilton {1576) have reviowed three difforent methods
that describe the eddy vi:co;ity: 1- Bddy viscosity taken as a
constaat 2= Eddy vlscosity wazs taken as 3 function of water depth and
mean curcoot, i.o. & function of time and 3- Eddy viscosity was taken as
s function of Richardson numbar,

They added an extrs term intc their eddy viacosity focmulstion.
This oitca term assures a value for the eddy viscosity when m velocity

raversal occurs (st times pear slack water), They reason that whez the

velocity goes to zero, & residoal turbulence should be present.
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Dowden and Hamilton (1976) conclude that best wgreement i
pbtained by taking eddy viscosity ax s Function of the instantaneous
Richsrdson number (funcotion of time)}, They alio reported that the
actual function they used wis not velid aver the entire range of
conditions, Tn addition, they stuwted that if a hetter agresment hetween
prediction and chsecvation is to be¢ achiaved, knowledge of the
functionai forw and magnitude of these parameters that correspond to
real conditions is necessary.

Elliott(1976) arrived at a conclusion that realiastic
stratification can not be obtained with & copstant eddy viscosity.
Therefore, LElliott wsed u varying eddy viscosity incorporeting n bulk
Richardson number and timo-depth dependency. Although his formulation
prodoced a more realistico salipity distribntion than that obtaizned by
Bowden and Hamilton, he concivded that this method seill regoired
further careful examination. With regard to horizontal diffusivity.
Ellioet (L974) suggests that it bears little or nc effect on the
solution, implyiog that the vertical eddy viscosity is predomipant in
estunfies,

Blumberg (1977} used a atability dependent oddy viscoeity in an
spplicatian te the Potomac River estuary. His study deconstrated that
salt iotrusion is very somsitive to the eddy viscosity.

In thoir study of the turbidity mazimuz in the Rappahannock
Estuary, Kue ot al. (1978} conocluded that suspsoded aediment, or mass
distribution, is highly semsitive to the vertical eddy viscosity, They
enployed the same stability depondent formula proposed by Pritchard
{1960) and concluded that the model can be used only for qualitative

intecpretation.
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Applying his mode! to the James River estuary, Cerco [(1982),
addressed the problem of accuretely computing the cddy viscoesity tarms,
e reported that the functicosl form shonld consider four related
aspects: 1- The exprassion should accoont for the magnituwde of turbulent
diffvsicn in s homogenecoun flow 2- The expression should incozporate a
stratification parsmeter 3- The capression should appropriately relmte
diffusivity and diffusion of momentum and 4—- The functiopal! ferm should
be time dependent if s proper simulation for the mean parsmetors is to
be schioved, [lis approach was to ¢mploy & form, suggesced by Offiger
{gcited from Cerco, 1982), in which stratification effects on the
verticeal oddy viscosity can be accounted for by the Richardson nuomber.
In order toc consider the diffusion in » Lhomogenecus flow, he used the

following linear exprosiicn

Kﬂ
£ = {2-131
I {bv+a R, ?
K, =a U {2-34)
in whick

K, = oddy diffusion in a weil mized water column, and
2, b, n, n = empirical constunts.

Evaluation of the above constants was made through a series of
model rung which resultod 1a s tidal-aversge eddy diffusivity which
falls in the range reported by Harlemac and Ippen {(1967).

In summary, when compared with observations, the use of censtant
eddy coefficients reanlt in a poor snd unrealistic modal simulation.
The results are improved by using semi-empirical formulatioms. [Detter

agreement is obtained through expresstions which account for

stratification via Ri' The impraved results are limited to specific



npplications, Models omploying the miring—-length hypothesis a3 a
closure acheme for the goveraing oquaticns require empirical input in
the form of constants, These constants most be determinod, or tuped in,
for each flow case, The need to mdjust these constunts for each
application limit the use of this class of models, Although semi-
enpirical lformuletion resulted in & good agreoement with ocbservations,
investigators wrged other workers to further examine the.s Eormulations

{Bowden and Hamilton, 1976 ; Elljore, 1976),

-2 Advanced-closure models

Smith and Takhar (1981} applied a ono-equation model ta an
idenlized straight rectangular chanpei, simllar in dimensions Lo the
Roteerdam waterwny. 1Ipn thisz model the sddy viscosity was dotermined by
solving the turbulénce energy equaticn and ao oxpresaion for L, which
they previously derivad {5mith snd Takhar, 1979)., They dJemonstrated
that the reprosentstion of Roynolds fluxex in estuariss empleying this
closure scheme overcameé the need to add an sxtra term to the eddy
viscosity formulse in crder to sccount for turbulence durinog slack
watear,

As mentioned earlier in this chapter, Mellor wnd Yamads (1981}
sdded a new lovel of turbulence closure medels to their ¢lasaification.
This new modol, labaled level two med & haif, is a sipplified version of
their level thres model. This version is equivalent to the k-e¢ model.
The velocity scale aquaticns sre oot quite simllar referriog to the way
buoysncy terms are modeled, The k-r model employs the exact buoyancy
term, while the lovel two and u half model determines theze vin

stability funetion, As for mixing length, the main differsnce between
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these two length scale egquetions are the consztants employed in each
equation. [t hus beon dJdemonstrated by various workers that coastants
enployed in the k-t model do not require adjustment to ewch individual
spplication. All mode!l spplications were made through tha standaercd
constants cited from literature. Do the other hand, two of the
constznts ¢oployved in the length scale cquaticn by Mellor and Yaoada
(1982} have to be ndjusted for each case, They slso stated that 1'ﬂnu
can act assert great confidence in equation {4B]l. We prefer it rather
than the differentin] equstion for dissipation uaed by Daly and Harlow

o Equaticon 48, that they refer to, is the mizing length formola
enployed ia their ¢losure schemo, The same aquation that was used hy
Daly and NMaclow {1970) is equation 2-29% in this investigation, As
stated earlier, all mizing length equations perform similarly to each
other, Therefore, cos should investigets the cverall mode!f rosults
cather than how the individual wizing leagth equation hehaves, For the
level two and 8 half an empirical formula for the length scale can mlso
be employed inttesd of solving a complate transport equation for the
characteristic miring leogth scwle. If soch eo approach iz taken, then
the leval two and & half 1y classifiod as n One-equation model.

Oey, Mollor and Tires {1985) soployed a level two and a half
turbulent closure scheme in their application of the three—dimensional
time— dependent model to the Mudsorn-Raritan estusry. They reported that
results from current simuistionos compared ressonably woll with fiald
observations except at parrow channel regions where the mondel reaclotien
is inadequate,

Celik and Rodli (1985) applied the k~¢ model to a small portion of

the TMumber ostosty in order to calculwte the varistion of the eddy
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viscosity in tha wverticsl plana st various time intervals,. HModel
predictions of the eddy coefficients have been shown to be in good
agrecement with observations made by other workers, A drastic temporal
and spatixl change of the predicted and observed oddy viacosity was
noted, From such results Celik and Rodi {1983%) concluded that a
copttant or & simplea function of the verticel distance ca&sn not
approximate the oddy viscosity,

The eopirical constants ooploved in their k-¢ model were given
the standsrd values zited in litersture, These constants ware not
adjusted to Eit the experiments or cbservation, They slso reported that
temporal snd spatial wveriations of the volocity field cam be predicted
satisfactorily in wave-iaduced turbylent flow by the kg meodel,

It should bo noted that the Humber estuary is woll-mized with
nearly wuniform vertical selinity distribution. Thersfore., buoyancy
offects can be (and were) neglected in their study, Most cstuaries
however, have nonuniform salinity distributions which result in
copsiderable stratificetion and require a proper presentation of
buoyancy terms in the k-¢ modal.

Rastogl snd Rodl {1918? compared & two— versus a three
diménsioonl model in whick closure of the goveroing etquations was
sccomplished by an advanced turbulence model. The k-t closure
introduced for the two~dimensional depth integreted medel does not
account for the infloeoce of buoyency. MNevertheless, at high Froode
tumbers, comparisons of the 2-D and 3-D model predictions show good
rgreemont for different velocity ratlos and river bed roughness, The

pame well established standard empicical constants, cited in literature,
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wore employed again for this comparison which demonstreted the
genearnlity of the k—s model,

Models employing transport e¢quatices for individual turbulent
stresses and fluzes predict the torbulent processes more realistically
than simpler modela. Oa the other hand. they have bsen tastsd very
little and computatiooslly wre more expensive than ono~ and two—equation
models.

Concerning the cholce of a switahle turbulence modol, it seems
that the level twe model is most promising in terms of 1its exteont of
applicebility and simplicity. For this study, the level twe model i
chosen as a representative of MNellor's and Yamada's {1974, 1980)
classification, Furthermore, the k~¢ modal i3 selected to represent the
ather school of though {Rodi, 1980a)., The k~e¢ model cequires the
solution of two additional partial differential eguations, which wlll
substantiully incrense computational time for most spplications, Oo the
other hand, the level two model does pot require the solution of extra
cquationy, Instead, an algebruic expressics for the stability function
is needed. Hence, lengthy ccmputational time iy not a major
characteristic of the loaval two models. Tt bas been suggested thet the
level etwo model]l aed k~e model have o very wide cange of applicabillity
and sre superior to models that ewploy the mizxing leagth hypothesis.
According to the preceding literstore roview, the choice of the k- and
level two nodel is favoured. Each of thess models presents o different
school of thought and thus poss an interestiog challeoge to ase how they
perform individoally and in comparison to one sncther, Thess two models
have beon sclected as the closure scheme for the equations governing the

mean flow varisbles For the undergoing investigation. This set of
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equations describing the dynamics of an estuary, are derived in the
following chapter. The equations are then put in & numericel scheme to

bhe solved by o compnter,



CHAPTER III.

FINITE DIFFERENCE FORN FOR THE k~¢ WODEL

This chapter is subdivided inte three major sections. The first,
A, shows how the twc closure schemes are incorporvated with the governing
ogquations, The second, B, deals with the derivation of the turbulant
closare schamea, The £ gend ¢ equations ure integrated lztorally in
section B-1 and vertically in seotlion B-2, Production terms that appesr
in k and ¢ sguations will be shown ss  SRC' throughout this chapter.
Stace theso terms require special treatment, they will be integrated
separately in chepter 4, The third and fipoal secticn, C, ls deveted to
the finite difference formulation, The filnxl form of k and e eguations
are then expressed in the finite difference form,

The presont study wdopts a right-hand coordinate system in which
the origin iz loested at the undisturbed fres snrface st the head of the
estuary, The x axis is positive, directed towards the mouth of the
estuary, The y axis is positive to the right, facing npstroesm, while the
z axis is positive npward as shown in figure 3.1,

A, Governing squations:

The basic set of equations that reprosent and determine the flow
field and salinity structura of an estuary, in space and time, mnre the
momentum beulance eguation, the salt conservation ¢quation, thea

continulty oquation and mn equation of state, Application of Raynolds
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tule of averaging, and by notipnp the assumptions stated earlier in

Chapter 2, results in the following et of eguations

o au
i, i 1 4P d 'Y Ap

=5 U, —=z=-- = = = 2oe - S——(y 0, } + g {=F} {3-1)

dt ] a:j pua:l B:J i) e,

an

-E;— = {3-2)
i

J5 & '

R P RICIE P T (3-3)

i i
p=p, 0 1.6 + 28) (3-4}

Sipplification of the governing eguations cun be ohtaipned by
applying the boundsary-layer apptoximation, This approximation states

that the velocity shear %g is predominsot, whigh implies that only
s

verticai turbulent diffusion is significant, Thus, the propossd model

in its fioxl form cap be wribtten ws:

i i _ o188 _ g . Ap -
el Iﬁ r 5 31 611 3% [u u, ) o+ 8y ill 1 {3-5)
i o 1 ¥
EUi
3--- 3 ﬂ ta_ﬁ}
il
95 , 3__ -y -
3t + ﬁ:i {U 3 a1, {u,s } {3-71}
p=p, { 1.0 + p5) 13-3)

for the k-r model Reynolds stress can be modeled as follows:

-=-= BUl
—uiuj - L& E;: y, if 1 =1, j =3 and = 0, otherwise (3-9
whare
1
V ac k (3=9n)
t VI

snd for level two model Reynolds stress can be replaced by:
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aos Ls 0 2¥)  iri-n 7 and = 0 q
- = - - - - -
uiuj mt 3z, . i . i an . Otherwiae (3-10)
Beynolde flux ¢an be mapproximeted by the k- model aa follows:
~=% v
-~ u.5 = 23 , if t = 3 and = D, otherwise {1-11)
i a, az,

and by the leve]l two model as fFollows:

|
- us = L Sh{ =— 1 g Y , if i =3 apd = 0. otharwiss (3-12)

in which
Sm and Sh are the stahility functions defined in Chapter 2,

Since parametor varittions scross ostumries are usually small
compared to lengitudinal varistions, tho sbove equations can be further
simplified by latersl integtation. <Carco (19582) has integrated the
equstions governing the mean flow. Il also describad how theso
equations can bes expressed in Finite difference form. These procedures
will not be repeated hore. Instead, the proposed closure schemos will
be integrated laterally, verticelly and then cxpressod in Finite
differecnce form, 1t should ba neted that it ia the E wnd ¢ aguations
that need to be integratsd wheraas the level twe model is an algebrsic
pxpresiion which can be solved easily by a computer and need not be

integrated.

A-1 Turbulence closurs schema (k-a).
The simplified set of equations 3-5 through 3-8 are not closed for

rensona stated esrlier, The system of equationt can be solved if and

coly if Reynolds atrasses uiuj end turbulant fluxes u,s cen be

cnly if Reynolds atresses uiuj snd turbulant fluxes u,s cen be



37

determined. A two-equatlon turbulence closure model (k-£) is employed
as one part of this study. The two partial difforontial equations,

which together comprise the k-¢ model in full for high Reynolds aumber,
are preoviocusly stated ie Chapter 2 {equations Z-28 through 2-29). Tha

standard k-¢ woodol is based on the assumption that eddy viscosity is

¥ [
the same for all Reynolds stresses o u, {(isotrepic eddy viscosity).

i

The calculsticon of u u, in estusaries {s not influenced by this

i}

e

assunption because cnly tho shear stress u v is important in these
flows {Rodi, 1980m)., In addition, Rodi {19B0a,b) reported that the
COnAtALE C,E is approximately equal to zoro for vertically buoyunt shoar
flow. Thus, the proposed k-er model in its finel form reads

(%
EL‘+U."—"‘E-§-i.'E--aEl‘+1E’1|-'I:i—ae. {3-11)
it i ﬂ:i dx ak a:i

H
de d v‘t de ] .
i3z, 3, 3 “’1] * €, § (P*0) - €, + (3-13)

ol cu
(ol ]
e

=

1

|

]

1

1

I

1

All parameters in these equations have been defined in Chepter 2.
If boundary layer wpproximations are introduced to squations (3-12)

and [(1-13}), one canm write:

U

Jk ak dk a ok d t 4k
LIS AL HAE I NI HERE Rl

s P-G- ¢ {3-14)
de de dr a de a L% de
st " ¥ Y oan o oax Y:ros tanlaax?

]
B ]

+ €, 7 (P46 - €, (3-15)

in which

I: = longitudinal dispersion dues to transverse velocity shear
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The production term, P in egquations (3-13) amd (3-13}, wili be
eviloated in more deteil ic Chaptor 4, Therefore, P will be ezcludad

from iptegratton in the following sections.

B-1 Lateral integeation

Further reduction is accomplished if tha k and £ egquations are
intograted along the y axis, This sieplification is obtained by
assuming that all wvarisbles are independent of ¥y and by employing

Liebnitzr' rule, The laternlly intagreted k and £ oquations are:

-g—tﬂk + g—lnm; + %-; A¥x = :—l trlng:l +%—z {‘I-:i B%E}

+ SRC + ﬂ:.t;p-: B 2% - s (3-16)
S be v nue + P = ([ L L t;:‘agim - ¢, i": B

+ SRC + €, ‘-': ¢ ﬂg,gﬁ n g% ) (3-17)

t

B-1-2 Vertiecnl integeation

At mentioned earlisr, grid spacing io the vertical direction will
result in » number of horizoatal slicea ko which the k and = squations
gcre also applicable. Verticsl integration is accomplished by mssoming
atl variashles aro constant over the depth cf esch layer. Employing the
moan valus theorem for integrals te buoysncy terms ino %oth the k and ¢

equations along with Liebnitzr' rule yields:

d Y Lﬁ 2k

3 2 2k “t Ak, _ Hhoax
S7Bkb + S=BUkh +(BWk) ~(D¥K), = E;{f;hﬂh} + SRC + ("x B 370y ‘ukﬂa:’b
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Ve
- eBh + pg, (== BI(S

-5 {3-1
N b

T

& a i) 0E E
Z70¢h + T-NUeh +(B¥e) ~(BN:), 'a_;‘r;:h“ 32) * SRC s+ €, £-Bh
* (Ei n EE] - (EE n EE}
o 2z T u: dz b
+Ee, tyf Bh) {8_~8_) {3-20)
r “1:PEs v, T b
in which

h = layer thickness
T.b= subscripts denoting parameter ecveluated at top and bottom of a

layer roaspectively

C. Finite Difforence Formnlation

An analytical splation for the complete zet of equations does not
exist. In order to solve this systeam of equations, a aunarical appromch
is taken. To the [inite difforooce formulation, all continucus
variables are replaced by discrete variables on » uniform staggerad
grid, The grid ussd for this study is shown in figure }.1. Application
of the boundary conditions was made exaier by using a staggered grid as
wjill be shown later.

The channel wes subdivided into subvolumes in which the
longitndiael index, i, increassd from the howd, i=1, to the mouth of the
channe], i=l, The vertical index, k, incremsed from the surfarce, k=1,
to the bottom layer, k=n, Distance botween longitudinal nodes is
deooted by Ax, and vertical distanco between layers is zet equal to Az.
To indicate the time step, a superscript ' is used for foture time step

[o+1). No superscript represeats presant time step (n). It should be
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also noted that the sstumry width, B, is a functioe of only & and 1z,
The surface leaval elevation, n., is a function of £ and t, and the layer
thickaess, h, is only a functicn of t for the surface layer and a
function of x for the remalning layers,

The representation of variables used in numerical Integration can
vary widely. The alected scheme, however, should provide a stable and
convergent solutien to the original pertiel differential squationa. A
somi-inplicit scheme wus developed by Cerco {1%B1) and has boen proven
to meet such requirements, The fipite difference technique sdopted for
this study is the sume as the one employed by Cerco (1982}, Full
details of the numericel solutlon for squations governing the mean flow
are described in details elsowherc{Cerco, 1982). Therefore, attention
will only be giveon to the equations that comprise the turbulent closurs

schema,

-1 Formulation of the onergy equation

Tn the finite differonce formulation, the grid points thIEI1 nnd[1
are ovaluated are those points at which vertical and horizontal
velocitioas are calculated, respectively,

The integrated discretized form of the k-e¢guation (3-19) for the

surface layer ls:

Bl.k k ) (Ax + nil - Bi,k ki,k(&: + qi) Tsi,k - Tsi—l,k
[-—————————--l------— —————————————————————————— 1 -+ [ —————— -r--—-—--.---} — ww
At Az
T TG
_ L i,k -1,k
= - DIFB (k, -k, ) At )
+ SRC + s B tﬁ:+ui} {3-217

in which
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TS, om Ui o By CAr e Ok vk ) /2]
-
Toox = D Buape (AT 7m0 Uk -k
By, =B, v8 )2,
WD = W, OB B ) 2 [k ek ) 2]
I E}‘_:k {_figz__;_?zls:z_} (_fz_-l_c__lf_'_‘_i;szs_,

A similar equation for the remeining subsurface layers can be
written if v, in equation {3-21), is set equal to zero and by adding the
approprisate toerms to account Eor vertical transport anmd diffosion
through the surface of euch layer., Thus, the geperalized form of the

energy equation, applicable to subsurfece layors i

_ki.k—l ADAZ * DIFT + ti.k { 1 + ADAZ (DIFT + DIFD) |}
T
_k' ADA2Z * DIFD = k. .- ADA2 [32115____-31114--
ilk+1 l,t AX
- ADAZ [WiT - %)
+ ADA2 [ SRC + Bi kﬁ: el {3-22
in whizh
WkT - wi‘k_l[t Bi.k + Bl.k—l I A I N kl.k + ki.k—l | I A 3 |
Ve 8 . B k. ek,
- - i, i,k-
niIFe - -__i:E.J; (..__il_k.___._.-_iik_l_] {__1 k I k-1 }
uk 1

Equstion (3-2t) is iop a tridiagooa! form which can be solved by
matriz methods if vertical boundary conditions are provided., As
mentioned sarlier, there is no energy flux through solid boundsries or

at the free surface, The boundary condition employed herein is ns

fellows
Y, gl: -0 z =7 {3-23)
y X z == T {3-231)

t dr
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2 Formwlation of the ensrgy dissipation equation

The ¢ equation {3-10) remains to bo czpressed Iin & discrete form
for sorface and subsurface layvers. The ¢ equation is troated in a
similar manner te the k equation, The discrete form of the energy

disslipation equation, applicable to the surface l{myer, is presented

below
n. " {Az +n.) - B -
Bt VTS V0 ST U V0 S VY i) ST 10 S = T S
At Ax £
T8, . - T8
- ' __i,k -1,k
= - DIFR Coey = 65 pay! Ax
|
+ SRC + €, - B,  (Az+nm)) (3-25)
in which
TTi,k e ui+l,k ni.k [ Az + ny ) [{:i.k + Tk Y F 2,1
Ut B + B g' + x'
DIFE = --d2k (. 1.E ____i,k*1 _, (——dsk_____A,k¥1

For subsurface layers the Finnl equation is

r 4

— ‘ 1]
Tl ADAD DIFT + zl,lr. [ 1 + ADA2Z (DIFT + DIFR) ] =
T = T
se, - apme [ =1AeXTITLR g upaz ( wer - Wed )
i,k Ax
)
e
+ ADA2 [ SRC + C, B, Azi ) (3-16)
i.k
where
WeT = '1.k-1 { ﬂi,k + Bi.k-l - I B I | Bi,k + £y g1 | A 3
[] L]
t 3] + B £ + _
DIFT ai'k 1, ik ___i,k71 , (--iLE_____E:E-li;

Equation (3-26) is in & tridisgona! form whioh can be sclved by
matriz methods providing the appropriate vertical beundary conditions at
tho froo surface and at the clver bed wre imposed, The bouvadary

conditions employed are
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Ii = =0 st 2 =7 (1-27a1

V== =0 wtz=-1 {1-271)

C-3 Bonpdary conditiom for k and s sguations

In an ideal case, profiles of k and & moasured along the boundariss
of the calculation domaln sre desired, This informaxtion, however, is
not slways available, Therefore, one wmust c¢onstruct an appropriate, yet
consistent, boundary condition for k and ¢ egumtlone,

At the open end of an estuary, u common practice is to extrapolate
For horizpatal welocities to a2 fictitious transoct cutside the ostuary,

The same teéchnigue is applied for & snd e at the opan end

H 3
E-% = E—% = 0 at x = L,
daz ax

At the upstream e¢nd s different approach it taken. The Initiel and
boundary conditions at the most upstream transsct are depandent upon the

inflow copditions, FEddy viscosity ls calculated from

U » 0.0765 U, b (3-29)
e =S 3V (3-30)
U ag % {(3-31)
4 poE
in which

Se = ayrface slope
U, = friction velocity

Th a cese where the frash water input ot the vpstream ond is iero,
s different mothod is mdopted., Uniform veluos of & and ¢ are solected

in a manner such that the resuleant eddy viscosity ix very large when

compared with moleculer viscosity {~100 Lﬂ].



Figure 1.1

! Finirte difference grid and axis orientation

4
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YERIFICATIONS AND APPLICATIONS

OF THE k-x NMODEL

In order to mnssure that the governing equaticons along with ths
closure podel have been formolated corrsctly, several compotatiopsl
tests wore conducted. The purpose of these tosts is ta assure that
gpproximetion used ip integrating difforent termy in the governing
equationy are velld., Section A i3 devoted to derivation and zelection
of approzimations for the production terms that appenr in the X and =
equztions. The upplicability of the modesl to s nonbucyant open channel
flow is prosented and discussed in sectlon B, The [ipal subsection, C,
is devoted to the application nf the standerd k-¢ model io n
coptinuously stratified open chagnel flow in which stratification can
have s pronounced effect on eircuoletion,

It should be poted that, unless statod otherwise, all test runs are

made with o uniform rectangular cross-section c¢channol.

A, Troatmant of energy prodaction terma

Io this mection special attention will be given to the energy
production tarms which appears in eguatico 3-14 and 3-15. Since there
exist no analytical solution teo integrate those terma, two different

approaches have been sugpested a3 sp spproximation for these terms,
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Derivation and boundary canditions employed for the two methods will be
presented first. The results obtained for esch case, by the two
different mothods, will be noted. These results are thean coopared with
analyticel solutions, if possible, and with each other. A preference is
then mada towards a singls approach bhavred on the results obtained, A
naning conventicn 13 chosen to refer to ench approach. The first
approach will be referred to as method A while the second is referred to
4% method B,
A~1 Method A

The energy production term, P, can be attributed to two different
mocheniams, First, prodoction of energy dus to veloclity sheur along the
interface between floid layers, P,, Second, produoction of snergy due to
the flow intoraction with the solid boundary at the river bed, P,.
Thersfore, the predoction term P, in equation {3-14), can be writteon as
P =P, + P, (4-11
Rastogi and Rodi (1978) and Rodl (19B0a) reported that P, > P, due to
the presence of a 20lid boundary at the hottom, An ordeor of magnitude
analysis shows thet the first term in squaticn (4-1) can be neglocted
for all Fluid layers since volpcity shear between {luid luyers is small,
An ezpression for P, ., spplicable to tho bottom layer, is derived in the
following section.

In o tvo-dimensional uniform open ¢hannel flow, tho bkottom shear

stress can ba defined es Follows (Henderaon, 1966, Fischer et, nl.,

1976)

E - * - ? - U g-g '[4""1
. u, ¢, U tt 33 | H
in which

T = hottom shesr stross
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u, = friction velocity
L = |3 positive vertically upward
Cy = an empirical constant

From equaticn (2-29b), coergy production for & unifetm cpen chamnel flow

is defined as

40 *

- U - -
L AN {4-3}
subatituting equation (4-2) into {4-3) results in:
Al r
P, = c, 1 37z = % ) 7 {4-41

From squation {4=2) [riction velocity can be related to the locml
velogity aa follows

U = ———- , U, (4-35)

The constent appearing in agoations (4-4) and (4-5) will be
determined lster in this section, Substituting for ¥, as defined ia (4-

5), into equaticn {4-5]), the energy productios term P, becomes

|
. [4-6}
P, = P = Ck W
ia which
It = totel depth
1
% 7 %
Sioce ¢ is the cate at which k is being dissipated, it cen he
written aa
P!
£ = —T_
whero
T = is the time scale of encrgy dissipsation approximeated by
T = % {4-T7)

Thecefore, the production term, P, in the ¢ eguation bacomes
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L
1z k &
in which
CE = an empirical constant, also to be dotermined in the following
section,

Assuming that a state of local equilibrium exists noar the wall

region, for homogepcons flow equatians (3-14) and {3-15} reduce to

U.
¢, " -t =0 (4-9)
L)
u, .t
C,--3= - C, §~ = O. {4-10)

c
it

Furthermore, e, the rats of enorgy dissipation, and U, the
frictiovn velogcity, nro related to esnergy slope, 50' via
E = Sug 1} {a=-111
|
U= €S ) (4-12)
Substituting equation (4-11) and (4—-12} jiote {4=9) and (4-10) it can be

shown that

i
= * {4
Ek 1/ {Cfl 4+13)
and
f
c, ¢
c, = 3.6 ——E-gs (4-14)
[Cf}
1
n —
Cf - -‘E"TT" (d4-14a}
I
where
n = Minning'a coefflciont

whick are the values nesded to svaluate epergy prodedtion terms in

equations (4-6) and {4-8),
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A-2 Mathod B

In this spprrach production terms are integrated numerically in all
but the lastt laysr near the channel bed. As for the ocottom [myer, very
near the wull, a constant boundary condition is employed for both the
energy e¢quation mand its dissipation rate, 1In the absence of buoyancy
forces and where conditions for local egquilibrium prevail, shesr
production is in balance with viscous dissipation. This, together with
the vaiversal law of the wall will result in the faollowing boundary

conditlons (Modi, 1985)

3 1
k=0, f c; (4-15)
)
e = U ! k'y {4-16)
in which
C = gonostant
n
£’ = Yon Karman conostant { taken xs 0,40 )
¥ = distance from sclid bomndary

At this point it is importsnt ta emphasize that both spproaches are
only an approximation to am cxsct term. In order to assuro that these
spproximations and model sssumptions introdoced to varlous terms ip the
originsl cqustions are valid,  one should compare resuits obtained by the
numsrical scheme selectad with s known anaiytical seclution. In mll the
following tests a channel of constant rectangular cross-secticnel, with
a large width to depth ratio, is used unless stated otherwise, 1In all
test runs, time and distance stops, AY and Az, are fized st 207 second:s
snd 4000 meters respectively. Layer thickness, 4z, is chosen to be 2
meters. FHesults obteined by methods A and B are prosented in the

following section,
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B. Modsl weriflestiona in steady nonbooyant channel flow

Eolght snd Ridgeway {1576} have discussed the analyticml selutions
in 8 frictionless homogénecus open chanmnel flow when tidal forces arve
included., They showed thet thore oxists u phase lag betweco surface and
bottom velocities when feictional forces are present. They alic showed
that by decrensing frictional forces the snalytical soluticn lesads to a
sympetric tidel wave {e.g3, phagse lag is zero), Resnlts obtained by
method A are pressonted in flgure 4.1 while figure 4.2 presents results
obtained by methad B, It shouid be noted that a smell Manning's
coeflicient {0,0001) iy enployed to simulete the fricticonless cuse runs,
From thaose plots it is quite avident that there is oo phase lag beatween
top and bottom velocitias which if in agroement with the analytical
solution. In addition, one may conclude that the two approaches
erployed herein are reascoable and valid approximations,

[f significant frictional forces are introduced to such a chennel,
the analytienl solution leads to a non—zero phase diffarence between
surfsce and bottom velocities. Model results, obtmined by methods A and
B, for open channel flow with friction end tide incloded are shown in
figurs 4,3 and 4.4, TIn these figures the z axis pressnts time for one
tida! cycle wnd the y axis presosnts depth of chanoel. Vertical lioes in
figure 4.3 and 4,4 ure linos of equal velocities (isotschs). From these
figures it is clear that bottom velocity rewches slack beofore flood or
ebb before sorfaees vologity (isotech = 0.0} when employing method A,
Figure 4.4, methocd B, does nat show a similar fewturs., Knight and
Ridgeway (1976} hava shown that the anslytical solution leads to a non~
zero phase lag between surface snd bottom velocities and verified their

conclusion in varlous lebhoratory eoxperiments.
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Assuming a constant oddy viscasity with tidal forcas included, it
is poasible to obtain an snalytical solution for veloecity as a fumcticn
of depth. Since the analyticul sclution iz based oo a constant eddy
viscosity while model results are chbtained by calculating eddy
viscosity, they canoot be compared, On the aother hand, the velocity
overshoot at some distance from the boundary, obtalaed by the analytical
solution, has been verified expecimentally (Nielsen, 1985}, If the
model also shows such a2 feature then evidence suggests that the model i
performing correctly. It should also be emphasizred that it is the
velocity overshoot that has to be reproduced by the model and not the
oxact velocity profile since the mnalyticel solution, ss stated eaarlier,
is bassd on an invariant addy viscosity,

Figure 4.5 shows medel repreoduction of the velocity overshoot
ohtaeined by method A, Mpdel results obtsioed by employing method B are
pressnted in flgure 4.6, As can be seen from figure 4.6 the model fails
to reprodgce the velooity overshoot by employing mathod B, Tt becomes
quite evident that the model, esmploying method A, has qualitatively
shown its capabiliey to reproduce the physical precessos obtained by
analytical scluticons and can be supported by oxperimental avidencs.
Agnin, cone may further conclude that model sssumptions used to obtain
tha previous results are gquits reasonable. On the other hand, results
obtained by utiliring method D were not as successfal.

Many authors have concluded that ia all practical spplications eddy
viscosity cannot be invariant with time nor with depth (Blumberg, 1573
Elliott, 1576}, PFigures 4.7 and 4.8 are the instantanecus eddy
viscosity profiles at one location st different times throughout a tidal

cycle obtained by method A, It is ocvident from these plots that the
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ceddy viscosity ia indeed o Ffunction of time and distance from the bottox
boundary, ©One should slso note that in open channel Fflow, eddy
viscosity should attain bhigher values near o solid beundary [figure
4,%), This can be explained by the (act that eddy viscoaity is
dependent on the amount of turbulent kinetic enérgy available, In this
case, the primery sourced of curbulent snergy is near the bottom where
friction forces dominomte¢. On the other hand, employing methed N, figure
4,10, does not show a similar festure that would be expected to exist.

Figures 4.11 and 4,12 present turbulent kinetic energy per unit
mass obtained by methods A and B, respeotively, Thess figures show thut
near the bottow the concentration of snergy produced by frictional
forces is highest and decrease with diastance from the bottom, The same
conclusion ¢an be drawn for e, tho concentration of emergy dissipation,
profiles. Theae profiles provide additionsl support that the model isx
performing according to theoretical eapectations, The same shaps of
these profiles was ohiwined by, Alfrink and Rijo (1983}.

In order to assurs that model calculations are corvect, a
comparison should be made sgainst sn spalytical solution or experimental
measuremonts. Acgording to Fischer et nl, (1979} the vercticsl mizing
coefficisnt can be czleulated by means of velogity profiles. He showed
that by averaging over the total depth, one can calculete oddy
viscosity, for a steady open channel {low, as follows:

Y, =0.067 101, {4-173
le also ¢concladed that similer results can be found in a wide range of
flows, for ezample Ceanady (1964), Table 4-T contains results obtained

by employing the sbove formula together with the results obtained by
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method A and . One sbhould note that method A underpredicts eddy
visposity while method I overpredicts values obtained by cguation (4-3),

For sn cpen channel flow the rate of enecgy dissipation, e, is
related to the energy ilope, 5'. a3 stated earlier bty equation {4-11),
Tuble 4~IT contains rasults calculested by empleying egquation (4-11) as
well as model resulis obteined by enploying methods A and B, Rastogi
and Rodi {(1978) assumed local eguilibriumm to prevail mand showed that
energy producad in this case c¢can be calculated visn equation (4-15),

Following Rastegl and Rodi (1978}, Table 4-I1 contsins valoes of k
obtained by equation (4-15). Alsc included in this table are the
results calculated by the model when apploying methods A and B, One
shauld aote that model predictions cmployiag method A underpredicts k
valoes chtained via equation (4-13). These values are overpredictad if
method B is employed.

Tf tidal forces aro introduced tc sn apen channel Flow, one should
cxpect that eddy wviscosity would attain highor values, Thais increase in
eddy viscosity Lls the result of higher shear veplocities and henoce,
higher production of turbulent kinetic energy. Hodel results obtained
by eithor method also show a similar incremsse when tidel forces are
included,

Thus far, results obtwinsd frem employing the two methods can be
summarized:

Nethod A
1- Qualitatively, this metkod is capable of reproducipng the

physical processes existing in homeogeneous channel flow.
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2- Quantitatively, this method vnderpredicts e, eddy viscosity and
turbulent kinetic aneray values obtained by equations {(4-31},
{4-1T) and (4-15}),

3J- This method reproduces the tsame eddy viscosity profile as that
cbserved in laboratory erperiments and prectical applications,

Mothod B

1- Thias method quelitatively shows fair agreement with wll tescs
dope thuy far but not as well as method A,

2— This method overpredicts values obtained with equation (4-17}
and (4-13) but sgrees with energy dissipatico vaelues calculeted
by egustion (4-111.

3- Finally, thisz method does not reproduce the proper profile of

eddy viscosity lp the vertical direction.

Scme discrepancies heve arisen whon mode] results were compared
with anslytical solutions, When smploying method A, ono could sdjust
the constant Eu in equation (2-301 to .20 insctead of 0,09, This would
lead to a very good sgreement with values obtained from equation (4-17)
and {(4-15} ns can be seen from table 4-17I. Calculations for energy
dissipation ohtained frow method B are in & good agrecment with
analytical reswlts, but overpredictions exist in the calculation of cddy
viscosity and turbulent kinetic onorgy. Additionally, method B failed
to roproduce the velecity overshoot near the bottom boundary s
predicted by the anmlytical solution. After weighting the shortcomings
of both methods, method A was sdopted after adjusting the value of C“ te

0.10,
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C. Model verifications in s continoonxly stratified flow

Io thiz section an attempt is made to test the standerd k-r model
in 2 non—homogenoous flaw. This requires the introduction of buoysncy
forces in the momentum and the encrgy bmlazce. Buoyancy cffccts are
included in the 'G' term as defined In sguition (2-29al,

The final integrated form of the G term, according to the Mean
Value Theorem, is

P S oo Az ) (4-18)

= 15 -
G N g t[ Etﬂp Sbut ¢

The above term, G, will become w sink under stable stratificd
conditions, wnd thus reduce the amount of energy availabhle for mizing.
Since buoyansy production must be reduced, them diffusivity of salt,
must also be reduced. In unstable stratiflcation. the smme term will
agt as a apurcea, allowing energy to grow and forcing the water column to
become homogensous.

Gibsapn and Laundes {1978) have conclujed that the buoyancy term
appearing in the ¢ aguation has little or 3o 2affect on the rate of
enerpgy dissipation. Tt should be noted thit the G term in the ¢
equation is multiplied by a factor, efk, Ao order of magnitude analysis
shows that, under very highly stratified condlitions, this factor ia
indeed very small, In turn, this ratio, e'k, will force the buocyancy
term to becoms much smaller thap all other terms in the £ ¢quation.

It model calculations employing cither methaod A or B, the primary
source of turbulont kinetic energy or 1ts dissipstion is located noar
the bottom. Turbulent kinetic energy is transported to upper layers by
diffusion processas, Tf the numerical scheme does not wllow the
diffusivity of salt to be reduced. due to the stable stratification,

then the bucyancy term will dominate, Conversely, the buoyancy term
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sppears as & sink in all layers., It is apparent that the rate of energy
diffusion from the bottom is oot the same order of magnitude as the
buocyancy term as will be seen in the fellowing section. In this case,
the diffused cpergy, k. will become much smaller than the bunyaney term,
This will result in o oegative turbulent kinetic energy concentration
which is impossible, physically incorrect and henrse, 1 quantitative
calculation can oot be made. [n crder to show that the buovancy term is
prodominant it is necessary at this point to estimate the order of
magnitude of pach torw onppearing in the k eguation {3-14), Ino arrivinog
at such ap estipmate the following modal parmmeters were used as well as

cquation (4-15}),

Ar = 200 cm
3 2
k = 0.022 cm / sec
AS = sbot - stup = 1 ppt
All = Utup - Uhnt = 1 ¢/ 3ec
- 3 3
E =2 £ 10 em f sec
1
Li = 10 ¢cm / soc¢

1f horizontal transport of k i3 neglocted, then equation (3-14) can be

written as follows

ax 2 M o« aw . au T
X Bl I_ sk ik £ - 2k _ 4=
at dr ¢ -:k dz P o+ I":.{ dz ' 4z *Pos c:rt dz ¢ (4-19)

substituting the above model paramsters rezults in the following
estimates
Jk —# -3 -2 —
Tl &x10 + 1lzl0 - 1zl - %zl
Tt iz quite evident from the sbove estimates that the buoyancy term

is an ordar of magnitude 1argsr than the producticn snd diffusion terms

cowbined. This, a% stated exrlier, resubts in negative energy and hence
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no model run can be made. Another alternetive is to change the wvaluoe of

a, in erder to incremse the rate of epergy diffusion. This would result

k
in an incorrect epergy profile, and did not solve the problen.

In 2quation 4-19 when k goes te zero, then wll terms and the sddy
viscogity alsc ge to zero, Theoretically equation 4-19 as written can
not generate a kX lesx than zero. On the other hand, the numerical
scheme employed with a finite value of kX can obtaln & negative & value
and the buoyancy term dominates. In order to solve this problem, the
oumerical scheme should calculate eddy viscosity at the new time step
rather than the preavicus time step, The numerical scheme emploved
herein does not allow for this, and hence & negative ¥ value {3 reached.
Additioneslly, although the pumerical]l scheme 3olves the k equaticn
implicitly in the vertical direction, the soorce and the sink terms,
¢.3. production by shear stress and destructico by buoyancy, are sclved
sxplicitly, This time constraint is stringent and slsc hard to assess,
The tioe step used with the numerical scheme was less than 100 scconds,

The k~e medel was originally intended to be used to simulate
gravitational circulation in the James River Estuary. The prinary
reason for selecting this study site is the availability of data for
this river, From this dats base, one can estimate the order of
magnitude for each term mppearing in equation (314},

The average depth of the Fames River Estusry is about 10 meters.
Typical top to hottom smliinity difference ia about 4 ppt, From tide-
tables the average tidal velocity was found to be 50 cmf/sec. Pritchard
{1960) has found that eddy viscesity in the James River Estuary ranges
from 1 to 10 cmtfsuc. A 1D cnlfsec value is used, Pritchard (1960Q)

also showed that, the vertical velocity gradieat can be represented as
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g.7T W, Substitutiag the preceediog values into egquation {3-14) will
result in the foilawing estimates,

3k 4 -3 -1 -
-— = 2x1i} +1.2x10 - 3210 - Bx1b

gt

One should note that if an intericr layer is considered then the
production term is one or two orders of magnitude smwfler thsn the ahove
estimate. In order to pectify this problom sevornl approsches have been
token as described.

For a stratifiod flow, momenturm awnd mass [luxes are much smaller
than their counterparts in homogenetous flow, This is & well known fuct
and has been observed in fany estuariss {Fisher et al,., 197%). Since oo
model run cac b¢ made as proposed, one should search for a different
solution. The approach employed by Cerco (1982) mnd Kuo et al, (1978}
to reduce tvrbulent fluzes from homogenscus to non—homogensows flow in
the mizxing length hypothezis it adopted here. In this approsach, a
Functional form of the Richardson numbar can be employed. This
functional form haas been duri;ud in such a way that when no
stratification exlsts the original form 1x obtaiped. For exzsmple, one
can sdopt the following

U =t U H-*Z(}.'r
t ‘.1:‘ i1+ Riil

in whick

Li = pddy viscosity io homogensous flow
oz

Ri 2 - ﬁ %E_ / (-%%Fj‘ (4=20n)
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In this case, cne should neglect the buoysacy in the k esquation fer
rcascns stated earlier, In sddition, eddy diffusivity can bhe reduced by
a similar function
I P I N (4-21)

In order to make the standard k-¢ model work the sclution lies
within two key points., First, from a review of literature, iL is
evident that the Schmidt/Prandt! nusber , or Reynolds analogy, still
raises & big controvarsy aver its correct vealue. Thisx numbar normally
falls between 0.5 to 3, u considerable ranpe, To overcome this problem,
one could cither solve an extra equation to account for turbulent fluxes
or enploy a constant value which best fits the data, Anpncther approsch
is to adopt & functional form that reduces turbulent fluzes and hence
sccounts for stratification effects, Secondly, the proposed constant
appearing in equation {2-30} covyld be changed to & functieon similar to

equation {4-21). Ia brieE, the two functicens could be thought of as

follows

€ =C J{1+aR )° (4-22)
" by i

a = g x (1 +e¢R Jd (4=21)
t 6, \

in which

CF = yvalue for neotrally buooyant [lows.
s

ut = yvalone [or neuirally buoyant flows,
(Y

Io equations (4-232) and (4-21). a, b, c snd d are constants which
cen oniy be determined by trial ond error, the combinations for =
solution could be limitless, Pesults using the mbove set of equations
were unsatisfactory because eddy viscesiiy were very high and rosulted

in a homogepous water column
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Somnary

The k-¢ model ¢an be applied te s nonbuoyant channel flow iF an
edjustment Ils mad+ to the constant CH in equation (2-30), 7Tt is then
that mode! resalts can be legitimately compared with those ohtained
expecrimentally or by analytical soluttons,

At this stage, a brief description of some of the trials that have
been made in an attempt to remlisticmlly apply the k-¢ oodel for
stratified flow condition is in arder:

1- Meglsct G in the k¥ equation and apply eguation (4-20) and (4-

i1).

2- Include G end eoploy eguations (4-12) and {4-77).

3- Popest steps 1 snd 2 wikh an “f dapendency iostend of Ri'

4- Eoploy a constant with a scmewhat larger I, value than was

suggestad by Reyoolds,

5— Add a production term to each layer, varyipg width, and

including 6.

All of the above attempis to account for stratification effects by
the standard %k~e¢ model are the result of this extensive and lengthy
stody. Hope of the mbove ettempts resulted in » successful sioulatien
of n stably stratified [ ow,

It should atso be stated that the muin reascen for the feilure of
the standard k—e¢ nodel is dues toc the bucyancy term. If horizonotal

transport of energy is neglected then the k cquetion can be written as

[allaws
ox oo Moa, g av gL (4-24)
2t gz g, adr t dz §
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Fer stable stratification R{ sapproaches the critical value and
hence, reduces the bucyency term, In the stundwrd mode! the preducticn
tarms bocone small as Rf approaches 1, The stondard model incorporates
no critical Hf but does allow k to decresse as Rf increases which may
lead to numerical ipstahility in the calculation, ‘hat it more
desirable is for addy viacoaity to approwch tero as nf goes to ch;
which leads to & realistic iacorporation of the effects of
stratification and would also stabllize the numearical scheme since the
buoyancy production would never be greater in absolute magnitude than
the shoar production for B _{l. Howsver, Lhetre i3 a general agreement

f
that the critical B_ is stignificantly Eess than 1 with veloes io the

f
rangs 1/6 to 1/4 being reported, The k—e model doos not sccount far the
reducticn in mixiog at these Llower values of Rf's. Therafore, the
buoyaney term remain unaffected snd hence, dominates the k equation.
After employing every logicasl spproach, it is the auther's opinicn
that the standard k-r model, as proposed by Rodi {19804), can not be
appliod to & stratified flow conditian in which buoyancy has 2

pronounced effact. The same coaclusion has slszo been reached by Rodl

{1587},



Tabla 4-1

Table 4-II

Table 4-1IT :

: Eddy viscosity ostimates by method A and B,

: Estimates of energy and ita dissipation by

msthed A and B.
Estimates of oddy viscosity, enargy and its

digssipation by method A,
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Tabled_| C1,= 0%

- 3
Ve =
Eq. 4-17 | 11.4
Hethaod A 4.8
Hechod B 4.6
——
Teble4-Il ¢, = .09
- [-.j — C-J
k aecd € sec
Eq.4.19814 | -024 | .000018
Hethod A .012 . Q0000 4
u B | .075 | .00002
Tublal—"bﬂu =.20
W w? o’
T F;;; :rc;' N .
Eq. 4—47 | 11.4 | .021 .000018
Method A 14.5 024 000081




Figure 4,1 : Velocity contours in an open channel: Ffriction

forces are not included method A
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Fipure 4,2 : Velocity contours in an open channel; friction

forces are not included methed B
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Fipure 4.]

Velocity contours in an open channel;

farces are included method A

friction
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Fipure 4.4

Velgeity contours in an open channel;

farces are included method B

fricrien
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Figure 4,5

Velocity overshoot near a rough bottom method A
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Figure 4,6 : Velocity overshoot near a rough bettom method B
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Figure 4.7

Instantaneous eddy viscosity profilaez at
different times within ane tidal cyele at a

specific location method A
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Figure 4,8 :

Inctantaneous eddy viecosiry prefiles at
different times within one tidal cycle at a

specific location method A
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Figure 4.9

Tidal-averaged eddy viscosity profiles st

different locations along the channel method A
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Figure 4,10 ¢ Tidal-averaged eddy viascosity profilez at

different locaticns along the channel mathod B
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Figure 4.11 : Tidal-averaged energy concentration profiles at

diEferent locations along the channel method A
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Fipure &4.12 : Tidal-averaged energy concentration profiles at

different locationa along the channel pethod B
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YERIFICATIONS AND APPLICATIONS

OF THE LEVEL T¥0 MODEL

Since chapter 4 is devoted to the k-z model, this chapter i3
exclusively oriented towards the verification of the level twp model,
In order to make a proper comparison between the two closure schemes
selected for this study, the level two mode]l was subjocted to all tests
that have been previously applied to the standerd k-¢ model, For
example, in section A, model results employing level two a3 n closure
scheme are tested against the snslytical aclution spd experimsntal
results obtained by Knight and idgewsy (1%78). The applicability of
the lLevel two model! to a nonbuoyant open channel flow, is discussed end
compared with ezperimental results in section B. The fioal aection, C,
1z devoted to comparing level twe model reaults with laboratory
cxperiments.

A. Model verifications in & noobuoyant chsnnel flow

Enight snd Ridgeway (1976} have shown that there ecxists no phase
lig between surface and bottom velccities in n two-dimensiounal
frictionless homogenecus cpen channel flow., The mathematical modsl
enploying the level two model as a closure scheme has been employed to
simulate such conditions. Paramecers uaed in this rus are ldeatical to
parameters eoployed in the k-e model in the proviouvs chapter. Tt should

15
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be ecmphazized that a small Manning’'s coefficient, as stuted im chapter
4, is enployed tc sipulate the frictlopless case rums, HModel results
for this rus are shown in figure 5.1, In this figure the z axis
presents time for one tidel cycls and the y axiy presents channel depth,
Frecm ligure 5.1, it ia apparent that the model snd the satnlytical
solution are ip excellent sgrvomont, 1In cam be seen that there oxiscs
no phase lag bhetween surlace and bottom velocities,

Tf tuek s chunnel is subjected ¢o friction forces, theo tha
analytical solution will fead to a non—rero phase difference betwesn
surface apd bottom vyoloclitlies, JModel results for an open channel flow
with friction and tide are shown in figure 5.2, In this Flgure, it muy
be neted that hottom velocity reaches slack before flood or ebb emrlisc
than surface velocity, Ippen and I[larleman {1966) have shown that a
phase lag exists between surface and bottom velocities and have been
vorified in verious laboratery ezperiments {1.e. Knight and Ridgeway.
1976) .

As praviously stated in Chapter 4, ao anslytical sclution can be
obtained for this channel assumipng an iavariant verticel eddy viscosity.
Since eddy viscosity hus baen_shOIn tc be depth and time dependent, ne
comparison should be made. Following Fischer et. al. {1979) eddy
viscosity can be estimmted by equation (4-17), Table 5-1 contains
results obteined by this squation alopg with model predictions by boeth
the lavel two and the mizing length models., Severnl meodel runs were
made employing the mixing length bypothasis ns a closure scheme to
determine the constant velus required for equatioas (5-2) and (3-4),
These values are as follows

a = (.5, and
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o = 1.6

It should be noted here that the level two model does not require
such procedurs, Hesulte obtaloned by the level two mode! are slightly
higher than those cbtained by sguation (4-1T7), These higher values are
not significant when one considers thet no further tuning is required,
On the other hand, the mizing length model is comparable to equation (4-
17}. These results, as stuted earlier, wore obtained by tuning the
tiodel For such sn spplication,

If tidal Fforces are introduced to an open channel Flow, one should
expect that eddy viscosity would attein higher valoss, This insrease in
eddy viscosity is the result of higher shear velocities and hence,
higher production of turbulent kinstic energy., Results obtained by

¢ither method also show o similar incresse when tidal forces are

includoed,

B, Modol verificationa in a cootinuelly stratified flow

larleman snd Ippan (15671 studied one= and two—dimensional salinity
intrusions in m physical model., Their stady was cooducted in a
herizootal, rectangunlar flume 100 meters long and 0.219 meters wide,
Average water depth in the flume was 15,1 cm. At the closed ond of the
fiume Freshwanter was introduced at a controllsd rate and et the cpposite
end the flume was connected to a tidal basin of coostant salinity where
a simple harmonic tide was muinteinad, Such an investigatios would
provide the necessary information to further verify the model smployed
in this study, Measurements of salipity aed velocity along the flume
and perpendicular to the main flow direction were made at several

stations, In the following secticn sn mttempt is made to simulate
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axporiment 16 Jescribed in Ippen and lierleman (1966) using level iwo
model, Table 5-J coptains parameters smployed for this model run,

In order to simulmte the Flute runs, tho channel! was divided into
30 longitudinal transezts 1.3] meters apart. Cheunnel depth way divided
into § squally spaced layers 3.0 cm thick., A 10 second time step was

eaployed for this simulation,

Table 5-I, Flupe Parameters Ezperiment # 16

Channel leagth = 100 meters Tidal Amplitude = 1.5 cm
Channel Depth = 15.1 cm Tidal Period = 600 secs
Freshwater Input= 200 :mjfae: Dasin Salizity “ 25,2 ppt

B-1 Model calibration

In order to make the proper timulation, the numerical model should
firzt be calibrated, Cajibraticn can be achieved by running the
numerical madel with differont Manning's coefficients uptil mpreesment is
ocbtained with observed tidal amplitudes alcng the c¢channsl, Experiment
29 (Ippen and Marleman, 1961} provided ths necessary infermation to
calibrate the model, Dest agreement was obteined by eaploying a
Manning’s n of 0.024. Model results plotted against flume tidal
amplitudes are shown in figure 5.). Doth wodel results and flume dats
are in very jood agreement.

Longitudinal dispersion due to transverse velocity shear was
calculsted using Taylor's formula, The following eguation was employed.
K:. Nx =20 R U, {5-1)

in which
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R = llydraulic radiuvy of channel

i}

o ¥ thear velocity

Far a numericil model employing the mixing length hypothesis,

coostauts nesded for the functional form are obtained by running the
mode] with differert values until sgreement is obtsined with the flume
data. In contrast, for the level twa mode! this is vnnecessary. The
cited values for the constasnts employed in Mellor and Yamade (1982) are
used, Mo further idjustmoot to these <enstants are required, These
values are
Al' BI, AE' Bz. Cl = (D,78, 0.78, 15.0, 8.0, 0.,058)

Several expressions can be used to calculaete the characteristic

mixing feagth scale, The following equetion is nsed for this study

. I -t
L =k M {1 II]
in which

E' = Vop Narman constant (taken a O.40)
i = Distaoce fron boundary
i = Total depth

Ippen and Harleman (1951) ran the flume dats for twenty tidal
cycles for most experiments, mfter which measarements wers made,

The tidal-wversged longitudinal and vertical selinity
distributions, normalized by basin selinity, for flume eaperiment number
16 are shown la Figore 5.4 and 5.3, Model resunlts for the ssme run are
indicated by the broken lines, The numerical model shows very good
agreemeént in predicting the extent of the salt intrvsion. As can be
gseen in these figures, mecdel resvits are also in good agreement in

predicting vertical salinity distributions. One should note the



RN

disparity at station 80. Mode! resules st thisa station indicate less
steatification,

Model results for the tidal-averaged horizontal and vertical
velocities are shown in figures 5.6 and 5.7, Eaperimental results for
these varizbles ares also plotted in figures 5.8 and 5.7. [t is evident
that the model reproduced the two layer circulation pattern s shown in
figure 5.6. TJlowever, model results indicate lowar velocities than
laborstory results, The main renson fer such discrepancies is the fact
that flume messurcoonts wore made from the center of the channel, Such
measurements tend to be higher thap the width aversged velncities,
Since model predictions of horizontal velocities are lesst than those
cbtained from (lume data, and since vertical velocities are calculsted
by the same principle of continuity, one should exzpect that the
numerical model will also tend te undoréstimate verticml veloecities.
Thus far, the level two model has proven te predict to m resscneble
extent, oost physical processes in buoyant and nombuoyant flows, Model
rasults have shoawn & good agreement when applled to a continumlly
stratified [low, One should note that all these tests have been
performed with the same set of constants cited from Mellor and Yamada
{19B82), A comparison between the level two model and models employing
the mizing length hypothesis is im arder. The primary pucpose for such
a comparisca iz to eveluate the performapce of each medol in these

applications.
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C, Comparison of models employing lesvel two and N.L.H for closurse

Ino this section models employiog the level two sad the mixing
length hypathesis a3 a ¢losure scheme will be compared. The perfocmance
of these two schemes in a continually stratifisd fleow iy chosen as a
bench mark for comparisons. Cerco (1982), employsd the miaing length
hypothesis as 8 closure schenie in 2 study of the Tames River Estuary,
In order to verify his model, a simulation of Harleman and Ippen (1567)
flume experiment number 29 wax made. Rosulte of this simulation are
shown in figures 5.6 and 5.7, Cerco chose the following forms to
calculate eddy diffusivity
[[ =an (5-2)
in which

.

= addy diffusion coefficient in & non—strutified flow

= a 0,085 cm

u = jnstactanccos velocity.

In order to account for steatification effects a geparalized form

was adopted Ffor his study as written bolow

- et —— {5-3)
(b + ¢ R}

i
in which
Ri = local Richardson nusmber
b,c,n = copirical constants = 1.0 feor [lume comparison,
and for eddy viscosity a licear relatioaship iy assumed as follows
Ht = r.rtl-' {5-4)
in which

a0 = 1.0 for flume data comparison.
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Evsluation of these copstants was accomplished by trial and errcor.
Secies of model runs wore made until tidal-averaged eddy diffusivity
fcll within ths range reported by Narleman and Ipper (19567}, On the
other hand., the level two medel for the same experiment did not require
such a procedure, A3 stated esarlier, the constants peeded for this
madel were obtained from Mallor and Yamada (1982%, There was ne further
tuning required for these constants, It should be emphasized that, for
inezperienced users the procedure of tuning the model for & specific
application could be cumberscme. Therefore, concerning the
applicability of the model, it is evident that the levol two ocdel i
ensier to apply than the mizing length formulae,

Doth models, the level two and tke wmixing length model, with the
nunericnl scheme adopted herein are equally fessible [or long tine
simolations. The semi-implict mothed chosen [or the two models nllows
for n much loager time step than raguired by other methods, Therefore,
long-time simulation appears toc bo less sxpensive when compared with
other mathoda,

Comparison between the two schemes will be performed in thres
staps. The First stop is to compare the salinity distribution,
Secondly, the horizontsl velocities are compared and finmlly the

vertical velocitiea.

C~1 Salinity distribuation

For 'farleman and Ippen's [lume datwe, the leogth of the alt
intrusicn is defiped as 1% of the basin salinity. Modesl results
abtained by the level two mpdel ars shown in flgure 5.4 apnd results

obtained by employing the mirxing length hypothosis are also shown in



figure 5.4. Tt is quite evident from these plots that both models
predict the length of the salt intrusion extremely wall, Agreement
between model predictions and flume data for longitudinal salinity
distributionas is also achieved, Vertical salinity distributions
obtained by level two and mizing length hypothesis models ars presented
in figure 35.5. In this plet, the x-axis is the normalized vertical
salinity distclbucion, 5/5,, and the y-axis is the nocmalized depth,
Y/h, Station numbors refer to distance, in feet, from the opon
boundary., Although the over—all sgreement between model results and
flume data are encournging, agreement obtained st station 5 should be
viewed cantiously apd will be explained later. It should be noted hero
that mode! predictions for station 40 ghtaiped from the level two model
are Leas satisfactory., At this staticen, model results indicate lower

stratification than tho ope obsarved in the {lame date.

C-2 Longitodinal weloclty distribution,

As a2 secand step, modal predictions obtained by level two and
wixing length hypothesis for longitudinal velocities will be compared
with the meoasured flume data. Figure 5.6 shows predictions by beth
models for longitudinal velocities. It can be seen that both models
underpredict the harizontal velocity distecibution. 0On the other haad,
it should be poted that model fesults obtwined by level two indicate
higher velocity values. As previously mentioned, velocity memsurements
ars taken at the center of the channel, These, in turn, tend to have
higher values than width averaged volocities, Thus, one should expect

that model predictions should be less than observed data. With this,



one catb conclude that reswles of the [evel two modal are in bertar

agrecment with observations than the mixing leogth hypothoeszis nmodel.

C-3 Vertical velocity distribution

Vertical wvelocities are <aleulsted by using the principle of
contipuity for both models, Thecefore, i1f mode]l results are less than
velocity messurements in the horizonta) direction, it is anticipated
that the vertical velocity will follow suit, In Figure 5.7 the vertice!
volocity distributlons, obtained by both models, are shown, Tt i
evident from these plotas that the level two model predictions are in
better agroement with observations. One should also pote that statioon 5
is omitted fFrom these plots, The reason for this 1s bHecause both flume
and model bovndery conditions st the open boundary are not well known,
foundary coaditions for the flume data wers eot as the salinity in the

basin snd pot @¢ the mooth. On the other hand the boundary condition
a

for the podel 9—12 = 0,0 i3 required for closure But is wot necessarily
3 x

the appropriate oos at the mouth, Therefore, messurements and
predictions by both models st the open boondary should be viewed with
caution, Ono should also note that, resulcs obiwined by the level two
mode]l sre consistent with Flume dsta. Doth the flume data and the level
two podel indicate wn ipcrease in the downwerd velogity hetwean station
R0 sod 120 sod then a deeressc between stations 120 and 160D, On the
other kand, the mizing length model indicetes an increass from statiom
BC to 120 snd alse 160, These resulty ace not consistent with [lume
dota. Thus, one can conclude that the level twe model doas show hetter

agreement apd consistency with observations thap models employing the
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mixing length hypothesis, In addition, the level tweo model dows not
require o tecdious tuping for the constants employed in the model, It
also should be noted that s person with goed expericoce in mathematical
wmodeling should do as well esploying the ML), A geoeral conclusion
can oot be drawn at this time. In order to do sc both models should be
applied toc a variety of flow conditions and results chtained should he
compared, Then, wnd only then, canm a4 genormlized conclusion be made.
In ¢topclusion, the level two model it superior to models employing
the mizing length hypothesis 2z m ciosure scheme, The leveol two model
is simple, casy to apply, and does not need as much tuning to the
constants employed as the mixing length spproach. Tz addition, medel
comparisons have shown that the level twe model results mre more
consistent with flume deta., Since the level twe model anod the mizing
length cmploy ap algebreic eapression to calculats eddy viscosity,

computer time ls far less compared to the more advanced closure schemes.
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5-11

: Estimatns of oddy viscoszity, onergy and its

dissipation by level two und mixzxing length

models.
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Table 5.1T

Eq. 4-17 11.4

Lavol Two Model 18.0

Mizing Length 12 .0




Figure 5.1

Yeloeity contours in an open channel; friction

forcesz are not included level two model
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Figure 3.2 : Velarity eogntours in an cpen channel; fricrion

forees are included level twe model
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Figure 5.3 : Calibration of laboratory botton roughness level

two nodel
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Fipure 5.4 : Level two model predicrions and flume data of
longitudinal salinity distyributions and mixing

length model predicticons
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Fipure 5.5 1 Flume tidal-averaged vertical salinmirty
distributions aleong with the mixing length and

level two model predictions
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Figure 5.6 : Fluze tidal-averaped horizontal velocities along
with the mixing length and level two model

predictions
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Figure 5.7

-
-

Tidal-averaped vertical velocity distribucions;

flume, nixing length and level two model
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CHAFTER YI,

SIMMARY, CONCLUBIONS AND SUDGESTIONS

FOR FUTURE WORK

Intent of this lavestigation
The intent of this investigation was to examisne two newly proposed
turbulence closuce schemes the k-¢ and level two models. Application
and comparisons were made between the two new schemes as well a3 the
performance of an existing mizing-length model. Agrepmont of the models
with each other, with analytical solutions, and with experimental data
have also been examined, Results obtained from these tests had bheen
compared mnd discussed in the previous chapter.
This invastigution ipntended to answsr the following guesticons:
1= Are the proposed models, either k-« or level 2, saster to apply
than & mixzing-length model ?
2= Do the proposed models provide more realistic results than s
mizing=length model ?

3= Aro results improved, if s0 are the models worthy of pursuing 7

A. The k—x model
In order to answer the first question, one should start with the
nuober of cquations employed in sach individum! mode!. First of all,

the k-r model reguires sciving two partial differentinl equations {3-14

95
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to 3-15} in additicn to tha four governing eguwations., A total of six
equations are needed for a sclution, This can be translated as an
additional burden of greater difficulty and cxzpense in zodel
spplication, Thus, one cer conclude that the k-¢ model 1s not as sasy
to apply as other models cansidered in this study. In addition, the
time step enployed in the numerical scheme for the ¥-c model i far less
than its counterparts for cither closure scheme, i,.e, level two or
mizing length, The shart time step and the additions]l twe eguations
needod for the closure by the k- model, will undcubtedly increass the
coppotaticoal tine.

To answer the remailning questions, the k-¢ model was tested against
& known analytical solution, As stated in Chapter 3, the constant Cu in
equation (2-30) must be adjustsed in order to achieve asgreement with the
analytical soluticon. As cao be seen from table 3, hettar agroement was
chtained by employing such a value for Cu. Thus, 1t is evident that the
constant CH is not as universal as was thought in ecarlier studies,

As a second test, the k-e model wes eppliad Lo a partially mized
sstuary, This tsst waz not completed since the buoyancy term can not be
redeeed aa Rf reached the critical value and hence, the buoyvancy teri
becomes dominant, Tt is suggested though, that additicnal attempts io
apply this model should be pursued in the future,

The k—o¢ model in summstion
A- The k-¢ model iy more difficolt to use snd far more computer time is
required than with the other two models considered in this study.

B- The results obtained by the k¢ model nre not & substantial

improvement compsred ta the level two or the mixing length models.
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- The constant Cu is not as universzal as thought earlier by different
suthors, TFor open channel flow, this constant should he set to 0.24
instead of its original proposed value of 0,49,
D~ This constant should be expressed as a functionm of Hf in erder to
make the k- model epplicable to a wide canpe of flow conditions,
Launder {1976 cited from Redi. 1%3Qa) has stated that the C“ should be
in a functional form rauther thapn m constwnt 23 proposed, The supggested
constant may take the following form

Cu a f {Hfl
E- The k-% model is applicable where bucyancy foeces have little or no
cffect, i,o, open channel flow, Agreement for soch man epplicaticn has
improved employing the Cu value stated above.
F= The k-r model doos not require an sdditional expression for the
characteristic lepgth scale. The ¢ e¢quation solves for & such needed
psrapeter. Thus, one need not specify a different expression for che

miring length scale for various applications as required by other

modals,

B. Tha level two modsl

Copaidering the ose of the level two madel, it i3 not as
conplicated as the k-e model. The level twe nodel doecs not require the
solution of additional partisl differontial eguetions but employs a
miring length approachk, modified by a stability function, %s has been
shows in provious chapters, Therefore, one can <osnclude that the level
two model is indeed sfomparmble and ms masy to apply as medely employing
the mixing length hypothesis. Since no sdditional eguations are needed

for such a model, the time step used is of the same order as that
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enployed by the mixing length model. Hence, langthy nodel s=ioulacions
can be performed ipexpensively. To summarize the outcome of the level
two model:

A= For a humogencous open channel flow, model prediccions of sddy
viscoslty are in very good agreement with snslytical selutions,

B- 'odel prediction for variasbles of prime interest are alsc in very
good agreement when compared to data collected unnder conditicn where
stratification has a proncunced effect on circulation.

C- Constants empioyed for previcus analysis did not require adjustment
or tuning throughout the ¢ourse of this study.

D~ The expression used te calculate the characteristic mixing length
scale for the level two model |9 not necessarily adeguate for other
applications {i.e, jet Elows or f[ree jot flows), hence, unlike the k-«
model in which the £ squetion ix sdeguate for most practical
applicatians, an appropriate expresslon must be selected for the

chnracteristic mixing length for every individuai spplicaticon.

C, Nodel compsriszons

As w second peart of this study, comparisons were made to determine
how predictions by the new models compare with the mixing length madels,
The level two mode! has shown qualitatively good agreement with
annlytical solutions, As a second test, the Jevel two model was
compared against flume data collected under continunlly stratified
conditions. Agreoement, in general, wiyg good and consistent with
laboratory dsta, MResolts obtsined by tho levsl twe model arc indeed
more consistent with flume observations than those of the mixing length

model. Lavel two codel results are alse an improvement over the mixing
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length model whern one examines horizontel and verticml velocities, Tn
addition, unlike the mixing length model which regquires tuning of the
canstants with ench application, all level two model runs were made with
a single set of constents. This is definitely one of the most impartant
oontcomes of this study however, more comparisons should be made between
model results and observations collectsd under different flow condlitions
in order to astabliash the gonerw]l applicability of such a model, In
cancluyion the level twe model is definitely sn improvement over the

mizing length hypothesis and worth pursuing in the future,

D. Suggestion for future investigations

The intent of this investigation haa been achieved, Several
difficulties have been encountered during the course of this study.

Tost difficulties are due to the numerical scheme. Tho nomericel scheoe
should be such that the time step is infinitely small, which in turn
will not allow % to go to terc, The aumerical scheme should alsa allow
for the eddy viacasity to he caleculated by using k and ¢ values cbtained
at the new time step rather than the previaus time step,

411 equations used in the numecical scheme employed hereoin require
the spacification of boundary conditions at channel entrance for their
solutjon. A troublesome task 4 mentionad earlier, the houndamey
conditions employed are necgessary to sclve thes equations but they are
not necessarily adequate. The resulcts obtained by those conditions
should be viewegd with caution., & moro adequate approsch should be
pursued such as radiation boundary cendition. This approsch may improve

model predictions in the vicinity of the mouth of a river or estuary.



RPesults obtained by the level two model are promising., lleowever,
more rigorous examination and comparisons with prototype data is

teconmended,
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