3

% WILLIAM & MARY
CHARTERED 1693 W&M ScholarWorks

VIMS Articles Virginia Institute of Marine Science

9-14-2002

Differences in the biological carbon pump at three subtropical
ocean sites

S Neuer

R Davenport
T Freudenthal
G Wefer

O Llinaus

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles

6‘ Part of the Environmental Sciences Commons, and the Oceanography Commons

Recommended Citation

Neuer, S; Davenport, R; Freudenthal, T; Wefer, G; Llinaus, O; Rueda, MJ; Steinberg, Deborah K.; and Karl,
DM, "Differences in the biological carbon pump at three subtropical ocean sites" (2002). VIMS Articles.
1413.

https://scholarworks.wm.edu/vimsarticles/1413

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M
ScholarWorks. For more information, please contact scholarworks@wm.edu.


https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/191?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/vimsarticles/1413?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1413&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Authors
S Neuer, R Davenport, T Freudenthal, G Wefer, O Llinaus, MJ Rueda, Deborah K. Steinberg, and DM Karl

This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/1413


https://scholarworks.wm.edu/vimsarticles/1413

GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 18, 1885, doi:10.1029/2002GL015393, 2002

Differences in the biological carbon pump at three subtropical

ocean sites

Susanne Neuer,! Robert Davenport,2 Tim Freudenthal,” Gerold Wefer,> Octavio Llinas,’
Maria-Jose Rueda,® Deborah K. Steinberg,4 and David M. Karl®

Received 27 April 2002; revised 6 June 2002; accepted 11 June 2002; published 25 September 2002.

[1] We report primary production of organic matter and
organic carbon removal from three subtropical open ocean
time-series stations, two located in the Atlantic and one in the
Pacific, to quantify the biological components of the oceanic
carbon pump. We find that within subtropical gyres, export
production varies considerably despite similar phytoplankton
biomass and productivity. We provide evidence that the
removal of organic carbon is linked to differences in nutrient
input into the mixed layer, both from eddy induced mixing
and dinitrogen fixation. These findings contribute to our
knowledge of the spatial heterogeneity of the subtropical
oceans, which make up more than 50% of all ocean area and
are thought to spread in the course of CO,- induced global
warming. INDEX TERMS: 4806 Oceanography: Biological and
Chemical: Carbon cycling; 4845 Oceanography: Biological and
Chemical: Nutrients and nutrient cycling; 4863 Oceanography:
Biological and Chemical: Sedimentation. Citation: Neuer, S., R.
Davenport, T. Freudenthal, G. Wefer, O. Llinds, M.-J. Rueda, D. K.
Steinberg, and D. M. Karl, Differences in the biological carbon
pump at three subtropical ocean sites, Geophys. Res. Lett., 29(18),
1885, doi:10.1029/2002GL015393, 2002.

1. Introduction

[2] Due to their global dominance and unexpectedly high
export of biogenic carbon, the subtropical gyres of the
world ocean are now recognized as critical regions for
understanding the role of the ocean in the regulation of
atmospheric CO, [Emerson et al., 1997 and 2001]. In
addition to the physical exchange of CO, at the sea surface
coupled to ocean circulation processes (solubility carbon
pump), the photosynthetic fixation of CO, by phytoplank-
ton and subsequent gravitational transport of living and
former living particulate matter to the ocean’s interior (bio-
logical carbon pump) plays an important role in regulating
global CO, on longer time-scales [Falkowski, 1997]
because of its susceptibility to climatic change [e.g., Kar/
et al., 2001a]. The importance of the subtropics in the
biologically mediated carbon export has recently emerged
despite their relatively low primary productivity [Emerson
et al., 2001]. Not surprisingly, the paradigm shifts about the
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role of the subtropics in the biological pump have emerged
from the analysis of time-series data, such as the compara-
tive analyses of the US Joint Global Ocean Flux Study
(JGOFS) time-series sites near Hawaii (Hawaii Ocean
Time-series, HOT; station ALOHA) and Bermuda (Ber-
muda Atlantic Time-series Study, BATS) [Michaels et al.,
2001; Karl et al., 2001b]. Here we compare the carbon and
nutrient biogeochemistry of a relatively young time-series
site located in the eastern subtropical North Atlantic gyre,
the European Station for Time-series in the Ocean, Canary
Islands (ESTOC) to its sister station in the western sub-
tropical North Atlantic gyre, BATS, and to the subtropical
Pacific time-series station ALOHA. The analysis of the
annual cycles of nutrient dynamics, primary and export
production indicate that primary production and surface
chlorophyll alone are insufficient to constrain the amount
of carbon export in the subtropical ocean.

2. Methods

[3] The Hawaii Ocean Time-series station ALOHA
(22°45'N, 158°W, 4800 m water depth, http://hahana.soest.
hawaii.edu) and BATS (31°50'N, 64°10'W, 3200 m water
depth, http://www.bbsr.edu) sites were initiated in 1988
[Karl et al., 2001b; Steinberg et al., 2001]. The ESTOC
(29°10'N, 15°30'W, 3600 m water depth, http://www.
pangaea.de/Projects/ESTOC, http://www.iccm.rcanaria.es/)
is located 100 km north of Gran Canaria and Tenerife
in the Canary Current, a weak eastern boundary current of
the Subtropical North Atlantic gyre. The monthly sam-
pling program at ESTOC was initiated in 1994, and
estimates of primary and export production have been
obtained since 1996 [Llinds et al., 1999].

[4] In-situ "*C uptake method was applied at HOT and
BATS. At ESTOC, '*C uptake incubations could not be
carried out for logistical reasons, instead, a bio-optical
model was applied to in situ chlorophyll and temperature
determined on monthly sampling cruises (assuming 50%
cloud cover) [Davenport et al., in press]. When compared to
in situ application of the '*C uptake method conducted
during one cruise at ESTOC (Oct. 1999), both methods give
comparable production rates within 10—-20% [Davenport
et al., in press].

[s] Shallow particle flux was determined with surface
tethered traps in 200 m (ESTOC, BATS) and 150 m depth
(HOT). Traps were designed according to Knauer et al.
[1979] and at ESTOC modified by integrating four cylin-
ders in one larger one to increase sample size. Zooplankton
that had entered the traps live were removed on a dissecting
scope before sample processing. In addition, AQUATEC
time-series traps moored in 500 m water depth were used to
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Figure 1. Comparison of mixed layer depth (upper curve;

depth at which density oy exceeds surface value by 0.125)
and integrated nitrate concentration (lower curve) for
ESTOC and BATS (a) and HOT (b). Note the three orders
of magnitude change in scales for nitrate concentration
between the ESTOC/BATS and HOT data sets.

determine sinking particle flux at ESTOC [Neuer et al., in
press]. Trap data were extrapolated to 150 m according to
Martin et al. [1987].

3. Results and Discussion

[6] Hydrography and concentrations of dissolved nitrate
plus nitrite (in the following called ‘nitrate’) differed con-
siderably in the upper water columns of the three time-series
stations. Winter mixing at BATS reached much deeper than
at either ESTOC (150 m to >250 m compared to 100—150
m, Figure 1a) or HOT (about 100 m, Figure 1b). Measurable
(>30 nM) nitrate in the mixed layer was only found during
wintertime mixing events at the North Atlantic stations
(Figure la). Due to the implementation of high sensitivity
(1 nM detection) measurement techniques at the subtropical
Pacific site, nitrate is measurable year round at station
ALOHA but the maxima in winter are two to three orders
less than at the other two sites (Figure 1b).

[7] Annually integrated net primary production (PP) was
nearly identical at all three sites (Table 2), with slightly
lower mean values at ESTOC (Table 1). The major differ-
ence is in the C-export (Ep,., Figure 2a, Table 1). At HOT
and BATS, yearly integrated C-export was approximately
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1 mol C m 2 yr ' (Table 2). By comparison, at ESTOC
C-export was only about 20% of this value, whether
determined by surface-tethered traps at 200 m or sediment
traps moored to the seabed at a reference depth of 500 m
(Tables 1 and 2). This results in a very similar annually
averaged export ratio (ER = Ep,./PP) at the Sargasso Sea and
the subtropical Pacific sites (0.07—0.08), but in a much
lower ratio (0.02) for the Canary Island station (Table 2).
This discrepancy is also substantiated when comparing the
seasonal variability of export ratios (Figure 2b).

[8] When averaged over appropriate spatial and temporal
scales, new production ( primary production that is based on
nitrogen supplied from outside the mixed layer) [Dugdale
and Goering, 1967] is equal to export production [Eppley
and Peterson, 1979]. Thus one expects that under steady-
state conditions, the ratio of new to total production ( f-ratio)
would be equivalent to ER [Berger and Wefer, 1990]. The
classical empirical models based on shallow trap samples
that cast the fratio or ER as an increasing, non-linear
function of PP [e.g., Martin et al., 1987; Pace et al.,
1987] produce ratios between 0.15 and 0.20 at 125 m for
the range of PP measured for the time-series stations and do
not reflect the observed differences; neither do models
relating f-ratio to available nitrate [Platt and Harrison,
1985] (see also calculations below) or temperature [Laws
et al., 2000] (according to this model, because of colder
surface water temperatures at ESTOC compared to BATS or
HOT, ER should be higher at ESTOC and in the range of
0.2—0.3). Thus other factors have to be considered that
determine the biological carbon export of the subtropical
gyres and that are not included in these models.

[9] Lower export production at ESTOC when interpreted
in a new production context, is indicative of a lower supply
of new nutrients into the productive euphotic zone. One
supply mechanism is provided by the deepening of the
mixed layer in winter (see Figure 1). An estimation of new
production based upon the draw down of each measurable
nitrate pulse in the mixed layer (Figure 1) for the three
stations and three years results in comparable estimates for
BATS and ESTOC (0.01—0.5 mmol N m 2 yr' and 0.06—
0.2 mmol N m 2 yr ', respectively) but values lower by
three orders of magnitude for HOT (0.3—0.6 pmol N m >
yr~1). The nitrate concentration in the mixed layer is a result
of both nitrate input and uptake; therefore these new
production estimates are conservative. But the comparison
does not explain the lower export ratios found for ESTOC,
nor is it consistent with the similarity of export ratios found
for HOT and BATS. Alternatively, mesoscale eddies, usu-
ally not adequately resolved by most standard sampling
programs, have been shown to supply a significant portion
of new nutrients in the Sargasso Sea, considerably more

Table 1. Mean, Standard Deviation (SD) of the Mean, Range and Number of Measurements (n) of Daily
Integrated Primary Productivity (PP, 0—150 m) and Export Flux (Epoc, 150 m) From the Three-Year Data Set of
Time-Series Stations BATS, HOT ('*C-method; surface tethered traps) and ESTOC (bio-optical model; shallow

moored/surface-tethered traps)

PPmgCm >d! Epocmg Cm 2d”!
BATS HOT ESTOC BATS HOT ESTOC
Mean + SD 536 + 139 472 £ 137 408 93 29.2 £13.8 28.9 £9.6 7.2 +4.6/5.1£2.7
Range 286-836 170-680 244-713 13-86 11-56 1-19/2-11
n 32 29 35 32 29 55/14
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Figure 2. (a). Seasonality of particulate organic carbon
flux (Epoc) determined at the three time-series stations with
surface tethered traps (ST) in 200 m (BATS and ESTOC)
and 150 m depth (HOT) for the three-year period 1996—
1998. For ESTOC, flux is also shown for moored trap at
500 m depth (MT). B. Seasonality of export ratios at the
three stations (see also Table 2).

than wintertime convection [McGillicuddy et al., 1999].
Oschlies and Garcon [1998] show that there are clear
differences in eddy-induced nitrate input between western
and eastern subtropical Atlantic with rates ranging from
0.2—0.5 mol N m~2 y~! for the Sargasso Sea and 0.01-0.1
mol N m 2 y~' for the Canary Islands location. The
Atlantic Ocean model estimates for nitrate flux into the
mixed layer are much higher than the nitrate input due to
wintertime convection by about three orders of magnitude
and emphasize the importance of this nutrient supply
mechanism for the subtropical oceans. We hypothesize that
this difference in associated nutrient input between the
Sargasso Sea and the Canary Island sites is large enough
to contribute to the observed differences in export ratio.
Quantification of mesoscale eddy activity has not been
conducted for the Pacific station, but recent field observa-
tions suggest that it may be an important nutrient source
[Letelier et al., 2000].

[10] Another significant source of new nitrogen in the
subtropical gyres of the world oceans is dinitrogen fixation.
Atboth HOT and BATS, nitrogen fixation has emerged as an
important process supplying 30% or more of new nitrogen to
the mixed layer [Gruber and Sarmiento, 1997], both based
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on biology and nutrient dynamics, [Karl et al., 2001¢c] and
molar ratios of dissolved inorganic nitrogen and phosphorus
higher than the classical Redfield ratio [Redfield et al., 1963]
of 16N:1P [Michaels et al., 1996; Wu et al., 2000]. Nitrogen
fixation has not been measured directly at ESTOC, but we
compared nutrient ratios of all three time-series stations
(Figure 3) to determine if there was evidence for nitrogen
fixation at the Canary Islands station. In contrast to BATS
and HOT, the nitrate:phosphate ratio conformed to the
expected Redfield ratio at ESTOC, providing an indication
that nitrogen fixation is not an important process for supply-
ing new nitrogen at the Canary Island station. Note that for
the Pacific site, Karl et al. [2001c] show a discrepancy
between the nutrient ratios of the inorganic and the much
larger dissolved organic nutrient pools; the N:P ratios of the
latter are above Redfield ratio, indicating an imbalance
between the nutrient pool available for primary production
and the photosynthetically-derived dissolved organic matter.

[11] Further evidence for the lack or low rates of nitrogen
fixation at ESTOC is obtained by the analysis of stable
nitrogen isotope ratios (6'°N) in the suspended and sinking
particulate pools. The particulate and dissolved nitrogen
pools stemmin% from nitrogen fixation has a low abundance
of >N (the 8"°N of atmospheric N, is 0); this has been
shown for HOT (value of 1.53%o for particulate matter
following summer export pulse) [Karl et al., 1997] and
BATS (suspended particles —0.2 £ 0.6%o; 0—100 m) [Alta-
bet, 1989]. In contrast, higher 6'°N values were measured at
ESTOC of 5.1%0 (suspended particles, 0—200 m, Sept
1998), 4.6%0 + 0.7%o (sinking particles collected with sur-
face tethered traps, 200 m, Feb. 1998—May 1999, n = 7),
and 4.2%o (sinking particles collected with moored traps,
500 m, Nov 1995—Sept 1997; Freudenthal et al., 2001),
close to the isotopic value of average seawater nitrate of 5%o.
Thus nitrogen isotope values and N:P ratio both indicate that
nitrogen fixation cannot be a dominant source of new
nitrogen for primary production at ESTOC. We hypothesize
that this lack at ESTOC of an otherwise notable source of
new nutrients is in part responsible for the low export ratios.

4. Conclusions

[12] The lower input of new nitrogen both by smaller
mesoscale eddy activity and lack of significant nitrogen
fixation at ESTOC may be characteristic of the eastern basin
of the subtropical North Atlantic as a whole, thus pointing
to a dichotomy of biological carbon pump efficiency in the
subtropical Atlantic. The comparison of the seemingly
similar subtropical ocean sites shows that a lower input of

Table 2. Yearly Integrated PP, Epoc and ER (Ep,./PP) for the Three Time-Series Stations

PP mol C m yr’l Epoc mol C m™2 yr’1 ER
BATS HOT ESTOC BATS HOT ESTOC* BATS HOT ESTOC®

1996 16.3 15.1 11.9 14 0.8 0.24/ 0.086 0.05 0.017
0.16

1997 13.3 13.3 12.0 1.3 1.2 0.16/ 0.098 0.092 0.013
0.16

1998 13.9 15.3 11.7 0.7 0.9 —-/0.20 0.050 0.06 0.017

AVG 14.5 14.6 11.9 1.1 1.0 0.2 0.078 0.068 0.016

#Shallow moored/surface tethered trap. Surface tethered trap value of 1996 and 1997 composite of both years.

®Mean of moored and surface tethered traps.
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Figure 3. Plot and linear regression of dissolved inorganic
phosphate versus nitrate measured for the three time series
stations for 1996—1998, 0—500 m for BATS and 0—-200 m
for HOT and ESTOC. Classical Redfield molar ratio of N:P
is 16:1 which is only approximated by nutrient ratios found
at ESTOC.

new nutrients does not result in lower primary production
per se but rather influences the removal efficiency (export
ratio) of biologically produced carbon into the ocean’s
interior. This study exemplifies the potential of long-term
open ocean time-series stations as test beds for hypotheses
and paradigms that shape our knowledge of the role of the
ocean biota in global climate change.
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