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hard clam (Mercenaria mercenaria) beds and the
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ABSTRACT: High densities of bivalves found in aquaculture can exert ‘top-down' control on pri-
mary production through feeding while simultaneously influencing local ‘bottom-up’ effects on
production by enhancing nutrient recycling. Thus bivalves may decrease or increase localized eu-
trophication (sensu Nixon), depending on environmental conditions and specific culture practices.
This study investigates hard clam aquaculture influence on benthic nutrient regeneration and
metabolism, seasonally using in situ incubations. Effects of macroalgae, which proliferate on pred-
ator-exclusion nets at cultivation sites, are also investigated. Ammonium (NH,*) and phosphate
effluxes averaged 154 and 100 times higher, respectively, at clam beds compared to reference sed-
iments. Macroalgae decreased NH,* efflux from clam beds by 20 to 77 %, while having no signifi-
cant effect on phosphate. Nutrient release from clam beds to the water column supports
macroalgal growth, supplying nitrogen in excess of macroalgal demand in spring and fall and 58 %
of demand in summer, suggesting N recycling in the benthos is sufficient to support macroalgal
production. As a bio-extractive practice, clam aquaculture is a net sink for nutrients in aquatic sys-
tems. However, our data suggest clam cultivation may influence eutrophication locally by facilitat-
ing increased macroalgal production due to increased benthic nutrient recycling. Given the high
capacity for macroalgae to temporarily sequester nutrients released from the clam beds,
macroalgal harvest may be an effective means to negate these effects of the clams and remove un-
wanted nutrients from the ecosystem.
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INTRODUCTION

Coastal and estuarine ecosystems remove, trans-
form, and sequester nutrients and organic matter and
provide diverse habitats and resources to commer-
cially valuable fish and bivalve species. Due to their
location along the land-sea continuum, these eco-
systems are vulnerable to anthropogenic activities,
which accelerate organic matter and nutrient de-
livery to the water, posing risks of eutrophication
(Nixon 1995). Defined by Nixon (19995) as the increase
in the rate of supply of organic matter to an eco-
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system, eutrophication has become an increasingly
pertinent global concern as it decreases ecosystem
function and economic value (NRC 2000, Bricker et
al. 2008). Eutrophication can be triggered by a num-
ber of factors including changes in grazer activity, in-
creased nutrient input from the watershed or adjacent
waters, and increased organic matter input. Eutrophi-
cation may be characterized by phytoplankton or
macroalgal blooms. The dominance of these primary
producers varies on both seasonal and annual time
scales with a variety of natural and anthropogenic
drivers (Nixon et al. 2001, Valiela et al. 1997).
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Aside from land-based human perturbations, such
as urban development, agriculture, and wastewater
treatment, growth of in-water aquaculture repre-
sents an expanding anthropogenic perturbation to
coastal waters. Shellfish aquaculture has become an
important feature in many coastal waters worldwide,
and understanding its impact within the context of
increasingly eutrophic waters is necessary to ensure
its sustainability. The effect of bivalve aquaculture on
nutrient cycling and eutrophication is the subject of
ongoing debate (Lindahl et al. 2005, Stadmark &
Conley 2011, Rose et al. 2012). Depending on a vari-
ety of environmental factors, bivalves can exert ‘top-
down' (i.e. filter-feeding) and influence 'bottom-up’
(i.e. increase nutrient recycling) control on primary
production and thus may decrease or increase local-
ized primary production, respectively.

Bivalve aquaculture, which does not require exo-
genous feed, may modulate eutrophication by re-
moving phytoplankton (Gren et al. 2009, Bricker et
al. 2014, Rose et al. 2014). Suspension feeding bi-
valves exert direct ‘top-down’' control on phytoplank-
ton biomass through feeding, which reduces water
column particulate organic matter (Cloern 1982, Offi-
cer et al. 1982, Cohen et al. 1984, Strayer et al. 1999).
In a cultivation setting, the nutrients assimilated
within the tissues of the bivalves are permanently
removed from the aquatic system upon harvest.
Additionally, denitrification, a microbial process that
converts bioavailable nitrogen to N, gas, may be
enhanced in aquaculture operations under certain
environmental conditions (Kaspar et al. 1985, Carls-
son et al. 2012). Nutrient removal by bivalves has
been proposed as an approach to mitigate eutrophi-
cation (Lindahl et al. 2005, Rose et al. 2012, Bricker et
al. 2014, Petersen et al. 2014); however, indirect bot-
tom-up effects of high densities of bivalves must be
considered.

Bivalves indirectly enhance primary production by
increasing benthic nutrient fluxes to the water col-
umn (Doering et al. 1986, Bartoli et al. 2003). Com-
mercial-scale bivalve aquaculture has been shown to
reduce sediment and water quality and cause local
nutrient enrichment (De Casabianca et al. 1997, Bar-
toli et al. 2001, Stadmark & Conley 2011). Bivalves
are a direct source of nutrients to the water column
through active excretion of ammonium (NH,*), soluble
reactive phosphorous (SRP), and dissolved organic
nitrogen and carbon (DON, DOC) (Sma & Baggaley
1976, Magni et al. 2000). High bivalve biodeposition
rates along with the gear used for cultivation (i.e.
cages, nets, and racks) enhance sedimentation (Grenz
et al. 1990, Spencer et al. 1997, Smaal et al. 2001),

resulting in organically enriched sediments, increased
microbial remineralization, reduced dissolved oxy-
gen (DO), and sulfide accumulation causing fluxes of
NH,* and SRP out of sediments (Giles & Pilditch
2006, Nizzoli et al. 2007). Sulfidic and low oxygen
conditions inhibit coupled nitrification-denitrification,
further enhancing NH,* fluxes to the water column
(Joye & Hollibaugh 1995, Heijs et al. 2000). Addition-
ally, the aquaculture gear serves as hard substrate
and may promote macrophyte attachment and growth,
thus increasing local eutrophication by increasing
organic C production.

Environmental factors (including hydrodynamics,
residence time, temperature, light, and ambient nu-
trient concentrations) likely play a role in determin-
ing the extent to which bivalves facilitate or dampen
eutrophication. Additionally, the particular bivalve
species and the cultivation methods employed influ-
ence impacts on the environment, posing a challenge
in generalizing across all bivalve aquaculture. Stud-
ies on the effects of cultivating epibenthic organisms
(such as mussels and oysters) on sediment biogeo-
chemistry have demonstrated increased nutrient re-
generation in sediments (Hatcher et al. 1994, Gilbert
et al. 1997, Chapelle et al. 2000, Christensen et al. 2003,
Giles & Pilditch 2006). Few studies have investigated
biogeochemical cycling within cultured clam beds
and its impacts on eutrophication. Unlike oysters and
mussels, which are typically grown suspended in the
water column, clams are cultured within the sedi-
ment, and as a result their effects on sediment nutri-
ent dynamics are quite different.

Through bioturbation, clams may directly increase
advection and diffusion, changing sediment DO and
nutrient profiles and subsequently biogeochemical
process rates (Nizzoli et al. 2006). However, use of
predator exclusion nets (i.e. plastic mesh placed flush
on the sediment surface) by clam growers on the US
east coast may reduce exchanges between overlying
water and sediments. In addition, ephemeral macro-
algae on the net surface affect DO, release particu-
late organic carbon (POC) and DOC to the sediments,
and temporarily sequester nutrients sourced from the
clam beds. Clam growers frequently sweep the nets
of accumulated macroalgae, which are allowed to
drift away and decompose, releasing nutrients and
potentially depleting DO in adjacent waters. Upon
senescence due to density-dependent factors (e.g.
self-shading) and/or environmental factors (e.g.
increase in temperature), ephemeral macroalgae in
the coastal bays of Virginia degrade rapidly, releas-
ing nutrients and decreasing DO (Tyler et al. 2001,
Hardison et al. 2010).
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As aquaculture becomes more
prevalent in coastal waters, an under-
standing of its interactions with the
surrounding ecosystem, particularly
with respect to nutrient cycling, is nec-
essary to avoid creating eutrophic
conditions. This study investigated the
effects of hard clam Mercenaria mer-
cenaria aquaculture on benthic respi-
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ration and nutrient regeneration,
specifically with regard to modifying
fluxes to the water column and con-
tributing to seasonal macroalgal
growth. The study assessed the impor-
tance of macroalgae in modulating
benthic net community production
(NCP) and nutrient fluxes across the
sediment water interface at the clam
aquaculture sites. We hypothesized
that clam beds are net heterotrophic,
resulting in a release of nutrients to
the water column, whereas unculti-
vated sediment sites are net auto-
trophic and a sink for nutrients. We
expected macroalgae to decrease
nutrient effluxes at clam beds and
shift community metabolism to net
autotrophy (see Fig. 4).

MATERIALS AND METHODS
Site description

Field experiments were conducted in May, July,
and October 2012 in Cherrystone Inlet, a small tribu-
tary (5.7 km?) of Chesapeake Bay, located on the bay-
side of the eastern shore of Virginia, USA (Fig. 1). Av-
erage depth is <2 m and approx. one-third of its
subtidal bottom is partitioned into private shellfish
leases, most used to grow hard clams Mercenaria
mercenaria. Hard clam aquaculture on the east coast
of the US typically involves planting hatchery-reared
juvenile clams in sandy subtidal sediments, covering
the beds with plastic predator exclusion nets, and me-
chanically harvesting the clams at market size (3—
4 cm shell height) after about 2 yr. The clams in Cher-
rystone Inlet are planted at 700-800 ind. m™2, with an
estimated standing stock of about 100 million cultured
clams within the tributary (Condon 2005). The sam-
pling sites for this study were located in the southern
portion of the inlet close to the mouth that empties
into Chesapeake Bay. The sites experience little salin-
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Fig. 1. Aerial photograph of Cherrystone Inlet, Chesapeake Bay, USA, taken
in 2012. Black polygons delineate active clam aquaculture operations

ity variation, which is driven largely by rain events.
Macroalgae, including Ulva lactuca, Gracilaria spp.,
Agardhiella tenera, and Cladophora sp., are present
on the commercial clam bed nets throughout the year.

Experimental design

In each sampling month, fluxes were measured at 3
randomly selected clam beds and 3 bare sediment
sites located in line with the clam beds, perpendicu-
lar to the shore. The clam beds consisted of mature,
close to market size clams (approx. 3—4 cm shell
height), and the nets had not been recently swept of
macroalgae by the aquaculturists. In situ flux treat-
ments included: clams plus macroalgae in the light
(CML) and in the dark (CMD), clams without macro-
algae in the light (CL) and dark (CD), bare sediments
in the light (BL) and dark (BD) and water blanks in
the light (WL) and dark (WD). One clam bed and one
bare site were sampled each day, over 3 consecutive
days. All treatments were conducted in triplicate
each day, providing n = 9 per sampling month and
treatment. As the bare sites were typically deeper



138 Mar Ecol Prog Ser 530: 135-151, 2015

than the clam sites, cores were elevated to the depth
of the clam bed cores to ensure similar ambient light
levels. On each clam bed, 3 sets of randomly-posi-
tioned blocks of 4 flux chambers, one for each clam
treatment (CML, CMD, CL, and CD), were inserted
through a hole in the predator exclusion net. At the
bare site, 3 replicates of BL, BD, WL, and WD treat-
ments were established. Opaque shade cloth covered
the dark cores to prevent light penetration, verified
by measuring the light under the cloth using a Li-Cor
quantum deck sensor (LI-190SA).

Ambient macroalgal biomass was obtained by ran-
domly tossing a ring sampler (0.014 m?) 5 times on
clam nets near the flux incubation nets, to avoid dis-
turbing these sites. Macroalgal wet weight was
scaled to the size of the flux chambers, and the
appropriate amount of macroalgae was added to the
cores. Ambient macroalgal biomass and community
composition at the clam farm varied seasonally, and
the macroalgae placed in the experimental cores
reflected this seasonality.

Benthic metabolism and nutrient flux
measurements

During each sampling month, in situ flux incuba-
tions were conducted on ebbing tides on days with
minimal cloud cover to allow adequate light levels
during the experiments. In situ incubations mini-
mized disturbance to the sediments and clams and
ensured clams were not starved of food prior to the
experiments. Flux chambers (clear acrylic cores,
13.3 cm i.d. by 40 cm tall) were inserted into the sed-
iment to a depth resulting in a 20 cm water column,
allowed to equilibrate for 1 h, then capped, excluding
air bubbles. Central motors were used to power small
magnetic stir bars suspended below each core cap to
prevent gradients from developing. Half of the flux
chambers were covered with opaque fabric to prevent
light penetration and obtain respiration values under
dark conditions. Water blanks (cores filled with
ambient water) were sampled to distinguish water
column from sediment processes. Overlying water in
each of the chambers was sampled hourly overa 4 h
incubation period. DO was measured by pulling the
sample with a syringe into an airtight chamber con-
taining a Hach LDO101 Luminescent DO sensor. Dis-
solved inorganic carbon (DIC) samples, stored in 8 ml
hungate tubes (Bellco Glass), were preserved with 15
pl saturated mercuric chloride and kept cold under
water until analyzed within 1 mo of collection using a
Li-Cor 6252 infrared gas analyzer (Neubauer &

Anderson 2003). Samples collected concurrently with
the DO and DIC samples were filtered and frozen
until analysis for DIN, dissolved inorganic phosphate
(DIP), DOC, DON, and chlorophyll a (chl a) as
described below.

Flux calculations

Hourly fluxes for each analyte were calculated as:
Flux = (mx V)/A (1)

where m is equal to the slope of the linear regression
of concentration (1M or mM) versus time (h); Vis
equal to the volume of water in the flux chamber (1);
and A is the sediment surface area within the cham-
ber (m?). A flux from the sediment to the water col-
umn is positive, while a flux to the sediment from the
water column is a negative value. Water blank fluxes
were subtracted from the whole core fluxes to obtain
a benthic community flux. Benthic metabolism (DIC
in mmol C m~2 day™!) and daily nutrient fluxes were
calculated as follows:

R = Fyx24h (2)

GPP = h x (F - Fy) (3)

NCP = GPP +R 4)

Daily nutrient flux = (F x hy) + (F3 x hy) 5)

where R is community respiration, GPP is gross pri-
mary production, NCP is net benthic community pro-
duction, Fy and F are hourly fluxes in the dark and
light, respectively (mmol m~2 h7!), hy and h, are the
number of hours of dark and light in a day, which
varied seasonally. When NCP is negative, GPP ex-
ceeds R and the system is net autotrophic with net
uptake of DIC. Net heterotrophy and thus net release
of DIC is represented by a positive NCP.

Clam and macroalgal measurements

Upon completion of the flux measurements, all
clams were removed from each chamber and the
ash-free dry weight (DW) determined by the differ-
ence in dry weight prior to and after combusting at
500°C for 5 h. All macroalgae were removed from
the CML and CMD chambers, and the DW was
determined for each species present. A subset of
dried macroalgal tissue samples from the dominant
species during each sampling month were stored in
the freezer until analyzed on a Carlo Erba (Thermo
Electron Flash EA 1112 Series) elemental analyzer
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for POC (samples were acidified prior to analysis)
and total nitrogen content.

Estimating clam excretion

To estimate the contribution of clam metabolism
(i.e. excretion) to the net NH,* flux measurements at
the clam sites, we used an equation derived by Sma
& Baggaley (1976):

logp(E) = 0.94 x log;o(DW) + 1.33 (6)

where E is equal to the excretion rate (umol NH,*
ind.”! d"!) and DW is the tissue dry weight (g) of an
individual clam. Sma & Baggaley (1976) measured
the production of NH,* from individual M. merce-
naria in a laboratory setting where the clams were
starved prior to static incubations during which the
clams were fed cultured algae. After calculating
excretion for the individual clams in each core we
summed these rates per core and scaled to per m? to
compare to the net benthic NH,* flux measurements.

Estimating macroalgal growth rate and
nitrogen demand

The importance of benthic nutrient regeneration
at the clam beds in meeting the macroalgal N
demand was assessed using estimated macroalgal
growth rates and nutrient content in the macroalgal
tissue. Macroalgal production rates were not
directly measured in this study but were estimated
by subtracting the NCP (mmol C m™ d!) of the
clam plus macroalgae treatment from the clam only
treatment. The average total N and organic C con-
tent of each macroalgal species retrieved from the
cores after the incubations during each season were
used to generate a weighted average N and C con-
tent for the macroalgal community during each
sampling month as:

N or C content = £ W;X; (7

where W; is equal to the proportion of species i
relative to the total macroalgal biomass and X; is
equal to the tissue N or C content of species i (g C g
DW or g N g DW™!) . Estimated production rates
were converted to growth rates by dividing them by
the species-weighted average macroalgal C content.
Macroalgal N demands were then calculated by mul-
tiplying growth rate by the species-weighted aver-
age N content of the macroalgal tissue. The following
equations summarize our calculations:

MP = NCP¢ — NCPcy (8)
MG = MP/C content 9)
MN = MG x N content x (1 mol/14 g) x

(1000 mmol/1 mol) (10)
where MP, MG, and MN refer to macroalgal produc-
tion rate (g C m~2 d!), growth rate (g DW m™2 d™),
and N demand (mmol N m~2 d7!), respectively; NCP
and NCPcy are the net community production in the
clam only treatment and the clam plus macroalgae
treatment (g C m~2 d7!), respectively; and C content
and N content are the species-weighted average
organic C and total N of the macroalgal community
during each season (g C g DW™! or g N g DW™}) (see
Eq. 7).

Water quality and sediment parameters

Triplicate sediment cores were collected at each
clam and bare flux location seasonally, sub-sectioned
horizontally at 0—1 cm and 1-5 cm, and analyzed for
porosity (as loss of wet weight after drying at 70°C)
and organic matter (as loss on ignition after com-
bustion at 500°C for 5 h). Dried subsamples were
acidified and analyzed on a Carlo Erba (Thermo
Electron Flash EA 1112 Series) elemental analyzer
for POC and total nitrogen content. Triplicate water
column and porewater samples were collected at
each flux location, filtered (0.45 pm Whatman poly-
ethersulfone [PES]) and frozen until analysis for DIN
(NO3™, NO,7, and NH,") (Liao 2001, Smith & Bogren
2001), SRP (Knepel & Bogren 2001), and DON
(Koroleff 1983) on a Lachat QuikChem 8000 auto-
mated ion analyzer (Lachat Instruments; detection
limits for NO;~, NH,*, and PO,%" are 0.20, 0.36, and
0.16 nuM, respectively). Porewater was collected at 5
to 7 cm below the sediment surface using a stainless
steel push-point sampler (MHE Products), and also
analyzed for hydrogen sulfide (Cline 1969). Water
column samples were filtered (0.7 pm GF/F) and
extracted for chl a and phaeophytin analysis as
described by Anderson et al. (2014). Salinity, tem-
perature, DO, chl a, and turbidity were monitored
continuously throughout each 3 d experiment using
a YSI model 6600 datasonde mounted on a rebar
frame, with the sensors 5 cm above the sediment
surface. Incident light and underwater photosyn-
thetically active radiation (PAR) were monitored
continuously throughout each 3 d experiment using
a Li-Cor quantum deck sensor (LI-190SA) and
underwater quantum sensor (LI-192SA).
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Statistical analysis

Daily metabolic rates and descriptive measure-
ments (e.g. porewater nutrients, sediment organic
matter, etc.) were analyzed using mixed-effect mod-
els with season and treatment as independent fixed
factors and the location within the farm as a random
factor. Effects due to location within the farm could
not be distinguished from those due to the day incu-
bations were conducted (e.g. differences in ambient
light), however they were not a focus
of this study. Post hoc tests were per-
formed using Tukey's HSD. When
significant interactions were obser-
ved, post hoc tests were conducted to
determine differences across seasons
within treatments as well as across
treatments within seasons. When ne-
cessary, data were transformed using
Box-Cox to meet assumptions. Linear

spring to 25.3 in the fall (Table 1), with no diel
tidal variation observed. Water and sediment qual-
ity parameters are provided in Table 2. Water col-
umn NO, remained low at both the clam and bare
sites during all seasons, with no significant effect
of site or season. Water column NH,* was slightly
higher than NO; and was significantly higher at
the clam bed sites (1-2 pM) than the bare sites
(0.3-1 uM) despite their close proximity. Porewater
DIN, dominated by NH,*, and SRP were signifi-

Table 2. Seasonal sediment and water quality characteristics of the bare and
clam sites, including porewater (PW) and water column (WC) nutrients (uM),
PW sulfide (uM), benthic chlorophyll and phaeophytin (pg cm?), sediment
organic matter (%), and sediment organic carbon to total nitrogen ratio (C:N).
Data are means and SE. nd: no data were collected. *Significant difference
between treatments within each month (post hoc results, implies significant
interactions were observed between month and season). *Significant differ-
ence between treatments across all months (implies no significant interactions

were observed)

regrgss1ops were used tp assess the May July October
relationship of clam biomass with
NH,* and DIC fluxes. The stoichio- PW NH,* Bare 20.95 (5.4)* 56.3 (6.5) 46.15 (4.5)*
metric relationship between NH,* Clam 118.7 (25.2) 66.1 (14.3) 113.2 (14.2)
and DIC fluxes was assessed for each WC NH," Bare” 0.31 (0.17) 0.56 (0.10) 0.94 (0.20)
. . ) Clam 0.99 (0.15) 1.98 (0.36) 1.12 (0.05)
treatment using linear regression,
here the C:N ratio 1 1 to th PW NO, Bare 0.75 (0.11) 0.34 (0.09) 1.16 (0.56)
where the LN 1allo 1s equa’ to the Clam 0.37 (0.04) 0.39 (0.09) 0.39 (0.07)
slope of the regression. A significance WC NO, Bare® 0.24 (0.04) 0.12 (0.05) 0.11 (0.03)
value of p < 0.05 was used for all sta- Clam 0.11 (0.02) 1.38 (1.27) 0.20 (0.04)
tistical tests, which were conducted in PW PO~ Bare 1. 32 (0.39)* 4, 12 (0.40) 3. 02 (0.44)*
RStudio software (v. 0.98.484). Clam 5 (1.25) 9 (1.53) 8(1.23)
WC PO~ Bare 0. 06 (0.004) 0. 08 (0.01)* 0. 11 (0.01)
Clam 0.04 (0.004)*  0.15 (0.02) 0.11 (0.01)
PW sulfide Bare nd 91.9 (24.0) 116.9 (23.2)
RESULTS Clam nd 127.6 (13.0)  206.8 (63.5)
Benthic chl a Bare 3.50 (0.34) 5.62 (0.42) 4.78 (0.38)
Ambient environmental conditions Clam 1.31 (0.28) 3.09 (0.18)* 3.40 (0.13)*
Benthic Bare 1.31 (0.11)* 3.09 (0.25)* 3.40 (0.50)*
Water temperature ranged from phaeophytin  Clam 5.53 (0.38) 6.98 (0.40) 6.75 (0.38)
18.5°C in October to 29.3°C in July Sediment OM  Bare 0.99 (0.13) 0.84 (0.09)*  0.90 (0.11)
with an intermediate temperature 0% Clam 1.09(0.19) 1.87 (0.28) 1.02(0.13)
20.8°C in Mav. Salini per 4 Sediment C:N  Bare 7.55 (0.37) 7.40 (0.17) 7.34 (0.16)
: In May. Salinity varied sea- Clam 6.63 (0.46) 7.39 (0.13) 7.03 (0.09)
sonally, increasing from 20.3 in the

Table 1. Seasonal site characteristics, clam biomass, density, and shell length observed at the clam beds where flux incubations
were conducted. kg, light attenuation; PAR: photosynthetically active radiation. Data are means and SE

Month Salinity =~ Temperature  Chloro- Dissolved kq Clam biomass Clam Clam size
(°C) phyll a oxygen (PARm™) (g ash-free density  (shell length,
(ug17Y (mg 1Y) DW m™) (ind. m™?) mm)
May 20.3 (0.03) 20.8 (0.08) 5.19(0.09) 8.42(0.11) 1.48 (0.03) 242.9 (19.0) 821 (82.5) 40.3 (0.3)
July 22.2(0.05) 29.3(0.13) 4.41(0.08) 7.18(0.16) 2.16 (0.09) 228.9 (16.6) 790 (47.7) 39.8 (0.4)
October 25.3(0.01) 18.5(0.06) 2.05(0.07) 8.19(0.05) 1.43(0.03) 319.27 (18.8) 999 (70.5) 40.4 (0.3)
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cantly higher at the clam bed sites compared to
the bare sediments in May and October, with no
significant differences in July. Although not signif-
icant and highly variable, porewater sulfide concen-
trations tended to be higher at the clam beds than
the bare sites. The sediment organic matter
content and C:N were similar between the clam
and bare sediments.

Clam and macroalgal biomass

The experimental design controlled for clam size
by targeting locations within the lease with clams
close to market size. Average (+SD) shell length
was 39.1 + 6.2 mm; clam biomass averaged 263.7 +
103.1 g ash-free DW m™2, with no significant differ-
ence in size across seasons or treatments (Table 1).
However, clam beds sampled in October had signifi-
cantly higher clam biomass than the other months,
due to higher densities as opposed to larger individ-
uals (Table 1, p < 0.05).

Typically dominated by Gracilaria spp., macroalgal
biomass was highest in July (123.8 = 14.9 g DW m™?)
with the lowest biomass in May (24.1 + 9.5 g DW m™2)
and a biomass of 52.8 + 11.9 g DW m™2 in October
(Table 3). Macroalgal biomass varied seasonally but
was also likely influenced by the frequency at which
the aquaculturists swept the nets. The effects of
sweeping on macroalgal biomass and sediment bio-
geochemistry were not a focus of this study.

Nutrient fluxes

Net daily fluxes are shown in Fig. 2. Net NH,*
efflux was observed for all treatments during all

months except in the bare treatment (B) in July
(Fig. 2A). NH,* fluxes were significantly affected by
season and treatment as indicated by the significant
interaction term (Table 4). Clam beds (Cl) had sig-
nificantly higher net NH,* efflux rates, ranging from
13.5 to 18.6 mmol N m=2 d7!, than B (-0.38 to
0.16 mmol N m™2 d7!) during all months. The pres-
ence of macroalgae resulted in decreases of 32 %,
77 %, and 20% in daily NH,* effluxes at the clam
beds in May, July, and October, respectively; with
effluxes in May and July in CM significantly lower
than in Cl. When macroalgal biomass was highest
(July), the NH,* efflux in CM (4.1 mmol N m™
d') was significantly lower compared with May
(12.6 mmol N m~2 d™') and October (10.7 mmol N m2
d™'). NH,* effluxes in CM were significantly higher
than in B, with average fluxes of 16.6 and —0.06 mmol
N m2d!, respectively.

Generally, NO, fluxes were variable but typically
low and positive at all sites during all seasons
(Fig. 2B). NOy fluxes were affected by treatment and
season, as indicated by the significant interaction
(Table 4). Within season, there was no significant
treatment effect in July, while in May, B had signifi-
cantly higher NO; rates than CM and in October B
had significantly lower NO, rates than both Cl and
CM. Within treatments, no significant seasonal effect
was observed in either the Cl or CM treatments with
average net NO, rates of 170 pmol N m™2 d™! and
160 pmol N m~2 d7!, respectively. The B treatment
had significantly lower NO, flux rates in October
(=64 umol N m~2 d~!) compared with B sites in May
and July.

The clam beds and bare sediments typically re-
leased DON to the water column (Fig. 2C). Treatment
and month had significant effects on DON fluxes, with
a significant interaction (Table 4). There was no dif-

Table 3. Mean biomass (g DW m™2) and SE of macroalgae by species retrieved from the clams plus macroalgae in the light

(CML) and dark (CMD) cores after the incubations during each season. The species within the experimental cores reflects the

ambient species composition found in situ each month. Also shown is the mean percent total N and organic C content of each
species per month. nd: no data; (-) not applicable. ‘Other’ species in May were predominately Cladophora sp.

mean of macro-
algal community

May July October

Biomass % N % C Biomass % N % C Biomass % N % C
Ulva lactuca 0.52 (0.2) 2.44 (0.43) 27.08 (2.5) 1.54 (0.5) nd nd 0 - -
Gracilaria spp. 10.35 (2.0) 1.51(0.04) 27.84 (0.9) 84.1(6.8) 3.40(0.3) 33.96 (2.3) 41.1 (4.9) 3.53 (0.3) 34.61 (1.5)
Agardhiella 0 - - 38.17 (6.7) 2.80 (0.2) 28.28 (0.8) 8.88 (2.9) 2.76 (0.4) 29.42 (1.1)
Other 0.57 (0.1) nd nd - - 0 - -
Total biomass 24.13 (2.3) - - 123.8 (3.5) - - 52.8 (2.8) - -
Species-weighted - 2.02 27.32 3.22 32.19 - 3.39 33.69
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Fig. 2. (A) Net daily flux rates of ammonium (NH,*), (B) nitrate + nitrite (NO,), (C) dissolved organic nitrogen (DON), (D) sol-

uble reactive phosphorous (SRP), (E) dissolved organic carbon (DOC), and (F) net benthic community production (NCP), cal-

culated using DIC fluxes, for all treatments including clam only (Clam), clam plus macroalgae (Clam+Macro), and control
sediment (Bare), in May, July, and October 2012. Data are mean + SE

ference across treatments in July or October. How-
ever, in May the DON flux in B (2.8 mmol N m~2 d™})
was significantly higher than in CM (-1.7 mmol N m~2
d’1). Within the B and Cl treatments, there was no ef-
fect of season. Within the CM treatment, May had sig-
nificantly lower values than October, while July values
were not different from those in May or October.

Net effluxes of SRP in the Cl and CM treatments
were significantly greater than in B during all sea-

sons (Fig. 2D). However, the presence of macroalgae
had no significant effect on the clam bed SRP flux.
Seasonal trends were detected in the Cl and CM
treatments with a significantly lower net SRP efflux
in October, averaging 369.3 pmol P m~2 d~! compared
with May and July, which averaged 1221.7 and
943.8 pmol P m~2 d7!, respectively. The B treatment,
which showed no seasonal variation, had negligible
SRP flux rates.
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Table 4. Statistical parameters from the mixed-effect models with treatment and month as fixed factors and day sampled as

the random factor on daily flux rates. n = 9 for each treatment per month; treatments were sampled over 3 consecutive days.

Summaries of the post hoc test results are provided when a significant interaction was observed. NOy: nitrate + nitrite; DON:

dissolved organic nitrogen; SRP: soluble reactive phosphorous; DOC: dissolved organic carbon; NCP: net community produc-

tion. Months — M: May; J: July; O: October. Treatments — B: bare, Cl: clam only; CM: clam plus macroalgae. ns: no significant
difference among groups

Response  Factors F df P ————— Post hoc summary ——
Month within treatment Treatment within month

NH,* Treatment 220.99 2 <0.001 Cl: ns May: B<CM < Cl
Month 5.47 2 0.044 CM:J<M=0 July: B<CM < Cl
Treatment x Month 5.17 4 0.001 B: ns Oct: B<CM =Cl

NOy Treatment 0.60 2 0.55 Cl: ns May: B > CM
Month 0.13 2 0.88 CM:J<M=0 July: ns
Treatment x Month 4.07 4 0.005 B: ns Oct: B<Cl=CM

DON Treatment 0.45 2 0.64 Cl: ns May: B > CM
Month 0.76 2 0.51 CM:M<O July: ns
Treatment x Month 4.42 4 0.003 B: ns Oct: ns

SRP Treatment 122.40 2 <0.001 Cl:.J=M>0 May: B < Cl=CM
Month 417 2 0.07 CM:M >0 July: B<Cl=CM
Treatment x Month 4.67 4 0.002 B: ns Oct: B<Cl=CM

DOC Treatment 2.77 2 0.07
Month 2.86 2 0.13
Treatment x Month 1.36 4 0.26

NCP Treatment 52.60 2 <0.001 C:J=0<M May: B=CM < Cl
Month 6.30 2 0.033 CM:J<M=0 July: B=CM < Cl
Treatment x Month 4.50 4 0.003 B: ns Oct: B=CM < Cl

DOC was typically released from sediments at all
treatments and during all sampling months (Fig. 2E).
There was no significant effect of season or treat-
ment on DOC fluxes, and no significant interaction
(Table 4). DOC effluxes were generally higher in the
clam treatments compared to the bare sediments, al-
though not significantly.

Benthic metabolism

NCP in the Cl treatment was net heterotrophic dur-
ing all sampling months and significantly different
from the net autotrophic bare sediment sites (Fig. 2F).
The presence of macroalgae significantly decreased
NCP at the clam beds during all sampling months,
shifting it towards net autotrophy, which in our cal-
culations is represented by a negative value. The
NCP in the CM treatment was not significantly dif-
ferent than the B treatment. Therefore, the presence
of macroalgae negated the influence of clams on the
net benthic metabolism. No seasonal variation in B
was observed, with an average NCP of —-51.0 mmol C
m~2d. The ClI treatment was significantly more het-
erotrophic in May (311.2 mmol C m~2 d™!) than July
and October, which averaged 159.3 mmol C m™2 d-1,
The CM treatment was slightly net heterotrophic

during May and October (average of 28 mmol C m™2
d™!) and shifted to net autotrophic in July (=190 mmol
Cm™2d™). Similar to the NH,* flux, the seasonal NCP
trends observed in the CM treatment were likely a
result of higher macroalgal biomass added to the
cores in the summer, when macroalgal standing
stock biomass was highest on the nets (Table 3).

Variation of NH,;* and DIC fluxes with
clam biomass

Estimated mean = SD clam NH,* excretion rates
(using the equation from Sma & Baggaley 1976)
ranged from 233.6 + 66.6 pmol N m™2 h! in July to
542.8 + 225.0 pmol N m~2 h~! in May and an interme-
diate of 410.5 + 136.2 pmol N m~2 h~! in October. Esti-
mated clam excretion accounted for an average of 66,
40, and 83 % of the hourly flux rates of NH,* in the
clam only treatments in May, July, and October,
respectively.

When all 3 seasons were analyzed together, NH,*
and DIC fluxes were positively correlated with clam
biomass (ash-free DW core™') (p = 0.001, R?=0.15; p =
0.004, R%? = 0.16, respectively) and DO fluxes were
negatively correlated with clam biomass (p = 0.005,
R? = 0.15) (Fig. 3, Table 5). However, in July, NH,*,
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Fig. 3. (A) Hourly (light and dark) ammonium (NH,*), (B)

dissolved inorganic carbon (DIC), and (C) dissolved oxygen

(DO) fluxes as a function of clam biomass (ash-free DW g

m™2), in May, July, and October 2012. Analyses included

clam dark and clam light treatments only. The solid line is

the regression including all months. Slopes and regression
statistics are provided in Table 5

Table 5. Regression statistics of hourly fluxes of ammonium

(NH,*), dissolved inorganic carbon (DIC), and dissolved oxy-

gen (DO) as a function of clam biomass (g ash-free DW m™2).

Only clam treatments (light and dark) were included in the

analyses. Fig. 3 provides graphical representation of the
data. Significant results (p < 0.05) in bold

Parameter Month  Slope R? p
NH,* May 0.002 0.42 0.002
July 0.001 0.04 0.533
October 0.002 0.52 <0.001
All 0.001 0.15 0.008
DIC May 0.071 0.44 0.002
July 0.024 0.10 0.16
October 0.008 0.03 0.52
All 0.033 0.16 0.005
DO May -0.014 0.31 0.010
July -0.002 0.01 0.822
October -0.011 0.29 0.015
All -0.011 0.15 0.007

DIC, and DO fluxes were not significantly correlated
with clam biomass. Additionally, in October, DIC flux
was not significantly correlated with clam biomass. No-
tably, clam biomass varied little across samples, as beds
were planted at relatively constant densities and only
sites with clams close to market size were sampled.

Flux stoichiometry

The ratio between DIC and NH,* fluxes is a metric
used to infer the characteristics and fate of the
organic matter being remineralized as well as the rel-
ative importance of phototrophic and denitrifying
activity. A low C:N ratio may indicate high N release
and/or the remineralization of highly labile organic
matter, with a low C:N signature. A high C:N ratio
suggests denitrification and/or N immobilization by
phototrophic and/or bacterial uptake. Linear regres-
sion analyses of DIC fluxes as a function of NH,*
fluxes were used to obtain C:N of the fluxes for each
treatment (i.e. C:N = the slope). C:N at the clam bed
(9.9) was lower than in the clam with macroalgae
(23.7) and bare treatments (66.1) (Table 6). In the
light, C:N increased in clam treatments with and
without macroalgae. However, C:N was higher in the
dark than in the light at the bare sites.

Macroalgal growth rate and nitrogen demand

Estimated macroalgal production rates were 3.38,
4.26, and 1.53 g C m~2 d! in May, July, and October,
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Table 6. Linear regression estimates of the relative propor-
tion (slope) of dissolved inorganic carbon to ammonium
fluxes on a net daily basis, as well as in the dark and in the
light for all treatments: clam only (Cl), clam plus macroalgae
(CM), and control sediment (B). Significant results (p < 0.05)

in bold
Treatment Slope R? p-value

Daily Cl 9.9 0.23 0.007
CM 23.7 0.56 0.000

B 66.1 0.16 0.022

Dark Cl 8.3 0.07 0.098
CM 10.3 0.29 0.002

B 39.9 0.10 0.062

Light Cl 13.1 0.27 0.003
CM 30.1 0.47 0.000

B 26.7 —-0.02 0.466

DISCUSSION

Although clam aquaculture is a growing industry
worldwide, there are currently few studies on its
effects on nutrient cycling and subsequent in-
fluences on autotrophic production (reviewed in
Burkholder & Shumway 2011). Clam aquaculture
sediments are sites of high metabolic activity, sig-
nificantly enhancing nutrient release to the water
column while drawing down DO. Bivalve aquacul-
ture does not require organic matter addition (i.e.
feed) and is therefore a bio-extractive activity and
overall a net nutrient sink. However, our data sug-
gest high densities of bivalves significantly alter
local nutrient supply and enhance macroalgal pro-

respectively. Using the species-weighted average per-
cent carbon of the macroalgal tissue collected from
the cores after the incubations each month (Table 3),
macroalgal growth rates were estimated to be 12.36,
13.24, and 4.56 ¢ DW m~2 d~! in May, July, and Octo-
ber, respectively. Macroalgal N demands were esti-
mated as 17.84, 30.42, and 11.04 mmol N m2 d! in
May, July, and October, respectively. The sediment
NH,* fluxes as percent of macroalgal N demand in
May, July, and October were 105 %, 58 %, and 122 %,
respectively.

duction (Fig. 4). The macroalgae serve an important
ecological function in temporarily sequestering
nutrients released from the cultivated clam beds.
But without proper management, this increased
organic matter may lead to adverse conditions in
the estuary; upon senescence, microbial degrada-
tion of the macroalgae may decrease oxygen and
release nutrients. Implementing macroalgal harvest
practices concurrent with clam harvest (i.e. an
integrated multi-trophic aquaculture [IMTA] pro-
gram) would eliminate the potentially detrimen-
tal impacts of excess macroalgal material in the
system.

NH,* + DIC * #2345 Macroalgae O Microbial mineralization @} Clams
= Microphytobenthos
POM POM
i NH;  NO,
$DIC T A
7 o
, % v
S - — - W - - - -
TR = ’{} b ¢ % A\ 4
R SN N + *
DOY— G — s s
Clam bed Bare reference site
Clam bed flux without macroalgae: Clambed flux with macroalgae: fof Bare sediment flux:

NH, =447 +18
NCP =56.7 + 27.0
NO, =0.05+0.06

NH,*=246+1.2
NCP =-12.1 +38.6
NO,=0.04 £0.10

NH, =-0.02 + 0.07
NCP =-13.8 £ 14.8
NO, =0.03 £0.09

Fig. 4. A conceptual model illustrating the net annual fluxes of NH,*, NO, (mol N m~2 yr ~!) and net community production
(NCP; mol C m~2 yr ~!); a positive flux represents net heterotrophy; a negative flux net autotrophy. POM: particulate organic
matter; NH,": ammonium; NO,: nitrate + nitrite; DIC: dissolved inorganic carbon
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Cultivated clam beds alter benthic metabolism
and nutrient supply

Clams directly alter the local environment through
their respiration and excretion. We estimated clam
excretion to account for between 40 and 83 % of the
total NH," efflux at the clam beds. Others have simi-
larly observed that bivalve excretion can significantly
increase net sediment nutrient effluxes (Magni et al.
2000, Hiwatari et al. 2002, Gibbs et al. 2005). Despite
high excretion rates, the clam beds did not alter DON
fluxes relative to bare sediments —likely because the
majority of M. mercenaria excretion is DIN rather
than DON (Hammen 1980). Clam respiration is a
large component of benthic community metabolism
as clam biomass was significantly correlated with DO
and DIC fluxes when data from all sampling months
were grouped. However, in the summer and fall,
anaerobic microbial respiration was likely driving
DIC fluxes, as these fluxes were not tightly coupled to
clam biomass. Additionally, DO fluxes in the summer
were not strongly correlated with clam biomass,
which may be due to the narrow range in biomass
sampled as only market-size clam beds were targeted
in this study and cultivated clams are planted at rela-
tively constant densities. Despite high respiration
rates, clam beds did not contribute to hypoxic condi-
tions in the water column; nighttime DO at the clam
beds was only slightly lower than concentrations ob-
served at the control sites (see the Appendix).

Clams indirectly affect benthic nutrient fluxes and
respiration by fueling microbial mineralization of bio-
deposits. Increased nutrient effluxes and sediment
oxygen demand have been attributed to bivalves en-
riching sediments with biodeposits (e.g. Nizzoli et al.
2006, Smyth et al. 2013). The bulk sediment organic C
to total N ratio in Cherrystone Inlet is relatively low
(6.6—7.6) compared to nearby systems such as Hog Is-
land Bay, Virginia, which averages 13.3 (Anderson et
al. 2003). In Cherrystone Inlet the low sediment C:N is
likely due to delivery of N-rich, phytoplankton-de-
rived clam biodeposits to the sediments. Bivalve
biodeposits are typically labile and readily remineral-
ized in sediments (Giles & Pilditch 2006, Carlsson
et al. 2010). Although biodeposit mineralization can
cause decreased DO and sulfide accumulation in the
porewater, clam bioturbation can oxygenate the sedi-
ments, increasing rates of nutrient transformations
and transport across the sediment-water interface
(Aller 1982, Kristensen & Blackburn 1987, Kristensen
2000). However, in an aquaculture setting, high clam
densities and the predator exclusion net may constrict
clam movement and decrease bioturbation.

At our sites, clam aquaculture decreased the rela-
tive proportion of DIC to NH,* fluxes compared to
uncultivated bare sites, further highlighting that
clam beds are a source of regenerated nutrients to
the water column. At the net autotrophic bare sites,
the high DIC:NH,* of the fluxes and increased up-
take of N in the light versus dark incubations indi-
cates N immobilization in the benthos by microphy-
tobenthos (MPB); alternatively, N may be removed
by denitrification. At the clam beds, low DIC release
relative to NH,* reflects the high rate of N recycling
in the benthos and suggests low rates of denitrifica-
tion and/or a lack of MPB uptake. High sulfide accu-
mulation in the clam bed porewater may inhibit nitri-
fication coupled to denitrification (Joye & Hollibaugh
1995), further enhancing NH,* release to the water
column. However, release of NO,, albeit at low rates,
at both the clam and bare sites suggests that nitrifica-
tion may be occurring at low rates. Another potential
source of NO, at the clam beds is subterranean
groundwater discharge through the sandy sediments
(Reay et al. 1992, Stanhope et al. 2009), which is in-
cluded in this in situ experiment. Benthic chlorophyll,
typically lower at the clam beds than the bare sites,
suggests less MPB, potentially due to shading by the
nets and macroalgal mats or due to increased grazing
by clams under the nets (Sauriau & Kang 2000, Cog-
nie et al. 2001, Secrist 2013). When macroalgae were
included at the clam beds, the DIC:NH,* of the fluxes
increased to 23.7, with a higher ratio in the light com-
pared to the dark, indicating the significant role
macroalgae play in modulating N released from the
clam beds.

Cultivated clam beds support
macroalgal production

The dominant macroalgae on clam nets in Cherry-
stone Inlet, the ephemeral, opportunistic Gracilaria
spp., have a high capacity to intercept nutrients
sourced from the clam sediments: benthic NH,*
efflux was reduced by 20-77 % and SRP efflux by up
to 43 %. Other studies have similarly reported that
macroalgae effectively assimilate nutrients fluxing
from sediments, temporarily sequestering them in
their tissue (i.e. McGlathery et al. 1997, Sundback et
al. 2003, Hardison et al. 2011). As macroalgae are not
long-lived, this nutrient storage is only temporary
and macroalgal biomass rapidly decays upon senes-
cence, releasing inorganic and organic nutrients
back to the water column (Tyler et al. 2001, Hardison
et al. 2010).
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By enhancing nutrient recycling, clam beds in
Cherrystone Inlet serve as an important internal
source of nutrients to primary producers within the
system. Others have similarly found bivalves to
greatly influence the availability of sediment-derived
nutrients to benthic and pelagic producers (Doering
et al. 1986, Asmus & Asmus 1991, Giles & Pilditch
2006). In natural clam-dominated systems, nutrient
fluxes from M. mercenaria beds can exceed phyto-
plankton net demand for N and P (Murphy & Kremer
1985). In Cherrystone Inlet, we found that the clam
aquaculture sediments provided 58 to 122% of the
macroalgal N demand. The percent of macroalgal N
demand supplied by the benthos exceeds estimates
reported in nearby systems (27 to 75%; Tyler et al.
2003), which rely more on external nutrient loading.

The relative importance of clam aquaculture as an
internal nutrient source to the system was assessed
by comparing the total NH,* released from all the clam
beds in Cherrystone Inlet to the external watershed
load, estimated at 29838 kg N yr~! (Kuschner 2015).
According to the Virginia Marine Resources Com-
mission, while the entire embayment is leased for
shellfish aquaculture, only some of the leases are
active. Based on actual coverage of clam aquaculture
in Cherrystone Inlet of 181008 to 476 048 m? (esti-
mated using aerial photographs taken in 2012 and
GIS delineation; Emery 2015), we found that the total
NH,* released from clam operations (without macro-
algal uptake) is 38 to 99.8 % that of the N load from
the watershed. Therefore, this considerable amount
of N recycled in the benthos fuels autotrophic pro-
duction. Not only do cultivated clam beds provide
nutrients, the shallow nets serve as a convenient
structure for macroalgal attachment in close proxim-
ity to the nutrient source, allowing them to outcom-
pete other primary producers (i.e. phytoplankton,
benthic microalgae, and submerged aquatic vegeta-
tion) for nutrients, light, and space.

The 'bottom-up’ influence of clam aquaculture on
macroalgal production is certainly site-specific and
dependent on a number of environmental factors
such as external nutrient loading, residence time,
and depth. For example, nutrient regeneration facili-
tated by bivalve aquaculture is likely more conse-
quential in pristine systems with low external nutri-
ent loading such as Cherrystone Inlet than in systems
where allochthonous sources dominate. Additionally,
the source of phytoplankton filtered by cultivated
bivalves determines whether the nutrients regener-
ated in the benthos represent those already existing
in the system or originating outside the system. If the
residence time of the system is short, the particulate

nutrients (i.e. phytoplankton) subsidizing bivalve
growth are likely sourced from outside the system
(e.g. the Chesapeake Bay) and delivered by incom-
ing tides. If bivalves feed primarily on externally pro-
duced phytoplankton, the bivalves facilitate the re-
generation of nutrients that would not be present if
cultivation were not there.

Macroalgae have a high capacity
to sequester N

Unlike natural systems, macroalgal biomass on cul-
tivated clam nets is controlled by aquaculture man-
agement practices, specifically the frequency of net
sweeping. Nets are regularly cleaned to prevent de-
trimental effects on the clams due to decreased water
flow as macroalgae accumulate. If the aquaculturists
sweep the nets often enough to prevent density-
dependent limitations of macroalgal production and
N uptake (i.e. self-shading, competition for nutrients,
etc.), it can be assumed that the macroalgae grow at
optimal rates given the water temperature. Based on
our estimates of seasonal macroalgal N demand, the
number of clam beds (approx. 700, each 72 m?)
within the studied farm, and assuming negligible N
uptake in the winter months, macroalgae have the
capacity to assimilate approx. 3652 kg N yr~! on this
single farm, an amount equivalent to 116 % of the
annual NH,* released from the clam operation if no
macroalgae were on the nets (3158 kg N yr™!) and
assuming negligible release in the winter months
from the clam sediments. Notably, macroalgal pro-
duction rates and hence N uptake rates are likely
overestimated as macroalgal C exudation, which
could range from 0.5 to 40% of the total C fixed
(e.g. Khailov & Burlakova 1969, Tyler & McGlathery
2006), was not included in the calculation. Addition-
ally, losses due to grazing and detachment/floating
away were not taken into account. Nonetheless,
given this high ability of macroalgae to intercept and
temporarily sequester nutrients from the clam beds,
harvesting the macroalgae could remove a signifi-
cant amount of N from the system, decreasing the
local nutrient input of the clam operation.

Though IMTA has generally been used to refer to a
cultivation approach in which a fed species (finfish) is
grown in combination with an organic extractive spe-
cies (bivalves) and an inorganic extractive species
(macroalgae) (Troell et al. 2009), to the extent that
cultured clams in Cherrystone Inlet are serving to
concentrate nutrients from a broader area, many of
the same principles should apply. To develop an effi-
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cient IMTA program in which clams and macroalgae
are harvested concurrently, additional research is
needed to determine how macroalgal growth rates
differ across the farm and due to aquaculture man-
agement practices (i.e. net cleaning). The assumption
that the macroalgae grow at optimal rates on the
clam nets is most certainly an overly simplified real-
ity, which neglects density-dependent effects on
growth and N uptake. Macroalgal growth rates and
N demands are variable and strongly dictated by the
frequency in which the nets are swept. After the nets
are cleaned, growth rates will initially be low when
little macroalgal biomass is present, and then in-
crease as biomass accumulates. However, as the
macroalgal mats become thick, self-shading will
result in decreased growth rates and N demands.
More accurate measurements of macroalgal function
and nutrient uptake are required to develop best
management practices within an IMTA framework;
specifically the frequency of sweeping that optimizes
macroalgal nutrient sequestration while minimizing
negative effects of dense macroalgal mats on clam
growth.

Macroalgal harvest would benefit the ecosystem
by decreasing the risk of eutrophic conditions, partic-
ularly when macroalgae senesce and are mineral-
ized. However, a successful IMTA in Cherrystone
Inlet would require economic sustainability. In the
United States, macroalgae have a limited market,
making economic viability a challenge. Developing a
market for the macroalgae, which is a naturally mixed
species community, would likely be the largest chal-
lenge. However, possibilities exist; for example using
the material as fertilizer on agriculture fields, as a
carbon source for producing biofuel (Wei et al. 2013),
or as feed for poultry farms (Abudabos et al. 2013).
Clearly, many challenges would need to be addressed
prior to implementing IMTA; however, the potential
ecological benefit of harvesting the macroalgae
should serve as motivation.

Conclusions

Our data suggest bivalve aquaculture may pro-
mote local primary production by recycling nutrients
to the water column. The extensive clam cultivation
operations in Cherrystone Inlet serve a significant
role in nutrient cycling, altering the dominant pri-
mary producers. The clams filter particulate nutrients
(i.e. phytoplankton) from the water column; a portion
of this material is transformed to dissolved nutrients
and subsequently to particulate nutrients again, but

now in the form of macroalgae (Fig. 4). Although
macroalgae temporarily sequester nutrients from the
clam sediments, common management practice is to
clean the macroalgae off the predator-exclusion nets
and allowing them to drift away. The fate of these
macroalgae is likely microbial decomposition, which
releases the sequestered nutrients back to the water
column and may lead to hypoxic conditions in the
system. If macroalgae were harvested, a consider-
able amount of aquaculture-facilitated recycled N
would be removed from the system. The potential
ecological benefit in establishing an IMTA system in
which both clams and macroalgae are harvested
should be further assessed.
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Fig. Al. Continuous dissolved oxygen in the bottom water at the clam bed (black) and bare, uncultivated (gray) sites during
each 3 d experiment. Shaded boxes represent nighttime hours. Dissolved oxygen probes were placed approx. 5 cm from the
sediment-water interface and continuously monitored over the 3 d period
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