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The effects of variation in ionic levels on the stability and replication of two
bacteriophages (nt-1 and nt-6) host specific for the marine bacterium Beneckea
natriegens were examined. Monovalent cations influenced the adsorption of the
nt-1 but not the nt-6 phage; however, one-step growth studies showed that NaCl
was required for replication of both phage. The NaCl optimum for nt-1 produc-
tion was 0.25 M NaCl, the same as the growth optimum for B. natriegens.
However, the optimum for nt-6 production was 0.16 M NaCl. These NaCl optima
for host and phage are at estuarine rather than oceanic levels. The nt-1 phage
was better suited to replicate at NaCl levels typical of higher salinity areas (18-
35%q) and the nt-6 phage was better suited to replicate at lower salinities (5-
18%.). The nt phage were more resistant to low NaCl levels than their host
bacterium and appeared limited to marine waters by the lower survival salinity
of B. natriegens coupled with phage inactivation processes occurring in natural

estuarine waters.

Beneckea natriegens (4, 5) is a marine bacte-
rium originally isolated from salt marsh mud
(23) and grows extremely well in the laboratory
(9, 22). The metabolic (7, 10-12, 25) and respira-
tory capabilities of B. natriegens (18, 35-
38), as well as its characteristic marine require-
ment for sodium ions for protein synthesis and
growth, have been studied in detail (23, 24, 27-
30, 34). Bacteriophages active against B. natrie-
gens are widely distributed in coastal salt
marshes, where they appear to be abundant
and can be easily isolated (40). These phages
are limited to marine waters, and in estuaries
their distribution appears to be salinity depend-
ent (40).

B. natriegens and its phages provide a repre-
sentative marine system in which the influence
of environmental factors on the physiology of
these organisms can be determined in the labo-
ratory to provide a basis for explaining their
distribution in the field. In this study the ef-
fects of NaCl levels (most abundant salt in
seawater) on B. natriegens phage stability and
replication were examined as a possible means
of determining how salinity affects the dis-
tribution of these phages in marine waters.

(Portions of this work were presented at the
74th Annual Meeting of the American Society
for Microbiology, May 1974. This work is part of

! Contribution no. 736, Virginia Institute of Marine Sci-
ence.

2 Present address: The Institute for Cancer Research, The
Fox Chase Cancer Center, Philadelphia, Pa. 19111.

a dissertation submitted to the School of Ma-
rine Science of the College of William and Mary
in partial fulfillment of the requirements for
the Ph.D. degree.)

MATERIALS AND METHODS

Isolation and enrichment. The methods of isolat-
ing bacteriophages of B. natriegens and preparation
of high-titer stocks were previously described (40).
Single phage isolates were obtained by stabbing
plaques with a sterile wire dipped in sterile medium
and inoculating enrichment cultures. The purity of
these isolates was checked by electron microscopy.

Host bacterium. B. natriegens was obtained from
the American Type Culture Collection (no. 14048).
The bacteria were grown on a rotary shaker at
150 rpm at 27 C. Cell density was determined by
measuring absorbance at 580 nm using a Spectronic
20 spectrophotometer (Bausch and Lomb), and con-
versions to cell numbers were made using a stan-
dard curve. Phage titers were determined by plaque
assay using the agar layer technique (2). Unless
otherwise stated, the underlayer consisted of nu-
trient agar (Difco) made with 15 to 18%. aged estua-
rine water (EW) collected from the York River
estuary in Virginia. The overlay consisted of 0.7%
agar (Difco) made with EW.

Growth media. Broth media containing the fol-
lowing nutrients (in grams per liter) were used:
nutrient broth (Difco), 10.0; peptone (Difco), 5.0; and
yeast extract (Difco), 2.5. These nutrients were
added to either EW or to a four-salts solution, which
contained 0.16 M NaCl, 3.8 mM KCl, 0.018 M

MgSO0,-7H,0, and 3.8 mM CaCl,-2H,0. These salt
levels approximated the values found in EW of 14%o
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(33). Atomic adsorption spectrophotometry showed
6.4 ug of Na* per ml in the distilled water used and
64 ug of Na* per ml when nutrients were added.

In experiments involving variation of the NaCl
levels, only the amount of NaCl was changed and
the other salts were kept at the same levels. The
highest NaCl value tested, 0.41 M, represented
oceanic salinity, 35%.. For most experiments the
media were sterilized by autoclaving; however, in
experiments where osmotica were used it was neces-
sary to filter sterilize (0.22-um pore size; Millipore
Corp.) the media used, including the controls. The
osmotica, either mannose (not utilized by B. natrie-
gens) or KCI, were added to low NaCl media to raise
the osmolarity to that of the 0.16 M NaCl four-salts
medium (430 mosmol). Osmolarity was checked in
all cases using an Osmette osmometer (Precision
Systems).

Host range. Bacterial cultures were kindly pro-
vided by R. R. Colwell and C. W. Vermeulen. The
bacteria were grown in four-salts nutrient medium
(4SN), and the agar used for platings and overlays
was also made using 4SN medium. Lawns of the
various bacteria were spotted with high-titer stocks
of the phages and then incubated at 27 and 37 C and
checked for clearing at 24 and 48 h.

Survival experiments. Phage dilutions were made
in 100 ml of the desired medium and stored at 20 C.
Periodically the titer was determined by plaque as-
say.

Plaque formation. The plaque-forming ability of
the phages was determined by plaque assay using
4SN medium of various NaCl concentrations. The
same medium was used for growth of the bacteria,
dilution of phage, and preparation of plates and
overlays. Noble agar (Difco) was used in these ex-
periments to reduce contamination with salts.
Plaques were counted at 24 and 48 h after incubation
at 27 C.

Adsorption. Host bacteria were grown to a den-
sity of 2 x 10 cells/ml in 4SN medium (0.16 M NaCl)
and then centrifuged (10,000 x g, 5 min, 4 C) and
washed with 4SN medium of the desired NaCl level.
Aliquots were then added to 50-ml flasks containing
10 ml of 4SN medium to give a final cell concentra-
tion of 10® cells/ml. Prior to addition of the host
bacteria, phage were added to the flasks at a multi-
plicity of infection of 1, with samples removed for
plaque assay. After addition of bacteria, the flasks
were incubated for 20 min at 27 C on a shaker at 100
rpm. The contents of the flasks were then centri-
fuged (10,000 x g, 5 min, 4 C), and the supernatants
were sampled and titered by plaque assay.

One-step growth. The procedure for one-step
growth experiments was similar to that of Kelln and
Warren (16). The host bacteria were grown to a
density of 2 x 10° cells/ml in 4SN medium of the
desired NaCl level. Phage were added at a multi-
plicity of infection of 0.05 to 0.1 and incubated for 20
min at 27 C at 100 rpm. A 1.5-ml aliquot was then
removed from the flask and filtered (0.45-um pore
size; Millipore Corp.), and then 0.5 ml of fresh me-
dium was passed through the filter (filtration effec-
tively eliminated unadsorbed phage, thus compen-
sating for the low adsorption observed for phage nt-6
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[Fig. 3]). The filter was then placed in 50 ml of 4SN
medium and agitated to resuspend the cells. A 0.1-
ml aliquot of resuspended cells was then placed in
99.9 ml of fresh medium and returned to the shaker
at 125 rpm. Where necessary, a second dilution was
made into another flask. The flasks were kept on the
shaker, and periodically samples were removed for
plaque assay. Unadsorbed phage were determined
by assay of chloroform-treated duplicate samples
removed at 25 to 30 min postinfection. For each
condition tested, at least three growth experiments
were conducted and results reported are mean val-
ues.

RESULTS

The nt-1 phage has a prolate, 120- by 70-nm
head and a 110-nm contractile tail (Fig. 1). The
nt-1 phage would therefore be grouped among
other T-even-like phages as a type A2 myovirus
(1). The nt-6 phage had an isometric 60-nm
diameter head and a short 40-nm tail with tail
appendages (Fig. 2). The phage resembled Sal-
monella phage P22 and would be classified as a
type C1 phage (1).

Specific ionic requirements for phage viabil-
ity have been proposed as a possible means by
which to distinguish marine phage from non-
marine phage (32). The results of studies on
inactivation of nt phage in various solutions did
not support this hypothesis. The nt-6 phage
titer decreased in pond water and distilled wa-
ter but not at low NaCl levels in 4SN. The nt-1
phage was stable in all solutions including
distilled water (Table 1).

Studies have shown that titers decrease
when marine phages are kept in untreated sea-
water; however, this phage inactivation can be
prevented by sterilization of the seawater (3).
The nt phage titers decreased when they were
incubated in freshly collected EW, but the ti-
ters remained stable in EW that had been steri-
lized by autoclaving or filtration (Table 1).

Early studies suggested that marine phage
might be more susceptible to inactivation'by
elevated temperatures than nonmarine phage
(32). The nt-1 phage was stable at temperatures
up to 37 C, showed a slow titer decrease (50%
after 20 days) at 50 C, and was rapidly inacti-
vated at 60 C (Table 2). The nt-6 phage was
more susceptible to thermal inactivation, show-
ing titer decreases at 37 C and rapid inactiva-
tion at 50 and 60 C (Table 2). Thermal inactiva-
tion occurs at about the same rate in many
nonmarine phage, especially after heating in
salt solutions, which apparently increases their
susceptibility to inactivation (2).

The nt-1 and nt-6 phage were host specific for
B. natriegens and did not replicate on any of the
alternate marine and nonmarine host bacteria
tested (Table 3). B. natriegens has been shown
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FiG. 1. Phage nt-1 negatively stained with 2% aqueous uranyl acetate. Bar, 100 nm.
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Fic. 2. Phage nt-6 negatively stained with 1.5% phosphotungstic acid (pH 7.2). Magnification is the same

as Fig. 1.
TABLE 1. Phage survival after incubation in various media at 20 C
PFU?¢ of nt-1 phage remaining (%) PFU of nt-6 phage remaining (%)
Solution
10days 30 days 60 days 120 days 10 days 30 days 60 days 120 days

4SN (0.16 M NaCl) 100 100 100 100 100 100 100 100
4SN (0.06 M NaCl) 100 100 100 100 100 100 100 100
Pond water 100 100 100 100 85 75 50 45
Distilled water 100 100 100 100 50 5 4 x 10~ 4 x 10*
Autoclaved EW 100 100 100 100 100 100 100 NO?
Filtered EW 100 100 100 100 100 100 100 NO
Untreated EW 14 12 11 NO 38 1 0.1 NO

2 PFU, Plaque-forming units.
® NO, No observation made.

TaBLE 2. Survival of phage diluted in 4SN medium (0.16 M NaCl) after incubation at varius temperatures

PFU" of nt-1 phage remaining (%)

PFU of nt-6 phage remaining (%)

Temp (C)
1h 2h 10h 20h 1h 2h 10h 20 h
5 100 100 100 100 100 100 100 100
27 100 100 100 100 100 100 100 100
37 100 100 100 100 100 70 50 49
50 100 92 67 50 50 49 4 0.4
60 8.3 x 10— TL® TL TL 0.3 0.03 TL TL

2 PFU, Plaque-forming units.
5 TL, Numbers too low for detection.
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TABLE 3. Host range of nt-1 and nt-6 bacteriophages

Lysis
Bacterium

nt-1 nt-6

Bacillus cereus - -
B. subtilis - -
Micrococcus luteus - -
Staphylococcus aureus - -
Sarcinia lutea - -
Escherichia coli B - -
E. fruendii - -
Klebsiella pneumoniae - -
Aerobacter aerogenes - -
Citrobacter freundii - -
Proteus mirabilis - -
Flavobacterium capsulatum - -
Pseudomonas aeruginosa - -
P. fluorescens - -
P. bathycetes - -
Vibrio marinus - -
V. parahaemolyticus (FC1011) - -
V. parahaemolyticus (SAK 3) - -
V. parahaemolyticus (SAK 4) - -
V. parahaemolyticus (341) - -
V. alginolyticus (157-70) - -
V. alginolyticus (163-70) - -
Beneckea natriegens + +

to have a specific requirement for the sodium
ion for protein synthesis (34). In 4SN medium a
medium of 0.06 M NaCl was required for
growth of B. natriegens and optimal growth
occurred at 0.25 M NaCl. These are the same
lower limit and optimum reported previously
by Payne (24). Since sodium ions are essential
for B. natriegens, studies were conducted to
determine the effects of various NaCl levels on
replication of the nt phage. The nt phage were
able to form plaques at values of 0.06 M NaCl or
greater, suggesting that phage replication can
occur at all NaCl values at which the host
bacterium can survive.

The first step in the phage replicative process
is adsorption of the phage to receptor sites on
the outer membrane of the host bacterium. Al-
though the nt-1 and nt-6 phage have the same
host, the adsorption characteristics of each
phage were quite different. Phage nt-1 adsorp-
tion was low at 0.06 M NaCl (8%) but rose
rapidly to 84% adsorbed as NaCl levels were
increased to 0.16 and 0.25 M NaCl and then
decreased slightly to 82% at 0.41 M NaCl (Fig.
3). Use of mannose, a neutral osmoticum, did
not improve phage nt-1 adsorption; however,
KCl], an ionic osmoticum, completely compen-
sated for NaCl (Table 4). Thus nt-1 phage ad-
sorption was dependent on the level of monova-
lent cations in the medium. In contrast, adsorp-
tion of phage nt-6, which was low (26%) at all
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Fi1c. 3. Percentage of nt-1 (®) and nt-6 (O)
phages adsorbed after 20 min in 4SN media of var-
ious NaCl concentrations at 27 C.

TABLE 4. Phage nt-1 adsorption in 4SN media and
4SN media supplemented with osmotica®

nt-1 phage adsorbed after 20 min (%)

NaCl (mol)
Control Mannose added KCI added
0.06 24 30 84
0.08 47 41 85
0.16 82 NO NO

2 Either KCl or mannose was added to raise osmo-
larity of 0.06 or 0.08 M NaCl 4SN media to that of
0.16 M NaCl medium (430 mosmol). The media were
filter sterilized. NO, No observation made.

NaCl'levels tested, appeared to be independent
of ionic levels (Fig. 3).

The one-step growth technique provided a
means of quantitation of the effects of varia-
tions in ionic levels on phage replication. Repli-
cation of both phage varied with changes in the
NaCl concentration, and the effects on replica-
tion were reflected in changes in both latent
period and burst size (Tables 5 and 6). Since
burst size and latent period varied with the
NaCl levels, in comparing experiments, it was
convenient to use the rate of phage synthesis
(plaque-forming units per cell per minute of
latent period) obtained by dividing the burst
size by the latent period for each one-step
growth experiment (Tables 5 and 6; Fig. 4). The
effect of varied NaCl levels was different for
each of the phages, and each had a different
NaCl optimum for phage synthesis. The syn-
thesis of nt-1 phage in response to various NaCl
levels paralleled the growth of its host bacte-
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TABLE 5. Effects of NaCl levels on nt-1 phage

production®
. Rate (PFU/
Latent pe-  Burst size R
NaCl (mol) N : cell/min of la-

riod (min)  (PFU/cell) tent period)
0.06 90 12 0.13
0.08 90 112 1.24
0.16 60 321 5.35
0.20 53 413 7.8
0.25 45 520 11.60
0.33 50 522 10.45
0.41 50 511 10.20

2 These one-step growth experiments were con-
ducted at 27 C in autoclaved 4SN media of varied
NaCl concentrations. PFU, Plaque-forming units.

TABLE 6. Effects of NaCl levels on nt-6 phage

production®
. Rate (PFU/
Latent pe-  Burst size A
NaCl moD o4 (min)  (PFU/cell) ﬂ',’:t“;r‘:ﬁ?
0.06 90 300 3.33
0.08 67-75 605 8.52
0.13 60 609 10.20
0.16 55 610 11.50
0.20 57 552 9.80
0.25 60 499 8.32
0.33 60 311 5.20
0.41 60 311 5.20

2 These one-step growth experiments were con-
ducted at 27 C in autoclaved 4SN media of varied
NaCl concentrations. PFU, Plaque-forming units.

pfu/cell /minute latent period

T T T 1

T T T
o 05 10 15 20 25 30 35 40 45
MOLARITY OF NaCL

Fi1c. 4. Rate of nt-1 (O) and nt-6 (®) phage pro-
duction (plaque-forming units per cell per minutes of
latent period) based on one-step growth experiments
at 27 C in 4SN media of various NaCl concentra-
tions.

rium at various NaCl levels. The rate of nt-1
synthesis was lowest at 0.06 M NaCl and in-
creased as NaCl levels increased, reaching a
maximum rate at 0.25 M NaCl. At NaCl levels
above this maximum, minor decreases occurred
in the rate of nt-1 synthesis (Fig. 4). Phage nt-6
production was maximal at 0.16 NaCl, a value

ECOLOGY OF MARINE BACTERIOPHAGES

419

less than optimal for growth of its host or the
nt-1 phage. Of particular interest is the obser-
vation that nt-6 phage production was greater
than nt-1 phage production at values between
0.06 and 0.20 M NaCl, and at higher NaCl
values (0.22 to 0.41 M NaCl) nt-1 production
was greater than nt-6 phage synthesis (Fig. 4).

For both phages, osmotica only partially
compensated for NaCl in respect to phage pro-
duction. The ionic osmoticum, KCl, was more
effective then the neutral osmoticum, mannose
(Tables 7 and 8). A similar compensation effect
of K* iohs for Na* ions has been observed in
growth of the host bacterium, B. natriegens
(34).

DISCUSSION

Obligately marine phages occur only in estu-
arine and oceanic environments, which implies
that they can survive and replicate at “in situ”
conditions of their marine habitat. Replication
also implies the presence of a marine host bac-
terium with characteristic ionic requirements,
especially a specific need for Na* ions at marine
levels (19, 20). Similar ionic requirements have

TABLE 7. Phage nt-1 phage production in 4SN
media and 4SN media supplemented with osmotica®

Rate of phage

. Latent pe-  Burst size synthesis (PFU/
Medium o4 (min)  (PFUJcell) cell/min of la-
tent period)
0.16 M NaCl 45 750 16.7
0.08 M NaCl 80 40 0.5
0.08 M NaCl 85 95 1.1
+ mannose
0.08 M NaCl 60 430 7.2
+ KCl

@ Either mannose or KCl was added to 0.08 M NaCl 4SN
media to raise osmolarity to a level of 0.16 M NaCl 4SN
meidum. The media were filter sterilized. PFU, Plaque-
forming units.

TABLE 8. Phage nt-6 production in 4SN media and
4SN media supplemented with osmotica®

Rate of phage
. thesis
. Latent pe-  Burst size syn .
Medium y d (PFU/cell/min
riod (min)  (PFU/cell) of latent pe-
riod)
0.16 M NaCl 60 1,655 27.6
0.06 M NaCl 90-95 520 5.6
0.06 M NaCl 70 712 10.2
+ mannose
0.06 M NaCl 60 1,000 16.7
+ KCl

2 Either mannose or KCI was added to 0.06 M NaCl 4SN
media to raise osmolarity to a level of 0.16 M NaCl 4SN
medium. The media were filter sterilized. PFU, Plaque-
forming units.
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also been indicated for marine phage replica-
tion (13, 17, 32, 39).

The nt-1 and nt-6 phages were obligately ma-
rine in that they could only be isolated from
marine waters (40); they were host specific for
B. natriegens, a marine bacterium and could
replicate at conditions approximating those of
their habitat; and replication was clearly NaCl
dependent.

Study of marine bacteriophages has shown
that, contrary to earlier suggestions, these
phage have physical characteristics such as
morphology, ionic requirements for stability,
and thermal inactivation that are similar to
phage of nonmarine origin (6, 13, 15, 17, 31).
This same observation was made for the nt
phage (Fig. 1 and 2; Tables 1 and 2). This simi-
larity in the physical characteristics of phage
from varied environments likely reflects the
resistant nature and resultant reduced suscep-
tibility of extracellular virions to selection by
environmental factors. Physical characteristics
of phage therefore seem useful for relating sim-
ilar phage types rather than distinguishing
phage from different environments.

During replication, the phage-infected cell
represents a stage in the phage life cycle that is
most susceptible to the selective influences of
environmental factors. As a result, the criteria
that have proved most useful in distinguishing
marine from nonmarine phages were the physi-
ological characteristics of phage replication, es-
pecially with respect to factors important in
their environment (14, 17, 39).

B. natriegens phage replication was possible
at NaCl levels of 0.06 M or greater, and phage
production varied with the NaCl level of the
growth medium. The nt-1 phage production
was maximal at 0.25 M NaCl, the host’s growth
optimum. In contrast, nt-6 phage production
was greatest at 0.16 M NaCl, a value less than
the host cell optimum (Fig. 3; Tables 5 and 6).
Expression of the phage genome after infection
can change the physiological properties of the
host cell and can therefore effect the ecology of
the phage. The differences in synthetic abilities
of nt-1 and nt-6 phage-infected cells at various
NaCl levels raises the possibility of natural
selection based on salinity, since these phage
compete for the same host cells in estuarine
waters characterized by fluctuating salinities
(41). The nt-1 phages were better able to repli-
cate at NaCl levels typical of higher salinity
areas (18 to 35%.), whereas the nt-6 phages
replicated better at NaCl levels typical of lower
salinity areas (5 to 18%.; Fig. 3). Adsorption of
nt-6 phage was lower than nt-1 adsorption at
all NaCl levels, except those typical of low
salinities (~5%o0) where nt-1 phage adsorption

AppL. ENVIRONMENT. MICROBIOL.

was severely reduced (Table 4). Thus the selec-
tive advantage of phage nt-6 at lower salinities
is further enhanced by the effect of ionic levels
on nt-1 phage adsorption. Field data showed
that the nt-6 phage was only isolated from
lower salinity areas of the York River estuary
(1 to 18%o), whereas the nt-1 phage was iso-
lated from stations over the entire salinity
range (40). This was consistent with the
hypothesized selection on the basis of salinity;
however, natural situations are highly complex
and other factors also appeared to favor the
wide distribution of the nt-1 phage (A. Zachary,
manuscript in preparation).

In the York River estuary of Chesapeake
Bay, nt phages were present in all areas with
salinities of 8%o or greater, their presence was
sporadic in areas with salinities fluctuating be-
tween 1 and 7%, and they were not present in
freshwater areas (40). The transitional salini-
ties between 1 and 7%. indicated the lower
survival salinity range for the phage. This sal-
inity range includes 0.06 M NaCl, roughly the
value expected at about 5%o salinity, which
was the lower NaCl limit for B. natriegens
survival and phage plaque formation. The nt
phage themselves were not inactivated by NaCl
levels in this range and were viable at ionic
conditions in which their host could not survive
(Table 1). The absence of nt phage in low salini-
ties therefore appears to be controlled by the
lower NaCl limit of B. natriegens coupled with
phage inactivation processes which occur in
natural estuarine water. In areas of salinity too
lew for survival of B. natriegens, the phage
cannot replicate, and their numbers would be
reduced below detectable levels by natural in-
activation processes. In areas where salinities
are high enough for host cell survival, phage
replication can occur, allowing replenishment
of phage lost by inactivation and thus main-
taining phage levels at detectable levels.
Ahrens (3) reported that in the Kiel Bay estu-
ary the numbers of Agrobacterium phage de-
creased as salinity fell below 8%o, the lower
survival salinity of the host bacterium, and
laboratory studies showed that the Agrobac-
terium phage were inactivated when agitated
in untreated EW. The mechanism by which
phage are limited to marine waters by salinity
appears to be similar for these two different
marine phage host systems.

B. natriegens and its phage were isolated
from estuarine and coastal areas (23, 40), and
both host bacterium and phage-infected cells
showed maximum synthetic ability at NaCl
levels typical of estuarine water (14 to 21%o0)
rather than oceanic waters (35%o). Vibrio para-
haemolyticus, a marine bacterium taxonomi-


http://aem.asm.org/

VoL. 31, 1976

cally closely related to B. natriegens (4, 5), has
a NaCl growth optimum quite similar to B.
natriegens, i.e., at estuarine levels (26). Exten-
sive study of the distribution of V. para-
haemolyticus in the Chesapeake Bay and At-
lantic coastal waters have shown that this
bacterium is present only in estuarine waters
(8). Vibrio marinus, a marine bacterium
isolated from oceanic waters, has a NaCl
growth optimum at levels representative of the
higher salinities of its oceanic habitat (21). It
appears that a relationship may exist between
NaCl growth optima and environmental salini-
ties, which reflects the selective influence of
salinity on these marine bacteria. However, the
ecology of marine organisms cannot be ac-
counted for by the effects of salinity alone; other
factors are involved, and their effects must also
be considered.
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