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ABSTRACT

The Ross Sea, Antarctica seasonal phytoplankton bloom is one o f the 
largest in the Southern Ocean. This project focuses on the biological pump, which 
removes carbon from the surface ocean to the deep ocean through the settling of 
particulate organic matter, the advection o f dissolved organic carbon, and active flux due 
to vertical migration o f zooplankton. The objective o f this study was to focus on three 
interrelated components o f the biological pump including sedimentation, photosynthetic 
rates and grazing. The study was conducted in coordination with the Interannual 
Variability in the Antarctic-Ross Sea program, which covered the time period between 
2001-2005. Simple, one-dimensional budgets were made using in situ nitrogen and silica 
concentrations and published climatologies. There was significant interannual and 
seasonal variability in phytoplankton bloom composition and concentrations o f organic 
matter. During February 2004, a large secondary bloom o f diatoms occurred, and nitrate 
removal was 8-fold higher than during other years in the study period. Principal 
components analysis was utilized to examine patterns in the large data set. Through 
visualization o f the loadings and scores o f the principal components, the primary controls 
o f  the concentrations o f biomass and organic matter were seasonality, phytoplankton 
community composition and temperature, which explained 68.1 % o f the variance o f the 
data set. There was also a significant negative relationship between the percent 
abundance o f Phaeocystis antarctica, a dominant phytoplankton group, and temperature. 
Vertical flux measurements at 200 m using sediment traps showed that fecal pellet carbon 
during certain periods (February 2004, 2005) represents a large percentage o f the total 
carbon flux from the surface, which suggests that mesozooplankton were actively grazing 
and packaging phytoplankton into sinking pellets. Photosynthesis/Irradiance 
measurements were the first to show that colonial P. antarctica may have higher growth 
rates early in the growing season, which may be one reason why large P. antarctica 
blooms occur earlier that diatoms. Lastly, preliminary results utilizing a novel 
fluorescently labeled algae technique showed colonial P. antarctica can be grazed by 
zooplankton and enter the food web before sedimentation.

ix
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The Biological Pump

Oceanic primary production accounts for nearly 50% o f the total global primary 

production. Phytoplankton in the open ocean account for ca. 80% of this marine 

production (Martin et al., 1987). These primary producers are part o f the biological pump 

which, is the principal biological regulator o f ocean-atmosphere carbon cycling. The 

biological pump removes carbon from the surface ocean to the deep ocean through the 

settling o f particulate organic matter, the physical mixing o f dissolved organic carbon, 

and active flux due to diel vertical migration (Longhurst and Harrison, 1989; Ducklow et 

al., 2001). The organic matter in the surface waters either enters the microbial loop and is 

remineralized in the surface or it sinks out o f  the surface waters through active grazing by 

zooplankton (fecal pellets or vertical migration) or sedimentation. The biological pump 

includes three interrelated processes that will be the focus o f this dissertation: primary 

production, export, and the role o f grazers in the acceleration o f  carbon flux to depth.

Nutrient sources such as nitrate and ammonium support this organic matter 

production. Primary production supported by regenerated sources o f nitrogen such as 

ammonium (N H /)  is considered to be regenerated production, while new production is 

the total primary production that is supported by nutrient sources that came from deeper 

water sources o f nitrate through mixing or upwelling (Dugdale and Goering, 1967). New 

production represents the carbon that is available for export and often is dominated by 

larger phytoplankton which, are more actively grazed by larger consumers and have 

higher sedimentation rates.
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The Ross Sea, Antarctica

The Ross Embayment stretches from 165° E to 155°W longitude and is located in 

the Pacific sector o f the Antarctic continent. The Ross Sea is characterized by having 

high levels o f biogenic production (Nelson and Smith, 1986), confined boundaries, and is 

located near McMurdo Station, a major Antarctic facility (DeMaster et al., 1992). The 

Ross Sea polynya (an area o f reduced ice cover surrounded by ice) has predictable 

phytoplankton blooms due to the physical properties o f  annual sea ice retreat and water 

stratification (Arrigo et al., 1999), with a seasonal chlorophyll maxima o f over 10-15 pg 

L' 1 (Smith et al., 2000). Ice is advected away from the Ross Sea Ice Shelf by katabatic 

winds, exposing surface waters and driving new ice formation (Smith and Gordon, 1997). 

Abiotic properties such as light, temperature, and dissolved nutrients control the primary 

production and regulate phytoplankton growth. This seasonal phytoplankton bloom is one 

o f  the largest blooms in the Southern Ocean, with spatial coverage o f ca. 187,000 km 2 

(Smith and Nelson, 1985; Comiso et al., 1993; Sullivan et al., 1993). Although 

interannual variability occurs in this region, seasonal effects have been suggested as 

being greater than interannual production cycles (Smith et al., 2000). Blooms in the 

southern Ross Sea are dominated by two taxa that are spatially distinct (Smith et al.,

1996): Fragilariopsis curta, a pennate diatom, dominating the coastal region and 

Phaeocystis antarctica , a colonial prymnesiophyte, dominating the south central region 

(Smith and Nelson, 1985; Arrigo et al., 1999). The reason for this gradient o f 

phytoplankton dominance is still unclear, but researchers have speculated that 

subnanomolar concentrations o f  iron in the Ross Sea might be limiting phytoplankton 

growth (deBaar et al., 1995).
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Phytoplankton ecology and bio geochemistry

Phytoplankton community composition in the Ross Sea has direct influence on 

vertical flux and element removal ratios (DeMaster et al., 1992; Smith and Dunbar, 1998; 

Arrigo et al., 1999; Smith et al., 2006). During the past 15 years, the biogeochemistry o f 

the Ross Sea has been intensively investigated by several large programs (e.g., Smith and 

Anderson, 2003), and the details o f the carbon, nitrogen and silica budgets are as well 

known as at any location in the Antarctic (Nelson et al., 1996; Sweeney et al., 2000a; 

Arrigo et al., 2003). In addition, satellite observations have provided both continuous 

observations on ice distribution and concentration, as well as estimates o f phytoplankton 

pigment concentrations (Comiso et al., 1993; Arrigo and McLain, 1994; Arrigo et al., 

2003).

Estimates o f net community production based on carbon budgets were first made 

by Bates et al. (1996), and others have made similar estimates or used nitrogen to 

estimate seasonal production and export (Smith and Asper, 2000, 2001; Sweeney et al., 

2000a,b). These annual estimates o f biomass production have resolved the magnitude o f 

the biogeochemical pathways during a single year. However, direct observations 

designed to assess interannual variability o f  net community production are unavailable to 

date.

The Southern Ocean is the largest high nutrient, low chlorophyll region in the 

world, with average nitrate surface concentrations o f 25 pM  (Fitzwater et al., 2000). 

Therefore, the vertical input o f nitrogen is not required to sustain growth (Smith and 

Dunbar, 1998). In order to completely understand biogeochemical cycling in the Ross 

Sea, a nitrogen budget for the surface layer is important. But, due to difficulties o f lateral
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advection, use o f discrete measurements, and elemental transformations, it is difficult to 

collect data on appropriate space and time scales (Smith and Asper, 2000). However, 

nitrification and denitrification are negligible during the summer in the Southern Ocean, 

so the nitrogen budget is somewhat simplified when compared to other marine systems. 

Therefore, changes in the pools o f nitrate can be simplified to changes in particulate 

nitrogen (PN), nitrite (NO 2 ), ammonium (NH£),  dissolved organic nitrogen (DON), and 

flux o f particulate nitrogen to depth (FPN) (Smith and Asper, 2000):

A NO^ = APN + AN 0  2  +A/VH4 +ADON +FPN (1)

Smith and Asper (2000) found that nitrite concentrations were low (mean= 0.037 

+ 0.025 pM; n=1407). Ammonium concentrations before the bloom were only ca. 5% o f 

the nitrogen pool. Using the simplified equation for the changes in pools o f nitrogen in 

the Ross Sea, Smith and Asper (2000) found that nitrate uptake by phytoplankton 

increased as the spring bloom developed and increased through early January. Previous 

measurements o f  nitrate in the Ross Sea in 1990 and 1992 in January and February 

ranged from 15.4 pM  to 26.4 pM  (Smith et al., 1996). These results are also supported 

by other studies in which phytoplankton blooms resulted in removal o f nutrients and 

carbon dioxide in the surface waters (Arrigo and McClain, 1994; Sweeney et al., 2000a). 

The role o f DON production was m inor with an increase o f  0.67 pM  over 75 days (Smith 

and Asper, 2000) which, is also supported by net changes in dissolved organic carbon 

concentrations (Smith et al., 1998). Species composition did not influence nitrogen 

inventories, but it was noted that species specific nitrogen uptake became less important 

since analysis was completed over seasonal time scales (Smith and Asper, 2000).
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Asper and Smith (1999) have found that the export o f material from the euphotic 

zone was coupled with the surface layer production and biomass. In addition, as the 

bloom o f Phaeocystis antarctica reaches its maximum biomass, aggregates form. Grazing 

is thought to have little influence on vertical flux in the Ross Sea when colonies o f 

Phaeocystis are present. Grazing on colonies and its effect on sinking rates due to fecal 

pellet production is complex and is affected by animal physiology and microbial 

colonization o f P. antarctica colonies (Bautista et al., 1992). Since primary productivity 

is often dominated by P. antarctica (Smith and Gordon, 1997), the export flux usually 

consists o f rapidly sinking colonies and aggregates. Although vertical flux rates 

increased in summer, vertical flux rate measurements by Asper and Smith (1999) found 

that there was a temporal uncoupling between phytoplankton productivity and biomass 

with export.

Diatoms

Globally, diatoms contribute disproportionately to organic matter export 

compared to primary productivity, primarily due to the fact that diatoms dominate in 

nutrient-rich systems where export is high and because o f their size and mineral 

ballasting (Buessler, 1998; Armstrong et al., 2002). In addition, their fate is influenced 

primarily to be grazed by meso- and macrozooplankton which, in turn package the 

diatoms into large fecal pellets (Nelson et al., 1996). Therefore, diatoms are a significant 

component o f the “biological pump”, in which CO2 is fixed, grazed, and transported to 

the deep ocean. During intense diatom blooms in the Ross Sea, the mean silica 

production rate can reach 38 mmol Si m '2 d' 1 (DeMaster et al., 1992). DeMaster et al. 

(1992) used a silica budget for the water/sediment column o f  the Ross Sea, and only
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5.8% of the opal produced annually was buried long-term in the sea-bed. The Ross Sea, 

therefore, is lower than the rest o f the Southern Ocean in overall preservation efficiency 

o f biogenic silica. Nelson et al. (199.6) noted that this was primarily due to the depth o f 

the Ross Sea being inadequate for breeding populations o f most euphausiids.

Phaeocystis antarctica

Large blooms o f the genus Phaeocystis occur worldwide, including in the Ross 

Sea, North Sea, Greenland Sea, Arabian Sea, and the Barents Sea (Lancelot et al., 1998). 

Colony development is sustained by new sources o f nitrate (deep convection) or 

anthropogenic sources (coastal areas), and there is a positive relationship between 

maximum chlorophyll a concentrations reached by colonies and nitrate reduction 

(Lancelot et al., 1998). Blooms o f the colonial prymnesiophyte, Phaeocystis antarctica, 

are known to dominate the central region o f the Ross Sea polynya (Smith and Gordon,

1997). Deep mixed layers in the Ross Sea have been suggested to sustain P. antarctica 

growth relative to diatoms (Arrigo et al., 1999), reflecting their ability to have greater 

photosynthetic rates at lower irradiances (Moisan and Mitchell, 1999). However, Smith 

and Asper (2001) found that mixed layer depths were not significantly different between 

stations dominated by diatoms and Phaeocystis dominated.

Three species o f  Phaeocystis, including P. antarctica, exist mainly as single, 

flagellated cells and as non- flagellated cells in colonies (Lancelot et al., 1998; Rousseau 

et al., 1994). Phaeocystis has a complicated and poorly understood life cycle. It is known 

that there are several life stages in which a motile cell with flagella can form hollow, 

spherical colonies with an effective spherical diameter greater than 1 mm, with active 

division o f the cells within the matrix (Mathot et al., 2000). During colony development,
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a clear and viscous sticky mucoid sheath is formed. The mucoid sheath functions as an 

organic matrix which is the basis o f the colony (Hamm, 2000). Although little is known 

about what environmental factors control colony formation and release o f solitary cells 

from colonies, inorganic nutrient concentrations have been speculated to influence the 

form o f Phaeocystis (Verity et al., 1988).

Photosynthesis/Irradiance experiments

Smith et al. (2003b) suggest that grazing might not be the only factor regulating 

the abundance o f solitary and colonial cells o f P. antarctica. Physiological differences 

might allow them to respond to varying environmental conditions. Solitary cells are 

significantly smaller than colony cells, with single cells measuring about 3.1 +_0-6 pm  

and colonial cells measuring 5.1 + 1.1 pm  (Mathot et al., 2000). Lancelot and Mathot 

(1985) also found that during the colonial stages o f other species o f Phaeocystis (P. 

pouchetii), that the mucous envelope acts as an intracellular reserve for the cells during 

the dark period. Therefore, part o f the carbon fixed by P. pouchetii colonies is allocated 

to extracellular carbon production (Lancelot and Mathot, 1985). Phaeocystis also 

acclimates to abrupt irradiance changes by xanthophyll cycling (Moissan et al. 1998), 

while increasing the amount o f  pigment per cell to adapt to low light levels. This 

adaptation makes Phaeocystis able to dominate polar regions due to “bottom up” controls 

(Moisan and Mitchell, 1991).

Photosynthesis and its relationship with irradiance is modeled through numerous 

equations. The most common is the Platt et al. (1980) equation which, follows the 

empirical relationship:

PB=PBs [l-exp(-<xE/PBs)] exp(-pE/PBs) (2)
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10

with the carbon fixation rate, P, normalized to chlorophyll (B). Three primary parameters 

o f photosynthesis are the maximum fixation rate without photoinhibition, PBS [(mg Chi 

a) '1 h '1], a  [mg C (mg Chi a) '1 h' 1 (pmol photons m'2 s '1)], the initial slope o f the light 

saturation curve, and (3, which, is the amount o f photoinhibition (Platt et al 1980). The 

photosynthetically active radiation or E (prnol m '2 s '1), is the independent variable. Two 

derived parameters from these variables are PBm (maximum carbon fixation rate) and Ek 

(adaptation parameter).

They are given by:

PBm = PBs ((a/(a+P)) * (p/ (a+p))|!/" (3)

Ek= P Bm /a. (4)

The photosynthesis/irradiance curve describes the non-linear relationship 

photosynthetic rates have with irradiance. There are three major regions o f the resultant 

curve in which photosynthesis responds to irradiance. In the first region (a), 

photosynthetic rates are linear with irradiance and the absorption o f photons is slower 

than the cells ability or capacity rate o f steady-state electron transport from water to 

carbon dioxide. When irradiance increases, irradiance and photosynthetic rates become 

non-linear and rise to saturation. This is because photon absorption being much greater 

than the steady-state electron transport from water to carbon dioxide in the second region, 

PBm. The third region (P) is a region o f reduced photosynthetic rates due to 

photoinhibition (Sakshaug et al., 1997).

Photosynthetic parameters o f  Ross Sea phytoplankton increased as the growing 

season progressed, thereby indicating a temporal acclimation to changing irradiances 

(van Hilst and Smith, 2002). Parameters ( a , , P, P Bm, and Ek ) o f both diatom dominated
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and Phaeocystis antarctica-dominated assemblages were compared, and it was concluded 

that phytoplankton community composition did not play a major role in regulating 

photosynthetic performance. At lower irradiances a  was higher, while values for Ek were 

lower in both field and lab studies cultures dominated by diatoms and Phaeocystis. 

Antarctic diatoms and P. antarctica are well adapted to low irradiances (van Hilst and 

Smith, 2002; Brightman and Smith, 1989). It is clear from these previous results that 

numerous environmental processes control phytoplankton dynamics in the Ross Sea 

including grazing, spatial and temporal variations, and micronutrient limitation. Polar 

environments exhibit variable chemical, physical, and biological processes, making it 

unlikely that a single process controls the dynamics o f a phytoplankton population (van 

Hilst and Smith, 2002).

Objectives

This study was designed to describe the interannual variability in phytoplankton 

bloom dynamics and their primary controls including sedimentation, photosynthetic rates, 

and grazing. Differences in biogeochemical cycling between austral spring and summer 

in the Ross Sea have been explored in great detail, but variations between years have not. 

By combining experiments on biological processes such as photosynthesis/irradiance 

experiments and grazing experiments with the investigation o f Interannual Variability in 

the Antarctic-Ross Sea (IVARS) program data, this dissertation describes how physical, 

biological, and chemical properties vary over time. These variations will not only 

influence nutrient budgets, but also the export o f organic matter. The following 

hypotheses are addressed:
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1. Interannual variations in net community production, nutrient uptake, and export 

will occur between years as a function of the magnitude and composition of the 

bloom. A series o f cruises was completed in the southern Ross Sea during 2001-2002, 

2003-2004, and 2004—2005. Nutrient data were collected from within transects o f largely 

ice-free regions, and simple, one-dimensional nutrient budgets were made using nitrogen 

and silica concentrations. From these budgets diatom and total phytoplankton net 

production were estimated and compared to the known distribution o f phytoplankton. 

Finally, export was calculated by a comparison o f the particulate matter distribution in 

the upper 200 m with that o f nutrient disappearance in order to contrast this estimate with 

those o f other years determined by either nutrient budgets or direct collections o f particle 

flux.

2. Hydrographic parameters including temperature will drive phytoplankton 

biomass, assemblage composition, and nutrient uptake in the early growing season 

of December 2001, 2003 and 2004. Principal components analysis was performed on 

three years o f the data set comprised o f  austral spring and summer data including 

dissolved nutrients (N,P,Si), size fractionated chlorophyll (>20, >0.7, and <20 pm), depth 

o f sample (0, 20, and 50 m), biogenic silica, particulate organic carbon, particulate 

nitrogen, temperature, and phytoplankton pigments. Interpretation o f these results helps 

explain the primary factors affecting phytoplankton bloom formation in austral spring.

3. Phytoplankton bloom composition (diatoms or Phaeocystis) will affect the export 

of carbon, biogenic silica, and nitrogen out o f the euphotic zone in the Ross Sea.

Two sediment trap moorings representing historically different biogeochemical regimes 

(diatoms and Phaeocystis) were deployed during 2003-2004 and 2004-2005. Interannual
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variations in total mass flux, biogenic silica, and particulate organic carbon were 

measured. The morphology o f fecal pellets and the role they play in sediment flux will 

also be discussed.

4. The solitary form of P. antarctica  will have higher rates o f carbon fixation than 

the colonial form due to the former’s ability to thrive during resource and light 

limitation. The relative photosynthetic potential o f solitary and colonial P. antarctica 

cells and mixed phytoplankton assemblages in December o f 2001, 2003, and 2004 is 

assessed in order to determine the magnitude o f interannual variability o f  photosynthesis 

in the Ross Sea. Further analysis o f  ancillary data provides details on how growth stage 

o f  the bloom may affect colonial P. antarctica photosynthetic rates. P. antarctica 

colonies dominate primary production in the Ross Sea and are critical to biogeochemical 

cycling.

5. Microzooplankton ingestion rates of solitary and colonial P. antarctica cells will 

not significantly differ due to the ability of microzooplankton to graze the colonial 

matrix. The main purpose o f this chapter was determine the relative ingestion rates o f 

solitary and colonial P. antarctica, and the drawbacks in using this method in the field 

will also be discussed. A novel dual staining method was developed in order to determine 

the feeding preference o f a ciliate, Euplotes from the Ross Sea. A pilot experiment was 

performed in order to address the ability o f Euplotes to ingest colonial P. antarctica. 

Assessments o f microzooplankton grazing o f colonial P. antarctica are important to the 

biological pump as blooms o f P. antarctica may enter the microbial food web in the Ross 

Sea as opposed to direct sedimentation o f colonies or single cells.
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ABSTRACT

During the past 15 years, investigations o f the biogeochemistry o f the Ross Sea 

have demonstrated that the Ross Sea as a whole is the most productive region in the 

entire Southern Ocean. The Ross Sea, like the rest o f the Antarctic, is characterized by 

extreme seasonal changes in physical, chemical and biological processes. This section 

reports the results o f a series o f cruises completed in the southern Ross Sea during 2001 - 

2002, 2003-2004, and 2004—2005. Nutrient data were collected from within transects o f 

largely ice-free regions, and simple, one-dimensional nutrient budgets were constructed 

using nitrogen and silica concentrations. I hypothesized that variations in nutrient 

dynamics and production would occur between years not only in terms o f both magnitude 

and composition o f the bloom, but also in the controlling mechanisms. Nitrate 

concentrations during the three years varied substantially, with resultant February nitrate 

concentrations in the surface layer in February 2004 (16.8 ± 2.1) significantly lower than 

February 2001 and 2005 (22.0 ± 1.7, 2001; 19.7 ± 1.9, 2005). The mean concentration o f 

silicic acid in February 2004 (45.8 ± 5.0) was also significantly less than in 2002 and 

2005 (65.4 ±  2.6, 2002; 66.2 ± 10.4, 2005). This suggests that removal o f  silicic acid in 

2001-2002 in spring was reduced relative to the long-term mean calculated from the 

historical climatology. The variations in relative nutrient uptake can be best explained by 

variations in phytoplankton species composition effects, but also are influenced by 

variations in Si/N uptake ratios. Export o f  biogenic material from the surface layer (200 

m), calculated by mass balance, also showed substantial differences among years. Annual 

nitrogen disappearance was 4-fold greater in 2003—2004 than for the entire season in 

2001-2002, although in spring the export was only 2.1-fold greater. W ater mass
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intrusions may have caused the large, secondary diatom bloom in 2003-2004. It is 

impossible to know if  the large diatom blooms observed in February 2004 will be a 

consistent feature in the future, but we do know that these diatom accumulations were 

much greater than was observed in studies conducted during the 1990s. Because 

phytoplankton species composition plays such a critical role in both food web structure 

and biogeochemical cycles, knowledge o f the primary controls o f  bloom formation is 

critical to our understanding o f energetic and elemental cycles o f  the Ross Sea.
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INTRODUCTION

Bio geochemistry o f the Ross Sea

During the past 15 years, the biogeochemistry o f the Ross Sea has been 

intensively investigated by several large programs (e.g., Smith and Anderson, 2003), and 

the details o f the carbon, nitrogen and silica budgets are as well known as any location in 

the Antarctic (Nelson et al., 1996; Sweeney et al., 2000a; Arrigo et al., 2002). In addition, 

satellite observations have provided both continuous observations on ice distribution and 

concentration, as well as estimates o f  phytoplankton pigment concentrations (Comiso et 

al., 1993; Arrigo and McLain, 1994; Arrigo et al., 2003). Direct estimates o f primary 

production (Smith and Gordon, 1997; Saggiomo et al., 1998) and o f vertical fluxes o f 

biogenic material (Dunbar et al., 1998; Asper and Smith, 1999; Collier et al., 2000; 

Accomero and Gowing, 2003) also have been made. These biomass and production 

measurements have demonstrated that the Ross Sea as a whole is the most productive 

region in the entire Southern Ocean. Annual productivity estimates exceed 200 g C m '2, 

and while not exceptionally great relative to the entire ocean, they are high when the 

length o f the growing season (ca. 120 days at most) is considered. Estimates o f net 

community production were first made by Bates et al. (1996) based on carbon 

budgets, and others have made similar estimates or used nitrogen to estimate seasonal 

production and export (Smith and Asper, 2000, 2001; Sweeney et al., 2000a,b). These 

annual estimates o f biomass production have resolved the magnitude o f the 

biogeochemical pathways during a single year. However, to date direct observations 

designed to assess interannual variability o f  net community production are unavailable.
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Ross Sea Hydrology

The physical forcing o f the Ross Sea structures the biogeochemical cycles o f the 

region. The generalized current pattern consists o f a strong current that follows the 

contours o f the shelf break; on the shelf, currents flow along the coast o f Victoria Land, 

and also form gyres that roughly follow the bathymetry (Jacobs and Giulivi, 1998; 

Dinniman et al., 2003). Cross-shelf exchanges with the Antarctic Circumpolar Current 

also occur at bathymetric discontinuities and result in the movement o f Modified 

Circumpolar Deep W ater (MCDW) onto the shelf. The MCDW waters are relatively 

warm and likely play a role in the maintenance o f  the Ross Sea polynya; however, the 

strength and duration o f these intrusions are unknown. Recently large icebergs have 

calved o ff the Ross Ice Shelf and grounded in various locations on the continental shelf.

In addition to altering the surface advection o f  ice (Arrigo et al., 2002), icebergs also 

have modified the currents for relatively long periods (years) (Dinniman et al., in press). 

The changes in currents, as well as the observed variations in ice cover (Kwok and 

Comiso, 2002) have the potential for creating marked variations in biological processes 

on a variety o f time scales.

The Ross Sea, like the rest o f the Antarctic, is characterized by extreme seasonal 

changes in physical, chemical and biological processes. Smith et al. (2000) showed 

distinct seasonal patterns in phytoplankton photosynthesis, production, growth and 

biomass, and that each variable was temporally uncoupled from the others. These authors 

concluded that seasonal patterns were significantly greater than interannual trends. 

Furthermore, phytoplankton growth appeared to be controlled by irradiance in spring and 

micronutrient concentrations in summer, whereas loss processes largely controlled
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biomass accumulation. No determination o f  the effects o f  phytoplankton species 

composition to losses or vertical flux was made.

Nutrient and pigment data for the Ross Sea have been compiled, and a monthly 

climatology o f nitrate, silicic acid and chlorophyll concentrations generated using 

objective techniques (Smith et al., 2003a). This climatology confirmed results from 

individual cruises suggesting that the major portion o f nitrate uptake occurred during 

austral spring, whereas most o f the silicic acid uptake occurred in summer (Nelson et al., 

1996; Smith and Gordon, 1997). Because all members o f  the phytoplankton community 

influence nitrate concentrations, but only diatoms m odify silicic acid levels, the seasonal 

patterns o f net community production can be roughly partitioned into major functional 

groups (that is, diatoms and Phaeocystis antarctica). It appears that the growth o f P. 

antarctica in the southern Ross Sea occurs in large part in the central portion o f the Ross 

Sea polynya, beginning in November and reaching a biomass maximumin late December. 

In contrast, diatom growth occurs both in the eastern and western sections near ice edges 

and is maximal in January and early February. Unfortunately, few seasonal data exist to 

adequately resolve the spatial and seasonal patterns suggested by the climatology. 

Objectives

This paper reports the results o f a series o f  cruises completed in the southern Ross 

Sea during 2001-2002, 2003-2004, and 2004-2005. For data collected during 2002-2003, 

see Smith et al. (2006). Nutrient data were collected from within transects o f largely ice- 

free regions, and simple, one-dimensional nutrient budgets were made using nitrogen and 

silica concentrations. From these budgets diatom and total phytoplankton net production 

were estimated and compared to the known distribution o f phytoplankton. Finally, export
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was calculated by a comparison o f the particulate matter distribution in the upper 200 m 

with that o f nutrient disappearance, in order to contrast this export estimate with those o f 

other years determined by either nutrient budgets or direct collections o f particle flux. I 

hypothesize that variations occur among years, not only in terms o f both magnitude and 

composition o f  the bloom, but also in the controlling mechanisms.

METHODS

Sample collection

W ater samples were collected from the southern Ross Sea during three field 

seasons (2001-2002, 2003-2004, and 2005-2006) in late spring (mid- to late December) 

and late summer (mid-February) using the USCGC Polar Star and RVIB N.B. Palmer. 

Station locations were part o f a transect that was roughly parallel to the Ross Ice Shelf, 

but were largely chosen to sample ice-free waters (Figure 1; Smith et al., 2006). Samples 

were collected using 10-L Niskin bottles mounted on a rosette frame which, also housed 

a SeaBird 911+ CTD and Chelsea fluorometer to collect continuous profiles o f 

temperature, salinity, and density during water sampling from discrete depths. Detailed 

methodology o f sampling depths and processing with a total o f 12 depths sampled to 200 

m is provided in Smith et al. (2006). Temperature, salinity and derived density data were 

binned into 1-m intervals, and mixed layer depths derived from the vertical distribution o f 

density (ZmiX was defined as the depth where oy changed by 0.1 units from a stable, 

surface value; Smith et al., 2000). Complete hydrographic data are available at 

http://www.vims.edu/bio/ivars/. Detailed information about ice concentration data is 

available at http://www.nsidc.org and Smith et al. (2006).
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Samples were collected for nutrients (nitrate+nitrite, silicic acid, phosphate), 

chlorophyll (size fractionated: >5 pm, >20 pm, and total), pigments, particulate organic 

carbon (POC), particulate nitrogen (PN), and biogenic silica (BSi). Samples (60 mL) for 

nutrients with elevated chlorophyll levels (those with approximately 1.0 pg l' 1 

chlorophyll a or more) were filtered through Gelman Acrodiscs (5.0 pm) and frozen at 

-80 °C for later analysis using standard, automated techniques. Chlorophyll samples were 

filtered through either polycarbonate (20 or 5 pm; Poretics) or Whatman GF/F filters, 

placed in 7 mL 90% acetone, and sonicated for 15 min. After extraction for at least 

another 15 min on ice in darkness, the filter was removed and the sample read on a 

Turner Designs M odel AU fluorometer before and after acidification. The fluorometer 

was calibrated before and after the cruise using commercially purified chlorophyll 

(Sigma) and checked using high-performance liquid chromatography. POC and PN were 

determined by filtering known volumes o f water through precombusted GF/F filters, 

rinsed with ca. 5 mL 0.0 IN  HC1 in seawater, and drying the filters in combusted glass 

vials at 60° C. Blanks were filters placed under the deep-water sample’s filter, and these 

filters were processed identically to the other samples. All filters were analyzed using a 

Carlo-Erba Model 254 elemental analyzer (Smith et al., 1996). Samples for biogenic 

silica were filtered through 0.6-pm Poretics polycarbonate filters, dried in plastic Petri 

dishes at 60 °C, and returned to the laboratory. The samples then were digested in NaOH 

at 100 °C for 40 min, neutralized and analyzed colorimetrically for reactive silicate on a 

dual-beam spectrophotometer (Brzezinski and Nelson, 1989). Contributions o f lithogenic 

Si to total BSi are small in the Ross Sea (1%; Nelson, unpublished) and were ignored.
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Samples for pigment analysis by HPLC were collected and analysis and data processing 

are described in detail in Smith et al. 2006.

Data analysis

The basic method we used to assess net community production is similar to that 

used by Bates et al. (1998), Smith and Asper (2000) and Sweeney et al. (2000a). Because 

two, discrete periods were sampled, the temporal dynamics o f nutrient uptake 

could be more completely assessed and related more closely to assemblage composition. 

Specifically, seasonal nitrate uptake (by removal from winter values) was related to net 

community production at each sampling by

where z is depth, and the subscripts m in and winter refer to the observed nitrate 

concentrations in the water column and the winter nutrient concentration, respectively. 

The nitrogen units were converted to carbon units using the measured molar C/N ratio o f 

particulate matter; all integrations were from 0 to 200 m. An integration 

depth o f  200 m was chosen because this is below the depth o f nutrient removal during 

austral summer, and flux to greater depths can be considered to be “ lost”  from the 

surface layer on at least seasonal time scales. Similarly, the production o f diatoms 

was estimated using

2 2

'winter
0 0

2 2

AS i ( O H ) ^  =  .(S i(O H )j)  w in te r  d z -  (Si (OH)  J )  m in  dz
0 0

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



27

and converted to carbon units using the molar C/Si ratio (1.61) measured by Nelson and 

Smith (1986) for blooms overwhelmingly dominated by diatoms. There are no data to 

suggest that winter values o f silicic acid and nitrate in the Ross Sea change on decadal 

scales, and vertical mixing during winter makes nutrient concentrations uniform 

throughout the water column. Hence, nitrate and silicic acid concentrations can be 

reliably predicted from the AESOPS and RSP2 data (e.g., nitrate values are 31.0 pM 

when normalized to S 35 psu, and silicic acid values are 80 pM; Smith and Asper, 2000; 

http://usjgofs.whoi.edu/jg/dir/jgofs/southem/). Nitrate potentially can be remineralized

within the growing season via nitrification, but this process is extremely slow at the low

+
temperatures o f the Ross Sea and was ignored (Karl et al., 1996). Integrated NH4 

concentrations are less than 5% of the total inorganic nitrogen concentrations at all times, 

and are ignored for these calculations. The particulate nitrogen and silicon distributions 

were measured, and integrated values compared to the nutrient removal values; the 

difference was taken to be an estimate o f  export, although we realize that for nitrogen 

some portion o f  the material may have entered the dissolved organic nitrogen (DON) 

pool. All assumptions included those about low rates o f regenerated production used in 

the calculations are discussed in Smith and Asper (2000). Phosphate was not treated in 

this analysis due to a more limited particulate phosphoms data set.

RESULTS

Hydrographic data

Ice coverage varied both in time and space during our study period (Smith et al., 

2006; Figure 2). During 2001-2002 ice distributions were similar to the mean condition
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for the region. In 2003-2004, ice concentrations were higher than the long term mean. Ice 

coverage in 2004-2005 was similar to 2001-2002. Sea surface temperature was 

significantly higher in December 2004 than December o f other years (Table 1, ANOVA, 

DF=28, F=15.10, pO.OOOl). Surface salinity was significantly lower in December 2003 

(Table 1, ANOVA, DF=28,F=41.60, pO.OOOl). There was no significant difference in 

mixed layer depth, which may be due to the variability o f mixed layer depths between 

stations. Surface Or was also significantly lower in December 2003 (Table 1, ANOVA 

DF=25, F=44.86, pO.OOOl).

Nutrient data

December 2004 had the lowest mean concentration o f nitrate at the surface (16.5 

± 3.0 pm  nitrate) (Table 2, ANOVA, DF=25, F=10.93, pO.OOOl). Nitrate distributions 

suggest large differences in phytoplankton removal occurred between all three years. In 

2001-2002 and 2004-2005 a majority o f  nitrate removal occurred from the start o f the 

growing season through late summer. Nitrate removal during January and February o f 

2005 was substantially reduced (Figure 3a-3f).

Silicic acid profiles were more variable than nitrate profiles, with large removals 

o f silicic acid in December 2003 and 2004, when compared to 2001 (Fig 4a-f). Removal 

o f  silicic acid during January and February o f 2004 was significantly higher than the 

other years with a mean surface value o f  45.8 ± 5.0 pM  due to a secondary diatom bloom 

that year (Table 2, ANOVA, log transformed, DF=20, F=15.88, pO.OOOl).

There were between-year differences in phosphate concentrations in December 

(Table 2, ANOVA, DF=25, F=52.0, pO.OOOl). One unexpected trend in 2005 was an 

increase in all dissolved nutrients (N, P, Si) during February 2005 when compared to
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December o f that growing season. This could relate to physical processes adding nitrate 

into the surface from other sources (ice melt or intrusions o f  deep water) coupled with 

reduced biological uptake. W ater mass intrusions during December 2004 were extremely 

high and may have provided an additional pulse o f nutrients and are discussed further in 

Section II. The water mass mentioned by Peloquin and Smith (2006) exhibited different 

temperature/salinity signals during December 2003 than in December 2004. Initial 

analysis o f these physical properties and its relationship to the phytoplankton assemblage 

are currently being performed (Peloquin, unpublished).

Pigments

Surface chlorophyll concentrations were similar in December 2001, 2003, and 

2004 (Table 2, Figure 5a-f). As expected, chlorophyll concentrations increased with 

uptake o f nitrate. However, during February 2004, chlorophyll concentrations were high 

compared to February 2002 and 2005 with a mean chlorophyll value o f 11.1 ± 4.3 pg L '1. 

Smith et al. (2006) did further analysis on the HPLC measurements during all three years 

discussed, and they can be found at http://www.vims.edu/bio/ivars. In summary, there 

were significantly higher concentrations o f fucoxanthin during February 2004 relative to 

other time periods (Table 2, ANOVA, log transformed, DF=20, F=27.62, pO.OOOl). This 

is consistent with the high concentrations o f chlorophyll during February 2004. 

Additionally, December 2004 had significantly lower concentrations o f 19- 

hexanoyloxyfucoxanthin {Phaeocystis indicator accessory pigment) relative to December 

2001 and 2003. The presence o f  more P. antarctica during December 2001 and 

December 2003 is confirmed with microscopic observations in Section II (Table 2, 

ANOVA, log-transformed, DF=25, F=48.12, pO.OOOl).
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Nutrient Budgets

In spring 2001-2002 the integrated nitrate uptake equaled 0.66 mol m '2 which is 

equivalent to a Novem ber-Decem ber net community productivity o f  1.11 g C m'2 d"1

(Table 3). Similarly, for the entire growing season (120 d), the total nitrate removal was

2 2 1 0.85 mol m ' , which is equivalent to net productivity o f 0.70 g C m'~ d ' . Summer

productivity was thus 0.31 g C m'2 d' 1 (Table 3). In a similar manner, nitrate uptake in

2003-2004 for spring, summer and for the entire season equaled 0.54, 1.65 and 2.19 mol

•y
m ' , respectively. This is equivalent to a daily carbon productivity o f 0.94, 2.71, and 1.82 

g C m'2 d '1, respectively.

Silicic acid removal in spring o f 2001-2002 was 0.43 mol m ' , and for summer it

9 9was 1.38 mol m" (total net removal for the entire season was 1.81 mol m ' ; Table 3). This 

is equivalent to diatom productivity for austral spring, summer and the entire 2001-2002 

season o f 0.19, 0.59, and 0.39 g C m"2 d '1, respectively. Thus, diatoms accounted for only 

17% of the productivity in spring, but 55% o f the total seasonal productivity. Diatom 

silicic acid removal in 2003-2004 for spring, summer and the entire year equaled 0.74, 

4.68 and 5.41 mol m '2, respectively, which, when converted to carbon units was 0.32,

1.99, and 1.16 g C m '2 d"1, respectively (Table 3). This represents 35, 73 and 64% o f  the 

spring, summer and seasonal production, respectively. During austral spring o f December 

2004, nitrate and silicic acid uptake was larger than 2001 and 2003 at 0.86 and 0.82 mol 

m ’2, respectively. This was equivalent to 1.53 g C m ’2 d' 1 carbon productivity and 0.36 g 

C m'2 d' 1 diatom carbon productivity. Summer nitrate and silicic uptake rates were much 

lower in 2004 than February 2002 and 2005 with 0.14 mol m '2 nitrate uptake and 0.06 

mol m '2 silicic acid uptake. W ith the nutrient uptake being so low, the carbon productivity
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was 0.16 g C m"2 d' 1 and diatom productivity 0.03 g C m'2 d 1. Although nitrate uptake 

was low in summer o f 2004-2005, nitrate uptake over the entire season was larger than

2001-2002 with 1.00 mol m '2 and carbon productivity o f 0.74 g C nT2 d '1. Diatom

2 1productivity was much lower for the entire season (2004-2005) at 0.19 g C m" d ' . 

Uptake Ratios

Si:N uptake ratios were calculated using the integrated nitrate and silicic acid 

removal estimates (Table 4). In 2001-2002, the ratio was low in spring (0.66), but 

increased by an order o f magnitude during summer (to 7.13), so that the seasonal ratio 

was 2.13. Spring, summer and seasonal Si:N uptake ratios in 2003-2004 were 1.36, 2.84 

and 2.47, respectively. S:N uptake ratios were low throughout the entire growing season 

in 2004-2005 with a entire season uptake ratio o f  0.88. Because the particulate nitrogen 

and biogenic silica concentrations were measured at the same depths and locations where 

nutrients were assessed, it is possible to compare the nutrient removal estimates with the 

particulate matter concentrations at that time, and calculate the amount o f material that 

was lost from the upper 200 m either via transformation to reduced, dissolved forms (for 

nitrogen) or by export from the surface layer as particles. In spring (the period from early 

November through our sampling in late December) 2001-2002, “ export”  equaled 0.16 

and 0.27 mol m '2 o f nitrogen and silicic acid, and in summer (the period from late 

December through our sampling date in February) it increased to 0.48 and 1.15 mol m '“ 

(Table 4). In contrast, export in 2003-2004 in spring was 0.18 and 0.58 mol m '2 for 

nitrogen and silicon, and in summer 1.75 and 4.12 mol m '2 (Table 4). Thus, on a seasonal 

basis silicic acid and nitrogen export were 4.1 and 4.0 times greater in 2003-2004 than in
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2001-2002, respectively. Export during 2003-2004 was also higher than in 2004-2005 

being 6.35 and 3.03 times greater for silicon and nitrogen export.

DISCUSSION

Temporal variations in physical parameters

W hile a full quantitative assessment o f  the interannual variations within the 

southern Ross Sea cannot be derived from the data o f these three years alone, the 

observations do provide insights regarding the extent and nature o f these variations. 

Comparison o f the hydrographic data shows that mixed layer depths increased from 

December through February which is similar to the results o f Smith and Asper (2001), 

who found that Zmjx was minimal in late December (22.6 m) and increased through 

January. Smith et al. (2000) found that the minimum Zmix was between mid-December 

and early January (no sampling occurred between those two dates), and that mixed layer 

depths increased slightly through February. Mixed layer depths were not significantly 

different in December 2001, 2003, and 2004 (Table 1). Mixed layer depths during 

February o f 40 m are close to the maximum suggested by Mitchell and Holm-Hansen 

(1991) as being the deepest mixing that would still support positive community 

photosynthesis, and so it is quite possible that at some o f the stations light limitation o f 

phytoplankton growth was occurring. There was no apparent relationship between large- 

scale ice distribution and interannual variations in phytoplankton biomass and 

assemblage composition (Smith et al., 2006). In 2001-2002 ice concentrations were 

“ normal”  and similar to the long-term trends with regard to the timing o f rapid ablation 

and the area uncovered (Kwok and Comiso, 2002; Smith et al., 2006). This gave rise to a
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high biomass, P. antarctica-dominated bloom in spring followed by an assemblage in 

which diatoms contributed a majority o f  the chlorophyll. The season 2003-2004 was a 

heavy ice year, with reduced open-water concentrations in all regions (and especially 

near 75° S, 170°W, both on and o ff the continental shelf), but with a large P. antarctica 

bloom in spring and a secondary, very large diatom bloom by February (Table 2). Indeed, 

the secondary bloom was an order o f  magnitude greater than the February climatology 

(Smith et al., 2003a). It has been frequently suggested that P. antarctica is favored under 

low-irradiance conditions (via deeper mixed layers) when compared to diatoms (Moisan 

and Mitchell, 1999; Arrigo et al., 1999; Smith and Asper, 2001); however, on the coarse 

scale o f our analysis, ice cover (and hence irradiance) did not seem to consistently 

structure community composition (Smith et al., 2006). Further analysis in Section II 

suggests that sea surface temperature or increased water mass intrusions may play a role 

in structuring phytoplankton assemblages. W e sampled ice-free waters more completely, 

and so the generalized description o f assemblage composition refers only to those waters 

with low ice concentrations. It does suggest, however, that irradiance is only one factor 

controlling biomass and composition o f  the Ross Sea phytoplankton.

Nitrate concentrations during the three years varied substantially, and with 

concentrations in the surface layer in February 2004 were significantly lower than 

February 2001 and 2005 (Figure 3a-f, Table 2). The mean concentration o f silicic acid in 

February 2004 was also significantly less than in 2001-2002. This suggests that silicic 

acid removal in during spring o f the growing season o f 2001-2002 was reduced relative 

to the long-term mean. Variations in relative nutrient uptake can be best explained by 

variations in phytoplankton species composition effects, but also are influenced by
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variations in Si/N uptake ratios. Changes o f phytoplankton community composition 

potentially could alter both food webs. It has been suggested that P. antarctica is largely 

ungrazed and is remineralized within the water column (DiTullio and Smith, 1996; Caron 

et al., 2000).

Data from other studies collected in approximately the same area can be directly 

compared to data obtained during this study. Smith and Asper (2001) found the mean 

nitrate and silicic acid concentration during late December 1995 to be 20.7 and 63.4 pM  

(both less than those in 2001), with minima being 12.5 and 51.6 pM , respectively. Mean 

NO3 concentrations in 1997 were 12.5 pM  which were significantly less than in 

2001/2002, but were similar to those measured in 2004. Clearly substantial interannual 

variations in nitrate concentrations occur as a result o f  variations in the uptake o f nitrate 

by phytoplankton, and hence the question then arises as to the causal mechanism of these 

differences. Further statistical analysis in Section II will help us ascertain what some o f 

these mechanisms may be.

Nutrient budgets

Removal o f nitrate and silicic acid varied substantially across years and seasons. 

Nitrogen uptake in spring was similar between the three years (0.66, 0.54, and 0.86 mol 

m '2). Summer nitrate was far greater in February 2004 than February 2001 (1.65 vs. 0.19 

mol m ' , more than an 8-fold increase). Silicic acid uptake was similar between the two 

years (0.43, 0.74, 0.82 mol m"2) in spring, but again summer February 2004 uptake was 

higher 2001-2002 and 2004-2005 (Table 3). The difference is likely due to a difference 

in biological removal which, in turn m ust have been related to both overall controls o f 

productivity (light or iron limitation) as well as the types o f phytoplankton taxa present.
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Uptake ratios o f silicontnitrogen can be affected by two independent factors: 

influence by nonsiliceous phytoplankton on the uptake o f nitrogen, and alteration o f the 

Si:N uptake ratio by trace metal limitation. One o f the major phytoplankton species in the 

southern Ross Sea is Phaeocystis antarctica, and its presence would result in a removal 

o f nitrate in the absence o f the removal o f silicic acid. As P. antarctica often is found in 

substantial quantities in spring, Si(0 H)4:N03 uptake ratios would be expected to be 

relatively low. Hutchins and Bruland (1998) and Takeda (1998) found that iron limitation 

elevates the Si(0 H)4:N03 uptake in diatoms by suppressing nitrate uptake while silicon 

uptake proceeds at relatively normal rates. Furthermore, iron limitation has been 

experimentally observed in the southern Ross Sea by a variety o f means (Sedwick and 

DiTullio, 1997; Sedwick et al., 2000; Olson et al., 2000). Our Si(0 H)4:N03 uptake ratios 

were low (less than or equal to 1) in spring o f 2001 and 2004, consistent with both the 

large contribution o f P. antarctica and/or the absence o f iron limitation. In 2004-2005, 

there was a large presence o f  diatoms when we arrived to the study area. However, 

uptake ratios increased in summer o f 2002 and 2004 (Table 4), and in 2001-2002 the 

ratio exceeded 7 (in nutrient replete cultures the ratio is near 1; Takeda, 1998). Such 

elevated ratios are commonly found only in highly iron-stressed systems, and we suggest 

that in the summer o f 2001-2002 low levels o f iron limited the diatom assemblage. 

Growth did not cease, as evidenced by the continued (albeit slow) reduction in nitrate (by 

nearly 3 pM during summer in the surface layer), but growth was substantially reduced.

P. antarctica could not have replaced diatoms, as its iron requirements appear greater 

than those o f the diatoms o f the region (Coale et al., 2003); indeed, it is possible that iron 

limitation and stress o f  P. antarctica may be a cause for increased losses due to passive
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sinking o f colonies, aggregation, and disruption o f colonies (Smith and Asper, 2001; 

Smith et al., 2003b).

The Si:N uptake ratio in summer 2003-2004 increased to 2.84 which, also 

indicates the potential for iron-stress, but our data suggest that the growth o f diatoms was 

not greatly influenced and that they continued to increase in biomass. Chlorophyll levels 

also were higher in February when compared to December (Table 2, Figure 5a-f). We 

believe diatoms largely drove this increase. Such a substantial and unexpected increase 

(based on the climatological chlorophyll distribution which decreased during February; 

Table 2, Smith et al., 2003) suggests that iron limitation was not great enough to greatly 

reduce growth, and suggesting that iron inputs to the region may have been greater in

2003-2004 than in 2001-2002. Although the hydrographic data from 150 m do not 

contain anomalous data, a more detailed analysis o f the data from 50 to 200 m shows 

pockets o f what appears to be modified circumpolar deep water (MCDW) (Peloquin, 

2005). MCDW  may be a source o f heat and iron and is characterized by being warmer 

(-0.5-l°C), more saline (34.4—34.5) and relatively micronutrient-rich compared to 

surrounding waters (Hiscock, 2004). The intrusion o f MCDW onto the Ross Sea 

continental shelf has been reported previously (Jacobs et al., 1995), and has been 

suggested to influence the timing and magnitude o f the seasonal phytoplankton bloom by 

providing iron to surface waters (Hiscock, 2004; Arrigo and van Dijken, 2004). An 

inconsistency in using this hypothesis is that stratification was still strong in February, 

which would restrict the introduction o f  the Fe-replete waters to the euphotic zone. 

However, in a fine resolution study, Hales and Takahashi (2004) detected small 

expressions o f  this water mass in Ross Sea surface waters, suggesting that mesoscale
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inputs o f iron occur and may fuel blooms. Therefore, we believe that the initial P. 

antarctica accumulation and growth was fueled by iron supplied via deep winter mixing, 

and that the secondary bloom dominated by diatoms was initiated by the introduction o f 

MCDW into the euphotic zone. During December 2004, water mass intrusions were also 

present (Peloquin, unpublished, Section II). However, in February 2005 surface nutrient 

concentrations increased; therefore, there must be an intrusion o f nutrient rich water into 

the area or mixing. It is not known at this time whether the phytoplankton assemblage 

present in February 2005 was iron limited, even though Si:N ratios for the summer were 

low. However, since diatoms were present in large numbers during December o f that 

season, this may have affected micronutrient concentrations in February.

Export

Export o f biogenic material from the surface layer (200 m), calculated by mass 

balance, also showed substantial differences among years (Table 4). Nitrogen 

disappearance was 4-fold greater in 2003-2004 than in 2001-2002 for the entire season, 

although in spring the export was only 2.1-fold greater. Nitrogen export was also lower in

2004-2005, with nitrate and silicic acid export being 3.03 and 6.35-fold less than 2003- 

2004. Comparison with the observations o f  Sweeney et al. (2000b) indicates that 1996- 

1997 had a nitrogen removal (1.33 mol m '2) intermediate between 2001-2002 and 2003- 

2004, whereas the silicon deficit (0.47 mol m '2) was more than an order o f magnitude less 

than we observed in 2003-2004. This suggests that diatoms were far more important in 

the biogeochemical budgets during the period o f our observations, even though the exact 

reasons for these differences cannot be definitively ascertained. Our seasonal estimates o f 

export can be roughly compared to those obtained by sediment traps. The comparison is
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inexact, because our estimates are based on changes in NO 2  concentrations, and nitrate 

can be reduced into dissolved pools (NO 2 , NH 4 , DON) in addition to reduced particulate 

pools (PN). By not accounting for DON and NH4 increases, particulate export is 

overestimated. DON net production in the upper 150 m was estimated by Carlson et al. 

(2000) to be ca. 9% o f PN production. Ammonium production by mid- January was ca. 

2% o f  PN production (Smith and Asper, 2000), but Gordon et al. (2000) reported late 

summer NH £  values that were approximately double those o f Smith and Asper (2000).

To complicate the budget further, NH £  is rapidly used by phytoplankton in the surface 

layer, so that ammonium budgets will underestimate the true fluxes through this pool. 

Based on these uncertainties, the production o f dissolved, reduced N (the sum o f 

ammonium and DON) likely is ca. 20% o f  particulate production. This is not 

insignificant, but also is likely to be the maximum influence on the total N budget. Silicic 

acid has no reduced phases and is not influenced by the same biological processes.

The particulate flux data o f Collier et al. (2000), for the same season as the 

nutrient deficit results o f Sweeney et al. (2000b), show that during austral spring 1996/7, 

N  flux at 206 m  was 0.67 mol m‘2, and that Si fluxes were ca. 0.34 mol m '2 (assuming a 

C/Si ratio o f  0.1 in early season and calculating the flux from November 1). N and Si 

fluxes through February 8 equaled approximately 3.34 and 3.81 mol m '2, respectively. 

These are higher than estimates o f  export o f nitrate and silicic acid in our study, but it 

should be noted that in both years we found a substantial amount o f biogenic matter still 

within the water column. Presumably this material ultimately would be either 

remineralized or contribute to particulate flux to depth. Nearly all sediment traps in the 

Ross Sea have detected a significant temporal decoupling between production and
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vertical flux (Nelson et al., 1996; Smith and Dunbar, 1998; Dunbar et al., 1998; Collier et 

al., 2000), and our particulate matter distributions and concentrations would suggest that 

a substantial amount o f export (but not regeneration) o f nitrogen and silicon would occur 

after the last period o f our sampling. It remains unclear what the fate o f the material 

exported below 200 m might be. It is possible that the diatomaceous material at that depth 

will sink rapidly and reach the sediments relatively intact, whereas the organic material in 

P. antarctica might be largely remineralized within the water column (Nelson et al.,

1996). Sinking rates o f the two forms (siliceous vs. non-siliceous) are likely different 

(both at the surface as well as at depth), as is the time o f appearance in the surface layer. 

The composition o f the surface assemblage influences the material collected in traps at 

depth (Dunbar et al., 1998), but our results do not extend long enough to resolve the 

contributions adequately o f  the quality o f  surface biogenic material vs. the absolute 

export.

Spatial variations

An assessment o f temporal variations can be obscured by spatial variations. All 

studies o f biomass in the Ross Sea have observed variations not only in phytoplankton 

biomass, but in assemblage composition, and these variations occur on a variety o f scales 

(Hales and Takahashi, 2004). M any o f  the spatial variations may indeed be coupled to 

temporal variations; that is, the time needed for biomass changes is dependent on the 

spatial distribution o f a primary physical constraint like ice (Arrigo et al., 1998). 

Advection o f water could introduce a serious error into our calculations o f nutrient 

drawdown. However, we do not believe that this error was substantial during the time 

periods o f 2001-2002 and 2003-2004. Previous studies that measured net velocities
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within our study area found rates ca. 0.6 and 1 cm s' 1 when measured at 220 and 440 m 

throughout the year, and even less during summer (Pillsbury and Jacobs, 1985; Picco et 

al., 1999). Such rates represent a monthly advection o f 15.6 and 25.9 km and clearly are 

small relative to the size o f the observed bloom (100’s o f km; Smith and Nelson, 1985; 

Arrigo et al., 1999). Similar calculations o f  transport based on modeled results confirm 

the relatively minor advective motions (Dinniman et al., 2003). Advective changes large 

enough to alter the nutrient budgets also should be observed as rapid changes in the 

continuous record o f fluorescence (see discussion: Smith et al. 2006); however, none 

were observed during 2003-2004. W hile advection might introduce errors in our 

calculations, we have no evidence to suggest that this is a significant error in our budgets. 

The increase in surface concentrations in February 2005, however, might be affected 

more by physical processes as biomass is extremely low during that time making 

biological uptake o f  nitrogen very low. In addition, Smith and Dunbar (1998) found that 

nitrate uptake decreased in February so the lower biomass combined with these physical 

effects may be what we are observing in our data set.

Conclusions

Variations among years in the biogeochemical variables and cycles o f the 

southern Ross Sea are large. All three o f the years we sampled were in some ways 

anomalous when viewed in the context o f the long-term conditions o f the region (Smith 

et al., 2003a). Blooms were dominated by one species (Diatoms or P. antarctica) rather 

than a mixed assemblage and large diatom blooms were observed in February o f 2004. It 

is impossible to say if  the large diatoms blooms observed in February 2004 will be a 

consistent feature in the future, but we know that these diatom accumulations were much
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greater than was observed in studies conducted during the 1990s. Because phytoplankton 

assemblage composition has such a critical role in food web structure and 

biogeochemical cycles, knowledge o f this variable is critical to our understanding o f 

energetic and elemental cycles o f the Ross Sea. Further measurements are needed to 

establish the role o f iron and grazing on phytoplankton composition and biomass in the 

region. Only with additional time series measurements can we begin to understand and 

predict the interannual variability and the long-term temporal changes that might occur in 

the Ross Sea as a result o f  regional, basin-wide and global change.
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Table 1. Hydrographic properties including mixed layer depth ( Z m iX)  in December and February and December values o f surface 
temperature (T), Salinity (S), and Density (0t) for I VARS Stations during 2001-2005. Bold values indicate a significant difference 
between years.

Year n December 

Zmix (m)

February 

Zmix (in)

Tsurface

°c

S surface

psu

dt surface

2001-2002 5 23.5 ± 8 .8 36.6 ±  14.07 -1.0 ±0.2 34.4 ± 0 .1 27.7 ± 0.07

2003-2004 6 19.1 ± 8 .6 20.4 ± 10.8 -0.9 ±0.3 34.1 ± 0.1 27.5 ± 0.06

2004-2005 20 21.7 ±6 .5 38.7 ± 15.6 0.1 ± 0.6 34.4 ± 0 .1 27.7±0.04
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Table 2. Average surface nutrient (Nitrate, Silicic acid, and phosphate) and pigment (Fucoxanthin and 19 -hexanoyloxyfucoxanthin) 
concentrations for IVARS transect stations. Bold values indicate a significant difference between years.

Month/Year n n o 3

(HM)

Si(OH)4

(HM)

P 0 4

(HM)

Chlorophyll 

(pg L '1)

Fucoxanthin

(pgL -1)

19 -hex 

(Fg L '1)

December 2001 5 22.0 ±1.3 77.2 ± 1.7 1.8 ±0.1 5.8 ± 1.9 1.8 ± 0 .6 9.3 ± 2 .6

February 2002 5 20.5 ± 1.6 65.4 ± 2 .6 1.6 ± 0.1 4.9 ± 2.2 1.2 ± 0.4 0.8 ± 0 .9

December 2003 6 20.0 ± 1.7 66.6 ± 4 .8 1.6 ±0.1 5.4 ± 3 .5 1.5 ± 0 .6 4.0 ±3 .1

February 2004 7 16.8 ± 2.1 45.8 ± 5.0 1.6 ± 1.9 11.1 ± 4 .3 5.6 ± 2.4 0.8 ± 0 .3

December 2004 17 16.5 ± 3.0 63.5 ± 8 .7 1.1 ± 0 .1 7.9 ± 3 .9 3.8 ± 3 .4 0.3 ± 0.3

February 2005 11 19.7 ± 1.9 66.2 ± 10.4 1.3 ± 0.1 1.0 ±  0.7 0.4 ± 0.5 0.2 ± 0.2
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Table 3. Net nitrate and silicic acid removal (and standard deviations) o f  phytoplankton as estimated by Eqs. (1) and (2), and the 
computed carbon equivalent production o f  the entire assemblage and o f  diatoms.

Date and Period Nitrate uptake 

(mol m"2)

Carbon productivity 

(g C m '2 d '1)

Silicic acid uptake 

(mol m '2)

Diatom carbon productivity 

(g C m"2 d '1)

Spring, 2001a 0.66±0.74 1.11 0.43±0.75 0.19(17% )

Summer, 2001-2002d 0.19C 0.31 1.38c 0.59 (188%)

Entire Season, 2001-2002b 0.85±0.27 0.7 1.81±0.66 0.39 (55%)

Spring, 2003a 0.54±0.22 0.94 0.74±0.30 0.32 (35%)

Summer, 2003-2004d 1.65° 2.71 4.68 1.99 (73%)

Entire Season, 2003-2004b 2.19±0.30 1.82 5.41±1.13 1.16(64%)

Spring, 2004a 0.86±0.29 1.53 0.82±0.42 0.36 (24%)

Summer, 2004-2005d 0.14C 0.16 0.06c 0.03 (19%)

Entire Season, 2004-2005d 1.00±0.28 0.74 0.88±0.23 0.19(25% )

a Growing season assumed to be from November 1 to December 26 (55 days); f-ratio assumed to be 0.8 for both nitrogen and silicon. 
b Growing season assumed to be from November 1 to February 28 (120 days); f-ratio assumed to be 0.7 for both nitrogen and silicon. 
c Calculated by difference.
d Grow ing season assumed to be from December 27 to February 28 (65 days); f-ratio assumed to be 0.75 for both nitrogen and silicon.
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Table 4. Ratios of integrated nitrate to integrated silicic acid uptake, nitrogen export, and silicon export during spring, summer, and the 
entire growing season.

Si(OH)4:N 03 Nitrogen Silicon
Year/Season uptake export export

mol/mol (mol m '2) (mol m" )
2001-2002, Spring 0.66 0.16 0.27
2001-2002, Summer 7.13 0.32 0.88
2001-2002, Entire Season 2.13 0.48 1.15
2003-2004, Spring 1.36 0.18 0.58
2003-2004, Summer 2.84 1.75 4.12
2003-2004, Entire Season 2.47 1.94 4.7
2004-2005, Spring 0.94 0.45 0.43
2004-2005, Summer 0.51 0.19 0.31
2004-2005, Entire Season 0.88 0.64 0.74
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Figure 1. Station locations for Interannual Variations in the Antarctic- Ross Sea (IVARS) 
for 2001-2005.
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Figure 2. Ice coverage and distributions in mid December, mid-February in 
2003,2003,2004,2005. Data from December 2002 and February 2003 not included in this 
dissertation; from Smith et al. 2006.
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Figure 3. Nitrate distributions (units= pM ) along southern transect in (A) December
2001, (B) February 2002, (C) December 2003, (D) February 2004, (E) December 2004,
and (F) February 2005.
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Figure 4. Silicate distributions (units=pM) along southern transect in (A) December
2001, (B) February 2002, (C) December 2003, (D) February 2004, (E) December 2004,
and (F) February 2005.
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Figure 5. Chlorophyll a distributions (units= pg L '1) along southern transect in (A)
December 2001, (B ) February 2002, (C) December 2003, (D) February 2004, (E)
December 2004, and (F) February 2005.
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Section II. The role o f  sea surface temperature in regulating nitrate removal in Phaeocystis 

antarctica dominated assemblages in the Ross Sea

61

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



62

ABSTRACT

Energy flow within the Ross Sea food web is dominated by two major functional 

groups o f  phytoplankton: diatoms and prymnesiophytes, the latter dominated by 

Phaeocystis antarctica. The Ross Sea polynya experiences one o f the largest 

phytoplankton blooms in the Southern Ocean due to the physical properties o f annual sea 

ice retreat and water stratification. As part o f  a multi-year project, Interannual Variations 

in the Antarctic-Ross Sea (IVARS), we investigated physical, chemical, and biological 

factors that could drive phytoplankton taxonomic composition and nutrient uptake in late 

austral spring. Principal components analysis (PCA) was performed on three years o f 

data including dissolved nutrients (N,P,Si), size fractionated chlorophyll, depth o f 

sample, biogenic silica, particulate organic carbon, particulate nitrogen, temperature, and 

phytoplankton pigments. W hile water column depth and seasonal factors are the primary 

controls on phytoplankton biomass in the Ross Sea, one o f the PC explained 13% o f the 

variation in the data set, and this PC correlates with temperature. Further regression 

analysis o f  only surface samples shows a significant relationship between increases in sea 

surface temperature and phytoplankton nutrient removal. However, P. antarctica 

abundance decreases with increases in sea surface temperature, which may be due to an 

increase in diatom growth. These interannual differences in temperature could be due to 

water mass intrusions suggesting that physical processes within the Ross Sea may be 

driving phytoplankton assemblage composition and nutrient removal.
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INTRODUCTION

Ross Sea, Antarctica

The Ross Sea polynya, located on the continental shelf o f Antarctica experiences 

relatively predictable phytoplankton blooms due to the physical properties o f annual sea 

ice retreat and water stratification. The formation o f the Ross Sea polynya in austral 

spring is generated by two factors, including southerly winds driving ice northward and 

exposing open water and the advection o f warm («-0.5°C) Antarctic Circumpolar Current 

water onto the shelf, providing a heat source to the surface layer (Markus, 1999). As a 

coastal and continental shelf zone (CCSZ), hydrologic structure and irradiance are major 

controls o f nutrients and biological activity (Catalano et al., 1997). Seasonal variability 

and thermohaline characteristics are influenced by total winter ice coverage, ice melting, 

and fast ice formation. Two types o f  water masses are present in the Ross Sea, including 

High Salinity Shelf W ater which, is characterized by maximum salinity due to continuous 

freezing and ice formation and Ice Shelf W aters (ISW) which, have minimum 

temperatures. Circumpolar Deep W ater (CDW) is the only external water mass that 

affects the Ross Sea region and is separated through the Antarctic Slope Front located 

near the Continental Shelf Break. Modified Circumpolar Deep W ater (MCDW) results 

from the CDW water mass mixing with surface and shelf waters in the Ross Sea 

(Budillion et al., 2000). Other local water masses observed include the Antarctic Surface 

water mass (AASW) which, has temperatures o f ~1°C (Jacobs et al., 1985; Jacobs and 

Giuvili, 1998; Gordon et al., 2000).
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Phvtoplankton ecology in the Ross Sea

Primary production, vertical flux, and carbon and sulfur transformations are 

dominated primarily by Phaeocystis antarctica, a colonial prymnesiophyte (Smith et al., 

2003). Phytoplankton populations in the Ross Sea are dominated by two main algal 

groups: diatoms and prymnesiophytes, with the latter being dominated by P. antarctica. 

This region is also the most productive region in the Southern Ocean according to 

biomass and production estimates (Sedwick and DiTullio, 1997; Dunbar et al., 1998; 

Asper and Smith, 1999; Tremblay and Smith, 2007). Mixed layer depths and 

micronutrient concentrations may explain the dominance o f one taxonomic group, but 

attempts to find controlling factors have been inconclusive (Smith and Asper, 2001; van 

Hilst and Smith, 2002). These high accumulations o f biomass have been attributed to 

stabilization o f the water column and low grazing pressure during the growing season.

Phytoplankton growth begins in late October (Smith and Gordon, 1997) and is 

largely limited by irradiance during austral spring (Smith et al., 2000) and by 

micronutrients (iron availability) in the summer (Fitzwater et al., 2000; Sedwick et al., 

2000; Olson et al., 2000). Macronutrients remain high throughout the region for the entire 

year (Smith et al., 2003). Understanding environmental and oceanographic controls on 

the composition o f phytoplankton assemblages is critical because the taxonomic structure 

is a major determinant o f energy flow within food webs through inorganic carbon 

fixation and autotrophic energy production (Palmisano and Sullivan, 1985). Diatoms and 

Phaeocystis also have different impacts on biogeochemistry and nitrogen transformations 

(Smith and Asper, 2001). The size structure o f phytoplankton assemblages also drives
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marine pelagic food web dynamics (Legendre and Le Fevre, 1991) and potential export 

(Tremblay and Legendre, 1994).

Variations in biogeochemical properties, seasonal cycles o f phytoplankton 

biomass, and productivity still remain unresolved in the Ross Sea. A recent study by 

Smith et al. (2006) noted large interannual variations in biogeochemical variables and 

cycles and determined these were due to wide ranging physical, biological, and chemical 

controlling mechanisms. Seasonal differences within growing seasons were thought to be 

controlled by irradiance in the spring and micronutrients in the summer (Smith et al., 

2000).

Temperature and phvtoplankton growth

In polar environments biogeochemical cycles could be directly affected by 

changing temperatures on a global scale through changing the time and duration o f 

wintertime sea ice which, in turn affects the food web, its productivity, and the 

distribution o f upper-trophic level consumers. (Hunt et al., 2002). Phytoplankton growth 

during large phytoplankton blooms is controlled by nitrate sources beneath the euphotic 

zone. A recent study suggested that phytoplankton biomass and growth will likely 

decrease as the oceans warm and stratify throughout the world since nutrient-rich water is 

found deeper in the water column (Behrenfeld et al., 2006). However, in polar regions, 

warmer surface seawater temperatures may cause increases in biomass due to the 

stabilization o f the mixed layer and increased light availability (Behrenfeld et al., 2006). 

Temperature is important in nitrogen assimilation enzyme activity and metabolism 

(Eppley, 1972; Gao et al., 2000), and a negative relationship has been observed between 

temperature and nitrate uptake (Lomas and Glibert, 1999). Lomas and Glibert (1999)
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conclude that if  temperature along with other non-nutritional mechanisms o f the cell are 

regulating nitrate uptake then this must be included in new production models. This 

relationship between nitrate and temperature has not been fully described in the Ross Sea 

since little is known about the temperature sensitivity o f  phytoplankton nitrogen uptake in 

the Southern Ocean or the Ross Sea, although a higher affinity for ammonium rather 

nitrate has been suggested (Dortch, 1990; Reay et al., 1999; Cochlan et ah, 2002). There 

is a greater energetic cost associated with the transport, reduction, and assimilation o f 

N 0 3‘ (McCarthy and Carpenter, 1983). The high /-ratios (new production) o f the Ross 

Sea, however, show that ice edge phytoplankton blooms are utilizing nitrate to a greater 

degree than ammonium (Smith and Nelson, 1990; Hu and Smith, 1998; Cochlan et al., 

2002). High half saturation constants (Ks) for silicic acid and nitrate uptake have been 

reported for Southern Ocean phytoplankton growing at low temperatures, and studies 

show a strong temperature dependence o f  nitrate reductase activity (e.g. Tischner and 

Lorenzen, 1981; Jacques, 1983; Sommer, 1986; Cochlan et ah, 2002).

Phytoplankton in the Southern Ocean are increasingly being viewed as 

psychrotolerant rather than psychrophilic as their optimum growing temperatures are 

higher than what they experience in situ (Tilzer et ah, 1986; Smith and Harrison, 1991; 

Arrigo, 2007). The reason for psychrotolerant species dominance may also be due to 

other unique adaptations o f  photosynthetic microorganisms, including P. antarctica, 

which, include the ability to acclimate to extremes in light (from total darkness to 

photoinhibition) and outcompete psychrophilic phytoplankton, but this research is in 

initial stages (Shields, unpublished). Assessing these relationships and adaptations are
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critical to looking at how environmental controls will affect the biology and chemistry o f 

the Ross Sea and the capacity o f phytoplankton to respond to environmental change. 

Objectives

As a part o f a multi-year project, Interannual Variations in the Antarctic-Ross Sea 

(IVARS), principal components analysis (PCA) was performed on three years o f the late 

austral spring and summer data set including dissolved nutrients (N,P,Si), size 

fractionated chlorophyll (>20, >0.7, and <20 pm), water depth (0, 20, and 50 m), 

biogenic silica, particulate organic carbon, particulate nitrogen, temperature, and 

phytoplankton pigments. I hypothesized that temperature would structure biomass 

distributions, phytoplankton composition, and nutrient uptake in the early growing season 

o f  December 2001, 2003 and 2 0 0 4 .1 also expected to see seasonal differences in 

biogeochemical parameters due to stratification and possible micronutrient limitation. 

Furthermore, I expected to observe a spatially extensive and predictable phytoplankton 

bloom (Arrigo and McClain, 1994) and that temperature would play a role in bloom 

composition (diatoms vs P. antarctica). Previous studies have investigated variations in 

phytoplankton biomass, nutrients, salinity, and temperature in the past, but the samplings 

were not distributed evenly over time and space, and it was hard to draw conclusions 

about the relationship between these variables. This study is the first to show a clear 

relationship between temperature and austral spring bloom dynamics and will help 

modelers and scientists predict how future changes in the ecosystem due to increases in 

surface water temperature will affect the food web o f the Ross Sea. It should be noted, 

however, that temperature may be a proxy for other factors, such as water mass intrusions 

which may introduce warmer temperatures along with micronutrients such as iron.
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METHODS (some excerpts from Section I)

Sample collection

W ater samples were collected from the southern Ross Sea during three field 

seasons (2001-2002, 2003-2004, and 2005-2006) in late spring (mid- to late December) 

and late summer (mid-February) using the USCGC Polar Star and RVIB N.B. Palmer. 

Station locations were part o f  a transect that was roughly parallel to the Ross Ice Shelf, 

but were largely chosen to sample ice-free waters (Figure 6; Smith et al., 2006). Samples 

were collected using 10-L Niskin bottles mounted on a rosette frame which also housed a 

SeaBird 911+ CTD and Chelsea fluorometer to collect continuous profiles o f 

temperature, salinity, density, and fluorescence during water sampling from discrete 

depths. A total o f 12 depths were sampled to 200 m. (For detailed methodology o f 

sampling depths and processing, see Smith et al, 2006). Temperature, salinity and derived 

density data were binned into 1-m intervals, and mixed layer depths derived from the 

vertical distribution o f  density (ZmjX was defined as the depth where a T changed by 0.1 

units from a stable, surface value; Smith et al., 2000). Complete hydrographic data are 

available at http://www.vims.edu/bio/ivars/.

Samples were collected for nutrients (nitrate+nitrite, silicic acid, phosphate), 

chlorophyll (size fractionated: >5 pm, >20 pm, and total), pigments, particulate nitrogen 

(PN), particulate organic carbon (POC) and biogenic silica (BSi). Samples (60 mL) for 

nutrients with elevated chlorophyll levels (those with approximately 1.0 pg L '1 

chlorophyll a or more) were filtered through Gelman Acrodiscs (5.0 pm) and frozen at 

-80 °C for later analysis using standard, automated techniques. Chlorophyll samples were 

filtered through either polycarbonate (20 or 5 pm; Poretics) or Whatman GF/F filters,
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placed in 7 mL 90% acetone, and sonicated for 15 min. After extraction for at least 

another 15 min on ice in darkness, the filter was removed and the sample read on a 

Turner Designs Model AU fluorometer before and after acidification. The fluorometer 

was calibrated before and after the cruise using commercially purified chlorophyll 

(Sigma) and checked using high-performance liquid chromatography. PN and POC were 

collected by filtering known volumes o f  water through precombusted GF/F filters, rinsed 

with ca. 5 mL 0.01N HC1 in seawater, and drying the filters in combusted glass vials at 

60°C. Blanks were filters placed under the deep-water sample’s filter; these filters were 

processed identically to the other samples. All filters were analyzed using a Carlo-Erba 

Model 254 elemental analyzer (Smith et al., 1996). Samples for biogenic silica were 

filtered through 0.6 pm  Poretics polycarbonate filters, dried in plastic Petri dishes at 

60°C, and returned to the laboratory. The samples were then digested in NaOH at 100 °C 

for 40 min, neutralized and analyzed colorometrically for reactive silica on a dual-beam 

spectrophotometer (Brzezinski and Nelson, 1989). Contributions o f  lithogenic Si to total 

BSi are small in the Ross Sea (1%; Nelson, unpublished) and were ignored. HPLC 

sample analysis and collection is described in Section I and Smith et al. (2006).

Data analyses

Analysis o f  Variance (ANOVA) was used to compare mean abundances in 

samples collected from different periods. W hen data did not meet the assumptions of 

parametric statistics, the data were log transformed to yield homogeneous o f variance and 

normality. Where a significant difference was detected for an ANOVA (p<0.05), Tukey’s 

multiple comparison test was used to test for specific differences. Principal components 

analysis was performed on the whole data set to assess the factors driving variations in
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phytoplankton abundance and nutrient uptake in the Ross Sea. Multivariate analysis 

allows the pattern o f relationships between several variables to be viewed simultaneously. 

PCA also reduces the complexity o f  the data set and by identifying a few principal 

components that explain most o f the variability o f the data set (Zitco, 1994; Meglen, 

1992). A number o f ecological and biogeochemical studies have successfully used this 

method to examine the relative importance o f bottom-up and top-down factors in 

phytoplankton assemblage control and in order to understand how different physical 

parameters affect submerged aquatic vegetation and algae (Metaxas and Scheibling,

1996; Bayley and Prather, 2001). PCA and regression statistics were performed in 

Minitab version 14.0. Minitab software automatically uses a normalized correlation 

matrix through the standardization o f  variables by subtracting the mean and dividing by 

the standard deviation (Zimmerman and Canuel, 2001). Only stations in which all data 

were available for PCA analysis were included in this analysis.

RESULTS

Initiation o f the bloom varied interannually due to a wide range o f environmental 

conditions over the three year study period. Hydrographic data means showed that the 

mean mixed layer depths were similar during December 2001, 2003, and 2004, but there 

were between-year differences in surface temperature, salinity, and o r  (Table 5). During 

December 2004 surface temperatures were significantly higher (0.1 ± 0.6 °C) than in 

2001 and 2003 (Table 5, ANOVA, DF=28, F=15.10, p<0.0001). In December 2003 

surface salinity and ctt values were significantly lower than in December 2001 and 2003 

with values o f 34.1 ±  0.08 and 27.5 ± 0.06, respectively (Table 5, salinity, ANOVA, 

DF=28, F=41.60, p<0.0001; and a T ANOVA, DF=25, F=44.86, pO .0001). Further
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analyses are being performed to look at the roles that MCDW and other physical factors, 

including irradiance and ice melt, play on these varying hydrographic conditions. It is 

clear, however, that there was significant between-year variation in December bloom 

conditions during our study period (Table 5).

Interannual variability was also observed in inorganic nutrient concentrations 

(Table 6). Silicic acid concentrations (77.2 ±1.7 pM ) and phosphate (1.8 ± 0.06 pM) 

were significantly higher in December 2001 (Table 6, silicic acid, ANOVA, DF=25, 

F=5.96, p=0.0008 and phosphate, ANOVA, DF=25, F=52.0, p<0.0001). Nitrate 

concentrations (16.5 ± 3.0 pM ) and phosphate concentrations (1.1 ± 0 .1  pM ) were 

significantly lower during December 2004 (Table 6, Nitrate, ANOVA, DF=25, F=10.93, 

p<0.0001). These values represent the magnitude o f phytoplankton nutrient utilization in 

the surface waters o f the Ross Sea since winter values o f nitrate, silicic acid, and 

phosphate are known. For further discussion o f the nutrient removal and budgets, see 

Smith et al. (2006) and Section I.

W hile there were no significant interannual differences in bulk chlorophyll or 

fucoxanthin concentrations, 19 -hexanoyloxytucoxanthin (19 -hex) was significantly 

lower in December 2004 with values o f 0.3 ± 0.4 pg L '1 (Table 6, ANOVA, 

DF=25,F=48.12, p<0.004). These data suggest that P. antarctica concentrations were 

lowest during 2004. This was confirmed by microscopic observations o f  cruise samples. 

During 2004 diatoms comprised >95% o f the phytoplankton community abundance 

(Figure 7; Peloquin et al., in prep.). P. antarctica dominated the assemblages during 2001 

and 2003 austral spring, but differed in its morphological form. Solitary forms o f P.
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antarctica were most abundant during 2001, while the colonial form was more abundant 

during December 2003 (Peloquin et al., in prep.; Shields, unpublished).

Principal components analysis

Principal components analysis (PCA) was performed to reduce the complexity o f 

the data set and identify factors controlling variation within the extensive data set. PCA 

was applied to 19 variables and 151 observations (samples). Together, the first three 

principal components (PCs) explain 68.1% (37.9%, 16.6%, and 13.6%) o f the total 

variance o f the data. The PCs seem to represent interpretive factors that include temporal 

(seasonal and interannual) variations, biomass and organic matter concentration, water 

column depth, phytoplankton species composition, and temperature. While we were 

primarily interested in bloom development in December, data from I VARS stations in 

December and February were included in order to discern any temporal trends within the 

data set.

Variable loadings

Loadings for PCI vs. PC2 and PCI vs. PC3 were plotted in order to assess 

relationships between the variables and each PC (Table 7, Figure 8a, 9a). Variables with 

positive loadings on the PC axis indicate a direct relationship with each PC. The 

magnitude o f the loadings is indicative o f the influence o f the variable on each PC 

(Zimmerman and Canuel, 2001). In the PCI vs. PC2 plots, phytoplankton pigments 

including chlorophyll, fucoxanthin, PN, and POC projected close to one another in the 

positive PCI coordinate space while inorganic nutrients, salinity, and density projected 

close to one another in the negative loaded PCI coordinate space (Table 7, Figure 8a).

The most negatively loaded (<-0.2) variable on PC 1 was nitrate+nitrite while the most
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positively loaded was >20 pm  chlorophyll. The strong positive loadings o f pigments on 

the PCI axis and negative loadings o f inorganic nutrients suggest that PCI separates out 

the data on a depth and range o f biomass and organic matter concentrations with the 

deepest samples having negative loadings and surface samples having positive loadings. 

Loadings on PCI might also be affected by other parameters not measured including 

irradiance which, is an important control on phytoplankton production.

Temperature and year have the most positive loadings on PC2 (>0.15). This 

suggests that PC2 describes temporal variability among the samples (Table 7; Figure 8a). 

19-hex, salinity, density and season had the most negative loadings on PC2 with values < 

-0.3. PC2 can be interpreted as separating samples based on seasonality and 19-hex (P. 

antarctica) concentrations upon examination o f the scores.

Temperature, salinity, and year (loadings o f 0.47, 0.41, and 0.38, respectively) 

had the most positive loadings on PC3 (Table 7; Figure 9a). This may suggest that PC3 

resolves between samples collected during high vs. low water temperatures. December 

2004 had significantly higher temperatures than 2001 and 2003, and PC3 generally 

resolved between 2004 samples and samples collected in 2001-2003 (Figure 9b). 

Observation Scores

PC scores indicate relationships between the PC and individual samples. PCI 

separates the data by station depth in the water column and the concentrations o f 

chlorophyll and organic matter (Appendix A-C; Figure 8b). Samples located deeper 

within the water column had higher concentrations o f inorganic nutrients and lower 

concentrations o f particulate nitrogen, chlorophyll, and other fixed organic matter (Figure 

8b). M ost o f the samples from stations sampled in December had negative PC2 scores,
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while February samples had positive PC2 scores indicating that the locations were most 

influenced by seasonality with respect to inorganic nutrients and biomass (Figure 8b). P. 

antarctica abundance was higher during December o f 2001 and 2003 than 2004. PC2 

and PC3 scores were also plotted and PC2 has negative loadings o f season and 19-hex 

(Appendix D). PCI and PC2 were plotted for each year separately to determine if  

seasonal differences (December vs. February) affected the data set (Appendix E-G). PC2 

separated out December and February for every year except 2004. This is probably due to 

the absence o f P.antarctica that December.

In order to draw a conclusion on how temperature may affect sample observations 

for each station, PCI versus PC3 scores were plotted for the December stations (Figure 

9b). December 2004 stations dominated by diatoms exhibited the highest scores, while in 

December 2001 and 2003 stations dominated by P. antarctica exhibited high negative 

scores. This suggests that temperature m ay play a role in assemblage composition and 

inorganic nutrient uptake. This is further confirmed with a significant relationship 

between temperature and percentage o f prymnesiophytes for all December stations (Table 

8). The percent prymnesiophyte data were collected from the IVARS CHEMTAX dataset 

located at http://www.vims.edu/bio/ivars. This suggests that lower temperatures favor 

prymnesiophytes (P. antarctica) while higher temperatures favor other phytoplankton 

including diatoms (Table 8, R2=0.702, p<0.0001).

Temperature vs nitrate concentrations

Relationships between surface concentrations o f nitrate and surface seawater 

temperature were examined to address the role temperature could play in nitrate uptake 

during December. There was a significant negative relationship between nitrate with
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temperature, suggesting that temperature does play a significant role in Ross Sea nutrient 

dynamics. In order to confirm that this relationship has existed in historical data sets for 

the Ross Sea, the U.S. Joint Global Ocean Flux Study from the Southern Ocean Ross Sea 

cruises were analyzed for this relationship (http://usjgofs.whoi.edu/jg/info/jgofs/southem 

/nbp97_8/). There were 58 samples taken during the 97-8 cruise (late November to Mid 

December) for which measurements o f nitrate and temperature data from the surface (0-5 

m) were available. These data were combined with the IVARS data and regression 

analysis found a significant relationship between nitrate and temperature (Table 8, R2= 

0.756, pO.OOOl).

Surface nitrate and temperature were found to have a significant relationship in 

our study. A model using the Goes et al. (1999) method with sea surface temperature and 

chlorophyll was developed to establish whether Ross Sea nitrate concentrations could be 

estimated by satellite measurements. A Ross Sea model for austral spring surface nitrate 

concentrations was developed using the following relationship:

Nitrate = 18.3 - 3.67 temp - 0.571 temp2 + 0.351 Chi - 0.0511 Chi2.

Based on this relationship, we can conclude that it may be possible for nitrate 

concentrations in austral spring to be predicted by satellite measurements. This is 

important as the timing o f blooms and export could be approximated using only remote 

data. Our predicted values using this model compared to our actual shipboard 

measurements o f nitrate were also significant (Table 8, R2=0.834, p<0.0001).
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DISCUSSION

Depth variation o f  inorganic nutrients and organic matter concentrations

We observed a relationship between depth o f sample and inorganic nutrient 

concentrations using PCA analyses. Specifically, the relationship o f nitrate 

concentrations to PC I, PC2, and PC3 are o f interest due to the controls they could have 

on new production which defines the rate at which organic matter and energy may be 

passed onto higher trophic levels (Dugdale and Goering, 1967). Nitrogen concentrations 

and biogeochemistry o f the Ross Sea are well established as the area has been intensively 

studied over the past 15 years (Smith and Anderson, 2003). However, interannual 

variations in nutrient uptake and phytoplankton dynamics are not well known though 

interannual variations in nutrient budgets have been recently published (Smith et al., 

2006, section I).

Since irradiance decreases with depth, in situ nitrogen concentrations at the 

surface are lower due to increased biological uptake. W hile the relationship between 

irradiance and the uptake o f  nitrate by phytoplankton is poorly understood, Hu and Smith 

(1998) observed a strong dependence o f nitrate uptake on irradiance using l5N-labeled 

laboratory and field incubations o f P. antarctica assemblages in the Ross Sea. Nelson 

and Smith (1986) and Glibert et al. (1982) suggested that the uptake o f nitrate may be 

weakly dependent on irradiance and could be due more to species composition or 

intracellular reductants. Other studies in polar regions have found that the relationship 

between nitrate uptake and irradiance can depend on the growth stage o f the 

phytoplankton bloom (Olson, 1980).
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Seasonal variation

As expected, there were differences in concentrations o f inorganic and organic 

matter between samples collected in December and February (Table 6). M any studies 

have suggested that phytoplankton growth in February may be limited by micronutrient 

concentrations (Sedwick et al., 2000; Peloquin, personal communication). There are also 

differences in the hydrographic parameters between the two seasons as indicated by the 

fact that the observations from December and February projected on different areas o f the 

PC3 coordinate space (Figure 9b). W hile this study was primarily interested in how sea 

surface temperature may affect bloom growth in December, the PCA suggests that there 

are intensified seasonal variations in the Ross Sea, and that they are consistent 

interannually. The PCA also suggests that there are interannual variations in our study 

which, is confirmed by the variable year being strongly positively loaded on the PC2. 

Biogenic silica also is positively loaded on PC2 and shows seasonal and interannual 

variation as discussed by Smith et al. (2006) due to relative diatom abundance. 

Relationship between temperature and nitrate uptake

The primary controls on the growth rates o f Antarctic phytoplankton are still 

under debate (e.g., Arrigo et al., 1999; Smith et al., 2006). In this study we found a 

significant negative relationship between surface concentrations o f nitrate and 

temperature (Table 4). Similar to Behrenfeld et al. (2006), this suggests that warmer 

temperatures in the Antarctic could affect nitrate uptake and species composition. 

Temperature was strongly related to PC3 and sites with warmer temperatures in 

December 2004 projected PC3 in the positive regions o f PC3 coordinate space, while 

samples at colder stations in December 2001 and 2003 projected in the negative regions
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(Figure 9b). Temperature, nitrate, and chlorophyll a concentrations have been linked due 

to incident radiation playing a role as a m ajor heat source along with providing light for 

primary production and nutrient uptake (Kamykowsi, 1987). Smith and Harrison (1991) 

found that nitrate and ammonium uptake was directly affected by temperature and 

derived Qio values were greater than 2. This same Qio value has also been observed 

temperature/photosynthesis responses (Li et al., 1984). New production models including 

the relationship between nitrate and temperature have been applied successfully mainly 

due to rapid phytoplankton growth not being thought to diminish regenerated forms of 

nitrogen (Dugdale et al., 1989). There may be temperature dependence on iron uptake 

that is affecting nitrate uptake; however, the exact mechanism for the temperature 

dependence on iron uptake in marine algae remains undefined (Reay et al., 2001). In 

addition, temperature could be directly related to water mass intrusions which could have 

also brought iron into the surface waters (Peloquin, 2005).

Hydrographic properties exhibited interannual variability during austral spring 

(Table 5). Sea surface temperature was significantly higher in December 2004 than 

December 2001 and 2003. While an extensive analysis o f  sea ice, circulation, and 

irradiance is still being performed, temperature-salinity diagrams show that there is a 

high temperature/salinity signal below and above the pycnocline in December 2004, 

suggesting that these higher surface temperatures could be due to MCDW intrusions 

(Figure 12). Other regions in the Southern Ocean have been observed to have a 

limitation o f nutrient drawdown and net productivity due to low temperatures (Tilzer et 

al., 1986; Priscu et al., 1989; Reay et al., 2001). It is unknown whether the 

phytoplankton assemblage is responding to the increase in temperature or other factors
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since temperature can be a proxy for other parameters such as water mass intrusions that 

have higher concentrations o f micronutrients (Grotti et al., 2001; Ianni et al., 2002). The 

presence o f MCDW  and AASW in the surface water has been attributed to increases in 

local nutrient and micronutrient concentrations through the melting o f sea ice. These 

nutrient and micronutrient pulses affect local primary productivity and cause onsets o f 

intense phytoplankton blooms. Future analysis will be performed on the relative roles o f 

water mass intrusions and other factors such as irradiance and ice cover (Peloquin, 

unpublished data). Smith et al. (2006) noted large differences in ice cover between 2001 

and 2003, and these could help explain the variability we are seeing in our data set as sea 

ice plays a crucial role in the quantitative and qualitative distributions o f  phytoplankton 

communities (Mangoni et al., 2004). Low water temperatures (< 0°C) have been reported 

to decrease phytoplankton production in other studies (Bracher et al., 1999; Saggiomo et 

al., 2002). Our study area was also affected by icebergs and high concentrations o f sea 

ice, especially in December 2003 when ice concentrations were larger than the long term 

mean (Comiso et al., 1993; Smith et al., 2006). It should also be noted that while the 

nitrate uptake in December 2003 was extremely low, uptake during the growing season 

continued at elevated rates. As a result, the austral spring uptake represented only 31% 

o f the seasonal removal due to a large bloom o f diatoms later in the season (Smith et al., 

2006). The phytoplankton assemblage during December 2003 exhibited stress both

through a low and Fv/Fm (Section IV; Peloquin 2005), and it is thought that the

bloom o f diatoms that followed was due to water mass intrusions that delivered iron to 

the surface waters (Peloquin and Smith, 1996).
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Temperature and assemblage composition

Prymnesiophyte abundance was inversely related to warmer sea surface 

temperatures during our study (Table 8). P. antarctica has higher growth rates between -2 

°C and 2 °C (Schoemann et al., 2005); therefore the warmer temperatures during 

December 2004 could have allowed diatoms to outcompete P. antarctica. In situ 

measurements comparing the growth rates o f  P. antarctica and diatoms solely due to 

temperature have not been published to our knowledge. In December 2004, diatoms 

were most abundant and this could be due to water mass intrusions like the ones observed 

for the secondary diatom bloom in austral summer o f 2004 by Peloquin and Smith 

(2006). As mentioned, we also see in the T-S plots that warmer water was observed in the 

surface waters and at depth (Figure 10). W hile the secondary bloom during February 

2004 was apparently fueled by MCDW  intrusions during the austral spring, the T-S plots 

in December 2004 the following season show the significantly higher surface 

temperatures than the other study years. It is probable that along with MCDW, surface 

warming and ice melting caused additional decreases in salinity and increased warming 

during December 2004 which, are characteristic o f Antarctic Surface W ater (AASW) 

intrusions in the Ross Sea (Gordon et al., 2000; Grotti et al. 2001). High temperature, 

lower salinities (mean temperature and salinity: 1.0 °C, 34.19 in 1987/1988; 0.5 °C and 

33.58 in 1989/1990), similar to December 2004 data have also been observed in the 

western Ross Sea and Terra Nova Bay and have been attributed to AASW  (Grotti et al., 

2001; and references therein). If  these water mass intrusions, in fact, had increased iron 

concentrations, diatoms may be responding more quickly to these pulses o f 

micronutrients.
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Hydrographic properties including temperature clearly play a role in 

phytoplankton dynamics during our study and affect phytoplankton community 

composition. Phaeocystis antarctica was most abundant in December 2001 and 

December 2003 in the solitary and colonial form, respectively. W hile the life cycle and 

physiology o f P. antarctica is poorly known, we observed a larger abundance o f colonies 

in December o f 2003. Section IV discusses the roles that various factors have on the 

dominant morphology o f P. antarctica during our study. The larger percentage o f 

diatoms during December 2004 m ay result from increased temperatures and 

micronutrients from the AASW and MCDW  intrusions. The large secondary bloom in 

February 2004 has also been attributed to increased presence o f MCDW  (Peloquin and 

Smith, 2006). Bloom assemblage composition can also affect nitrogen uptake. Diatoms 

have been observed to remove both nitrate and ammonium more rapidly than P. 

antarctica (Smith and van Hilst, 2003)

Using remotely sensed data to predict nitrate concentrations

The Ross Sea nitrate model we generated could be used to generate large scale sea 

surface nitrate maps using remotely sensed temperature and chlorophyll data (Table 8). 

This model simply utilizes in situ chlorophyll and temperature from IVARS to see if  it is 

possible to predict surface water nitrate concentrations in the Ross Sea using a simple 

mathematical relationship (see Methods section). Other regions have been successfully 

mapped nitrate with remotely sensed sea surface temperature values using similar models 

but are complicated models that include estimates o f new production and utilize nitrate 

uptake rates and kinetics in California (Dugdale et al., 1997). Significant relationships 

between nitrate and temperature in CA (Kamkowski and Zentara, 2003), East China Sea
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(Gong et al., 1995), and Eastern Tropical Pacific (Chavez et al,. 1996) have also been 

observed. Steeper slopes (relationship between temperature and nitrate) are seen at high 

latitudes, while shallower slopes are observed at lower latitudes (Zentara and 

Kamkowski, 1977). This implies that phytoplankton at higher latitudes respond to 

increases in temperature, with respect to nitrate uptake, at a faster rate than lower latitude 

phytoplankton.

Conclusions

The results from the PCA suggest that temperature may be one o f the primary 

controls on austral spring bloom nitrate uptake dynamics, and this supports other studies 

arguing that P. antarctica has a dramatically reduced nitrate assimilation capacity in the 

Southern Ocean. Currently, it is not clear whether phytoplankton are responding to 

temperature or if  it is a proxy for other parameters that can affect phytoplankton growth 

rates such as increased concentrations o f micronutrients (related to the water mass 

intrusions) that were not measured in our study. Furthermore, analysis o f the chlorophyll, 

temperature, and nitrate data from IVARS showed that utilizing satellite observations o f 

temperature and chlorophyll as an estimate o f new production during austral spring 

should be further explored. W hile the inverse relationship between water temperature 

and nitrate concentration is well established, this is the first study showing that this 

relationship holds true in the Ross Sea and affects phytoplankton community 

composition. Since temperature may be having negative effects on nitrate uptake by 

phytoplankton, enhanced iron may not fully allow the phytoplankton to deplete the nitrate 

pool due to low temperatures inhibiting nitrate and nitrite reductase. Temperature-salinity 

diagrams show that there is a high temperature/salinity signal below and above the
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pycnocline suggesting that these higher surface temperatures in 2004 could be due to 

MCDW or AASW intrusions. Future studies looking at the magnitude and timing o f these 

water mass intrusions and the effects on local temperature and micronutrient 

concentrations are essential in understanding phytoplankton dynamics. Finally, 

additional studies looking at the thermal behavior o f enzymes in nitrate reduction and the 

capacity o f phytoplankton to adapt to polar conditions are needed to fully understand the 

role that temperature plays in controlling austral spring bloom formation in the Ross Sea.
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Table 5 .  Means and standard deviations for mixed layer ( Z m ix) ,  surface temperature ( T surfa c e ) , surface salinity ( S surfac e ) , and density (a, 
surface) for December 2001, 2003, and 2004. Bold numbers indicate a significant difference between other years.

Year n Z m ix

(m)

Tsurface

(°C)

Ssurface

(psu)

Ctf surface

2001 5 23.5 ± 8 .8 -0.96 ± 0 .17 34.44 ± 0.09 27.70 ± 0.07
2003 6 19.1 ± 8 .6 -0.90 ± 0 .33 34.14 ± 0.08 27.45 ± 0.06
2004 20 21.7 ± 6.5 0.14 ± 0 .60 34.44 ± 0.07 27.65 ± 0.04
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Table 6. Means and standard deviations o f  sea surface nutrient and pigment concentrations in December o f  2001, 2003, and 2004. 
Bold numbers indicate a significant difference between other years.

Year n n o 3

(pM)

Si(OH)4

(HM)

P 0 4

(pM)

Chlorophyll 

(pg L '1)

Fucoxanthin

(p g L '1)

19-hex

(pgL -1)
2001 5 22.04±1.28 77.16±1.68 1.82±0.06 5.81±1.91 1.82±0.63 9.29±2.63
2003 6 20.04±1.68 66.58±4.75 1.58±0.087 5.35±3.51 1.45±0.62 4.04±3.06
2004 17 16.52±2.98 63.54±8.65 1.08±0.14 7.90±3.94 3.78±3.42 0.32±0.28
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Table 7. Variable loadings for principal components 1, 2, and 3.

Symbol Variable PCI PC2 PC3
Year Year 0.002 0.15 0.379
Season Season 0.05 -0.449 0.198
Longitude Longitude 0.021 -0.091 0.168
Z Depth -0.198 -0.129 -0.124
N Nitrate -0.239 -0.222 -0.225
P Phosphate -0.157 -0.189 -0.276
S Silicic Acid -0.23 -0.286 0.072
Tchl Total Chlorophyll a 0.333 -0.164 -0.132
5ch >5 pm Chlorophyll a 0.332 -0.174 -0.004
20chl >20 pm  Chlorophyll a 0.336 -0.113 0.002
<20chl <20 pm  Chlorophyll a 0.171 -0.175 -0.299
BSi Biogenic Silica 0.319 0.129 0.017
POC Particulate Organic Carbon 0.313 -0.224 0.07
PN Particulate Nitrogen 0.334 -0.147 0.071
fuco fucoxanthin 0.298 -0.029 0
hex 19,-hexanoyloxyfucoxanthin 0.021 -0.369 -0.168
temp Temperature 0.095 0.176 0.47
sal Salinity -0.147 -0.314 0.41
dens aT -0.172 -0.359 0.326
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Table 8: Regression results from comparisons o f  I VARS data with JGOFS and modeled data. See text for full description o f  analyses.

Parameters R2 P
Temperature vs. percentage o f  haptophytes 0.702 <0.0001
Temperature vs. in situ nitrate concentration 
M odeled nitrate concentration vs. IVARS in situ nitrate

0.756 <0.0001

concentration 0.834 <0.0001
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Figure 6. Ross Sea station locations that were included in principal components analysis. 
(Courtesy o f  Jessica Walker, Raytheon Polar Services)
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Figure 7. Phytoplankton community composition calculated from cell counts for IVARS 
December 2001, 2003, and 2004 (Peloquin et al. in prep).
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Figure 8. a) Principal components 1 and 2 loadings for IVARS data set. b) Principal 
components 1 and 2 scores for IVARS data set. (Circles, triangles, and x symbols 
represent samples taken at 0, 20, and 50 m, respectively).
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Figure 9 a) Principal components 1 and 3 loadings for IVARS data set. b) Principal 
components 1 and 3 scores for December data for IVARS data set. December PC3 scores 
plotted alone show separation o f stations by year with the warmest years in 2004. 
(Circles, triangles, and x symbols represent samples taken at 0, 20, and 50 m, 
respectively).
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Figure 10. Potential temperature/salinity diagram for December 2001, 2003, and 2004. 
Potential temperature removes the effect o f compressibility.
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ABSTRACT

The Ross Sea has one o f the most spatially intense and predictable phytoplankton 

blooms in the Southern Ocean. The phytoplankton blooms differ in size and composition 

(diatom-and Phaeocystis-dominated blooms) which, have different impacts on carbon 

cycling due to the relative contribution o f passive sinking and grazing by zooplankton. 

The main objectives o f  this study were to measure interannual variability in total mass 

flux (TMF), particulate organic carbon (POC), particulate nitrogen (PN), and biogenic 

silica (BSi) fluxes in the Ross Sea as part o f the Interannual Variations in the Ross Sea- 

Antarctic (IVARS) program. Two sediment traps were deployed during 2003-2004 and 

2004-2005 with one trap located in each o f the southwestern (Callinectes) and 

southeastern (Xiphias) sectors. Variations in fecal pellet contribution to carbon flux, and 

the color and shape o f the pellets were also examined. During our study phytoplankton 

community structure differed between 2003-2004 and 2004-2005 both assemblage 

composition and magnitude o f biomass (Section I and II). The largest fluxes intercepted 

during our mooring deployments were in 2003-2004. During 2003-2004 the trap located 

in the southeastern region (Xiphias) had the highest TMF, BSi, and OC flux; this is 

unexpected, as in previous years the southeastern region has been observed to have lower 

concentrations o f diatoms than the southwestern region. This increase in flux in the 

southeastern region is due to the large secondary diatom bloom in late January o f 2004, 

with chlorophyll and POC greater or equal to the December blooms in 2003 and 2004. 

Herbivory by large zooplankton during 2003-2004 and 2004-2005 was also quite high, as 

confirmed by the abundance o f green and brown pellets and the large percentage o f
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carbon flux represented by fecal pellets. Hence, interannual variation in grazing 

assemblages impacts export and biogeochemical cycles in the Ross Sea.
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INTRODUCTION

Ross Sea vertical export

The Ross Sea has one o f the most spatially intense and predictable phytoplankton 

blooms in the Southern Ocean (Sullivan et al., 1993; Nelson et al., 1996). The 

phytoplankton blooms differ in size and composition (diatom- and Phaeocystis- 

dominated blooms), resulting in different impacts on carbon cycling due to the relative 

contribution o f passive sinking o f phytoplankton aggregates and grazing by zooplankton 

(Dunbar et al., 1998; Accomero and Gowing, 2003). Smith and Dunbar (1998) and Asper 

and Smith (1999) found that the export o f particulate organic carbon from the euphotic 

zone was temporally uncoupled to surface layer production and biomass. They also found 

that as the bloom o f Phaeocystis antarctica reaches its maximum biomass, aggregates 

form which, significantly accelerate export to depth. The formation o f aggregates is a 

function o f particle stickiness, turbulence, cell abundance and the abundance o f colonies. 

Generally, aggregates increase sinking rates from the euphotic zone (Wassman, 1994), 

although some P. antarctica cells may be released from sinking colonies and aggregates.

Supply o f material from the overlying water column and regeneration o f biogenic 

material in the water column affect the biogenic composition o f the sea bed. The 

particulate matter composition at depth is dependent on biological factors such as primary 

and secondary production, chemical factors such as dissolution and oxidation, and 

physical factors such as aggregation, vertical and lateral transport (Lai and Lerman,

1975). A significant amount o f biogenic matter is produced in the surface waters o f the 

Ross Sea and subsequently accumulates in the sediments (Ledford-Hoffman et al., 1986; 

DeMaster et al., 1992). These vertical fluxes o f biogenic silica and particulate organic
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carbon are largely constrained to the continental shelf. The extent o f lateral transport o f 

particles is still unclear in the Ross Sea (DeMaster et al., 1992).

Zooplankton and vertical flux

The phytoplankton and zooplankton community affects the biological pump, 

which is the principal biological regulator o f ocean-atmosphere carbon cycling. The 

biological pump removes carbon from the surface ocean to the deep ocean through the 

settling o f particulate organic matter (Longhurst and Harrison, 1989). The organic matter 

in the surface waters either enters the microbial loop and is remineralized in the surface 

or it sinks out o f the surface waters through passive sinking o f aggregates, active grazing 

by zooplankton via sinking o f fecal pellets, and active transport by zooplankton. 

Mesozooplankton (multicellular organisms that range from 200 pm  to 2 mm in size) feed 

on phytoplankton, other mesozooplankton, and microzooplankton. The relative roles o f 

microzooplankton (associated with regenerated production) and mesozooplankton 

(associated with export) grazing have a large impact on ecosystem function and the 

magnitude o f vertical flux in marine systems on biogeochemical cycles. Micro- and 

mesograzing is thought to have little influence on vertical flux in the Ross Sea when 

colonies o f Phaeocystis antarctica are present (Caron et al., 2000). Grazing on colonies 

and its effect on sinking rates due to fecal pellet production is complex and is affected by 

physiology and microbial colonization o f  the colonial matrix (Bautista et al., 1992). Since 

spring primary productivity is often dominated by P. antarctica (Smith and Gordon 

1997), the export flux often consists o f  rapidly sinking colonies and aggregates. 

Herbivorous mesozooplankton have been observed to ingest P. antarctica (Shields, 

unpublished data). Diatoms, however, are large enough to be eaten by mesozooplankton
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and macrozooplanton (>10 to >500 pm  for diatom species forming large chains), and 

therefore can be exported in rapidly sinking fecal pellets (Bathmann et al., 1990).

Diatoms also can sink as individual cells, spores or aggregates without being consumed 

(Smetacek, 1985; Alldredge andGotchalk, 1989).

Zooplankton fecal pellets play an important role in transporting organic material 

to the deep ocean and nutrient cycling (e.g. Small et al., 1979; Turner and Ferrante, 1979; 

Steinberg et al., 2000; Turner, 2002; Schnack-Schiel and Ilsa, 2005). The sinking speed 

o f the zooplankton fecal pellets is related to its size and therefore flux is related to the 

size structure o f the grazer community (Small et al., 1979; Uye and Kaname, 1994; 

Turner, 2002). Potential sinking velocities in the Ross Sea range from 25 to 677 m d '1 

(Accomero and Gowing, 2003). Density and size o f fecal pellets from copepods are 

related to food availability and food type (Feinberg and Dam, 1998). Fragile, less 

compact fecal pellets produced by copepods with low food availability or quality are less 

likely to sink out o f the euphotic zone than other pellets produced during high food 

concentrations (Dagg and Walser, 1986). Hydrodynamics, aggregation, bacterial 

decomposition, and destruction and ingestion by other zooplankton affect the sinking rate 

and preservation o f fecal pellets (Honjo and Roman, 1978; Uye and Kaname 1994).

The use o f sediment traps for measuring vertical flux can have significant errors 

associated with their deployments (Buessler et al., submitted). These include 

“swimmers” (Hedges et al., 1993; Honjo, 1996; Buessler, 1998; Buessler et al., 

submitted), the horizontal advection o f particles (Buesseler, 1991), particle degradation 

and the efficiency o f  the trap (Buessler et al., submitted). Two recommendations to 

increase trap efficiency are to use neutral buoyant traps to avoid hydrodynamic issues and
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to limit access o f zooplankton to traps (Buessler et al., in press). Even with these errors, 

sediment traps can provide valuable information about the role o f  grazing in fecal pellet 

flux in the Ross Sea since traps allow for the direct collection and examination o f sinking 

particles.

Biological mediation o f particle flux in the Ross Sea is the main process 

investigated in this study. W hile there is a lag in the peak o f accumulation o f organic 

matter in the surface waters during austral summer, the timing and magnitude o f fecal 

pellet flux during two years with different dominant phytoplankton assemblages provides 

an opportunity to determine how primary and secondary producers affect export and flux 

to depth in the Ross Sea. The main objectives o f this study were to measure interannual 

variability in total mass flux (TMF), particulate organic carbon (POC), particulate 

nitrogen (PN), and biogenic silica (BSi) fluxes in the Ross Sea as part o f the Interannual 

Variations in the Ross Sea-Antarctic (IVARS) program (Section I and II). Two traps 

were deployed in each o f two years (2003-2004 and 2004-2005) with one trap each in 

southwestern (Callinectes) and southeastern (Xiphias) sectors. Variations in fecal pellet 

contribution to carbon flux, and the color and shape o f the pellets were also examined. 

During our study the phytoplankton community composition between 2003-2004 and 

2004-2005 differed in both species and concentration (Section I and II). Based on this 

observation, I hypothesized that Phaeocystis-dominated stations in late December o f 

2003 would have higher flux as aggregates and organic carbon export, and diatom- 

dominated sites later in austral summer (February 2004) and throughout the austral spring 

and summer o f  2004-2005, would have silica and carbon fluxes dominated by fecal 

pellets. Grazing on Phaeocystis colonies is minimal, while mesozooplankton and
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macrozooplankton grazing on diatoms in the Ross Sea is high. In the southwestern Ross 

Sea it was expected that our moorings would primarily consist o f fecal pellets from 

zooplankton that grazed diatoms and diatom aggregates, while in the southeastern region 

I expected to see flux mainly from phytoplankton aggregates and higher ratios o f carbon 

flux to opal flux.

METHODS

As a part o f the Interannual Variability in the Antarctic- Ross Sea (IVARS) 

program, two McLane Mark 78-H PARFLUX sediment traps were deployed on moorings 

each year (2003-2004 and 2004-2005) along either end o f our ship transect in December 

and retrieved in February (Tables 9, 10). The sediment traps (with 21 cups) were 

deployed along with a timer (rotating every two days; for a maximum o f 38 days) on 

either end o f the southernmost transects o f the IVARS cruises with Callinectes located in 

the southwestern Ross Sea where primary productivity is usually attributed to diatoms 

(DeMaster et al., 1992; Smith et al. 1996). The Xiphias mooring was deployed in the 

southeastern region which, usually is dominated by Phaeocystis antarctica. These 

sediment traps were moored at Station 3 (Callinectes) and Station 10 (Xiphias) at 200 m 

(Figure 1 from Section 1). The traps were deployed along with water samplers, nitrate 

and silicate analyzers, thermographs, fluorometers, a MAV-3 current meter, and a 

Microcat CTD (Figure 11). The United States Coast Guard icebreaker Polar Star and 

RVIB Nathaniel B. Palmer were used for the deployment and retrieval o f the sediment 

traps. Nineteen samples (two day intervals, 38 days) at each o f the Xiphias and 

Callinectes locations were collected between December 31-February 2, 2004 and 

December 30, 2003 to February 4, 2004, respectively. During 2004-2005, seventeen
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samples (two-day intervals, 34 days), were taken at Xiphias from December 25, 2004 to 

January 29, 2005. Callinectes was deployed from December 23, 2004 to January 29,

2005 (two-day intervals, 36 days). Before deployment, each sample cup was filled with 

preservative solution that consisted o f  buffered 2% formalin and 50 g L '1 NaCl final 

concentration. Strontium chloride (final concentration 10 mg L '1) was added for the 

preservation o f Acantharia. For detailed procedures, see Asper and Smith (1999).

Sample Processing

Swimmers, zooplankton that swim or are advected into the traps, were removed 

from the samples using a 600 pm  mesh. Due to the large size o f mesh, it is likely that 

there still were zooplankton remaining which, would cause an additional source o f error. 

Each sediment trap sample was split into four samples using a four way plankton splitter 

for aliquots for TMF, BSi, POC/PN, and microscopy. Total mass flux (TMF or dry 

weight) samples were processed by preparing preweighed 0.8 pm  poretic filters that were 

rinsed three times with distilled water and then were dried and reweighed. Samples were 

then filtered onto the preweighed filters and the filter funnels and filters were rinsed with 

ammonium formate to remove sea water salts. The filters were then dried at 60 °C for 

approximately four days, until a constant weight could be obtained. POC and PN 

samples were filtered onto precombusted GF/F filters and then rinsed with 5 mL 0 .0 IN 

HC1 to removed inorganic carbon. Filters were then placed onto a piece o f combusted foil 

and dried in an oven at 60 °C for at least five days to ensure dryness. Once dry, POC/PN 

samples were run using the protocol in Section I (Asper and Smith, 1999). Biogenic silica 

(BSi) samples were filtered onto 0.6 pm  polycarbonate filters and dried at 60 °C for 2-3 

days and then run using protocol from Section I. Total particulate organic carbon, total
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particulate nitrogen, biogenic silica and total mass flux (TMF) were determined by the 

following equation:

TMF= Total mass per sample / (Time interval * 0.5 m2).

Microscopy

Aliquots for microscopy were further split using a smaller two-way Folsom plankton 

splitter until approximately 100 fecal pellets per sample were left for enumeration. 

Samples were then concentrated using a 53 pm  sieve; minipellets were not included in 

microscopic analyses. These samples were placed in a clean Petri dish and imaged using 

an Olympus stereo dissecting microscope. Images o f fecal pellets for 4-5 samples o f  each 

trap for each year were analyzed using Image Pro software from which the length and 

width o f each individual pellet in the trap material was measured. Observations were 

taken from 1774 pellets, including morphology and qualitative color. Fecal pellet carbon 

was measured using the volumes calculated from microscopy (Kelchner, 2005) and two 

volume to carbon values from the literature. Fecal pellet carbon values measured in the 

field were not available for the Ross Sea; therefore, the lowest literature value used for 

other studies in our region (0.016 mg C m m '2, euphausiid pellets from Norway) and a 

middle range value (0.05 mg C m m '2, copepod pellets from Norway) were used to show 

the error surrounding these measurements (Gowing et al., 2001 and references therein).
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Bio geochemical properties 

Flux during 2003-2004

Total mass flux, biogenic silica, organic carbon, and particulate nitrogen flux varied 

interannually, seasonally, and spatially (Tables 9, 10; Figure 12a-d). During 2003-2004 

flux was higher at Xiphias with 1177 mg m '2 (TMF), 82.8 mg m '2 (BSi), 143.1 mg m '2 

(POC) and 16.3 mg m '2 (PN) over the duration o f the trap deployment (Table 9, 10). 

These values were 2-3 times higher than Callinectes (more western location). Xiphias 

also had two periods o f high flux (the periods between January 6-10 and January 26- 

February 5) (Figure 12a). Callinectes only had one period o f high TMF on January 5 

(Table 9, Figure 12b). The secondary fluxes o f BSi, TMF, and OC appear to be due to the 

large secondary diatom bloom that year (Section I).

Flux during 2004-2005

During 2004-2005 Callinectes had higher TMF, BSi, POC, and PN fluxes than 

Xiphias o f  565.6, 53.6, 133.2, and 24.3 mg m '2 d '1, respectively (Table 10). The highest 

TMF flux rate during 2004-2005 was on January 20th with a TMF o f 58.31 mg m '2 d '1 

(Figure 12d). TMF Flux during 2004-2005 for both trap locations was 2-3 times lower 

than 2003-2004 TMF flux at the Xiphias mooring (Figure 12c,d). The POC flux during 

2004-2005 at both trap locations, however, was similar to Xiphias 2003-2004. 

Relationship between TMF and composition

Regression analyses show that TMF has a significant relationship with BSi, POC, 

and PN for both years and trap locations (Table 11, R2=0.38, p<0.0001; R2=0.37, 

p<0.0001; R2=0.13, p=0.003 for BSi, POC, and PN, respectively). POC and PN also had
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a significant relationship throughout both years and trap locations (Figure 13, R '=0.879 

p<0.0001). The C/N ratio never exceeded 13.8 during 2003-2004 and 10. 7 in 2004-2005, 

and usually was much lower, closer to the Redfield ratio (Table 9-10).

Biogenic silica flux remained low during the periods o f December 23 to mid- 

January for both locations for both years except Xiphias in 2004-2005 which, had 

maximal BSi fluxes o f 4.2 mg m '2 d '1 on January 3 (mean ± sd: 1. 1± 1.0) (Table 10). 

During 2003-2004 the December bloom was dominated by colonial P. antarctica, while 

in 2004-2005, diatoms were more abundant (Section II) which, may explain why 

biogenic silica fluxes were so low. The secondary diatom bloom in February 2004 

(Section II) is reflected in the TMF, BSi, and POC fluxes o f the deployment during the 

2003-2004 growing season (Figure 12 a,b). W hile the bloom was observed at both 

Xiphias and Callinectes, the highest flux was at Xiphias in 2004. The secondary bloom 

during 2003-2004 therefore provided an additional BSi flux equal to the total BSi flux 

from the December phytoplankton bloom in 2004-2005, suggesting that the secondary 

blooms may significantly increase the amount biogenic fluxes. Biogenic silica also had a 

positive relationship to POC and PN fluxes; therefore, diatom blooms may have more o f  

an effect on POC flux than P. antarctica or act as ballast material for aggregates (Table 

11, R2=0.45, pO.OOOl; R2=0.17, p=0.0004 for BSi vs. POC and PN, respectively).

Fecal Pellets

Fecal pellet carbon flux differed significantly interannually, seasonally, and 

spatially during 2003-2004 and 2004-2005 (Tables 9, 10; Figure 14). The highest fecal 

pellet organic flux during 2003-2004 was at Xiphias on February 5, 2004 and was 7.4 mg 

C m '2 d '1 or 111.1 % o f the trap carbon flux. This was using the higher volume to carbon

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



117

conversion ratio used for ovoid fecal pellets which dominated the trap sample. Using the 

lower volume to carbon conversion factor, the fecal pellet carbon was only 2.4 mg C m"2 

d '1 or 36.3% o f  the trap carbon flux (Table 9). During some periods o f  2004-2005, fecal 

pellets also represented a high percentage o f carbon flux, with the highest fecal carbon 

flux o f 4.7 m g C m '2 d"1 or 38.5% of the carbon flux on January 3, 2005 (Table 10).

Ovoid pellets were the most observed fecal pellet shape in our study. Cylindrical, 

spherical, and rectangular pellets were also observed. The ovoid fecal pellet shape was 

similar to Oithona sp. pellets (Martens, 1978), however they were much larger in most 

cases, ranging from 200-300 pm  in length and 100-200 pm, in width. Oithona sp. in 

other regions have a fecal pellet mean length and width o f 36 and 26 pm  (Martens, 1976). 

Visual observations o f net tow materials suggest that Oithona sp. was not highly 

abundant at the end o f January in 2005, while calanoid copepods, Acantharia, 

euphausiids, and colonial choanoflagellates were dominant (Shields, unpublished). Fecal 

pellet color also varied widely between different stations and over time (Figure 15a-c). 

While no relationships or correlations can be made with these data, fecal pellets that were 

lightly colored (Pellet D, Figure 15a) were associated with all the large carbon fluxes, 

while TMF green or F (Figure 15b, pellet F) pellets were more associated with TMF.

The length and width measurements o f the pellets intercepted by each trap cup are given 

in Appendix H and I. Forams and other components including diatom fluff and 

amorphous aggregates were also observed in addition to the pellets.
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DISCUSSION

Variation in flux

These results provide insights about fluxes during austral summer and their 

relationship to phytoplankton assemblage composition. Flux is usually highest from mid- 

January to early M arch in the Ross Sea (Dunbar et al., 1998; Sweeney et al., 2000; 

Kelchner, 2005). The largest fluxes intercepted during our mooring deployments were in 

2003-2004 (Table 9). During 2003-2004 the southeastern trap {Xiphias) had the highest 

TMF, BSi, and POC flux. This was unexpected as in previous studies the southeastern 

region has been observed to have lower concentrations o f diatoms than the southwestern 

region. This increase in flux in the southeastern region is due to the large secondary 

diatom bloom in late January o f 2004 with chlorophyll and POC concentrations greater or 

equal to the December blooms in 2003 and 2004. The chlorophyll concentrations were an 

order o f magnitude higher in February 2004 than February 2005. This secondary diatom 

bloom might have provided sufficient ballast for P. antarctica aggregates, making the P. 

antarctica aggregates more dense and sinking faster out o f the water column. This bloom 

also provided food for zooplankton as fecal pellets represented 111.1 % o f the OC at 

Xiphias and 35% at Callinectes at the end o f  the season (Table 9, 10). The low fecal 

pellet flux during early January 2004 could be due to remineralization o f P. antarctica 

blooms since the removal o f carbon through heterotrophic mineralization within the 

water column is significant in the Ross Sea (Smith and Dunbar, 1998). The high 

percentage o f fecal pellet carbon flux (>100%) could be due to the higher volume to 

carbon conversion used in this study. Additional work is needed to get accurate volume 

to carbon conversions for zooplankton fecal pellets in the Ross Sea.
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The C/N ratio o f the organic matter was usually close to the Redfield ratio o f 6.6 

and never exceeded 13.8 dining both years (Tables 9, 10). This suggests that food was 

abundant for herbivores, and the zooplankton pellets likely contained unassimilated 

organic matter since the C/N ratios approached the Redfield Ratio o f 6.6 for living 

plankton (Knauer et al., 1979). The average C/N ratio for December 2003 when P. 

antarctica colonies were m ost abundant was 7.5 (http://www.vims.edu/ivars). C/N ratios 

o f sediment trap matter ranging from 6-10 could reflect superfluous feeding (Knauer et 

al., 1979). Higher ratios could also suggest that nitrogen was preferentially removed 

through bacterial remineralization (Parsons et al., 1984).

Previous sediment trap studies measured higher POC fluxes with values up to

'y i
92.7 mg C m'" d ' for the same region and season (Smith and Dunbar, 1998; Fabiano et 

al., 1997; Pusceddu et al., 1999). Smith and Dunbar (1998) also observed a large 

percentage o f fecal pellets in some o f their western Ross Sea samples. Accomero et al. 

(2003) present a summary o f OC, TMF, and BSi estimates by many researchers during 

January and February that are similar to our results (e.g. Dunbar et al., 1998; Accomero 

et al., 1999; Langone et al., 2000). Organic carbon fluxes ranged from 0.2- 180.3 mg m ‘2 

d '1 during February 1990 to 1992 (Dunbar et al., 1998). TMF flux ranged from 0.4- 83.4 

mg m '2 d '1 January 1995 to January 1996 (Accomero et al., 1999) and BSi ranged 0-64

'y i

mg m'~ d" from December 1994 to January 1996 (Langone et al., 2000).

Biogenic silica had a positive, linear relationship with POC flux (Table 11). Nelson 

et al. (1996) also found a similar relationship in the Ross Sea. Ballast minerals, including 

silicate and carbonate minerals, often comprise more than half o f the mass o f particles 

leaving the surface (Honjo, 1980, 1996) which, in turn allow particles to sink faster and
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affect the exposure time o f organic matter remineralization (Lee et al., 2004). Armstrong 

et al. (2002) noted that flux o f organic matter at depths >1800 m did show a direct 

relationship to fluxes o f ballast minerals but they did not find this at shallower depths. In 

the Ross Sea, however, we found this relationship as shallow as 200 m, suggesting that 

diatoms do play a crucial role in flux. Ballast minerals provide a way to protect organic 

matter though internal protection (organic matter incorporated into tests) so that it is not 

exposed to decomposing enzymes (Armstrong et al., 2002). The organic matter may also 

help bind particles together. Ballast also increases fluxes, leading to less time for water 

column remineralization in surface waters.

Carbon production and vertical flux

In the Ross Sea, there is a temporal offset between biomass and vertical export, 

with the highest flux reported later in the season than in other studies (Kelchner, 2005). 

Particulate organic carbon flux is uncoupled with surface primary production. The C/N 

ratios close to Redfield (6.8 in the present study) suggest that the material derived from 

phytoplankton and also could represent superfluous feeding during both seasons (Tables 

9,10). Bacterial activity is reduced in polar regions (e.g., Karl, 1993) which may explain 

why we are getting significant relationships between carbon and nitrogen even at 200 

meters.

Zooplankton Fecal Pellets

Fecal pellet flux varied between the two seasons measured (2003-2004 and 2004- 

2005) (Table 9, 10). There was a delay in the production and export in fecal pellets until 

mid-January and this may be due to the delay in development o f  the zooplankton grazing 

community (Dunbar et al., 1998; Sweeney et al., 2000). The production o f pellets in the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



121

Ross Sea appears to be by a zooplankton community that produces ovoid fecal pellets. 

These pellets were similar to those observed by Kelchner (2005), Accomero and Gowing 

(2003) and Honjo and Roman (1978). There was only one zooplankton tow performed 

during 2004-2005, and calanoid copepods were dominant. A detailed, quantitative 

analysis has not been performed. Other studies observed that amphipods dominated the 

Ross Sea surface zooplankton community (Pakhomov and McQuaid, 1996). Pteropods 

were also in high abundance during our tow in 2004-2005, and they are a common 

primary consumer in the Ross Sea (Seibel and Dierssen, 2003). Tabular salp and 

cylindrical Antarctic krill (Euphausia suberba) pellets are observed in other areas o f  the 

Ross Sea and the Southern Ocean (Biggs, 1982; Kelchner, 2005).

W hile fecal pellet size and morphology is indicative o f different zooplankton taxa 

(Silver and Bmland, 1981), fecal pellet color can indicate food source and mode o f 

feeding. The majority o f the pellets intercepted in the traps were green and brown ovoid 

pellets (Figure 15a-c). Honjo (1978) and Honjo and Roman (1978) collected ‘green’ fecal 

pellets and observed phytoplankton pigments, coccoliths, and diatom fragments in green 

pellets. These green pellets contained only a small amount o f organic material. The 

darker, well consolidated pellets that were similar in form contained more amorphous 

organic material with little diatom tests (Honjo and Roman, 1978; Wilson, personal 

communication). The high abundance o f  green and brown pellets in our study indicates 

that herbivorous grazing by large zooplankton occurred during 2003-2004 and 2004- 

2005. Fabiono et al. (1997) observed the same oval fecal pellets which, also dominated 

the fecal pellets their traps intercepted in Terra Nova Bay and were o f unknown origin. 

Scanning electron microscopy o f  these pellets showed that these oval shaped fecal pellets

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



122

were made o f densely packed diatom cells (Fabiano et al., 1997). Food quality also can 

affect fecal pellet volume, density, and carbon content o f fecal pellets, suggesting that 

diatom and Phaeocystis antarctica blooms should have different impacts on carbon flux 

(Butler and Dam, 1994). Copepod fecal pellet production has been found to decrease up 

to 80% due to Phaeocystis sp. blooms in the North Sea Southern Bight (Frangoulis et al., 

2001).

While pellets less than 100 pm  were not considered in this study, “minipellets” 

can be a significant portion o f the total flux in some regions (Gowing and Silver, 1985). 

Pteropods were present during our study and may also have contributed to some o f the 

smaller fecal pellets less than 63 pm. However, the morphology o f the pteropod,

Limacina limacina, pellets and pteropod grazing on phytoplankton in the Ross Sea is 

unknown. Pteropod pellets could also be a source o f high silica flux. Other pteropods, 

such as Corolla spectabilis, are associated with high silica flux in the central California 

current (Silver and Bruland, 1981).

Other Loss Processes

Physical forces m ay also affect flux in the Ross Sea. W hile a one-dimensional 

view is useful in understanding export, lateral advection in the Ross Sea may play an 

important role in decoupling surface waters with the underlying seabed (Leventer and 

Dunbar, 1987). Horizontal advection could also play an important role in the disjunction 

between production and vertical flux in the region. Currents could move particles up to 

207 km over an 80-d period (period noted in Smith and Dunbar, 1998). W hile we did see 

interannual variability between Xiphias and Callinectes between 2003-2004, it is certain 

that the relationships between production, flux, and sinking rates o f  different material are
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extremely complex. Carbon from the surface can leave through biological processes such 

as vertical migration, in which active transport by zooplankton bypasses sediment traps 

(Steinberg et al., 2000). Active transport ranged from 7.8- 38.6% o f mean sinking POC 

flux at 150 m (Steinberg et al., 2000). Life history strategies o f algae, protozoans and 

small metazoans that include vertical movements throughout the water column may 

average at least 35% o f  the carbon leaving the water column (range o f 11-80%, does not 

include larger organisms) (Silver and Gowing, 1999).

Conclusions

The Southern Ocean is a significant part o f the global carbon budget. In order to 

understand and predict particulate organic carbon flux in the Ross Sea, processes such as 

herbivorous zooplankton grazing rates and the role o f food quality and quantity on carbon 

flux , must be explored further. Secondary blooms during February o f 2004 caused 

significant pulses o f organic matter to depth in the Ross Sea. As scientists begin to 

understand the role that modified water mass intrusions may have on these large 

secondary blooms in the Ross Sea, the increased pulses carbon flux and the resultant 

affects on the benthos could be significant. The high abundance o f ovoid brown and 

green pellets in our trap samples suggests that herbivorous grazers in the Ross Sea may 

be important in carbon flux. Massive sinking o f ungrazed P. antarctica blooms was not 

observed. Copepods m ay also be able to utilize P. antarctica as a food source and this 

could change our view o f  how the biological pump works during these large blooms.
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Table 9. Total mass flux, biogenic silica, particulate organic carbon, particulate nitrogen, and fecal pellet flux for trap deployed 
for December 2003-February 2004. Fecal pellet flux only measured for 4-6 samples per sediment trap deployment due to sample 
processing time. * Range o f values using a low and intermediate volume to carbon literature conversion.

SAMPLE Date TMF 

mg m'2 d"1

BSi flux 

mg m'2 d'1 % TMF

OC flux 

mg m'2 d'1 % TMF

N flux 

mg m'2 d"1
%

TMF

Bsi/OC

w/w

C/N

w/w

Fecal Pellets 

mg C m'2 d'1 *
XIPHIAS 1 12/31/2003 8.7 0.6 7.3 nd nd nd nd nd nd 0.67-2.1
XIPHIAS 2 1/2/2004 12.5 1.2 9.4 1.9 15.0 0.2 1.4 0.6 10.5
XIPHIAS 3 1/4/2004 11.3 1.2 11.0 3.4 30.2 0.4 3.5 0.4 8.7
XIPHIAS 4 1/6/2004 70.2 0.9 1.2 4.3 6.1 0.4 0.6 0.2 11.0 0.26-0.80
XIPHIAS 5 1/8/2004 10.5 0.6 5.5 1.3 12.3 0.1 1.2 0.4 10.0
XIPHIAS 6 1/10/2004 67.7 0.9 1.3 1.4 2.0 0.1 0.2 0.7 9.7 0.22-0.68
XIPHIAS 7 1/12/2004 9.7 0.6 6.0 1.9 19.9 0.2 2.3 0.3 8.5
XIPHIAS 8 1/14/2004 6.9 1.1 15.8 3.5 50.2 0.4 5.7 0.3 8.8
XIPHIAS 9 1/16/2004 4.7 0.6 12.1 1.8 39.3 0.2 5.3 0.3 7.4
XIPHIAS 10 1/18/2004 26.8 0.7 2.7 1.8 6.9 0.3 1.0 0.4 6.8
XIPHIAS 11 1/20/2004 22.5 1.1 4.7 2.5 10.9 0.4 1.6 0.4 6.7
XIPHIAS 12 1/22/2004 27.1 1.2 4.4 2.9 10.8 0.4 1.5 0.4 7.1
XIPHIAS 13 1/24/2004 51.5 4.6 9.0 8.9 17.2 1.0 2.0 0.5 8.8 0.67-2.1
XIPHIAS 14 1/26/2004 61.3 1.9 3.1 6.2 10.1 0.6 0.9 0.3 10.8
XIPHIAS 15 1/28/2004 14.4 1.5 10.1 8.6 59.4 0.6 4.3 0.2 13.8
XIPHIAS 16 1/30/2004 39.0 4.3 11.1 5.4 13.9 0.7 1.9 0.8 7.3
XIPHIAS 17 2/1/2004 32.0 2.9 9.1 3.9 12.1 0.5 1.6 0.8 7.6
XIPHIAS 18 2/3/2004 55.4 7.8 14.1 5.4 9.7 0.6 1.1 1.5 8.6
XIPHIAS 19 2/5/2004 56.5 7.8 13.7 6.6 11.6 0.9 1.6 1.2 7.1 2.4-7.4
Total Flux 1177.3 82.8 143.1 16.3



Table 9., ctd. Total mass flux, biogenic silica, particulate organic carbon, particulate nitrogen, and fecal pellet flux for trap deployed 
for December 2003-February 2004. * Range o f values using a low and intermediate volume to carbon literature conversion.

Fecal
SAMPLE Date TMF BSi flux OC flux N flux Bsi/OC C/N Pellets

mg m'2 d'1 mg m"2 d 1
%

mg in'2 d 1
% mg m'2 % mg C m'2

TMF TMF d 1 TMF w/w w/w d-'*
CALLINECTES 1 12/30/2003 13.8 0.2 1.7 5.0 36.0 0.7 4.9 0.0 7.3 0.65-2.0
CALLINECTES 2 1/1/2004 4.4 0.4 9.4 1.4 32.7 0.1 3.4 0.3 9.6
CALLINECTES 3 1/3/2004 2.2 0.2 7.7 0.7 32.6 0.1 4.2 0.2 7.8
CALLINECTES4 1/5/2004 59.5 0.0 0.1 5.1 8.5 0.7 1.2 0.0 6.8 0.06-0.21
CALLINECTES 5 1/7/2004 nd nd nd nd nd nd nd nd nd
CALLINECTES 6 1/9/2004 7.0 0.1 1.9 2.7 38.9 0.3 4.9 0.0 7.9 0.32-1.6
CALLINECTES 1 1/11/2004 25.5 0.2 0.6 3.2 12.4 0.4 1.6 0.0 7.6
CALLINECTES 8 1/13/2004 5.0 0.1 1.4 2.1 42.5 0.3 5.8 0.0 7.3
CALLINECTES 9 1/15/2004 3.6 0.1 3.3 1.8 50.6 0.3 7.1 0.1 7.1

CALLINECTES 10 1/17/2004 19.6 0.2 0.9 1.9 9.5 0.3 1.5 0.1 6.2
CALLINECTES 11 1/19/2004 nd nd nd nd nd nd nd nd nd
CALLINECTES 12 1/21/2004 28.9 2.1 7.4 3.7 12.9 0.6 2.0 0.6 6.5
CALLINECTES 13 1/23/2004 5.9 1.1 18.4 1.6 27.0 0.2 3.9 0.7 7.0 0.78-2.4
CALLINECTES 14 1/25/2004 9.1 2.1 22.9 1.8 20.1 0.3 2.8 1.1 7.1
CALLINECTES 15 1/27/2004 3.9 0.8 19.7 0.6 15.6 0.1 1.9 1.3 8.3
CALLINECTES 16 1/29/2004 7.7 1.6 20.7 1.3 17.0 0.2 2.4 1.2 7.1
CALLINECTES 17 1/31/2004 nd nd nd nd nd nd nd nd nd
CALLINECTES 18 2/2/2004 nd nd nd nd nd nd nd nd nd
CALLINECTES 19 2/4/2004 5.6 0.5 9.3 1.2 21.5 0.2 2.9 0.4 7.5 0.13-0.42

Total Flux 376.0 18.9 58.4 8.1
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Table 10. Total mass flux, biogenic silica, organic carbon, particulate nitrogen, and fecal pellet flux for trap deployed for December 
2004-February 2005. * Range includes a low and intermediate volume to carbon conversion from the literature.

Fecal
SAMPLE Date TMF BSi flux OC flux N flux Bsi/OC C/N Pellets

mg m'2 d’1 mg m'2 d'1
%

mg m'2 d'1
% % mg C in'2

TMF TMF mg m'2 d'1 TMF w/w w/w d 1*
XIPHIAS I 12/25/2004 2.1 0.2 8.5 1.3 62.1 0.2 10.2 0.1 6.1 0.002-0.008
XIPHIAS 2 12/27/2004 6.0 0.5 7.8 3.2 52.6 0.5 8.1 0.1 6.5
XIPHIAS 3 12/30/2004 4.1 0.4 9.2 1.4 35.5 0.2 4.4 0.3 8.1
XIPHIAS 4 1/1/2005 25.3 1.8 7.2 5.3 21.2 0.6 2.5 0.3 8.5
XIPHIAS 5 1/3/2005 36.6 4.2 11.4 12.2 33.4 1.1 3.1 0.3 10.7 1.5-4.7
XIPHIAS 6 1/5/2005 24.2 2.7 11.0 5.6 23.3 0.7 2.8 0.5 8.2
XIPHIAS 7 1/7/2005 4.8 0.5 11.2 1.1 23.8 0.2 3.2 0.5 7.5
XIPHIAS 8 1/9/2005 3.4 0.5 14.1 1.1 32.1 0.2 4.6 0.4 7.0 0.01-0.31
XIPHIAS 9 1/12/2005 2.7 0.3 12.7 1.1 40.2 0.2 7.1 0.3 5.6

XIPHIAS 10 1/14/2005 7.2 0.9 12.7 2.5 35.0 0.4 5.1 0.4 6.9
XIPHIAS 11 1/16/2005 5.8 0.9 14.6 1.8 30.1 0.3 4.3 0.5 7.0
XIPHIAS 12 1/18/2005 16.2 1.7 10.4 4.3 26.4 0.6 3.7 0.4 7.1
XIPHIAS 13 1/20/2005 7.6 0.9 11.6 2.9 37.8 0.4 5.3 0.3 7.1
XIPHIAS 14 1/22/2005 27.1 0.7 2.7 4.3 15.8 0.7 2.4 0.2 6.5
XIPHIAS 15 1/25/2005 3.0 0.5 16.7 0.9 28.7 0.1 4.5 0.6 6.3 0.13-0.39
XIPHIAS 16 1/27/2005 5.8 0.7 12.7 1.6 27.4 0.2 4.2 0.5 6.5
XIPHIAS 17 1/29/2005 5.6 0.7 12.8 2.6 46.8 0.5 8.5 0.3 5.5 0.20-0.64
Total Flux 375.1 36.2 106.5 14.0
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Table 10., ctd. Total mass flux, biogenic silica, organic carbon, particulate nitrogen, and fecal pellet flux for trap deployed for 
December 2004-February 2005. * Range includes a low and intermediate volume to carbon conversion from the literature.

Fecal
SAMPLE Date TMF BSi flux OC flux N flux Bsi/OC C/N Pellets

mg m'2 d'1 mg m'2 d'1
% % % mg C m‘2
TMF mg m"2 d'1 TMF mg m'2 d'1 TMF w/w w/w d’1*

CALLINECTES 1 12/23/2004 2.2 0.1 6.6 1.8 84.1 0.2 9.3 0.1 9.0
CALLINECTES 2 12/25/2004 3.0 0.1 3.6 1.1 36.3 0.2 5.7 0.1 6.4 0.04-0.11
CALLINECTES3 12/27/2004 1.8 0.1 5.2 1.5 82.0 0.2 12.8 0.1 6.4
CALLINECTESA 12/30/2004 6.1 0.3 4.3 2.4 39.4 0.3 4.7 0.1 8.3
CALLINECTES 5 1/1/2005 6.9 0.2 2.8 0.1 2.1 2.7 39.6 1.3 0.1
CALLINECTES6 1/3/2005 12.7 0.3 2.1 3.1 24.4 0.3 2.7 0.1 9.0
CALLINECTES7 1/5/2005 9.5 0.5 5.5 3.5 36.8 0.4 4.6 0.2 8.0
CALLINECTES 8 1/7/2005 4.7 0.2 4.9 1.8 39.1 0.3 5.9 0.1 6.6
CALLINECTES9 1/9/2005 29.0 2.1 7.3 8.0 27.7 1.1 3.9 0.3 7.1 0.56-1.8
CALLINECTES 10 1/12/2005 2.8 0.5 17.1 2.2 79.1 0.3 11.3 0.2 7.0
CALLINECTES 11 1/14/2005 23.4 2.6 11.0 6.0 25.7 0.9 3.7 0.4 7.0
CALLINECTES 12 1/16/2005 13.2 1.7 13.1 4.5 34.4 0.7 5.2 0.4 6.6
CALLINECTES 13 1/18/2005 23.8 3.6 15.3 5.9 25.0 0.9 3.7 0.6 6.8
CALLINECTES 14 1/20/2005 58.3 4.7 8.1 8.3 14.2 1.2 2.0 0.6 7.1 1.4-4.3
CALLINECTES 15 1/22/2005 23.9 3.7 15.4 5.5 23.0 0.8 3.2 0.7 7.1
CALLINECTES 16 1/25/2005 6.4 0.9 14.2 1.9 30.2 0.3 4.4 0.5 6.9
CALLINECTES 17 1/27/2005 19.3 2.5 12.9 4.4 22.8 0.6 3.3 0.6 6.9
CALLINECTES 18 1/29/2005 35.9 2.7 7.4 4.3 12.0 0.7 2.1 0.6 5.8 1.1-3.5
Total Flux 565.6 53.6 133.1 24.3
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Table 11. Regression results for total mass flux (TMF), biogenic silica (BSi), particulate carbon (POC), and particulate nitrogen (PN).

Parameter R2 P
Total Mass Flux vs. BSi 0.38 <0.0001
Total Mass Flux vs. POC 0.37 <0.0001
Total Mass Flux vs PN 0.13 0.003
BSi vs. POC 0.45 <0.0001
BSi vs. PN 0.17 0.0004
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Figure 11. Mooring diagram o f Xiphias deployment during December 2003. Courtesy o f 
Dr. Vernon Asper.
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Figure 12. Total Mass Flux (TMF), Biogenic Silica (BSi), and Organic Carbon (OC) Flux 
for Xiphias mooring in a) December 2003-2004, b) December 2004-2005, and 
Callinectes mooring in c) December 2003-2004, and d) December 2004-2005.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



TM
F 

(m
g 

m
'2

d''
) 

TM
F 

(m
g 

m
'2

d'
’)

137

Xiphias Callinectes

TMF
BSi
O C

70  -

60 -

40 - 40  -

30 -

20  - 20  -

10 -

r t  io o> n  io s
c  e  c  T_ ^  ^  T"

r— o> 
CM cm

o
JD

60 -

0

60  -

40  -

to in 
CM CM

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



138

Figure 13. Particulate organic carbon and particulate nitrogen linear relationship for all 
data for IVARS 2003-2004 and 2004-2005.
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Figure 14: Fecal pellet flux contribution to total particulate organic carbon (POC) flux for 
the Xiphias mooring in a) December 2003-2004, b) December 2004-2005, and 
Callinectes mooring in c) December 2003-2004, and d) December 2004-2005. Open 
circles represent fecal pellet POC flux and close circles represent total POC flux.
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Figure 15a: Examples o f shape and color for fecal pellet flux during IVARS. This sample 
was taken from Callinectes on December 2003. Four types o f pellets can be seen with A) 
representing lighter brown pellets, B) dark brown pellets, C) white spherical objects that 
may be tests, and D) light brownish white pellets, b) Example o f shape and color for fecal 
pellet from taken from Xiphias on January 10, 2004. Four types o f pellets can be viewed 
with E) representing a bright green pellet, F) brown/green pellet, G) whitish green pellet, 
and H) aggregate. C) Image taken at 63X. c) Fecal pellets from Callinectes sample 18 
during last sampling period on January 29, 2005. This station had over 100% o f total 
sediment trap flux represented by fecal pellets.
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ABSTRACT

Understanding environmental controls on the composition o f phytoplankton 

assemblages is critical because taxonomic structure is a major determinant o f energy flow 

within food webs and biogeochemical cycles. In the Ross Sea there are two major 

phytoplankton functional groups: diatoms and prymnesiophytes, with the latter being 

dominated by Phaeocystis antarctica. It has been suggested that this relatively simple 

phytoplankton assemblage composition results from a differential photosynthetic 

response o f the two groups to irradiance, with P. antarctica being able to more 

effectively photosynthesize (and presumably grow) at lower irradiances than diatoms but 

this has yet to be shown experimentally. A comparison o f  the growth characteristics o f 

flagellate and non-flagellate forms o f Phaeocystis sp. is crucial in understanding their 

large ecological impact on ecosystems and temporal and geographical distributions.

There are few data from the Southern Ocean on the relative photosynthetic responses o f 

colonies (non-flagellate) and solitary (flagellate and non-flagellate) forms o f  P. 

antarctica. The goals o f this study are to assess the relative photosynthetic potential o f 

solitary and colonial P. antarctica cells and mixed phytoplankton assemblages in 

December o f 2001, 2003, and 2004 and to determine the magnitude o f interannual 

variability o f  photosynthetic parameters in the Ross Sea. Interannual variations in

maximum photosynthesis rates ( P f} ) were observed between December 2001 and

December 2003. This variability was found for both the >20 (colonial) and >0.7 pm 

(total) size fractions. The total phytoplankton assemblage (>0.7 pm ) and larger cells (>

20 pm) also had a higher maximum photosynthetic rate in December 2001 than 

December 2003 suggesting maximum photosynthetic rates were highest when solitary P.
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antarctica cells had the highest abundance relative to colonial forms. Lab experiments 

showed that growth stage affects the maximum photosynthesis rates o f colonial P. 

antarctica. During nutrient-replete conditions, colonial cells had higher maximum 

photosynthetic rates than solitary cells, which may be one reason for the high abundance 

o f colonies during bloom formation.
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IN TR O D U CTIO N

Ross Sea. Antarctica phvtoplankton blooms

Understanding environmental and oceanographic controls on the composition o f 

phytoplankton assemblages is critical because taxonomic structure is a major determinant 

o f energy flow within food webs (Boyd and Newton, 1999; Archer et al., 2000). The 

Ross Sea polynya (an area o f reduced ice cover surrounded by ice) has somewhat 

predictable phytoplankton blooms due to the physical properties o f  annual sea ice retreat 

and water stratification (Arrigo et al., 1999), with a seasonal chlorophyll maxima o f over 

10-15 |ig  L '1 (Smith et ah, 2000). Abiotic properties such as light, temperature, and 

dissolved nutrients control biomass, primary production and phytoplankton growth. The 

Ross Sea seasonal phytoplankton bloom is one o f the largest blooms in the Southern 

Ocean, with spatial coverage o f ca. 187,000 km2 (Smith and Nelson, 1985; Comiso et ah, 

1993; Sullivan et ah, 1993). Although interannual variability occurs in this region, 

seasonal effects appear to be greater than interannual production cycles (Smith et ah, 

2000).

In the Ross Sea there are two major functional phytoplankton groups: diatoms and 

prymnesiophytes, with the latter being dominated by Phaeocystis antarctica. It has been 

suggested that this relatively simple phytoplankton assemblage composition results from 

a differential photosynthetic response o f the two groups to irradiance, with P. antarctica 

being able to more effectively photosynthesize (and presumably grow) at lower 

irradiances than diatoms (Arrigo et ah, 1999). Arrigo et ah (1999) and Smith and Asper 

(2001) found that P. antarctica abundance covaried with deeper mixed layers (and hence 

lower irradiances). However, van Hilst and Smith (2002) were unable to statistically
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distinguish the measured photosynthetic response o f each group, and concluded that other 

factors were important in generating the spatial differentiation. They suggested that the 

micronutrient iron might play an important role as it is reduced to extremely low 

concentrations by biological removal during the austral summer.

Iron has been shown to seasonally limit phytoplankton growth within the Ross 

Sea. Sedwick and DiTullio (1997) and Sedwick et al. (2000) conducted iron enrichment 

experiments and found a dramatic response to iron additions, and concluded that iron can 

limit phytoplankton growth. They speculated that variations in the influence o f ice melt 

(and input o f  iron from ice) might give rise to spatial variations in assemblage 

composition. Olson et al. (2000) found that all species tested using pump-during-probe 

fluorescence exhibited strong iron limitation, but also noted that the variability observed 

within P. antarctica was far greater than that seen in other species. Subsequent studies 

have speculated that iron plays a critical role in the distribution and growth o f the extant 

functional groups as well (Smith et al., 2000; Smith and Asper, 2001; Arrigo et al., 2003; 

Smith et al., 2006).

Phaeocystis antarctica

The size structure o f phytoplankton assemblages also drives marine pelagic food 

web dynamics (Legendre and Le Fevre, 1991) and export (Tremblay and Legendre,

1994). Three species o f Phaeocystis, including P. antarctica, exist as single, flagellated 

cells or as non- flagellated cells in colonies (Lancelot et al., 1998; Rousseau et al., 1994). 

It is known that there are several life stages in which a motile cell with flagella can form 

into hollow, spherical colonies with an effective spherical diameter greater than 1 mm 

and with active division o f the cells w ithin the matrix (Mathot et al., 2000). As colonies
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sink through the water column, solitary cells can be released from the colonial matrix, 

leaving a large number o f flagellated single cells (Wassman et al., 1990). Although little 

is known about what environmental factors control colony formation and release o f 

solitary cells from colonies, inorganic nutrient concentrations have been speculated to 

influence the ratio o f the form o f Phaeocystis sp. (Verity et a l ,  1988).

Mathot et al. (2000) found that spatial and temporal trends in relative abundance 

occurred between solitary and colonial cells in the southern Ross Sea. M ost P. antarctica 

cells were associated with colonies during the austral spring through the time of 

maximum biomass (mid-December), and thereafter the number o f solitary cells began to 

increase. Smith et al. (2003) investigated the percentage o f cells associated with colonies 

in 1996-7, and found that < 10% were colonial in late October, more than 98% o f the 

cells were colonial at the time o f the maximum chlorophyll concentration (mid- 

December), which, subsequently declined to ~50% in colonies in late February.

Integrated over the entire growing season, flagellated cells contributed 33% o f the total P. 

antarctica abundance. Smith et al. (2003) also suggested that the abundance o f  solitary 

cells might be controlled by removal by microzooplankton and heterotrophic flagellates, 

whereas the growth and abundance o f colonial cells may be controlled by iron. Because 

solitary cells can be released from colonies, it was suggested that the ratio o f  solitary to 

colonial cells represented a dynamic balance between grazing and nutrient limitation.

The physiological differences o f these forms might also allow them to respond to varying 

environmental conditions.

Mathot et al. (2000) also found that cell size and carbon content differed between 

the solitary and colonial P. antarctica cells, with solitary cells smaller and having only
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25% of the carbon as colonial cells. W hile no relationship between P. antarctica size and 

physiological state has been shown, bacteria generally show a positive relationship 

between size and growth (i.e., more rapidly growing cells are larger; Oliver et al., 2004). 

This relationship has been confirmed for colonial and solitary cells o f P. globosa and P. 

pouchetii (Veldhuis et al., 2005). I f  the same is true for P. antarctica, then colonial cells 

might be expected to have more rapid rates o f growth, photosynthesis, and nutrient 

uptake. However, no comparison o f  the photosynthetic potential o f the two morphotypes 

is available. Lancelot and Mathot (1985) also found that the mucous envelope formed 

acts as a reserve for the cells and was reabsorbed during the dark period during the 

colonial stages o f other species o f Phaeocystis (P. pouchetii). Therefore, part o f the 

carbon fixed by P. pouchetii colonies can be allocated to extracellular carbon production 

(Lancelot and Mathot, 1985). Phaeocystis can acclimate to abrupt irradiance changes by 

xanthophyll cycling (Moisan et al., 1998), and by increasing the amount o f  pigment per 

cell to adapt to low light levels. These characteristics allow making Phaeocystis to 

dominate polar regions due to “bottom-up” controls (Moisan and Mitchell, 1999). 

Photosvnthesis/Irradiance Models

Physiological characteristics o f phytoplankton correspond to parameters derived 

from photosynthesis and irradiance models. These characteristics are affected by 

environmental parameters such as nutrient concentrations, irradiance, and phytoplankton 

community composition. The relationship between photosynthesis and irradiance can be 

modeled using several mathematical relationships (eg., Webb et al., 1974; Jassby and 

Platt, 1976; Platt et al., 1980). These resulting parameters are critical for estimating and 

modeling phytoplankton photosynthesis and production (Sathyendranath et al., 1999).
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or theoretical maximum rate o f production is controlled by light independent (dark)

carbon fixation reactions. W hen normalized to chlorophyll, is the light saturated rate

o f  photosynthesis that is affected by cellular chlorophyll concentrations and enzyme 

activity during carbon fixation. Normalizing a  or the light limited slope to chlorophyll 

relates it to the relative concentrations o f PSII reaction centers.

The goals o f this study are to assess the relative photosynthetic potential o f 

solitary and colonial P. antarctica cells and mixed phytoplankton assemblages in 

December o f 2001, 2003, and 2004 and to determine the magnitude o f interannual 

variability o f photosynthetic parameters in the Ross Sea. Although there have been 

studies on how Phaeocystis sp. and other phytoplankton groups compare with respect to 

photosynthesis, it is still not known how single and colonial cells differ. Since a  is 

affected by physiological differences, a comparison between solitary and colonial forms 

will provide information on which form would perform better under lower light 

conditions. For example, picoplankton generally have larger a values so they perform 

better than larger phytoplankton deeper in the water column (eg., Pierson et al., 1992).

Since is more affected by temperature and nutrients (or dark reactions o f

photosynthesis), a difference could mean that the cell type is not at its optimum 

temperature or nutrient concentration.

M ETH O D S

Study site and field measurements

W ater samples were collected from the southern Ross Sea as part o f the 

Interannual Variations in the Ross Sea (IVARS) program (Smith et al., 2006) that was
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conducted from 2001-2005. Two cruises per year were completed (generally in 

December and February, representing the period o f maximum biomass and the end o f the 

growing season, respectively). Locations o f  stations where photosynthesis/irradiance 

(P/E) measurements were conducted are plotted in Figure 16. The euphotic zone was 

sampled using a SeaBird 911+ CTD/rosette system from which samples for nutrients and 

biomass estimates (chlorophyll a concentrations o f  the total assemblage, o f those forms 

>0.7 pm  , > 20 pm, and those < 20 pm; HPLC pigments, particulate organic 

carbon/nitrogen concentrations, biogenic silica concentrations, and samples for 

phytoplankton) were taken. For further discussion o f data see Smith et al. 2006, section I, 

or http://www.vims.edu/bio/ivars). The depth o f the euphotic zone (1% o f surface 

irradiance) was determined from a BioSpherical Instruments PAR sensor mounted on the 

rosette. Samples for P/E experiments were collected from the 50% light depth.

Chlorophyll concentrations were determined by fluorescence after filtering the 

samples through W hatman GF/F filters and extracting in 90% acetone for 24 h at -20° C 

(Smith et al., 2006). Samples were read on a Turner Designs Model 10AU fluorometer 

that had been calibrated with a known concentration o f commercially purified 

chlorophyll a (Sigma Chemical). Independent samples were size-fractionated by filtering 

through 20 pm  polycarbonate filters (Poretics). For P. antarctica, the material retained 

on the filter was assumed to represent colonial cells, as the mean size o f colonies is 

substantially greater than 20 pm  (Mathot et al., 2000). The fraction that passed through 

the filters was assumed to represent solitary cells, although it also would contain small 

colonies. Phytoplankton pigments were determined by filtering a known volume through 

a GF/F filter, quick freezing the filter in liquid nitrogen (-80°C), and returning the
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samples to the laboratory for analysis using high performance liquid chromatography 

(HPLC) on a W aters Millennium system. Full details o f the HPLC procedure and results 

are provided in Smith et al. (2006).

Photosvnthesis/Irradiance Method

Photosynthesis/irradiance relationships o f solitary and colonial forms were 

determined by using a large-volume irradiance gradient incubator (Platt and Jassby,

1976). Twenty-three samples (265 mL each) were collected from one depth (generally 

that o f the 50% isolume), to which ca. 100 pCi N aH i4C03 were added to each. The 

samples were added to the incubator, and the light (a high intensity xenon-arc light) was 

turned on (Figure 17). Surface seawater surrounded the samples and circulated through 

the incubator to maintain samples at ambient temperatures. W ater also passed through a 

heat sink (5 cm thick) made o f two plates o f  tempered glass. Because the light was 

mounted on one end o f the incubator, a gradient o f  irradiance naturally occurred as 

distance from the light increased. A dark bottle (one bottle wrapped in aluminum foil) 

was used as a control. Irradiance was measured within each bottle while in the incubator 

with a BioSpherical Sensor quantum meter. Incubations lasted approximately 2 h. After 

incubation each sample was size-fractionated by filtering an aliquot o f known volume 

through a 20 pm  Poretics filter, and a separate volume though a GF/F filter. Only 

particulate organic carbon production was measured, and the exudation o f DOM from 

phytoplankton was ignored. DOC release in two hours is generally less than 10% (Smith, 

personal communication). Therefore, a P/ E experiment that uses small whole water 

samples, will lead to higher estimates o f productivity than those that involve the filtration 

o f samples because DOC is included (Sakshaug et al., 1997). Each filter was placed in a
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7 mL scintillation vial, and 0.25 mL o f  10% HCL solution was added to remove any 

inorganic carbon on the filter. After ventilation for 24 h, 5 mL Ecolume® (ICN) was 

added, and after another 24 h in the dark, all samples counted on a liquid scintillation 

counter. Total available inorganic 14C-bicarbonate was assessed by counting a 0.1 mL 

aliquot (to which 0.05 mL [3-phenethylamine, a CO? trap, was added) directly in 

Ecolume.

Laboratory Culture experiments

In order to compare monocultures o f Phaeocystis antarctica with field samples, P. 

antarctica (CCMP 1374) cultures were maintained at Crary Laboratory, McMurdo 

Station, Antarctica for 16 d in 2005-2006. A 50 L polycarbonate carboy with filtered 

(<0.2 pm) McMurdo Sound seawater was inoculated with 2 pg L '1 P. antarctica culture. 

The carboy was maintained at -2 °C with constant irradiance o f 50 pmol m‘2 s"1 to 

simulate natural conditions. Every four days, P/E experiments were performed in the 

same manner as the field samples with the incubation occurring in a -2° C environmental 

room to keep samples at a constant temperature. The photosynthetron used in the 

laboratory experiments utilized high output fluorescent lights rather than a xenon-arc 

light to minimize heat from the lamps on the samples. Photosynthesis-Irradiance models 

and analyses were performed as described for the field samples.

Data Analysis

Since photoinhibition was not significantly different from zero in our study, a 

widely used model without this term was used (modified Platt et al., 1980; Webb et al., 

1974). Photosynthetic rates were fit to the Webb et al. (1974) empirical model:
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P B =  p B 1 - e ~ aEIP' (Equation 1)

where P B = the rate o f photosynthesis normalized to chlorophyll a [mg C (mg chi a ) '1 

h '1] , P f  = the maximum rate o f photosynthesis in the absence o f  photoinhibition, a  =

the initial, light-limited, linear photosynthetic rate [mg C (mg chi a)A h '1 (pmol photons

2  1 2  1 m ' s’ )], and E = irradiance (pmol photons m‘ s ' ), The data were fit to this equation

using SigmaPlot (Version 6). A derived parameter from these variables is (the

irradiance at which photosynthesis is saturated). It is derived by:

E k ~  Ps !  Ct (Equation 2)

Phaeocystis antarctica dominated stations were identified based on the ratio o f 

the accessory pigments fucoxanthin (for diatoms) and 19’-hexanoyloxyfucoxanthin. We 

believe this to be the best criterion because the amount o f chlorophyll a per cell is far less 

for P. antarctica than for diatoms, so that diatoms contribute to biomass to a larger 

degree than their abundance would suggest. Regardless, cell abundances and ChemTax 

(which, derives taxonomic structure o f  phytoplankton from pigment ratios) also 

confirmed the large contribution o f the prymnesiophyte relative to diatoms and for 

solitary and colonial cell abundances (Table 12; Smith et al. 2006; 

www.vims.edu/bio/ivars, Peloquin, unpublished).

It has been suggested that these accessory pigments cannot be used to 

quantitatively separate the diatoms and P. antarctica, as under cultured conditions the 

ratio o f  each pigment to chlorophyll, as well as the ratio to each other, was influenced by 

both irradiance and iron concentrations (van Leeuwe and Stefels, 1998). However, while
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changes in the ratios o f each to chlorophyll a have been observed in the Ross Sea as part 

o f the temporal cycle o f P. antarctica growth, little evidence exists for the conversion o f 

fucoxanthin to 19’-hexanoyloxyfucoxanthin in situ (DiTullio and Smith, 1996; Smith and 

Asper, 2001; DiTullio et al., 2003). In our study we used these pigment ratios to select 

stations that were sampled within a very short time period (ca. four days). W hile there 

clearly could be some spatial variation in pigments and photophysiological adaptive state, 

the variations within each functional group are likely far smaller than observed in culture 

or over the entire growing season.

The parameter values resulting from the non-linear regressions (Webb et al.,

1974) were compared using the general 2-way linear model o f analysis o f variance 

(ANOVA) after log transformation. A critical p value o f 0.05 was selected a priori to 

evaluate the effects o f  temporal variation in the parameters and significant differences 

between size fractions. For the lab data, a comparison o f the 95% Confidence Interval of 

the slopes was used to compare parameter values between size fractions.

RESU LTS 

Species Composition during field study

Microscopic and pigment data show that P. antarctica was m ost abundant during 

December o f 2001 and 2003 (Table 12; Smith et al., 2006). The size structure o f the P. 

antarctica assemblages differed between years. During December 2001, solitary, 

flagellated cells were the most abundant, whereas in 2003 colonial non-flagellated cells 

were most dominate in the assemblage (Peloquin, unpublished).

Interannual Variability in Size-Fractionated Photosynthesis
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There were significant differences in size-fractionated photosynthesis for the >20 

and >0.7 pm  size fractions in this study (Figure 18). During December 2001 >20 pm

P averaged 1.8 ± 0.7 mg C (mg chi a ) '1 h '1 for the four stations examined. Values

ranged from 1.1-2.8 mg C (mg chi a ) '1 h '1 for the >20 pm  size fraction (Table 13). The 

total phytoplankton assemblage (>0.7 pm) averaged 1.95 ± 0.33 mg C (mg chi a)"1 h '1 

and ranged from 1.75-2.45 mg C (mg chi a)’1 h '1. The solitary flagellates and 

phytoplankton <20 pm  averaged 2.57 ± 0.77 mg C (mg chi a ) '1 h '1 and ranged from 2.08-

3.46 mg C (mg chi a ) '1 h '1. During December 2003, Pm averaged 0.51 ± 0.91 and ranged 

from 0.27-0.73 for the > 20 pm; 0.75 and ranged from 0.46-1.05 for the 0.7 pm; and 2.34

and ranged from 0.53-4.35 <20 pm  size fraction. Finally, in December 2004, P ^

averaged 1.11, 1.25, and 2.89 for the >20, 0.7, and <20 pm  size fractions, respectively.

J2
P m for December 2001 was significantly higher than December 2003 for the >20 and 

>0.7 pm  size fractions (Table 13, 2 W ay ANOVA, DF=50, F=5.42, p=0.0001). The bulk 

phytoplankton assemblage (>0.7 pm) and larger cells (> 20 pm) had a higher maximum 

photosynthetic rate in December 2001 than December 2003 (Figure 18). The small size 

fraction or solitary flagellates did not have significant interannual variation.

When comparing within size fractions each year, December 2001 size 

fractionated results did not show significant differences while in December 2003, the >20

pm  size fraction P ^  was significantly lower than the <20 pm size fraction (Figure 19).

£
The December 2004 <20 pm  assemblage also had significantly higher Pm than the bulk

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



158

and >20 (am size fractions. There were no significant interactions between year and size 

fraction (Figure 19, 2 Way ANOVA after log transformation, p=0.58).

The bulk initial light-limited rate o f photosynthesis or a  was also significantly 

higher in December 2001 than during the other two years (Table 13; Figure 20, 2-way 

ANOVA, after log transformation, F=5.15, p=0.0002). Also, in 2004, the <20 pm  size

fraction had a significantly higher a  than the other size fractions (Figure 21). E k (index

of photoadaptation) was not significantly different interannually (Table 13, 2 Way 

ANOVA after log transformation, p>0.05). In order to determine if  there was a

significant relationship between Pm and a, Model II regressions were performed. The

only size fraction to have a significant relationship was the >20 pm  Pm vs a  (Figure 22, 

R2=0.972 pO.OOOl).

P. antarctica colonies and maximum photosynthesis

A Model II Linear Regression was also performed in order to compare the 

relationship between percentage o f  colonial abundance and maximum photosynthesis

( P ^ ) during December 2001 and 2003 when Phaeocystis antarctica was dominant

(Figure 23, R2=0.699 p=0.0007). Microscopic counts (Peloquin et al., in prep) and Pm

values (this study) were combined with Joint Global Ocean Flux Study (JGOFS) 

measurements from 1996. Only stations that were dominated by P. antarctica (> 80%; 

using cell counts, and ChemTax delineation when available) and had P/E relationships 

(Hiscock, unpublished) and microscope counts (S. Mathot unpublished) were used in the 

regression. A total o f five stations from the JGOFS stations were used from December
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1996 and January 1997 along with eight stations from IVARS December 2001 and 

December 2003. A significant negative relationship was found between % P. antarctica

colonial cells and P m suggesting that when colonies are the most abundant that

maximum photosynthesis is lowest in December and January.

McMurdo Time course

In order to assess whether there was a difference between size fractions for each 

time point in the McMurdo P. antarctica experiment, the 95% Confidence Intervals o f 

the slopes/parameters o f the P/E curves were compared. During the first eight days, the

P m was larger for the >20 pm  size fraction (Figure 24). On the 12th day, the smaller size 

fraction was the same as the larger size fraction, and after the 16th day, the smaller size 

fraction P ^  was larger than the >20 pm  size fraction.

DISCUSSION

Implications o f differences in interannual and size fractionated photosynthesis

A comparison o f the growth characteristics o f flagellate and non-flagellate forms o f 

Phaeocystis sp. is crucial in understanding their large ecological impact on ecosystems 

and their temporal and geographical distributions (Lancelot and Rousseau, 1994;

Peperzak et al. 2000). There are few data from the Southern Ocean on the relative 

responses o f colonies (non-flagellate) and solitary (flagellate and non-flagellate) forms o f 

P. antarctica. W hen we originally started this work, we expected to see substantial 

prymnesiophyte (P. antarctica) accumulations, as had been observed in the 1990’s 

(Smith and Gordon, 1997; Arrigo et al., 1999; Smith et al., 2000; Smith and Asper,

2001). We were surprised by the mixtures o f P. antarctica and diatoms, as well as the
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substantial contribution o f diatoms throughout the study during December 2004 and 

during February o f our study (Section I; Smith et al., 2006). Thus, the number o f stations 

where P. antarctica dominated the biomass (and both size fractions) was limited based on 

the criterion o f van Hilst and Smith (2002) and as verified with microscope observations. 

Smith et al. (2006) found that in both 2001 and 2003 prymnesiophytes represented ca. 

80% o f the chlorophyll (ca. 6 pg L '1) in December, and that the chlorophyll contributions 

o f P. antarctica decreased markedly by February (to < 1 pg L’1). Such rapid declines 

could be due to enhanced (and rapid) aggregate formation and passive sinking due to 

micronutrient limitation during the strongly stratified summer (Olson et al., 2000). If 

such declines were indeed initiated by the onset o f iron limitation, it is logical that 

colonies would reflect that first, as single cells (by virtue o f their surface area: volume 

relationship) would likely be less stressed under conditions o f nutrient limitation than

larger colonies (Smith et al., 2003). Iron limitation has also been shown to d e c re a s e /^

values (Lindley et al., 1995). The low exhibited by colonial P. antarctica during

December 2003 suggests they were under iron stress, but no iron measurements were 

taken during this study. Peloquin and Smith (2006) observed low maximum 

photochemical quantum yields (Fv/Fm) o f 0.3-0.4 during the 2003 field season and 

suggested the phytoplankton blooms were under severe stress. The a  for the bulk 

assemblage was also significantly higher in 2001 (Figure 21).

It has been observed that manganese, phosphate, and possibly iron (Davidson and 

Marchant, 1987; Lubbers et al., 1990; Veldhuis et al. 1991) can be sequestered in the 

colonial matrix and subsequently reused during later growth, thereby giving colonial a
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competitive advantage over single cells during micronutrient limitation. It may be 

possible that other negative effects associated with colonies, rather than micronutrient 

limitation, are occurring in 2003. Robinson et al. (2003) argued that colonial bloom 

development could cease due to excessive colonial carbon requirements restricting 

colony size. These reductions in both forms would be consistent with the onset o f iron 

limitation earlier in 2003 than 2001 (Smith et al., 2006). The results from this study also 

demonstrate the role o f morphology in the bulk maximum photosynthetic rate when P. 

antarctica is dominant. As mentioned previously, studies have shown that Phaeocystis 

sp. colonies may be capable o f higher growth rates than smaller solitary flagellates. But, 

studies o f P. antarctica in the field are limited. Large phytoplankton are capable o f higher 

growth rates or maximum carbon specific photosynthesis than small-sized phytoplankton, 

but studies are limited (Furnas, 1991; Frenette et al., 1996; Crosbie and Furnas, 2001; 

Cermeno et al., 2005). M ore rapid larger cell growth tends to be restricted to high- 

nutrient environments. During December, 2001 P. antarctica colonies were capable o f 

the same rate o f  maximum photosynthesis as solitary cells. Like the previous studies, 

these results suggest that physiological factors could also explain the dominance o f the 

colonial form o f  P. antarctica during December. W hile this contrasts with theoretical 

models suggesting that solute exchange increases with decreased cell radius, other 

physiological mechanisms such as nutrient storage or increasing scalable components 

may give the larger colonial P. antarctica cells an advantage (Raven, 1998). 

Phvtoplankton growth stage

Colonial cells o f P. globosa have been found to divide at the same rate as motile 

cells. However, it has been shown that while other species, such as P. pouchetti, have
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lower colonial specific growth rates reflecting that their mucilaginous matrix lacking as 

an energy reservoir (Baumann et al., 1994; Lancelot et al., 1991). SeaWiFS plots o f 

chlorophyll show that in December 2001, we sampled during the early bloom stage while 

in December 2003, the IVARS sampling was about two weeks later. So, we sampled the 

bloom after the maximum biomass was reached (Peloquin, unpublished; Figure 25). 

Effects o f growth stage on maximum photosynthesis

The experiments with the P. antarctica monoculture also help illustrate how the

magnitude o f P ^  compares temporally between size fractions (Figure 24). At the end o f 

the 16-d experiment, P ®  for the <20 pm  size fraction was higher than for the larger size

fractions. In contrast, P j f  was much higher for the colonial size fraction than the

solitary cells at the beginning o f the experiment. Nutrients (nitrate) were limited or 

below detection in some cases after the 16 d period, suggesting that nutrient limitation 

may be allowing solitary P. antarctica cells to compete better as long as sufficient light is 

available.

Relationship between maximum photosynthetic rate and a

The variations in E k observed in our study could indicate that each morphotype is

capable o f maintaining a balance between the light and dark reactions o f photosynthesis. 

The bulk and solitary flagellates did not have significant relationship between a and

Pjf ; this may reflect photoacclimation, and the assemblages could be experiencing 

“ E k dependent variability” which, involves independent changes o f the light-limited 

slope (a) and P ®  (Behrenfeld et al., 2004). It is generally assumed that a  (when
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normalized to chlorophyll concentration) is relatively constant (Steemann Nielsen and 

Jorgensen, 1968). In our study there were differences in a  between years (with 

December 2001 > 0 .7  pm  size fractions being significantly higher than other years),

and size fractionated photosynthesis significantly different in December 2004 than other 

years (Figure 19, 20). This could be due to the cells changing concentrations o f 

photosynthetically active accessory pigments, photoinhibition, photosystem I: 

photosystem II ratio, or nonphotochemical quenching (Behrenfeld et al., 2004). Future 

experiments will be need to examine the mechanisms by which P. antarctica a  varies. 

Conclusions

The forms o f  P. antarctica exist in a dynamic equilibrium in nature, and a distinct 

temporal trend occurs in these forms. Different controls o f each form exist, and hence 

the relative importance o f these controls (bottom-up controls on colonies vs. top-down 

controls on small flagellates) as well as any differential growth between them will 

ultimately regulate their biomass within a bloom. Our data are relatively limited, but also 

represent some o f the first field data showing differences in the photosynthetic 

parameters between the morphotypes o f  P. antarctica. Further study will clarify the 

importance o f  these differences, as well as the environmental and ecological regulation o f 

the exchanges between the two. Understanding these differences will allow greater 

insights into the influence o f  the biotic composition on biogeochemical cycles in the Ross 

Sea.
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Table 12. The concentration o f  chlorophyll, its distribution among size classes, and the concentrations o f accessory pigments at the 
stations where photosynthesis/irradiance measurements were completed during December. Where there are no pigment data available 
from the IVARS database (http://www.vims.edu/bio/ivars); stations selected based on microscopy (Peloquin. unpublished) and were 
considered to be dominated by Phaeocystis antarctica when abundance was >80%. A few stations during December 2004 did not fit 
into either category and were included in the regression analyses. Data that was not collected is m arked as nd.

Year >0.7pm
Chlorophyll

(FgL-1)

>2 0pm 
Chlorophyll

<%)

19-Hex

(FgL1)

Fuco 

(Ug L 1)

Ratio

(Hex/Fuco)

Prymnesiophyte
ChemTax

(%)

Microscopic Observations 
Phaeocystis antarctica 

%
2001 Stations

1 2.18 101.8 0.63 0.32 1.96 83.0 98.9
2 4.75 64.6 3.87 0.82 4.71 79.4 96.0
7 8.52 18.0% 10.28 1.51 6.80 87.5 95.9
10 5.56 39.6 7.44 1.33 5.58 81.9 90.4

2003 Stations
2 10.35 57.7 nd nd nd nd nd
5 4.11 74.9 5.68 1.61 3.52 85.7 94.5
9 3.15 90.2 2.42 0.86 2.82 85.7 85.9
12 1.99 81.4 nd nd nd nd 80.9

2004 Stations
1 6.82 82.0 nd nd nd nd nd
2 2.81 45.9 1.04 5.88 0.18 62.4 nd
3 10.92 80.5 0.53 11.66 0.05 33.1 0.3
4 1.16 22.5 0.12 1.07 0.11 35.9 nd
6 11.1 84.9 0.26 9.91 0.03 19.6 0.3
10 9.83 85.3 0.16 3.85 0.04 nd nd
13 8.96 79.4 0.06 3.44 0.02 nd 0
17 4.13 84.8 nd nd nd nd nd
19 4.04 35.2 0.50 3.28 0.15 nd nd
21 0.74 49.3 0.19 0.94 0.20 nd nd

http://www.vims.edu/bio/ivars
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Table 13. Maximum photosynthetic rates, light limited rates, and light-saturation index for the three size fractions (> 20, >0.7 and < 20 
pm, corresponding to colonial and solitary forms o f  P. antarctica) stations dominated by Phaeocystis antarctica in December 2001, 
2003 and 2004. Values generated from Photosynthesis/Irradiance model and error represents standard error o f  each parameter. 
Parameters that were not significant (p>0.05) are labeled with ns. Units o f Pbmax: mg C (mg chi)'1 h '1; a: mg C (mg chi)'1 h '1 (pmol 
photons m '2 s '1) '1: E*: pm ol photons m '2 s '1.

Year >20pm
pb*• max

>0.7pm
pb1 max

<20pm
pb1 max

>20pm
a

>0.7pm
a

<20pm
a

>20pm
Ek

>0.7pm
Ek

<2 0pm
Ek

2001
1 1.5 ±0.2 1.8 ±0.5 ns 0.03 ± 0.006 ns ns 46 ns ns
2 1.1 ±0.1 1.8 ±0.2 3.5 ± 0 .7 0.03 ± 0.009 ns ns 38.9 ns ns
7 2.8 ±0.3 2.5 ±0 .4 2.2 ± 0 .6 0.06 ± 0.02 0.04 ± 0.02 ns 49.7 58.5 ns
10 1.7 ±0.2 1.8 ± 0.1 2.1 ± 0 .2 0.03 ±0.01 0.15 ±0.05 0.3± 0.1 51.4 12.6 7.4
Average 1.8 ±0.7 1.9 ±0.3 2.6 ± 0 .8 0.04 ±0.01 0.09 ±0.07 0.3 47.2 ± 5 .6 35.6 ±32.4 7.4
2003
2 0.6 ±0.04 0.5 ±0.03 0.5 ± 0 .1 0.007 ±0.001 0.008 ± 0.001 0.007 ± 0.002 73.7 57.8 76.3
5 0.5 ± 0.03 0.9 ±0.01 2.0 ± 0 .2 0.009 ± 0.001 0.01 ±0.001 0.02 ± 0.005 52.1 62.4 88.5
9 0.3 ± 0.03 0.6 ±0.05 4.4 ± 0.5 0.006 ±0.001 0.02 ± 0.003 0.1 ±0.03 42.3 39.9 43.4
12 0.7 ± 0.03 1.1 ±0.1 2.4 ± 0.4 0.02 ± 0.002 0.02 ± 0.005 0.06 ± 0.03 46.8 47.1 40.5
Average 0.5 ± 0.2 0.8 ±0.3 2.3 ± 1 .6 0.01 ±0.004 0.02 ±0.006 0.05 ±0.04 53.7 ±10.2 51.8 ± 10.2 62.2 ± 23.9
2004
1 0.6 ±0.08 1.4 ±0.1 5.1 ± 0 .7 0.007 ± 0.001 0.02 ± 0.002 0.06 ±0.01 87.6 81.2 79.3
2 0.6 ± 0.05 3.1 ± 11.6 5.2 ± 1 .2 0.005 ±0.001 0.02 ± 0.004 0.03 ± 0.006 116.9 172.3 182.3
3 0.8 ± 0.05 1.1 ±0.1 2.6 ± 0 .2 0.009 ±0.001 0.02 ±0.001 0.05 ± 0.007 89.1 68.6 55.8
4 1.4 ±0.2 1.2 ±0.2 1.2 ± 0 .2 0.04 ±0.01 0.04 ± 0.02 ns 37.1 31.7 ns
6 ns 0.7 ±0.1 1.0 ± 0 .3 ns 0.02 ±0.001 ns ns 40.15 ns
10 2.6 ±0.2 0.7 ± 0.04 2.6 ± 0.2 0.1 ±0.02 0.02 ± 0.002 0.1 ±0.02 24.2 27.2 24.2
13 ns 1.0 ±0.1 4.2 ± 0 .7 0.003 ±0.001 0.03 ± 0.007 0.1 ±0.05 ns 35.7 36.6
17 0.3 ± 0.03 0.6 ± 0.03 1.9 ±0 .1 0.004 ±0.001 0.01 ±0.001 0.05 ± 0.006 68.7 46.6 40.5
19 0.5 ± 0.03 1.0 ± 0.1 3.9 ± 0 .4 0.008 ±0.001 0.02 ± 0.003 0.09 ± 0.02 62.3 47.0 42.1
21 2.1 ±0.2 1.6 ± 0.11 1.3 ± 0 .2 0.04 ±0.005 0.03 ± 0.003 0.02 ± 0.004 54.1 63.2 79.5
Average 1.1 ±0.8 1.3 ±0.7 2.9 ± 1 .6 0.02 ±0.03 0.02 ±0.008 0.06 ±0.03 67.5 ±30.1 61.4 ±42 .6 67.5 ±50.5



171

Figure 16. Location o f the stations sampled for Phaeocystis antarctica 
photo synthesis/irradiance experiments.
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Figure 17. Photosynthetron that was utilized in IYARS experiments with Quartz-Xenon 
lamp which was located on the right side o f the holding tank for the Qorpaks. This 
provided a gradient o f irradiance (brighter to darker). The holding tank was circulated 
continuously with in situ seawater to keep samples at a constant temperature. Drawing is 
not to scale.
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Figure 18. Interannual variation in size fractionated photosynthesis (>20, >0.7, and <20
pm) for IVARS transects during December 2001, 2003 and 2004. Letters denote
significant differences.
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Figure 19. Variation in size fractionated photosynthesis (>20, >0.7, and <20 pm) for
IVARS transects December 2001, 2003 and 2004. Letters denote significant difference.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



178

i
s z

CD

IE  
o
cd

£

O
CD
E

X
CO

E
00
0L

0

2001 2 0 0 3 2 0 0 4

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



179

Figure 20. Interannual variation in a  (light limited slope) (>20, >0.7, and <20 pm) for 
IVARS transects December 2001, 2003 and 2004. * denotes a significant difference 
between the treatments.
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Figure 21. Variation in a  (>20, >0.7, and <20 pm) for IVARS transects December 2001,
2003 and 2004. * denotes a significant difference between treatments.
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Figure 22. Relationship between maximum photosynthesis (P nf ) and light limited slope 

(a).
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Figure 23. Relationship between percentage o f  colonial cells (Peloquin, unpublished) 

and . (Circles and squares represent IVARS and JGOFS data, respectively.)
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Figure 24. Variation in size fractionated maximal photosynthesis over 16 days with 
monoculture o f  Phaeocystis antarctica (CCMP 1374). Chlorophyll values are also 
presented. * denotes a significant difference between the 95% confidence interval o f the 
slopes for the photosynthetic parameter.
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Figure 25. SeaWiFS chlorophyll data output for year day 329-361 during December 2001 
and December 2003 (Year day 365= December 31). Gray line represents IVARS 
sampling date. Data courtesy o f Dr. J.A. Peloquin.
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Section V. A dual-stain fluorescently labeled algae protocol and an examination o f the role o f 

colonial Phaeocystis antarctica in the microbial food web o f the Ross Sea
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ABSTRACT

Morphological defense, in which phytoplankton produce protective external 

structures or avoid grazers by increasing in size beyond their handling capacity, is 

speculated to be the strategy o f Phaeocystis antarctica against grazing by protozoans. 

Nanoplanktonic (2-20 pm ) and microplanktonic (20-200 pm) consumers comprise a 

significant fraction o f total plankton biomass in polar ecosystems. However, the 

importance o f grazing remains uncertain in the Ross Sea, Antarctica. The extensive 

buildup o f phytoplankton biomass in the Ross Sea conflicts with the established view that 

high rates o f herbivory occur in all regions o f  the Southern Ocean. Large biomass 

accumulations imply that herbivory and phytoplankton production during austral spring 

and summer are not balanced. Dilution experiments in previous studies reported that only 

25% o f  all experiments exhibited microzooplankton grazing rates significantly greater 

than zero. In order to address whether microzooplankton are able to ingest colonial cells 

o f P. antarctica, ingestion and clearance rates o f  single and colonial cells by Euplotes (a 

hypotrich ciliate) were calculated using a novel live-staining fluorescently-labeled algae 

(FLA) method. Different morphotypes o f P. antarctica were stained different colors, 

mixed, and observed inside Euplotes to determine their feeding preference. The blue (7- 

aminocoumarin) (CMAC) stain was used on the colonial fraction (>150 pm), and the 

green (CMFDA) CellTracker Probe was used on solitary cells. My goal was to compare 

ingestion rates and presence o f P. antarctica colonial and solitary cells in Euplotes using 

this dual-staining method. Both morphotypes can be seen inside the food vacuoles o f the 

ciliate, supporting the idea that microzooplankton are capable o f ingesting individual 

cells from the colonial matrix. These results support the conclusion that the microbial
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loop plays a larger role in the Ross Sea than once thought and that large P. antarctica 

colonies m ay actually enter the microbial loop before sedimentation.
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IN TRO D U CTIO N

Grazing in the Ross Sea

Research in the last several decades has shown that small phytoplankton represent 

a large portion o f primary production in the ocean, and ciliates and other micro­

zooplankton have an important role in consuming small primary producers (Kuipers and 

Witte, 2000; Calbet and Landry, 2004; Dolan et al., 2005). Small protozoa do not 

produce rapidly sinking fecal pellets; therefore most o f the carbon from the primary 

producers is remineralized in the water column and enters the microbial loop (Azam et 

al., 1983).

Nanoplanktonic (2-20 pm) and microplanktonic (20-200 pm) consumers 

comprise a significant fraction o f total plankton biomass in polar ecosystems (Garrison et 

al., 1986). However, the importance o f grazing remains uncertain in the Ross Sea, 

Antarctica. The extensive buildup o f phytoplankton biomass in the Ross Sea conflicts 

with the established view that high rates o f  herbivory occur in all regions o f  the Southern 

Ocean (Caron et al., 2000). Large biomass accumulations imply that herbivory and 

phytoplankton production during austral spring and summer are not balanced. Temporal 

offsets, however, could occur, but this has not been shown experimentally (Caron et al.,

2000). Smith et al. (1996) suggest that diatoms in the Ross Sea were removed by 

herbivorous grazing while P. antarctica were removed through sinking and aggregation. 

This causes decoupling o f silica and carbon in the surface layer.

This buildup o f biomass in the Ross Sea might be due to the ability of 

phytoplankton to defend against grazers, affecting competitive interactions among 

species and initiating trophic cascades. Morphological defense, in which a phytoplankton
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produces protective external structures or avoids grazers by increasing in size beyond 

their handling capacity, is speculated to be a strategy for Phaeocystis against grazing by 

protozoans (Jakobsen and Tang, 2002). Phaeocystis blooms have been considered 

‘loopholes’ in the microbial loop where their growth and accumulation exceeds losses 

through predation, sinking and lysis (Irigoien et al., 2005). A ‘loophole’ is defined as a 

perturbation such as nutrients and light that allow a bloom species to grow at higher rates 

than predation losses. Irigoien et al. (2005) argue that the process o f colony formation 

prevents grazers from consuming Phaeocystis colonies. Understanding the fate o f P. 

antarctica blooms in the Ross Sea is important because P. antarctica contributes a 

majority o f  primary production, thereby playing an important role in biogeochemical 

cycling and flux in the Ross Sea. The solitary and colonial forms should have different 

fates due to the increase in size from solitary cells to large colonies (Schoemann et al., 

2005). Colony formation m ay be a mechanism for the avoidance o f  grazing pressure and 

a competitive advantage over solitary cells even when both the colonies and single cells 

have similar growth rates (Smith et al., 2003). Single cells o f Phaeocystis can be grazed 

by ciliates and heterotrophic dinoflagellates (Weisse and Scheffel-Moser, 1990).

However, protozoans (Verity and Villareal, 1986) and macrozooplankton (Fryxell and 

Kendrick, 1988; Verity et al., 1988) cannot consume Phaeocystis colonies efficiently. 

Copepods graze on the colonies (Huntley et al., 1987), but the ingestion rate may be 

controlled by the physiology o f  colonies (Estep et al., 1990). The colonial form o f P. 

antarctica is relatively ungrazed, with only 13 o f 51 dilution experiments yielding 

significant mortality rates (Caron et al., 2000). Caron et al. (2000) suggest that the 

extensive blooms in the Ross Sea are due to complex interactions o f factors including
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phytoplankton size and composition, as well as the low in situ temperature. Some 

preliminary results from dilution experiments in McMurdo Sound and the Ross Sea, 

Antarctica, however, suggest that microzooplankton grazing can be high during some 

times o f the year (Shields, unpublished). These results suggest that microzooplankton 

grazing in the Ross Sea should be further explored using novel or alternative methods 

such as the fluorescently labeled algae technique which m ay be able to detect lower 

grazing rates.

Fluorescently labeled algae (FLA) technique

Since microzooplankton are often associated with the colonial matrix o f 

Phaeocystis, it is possible that these microzooplankton are grazing upon individual 

colonial cells rather than the whole colony. In order to address whether 

microzooplankton are ingesting these colonial cells, ingestion and grazing rates o f 

individual cells must be determined. Ingestion rates and feeding behaviors o f protists 

have been investigated using fluorescently labeled bacteria and algae techniques (Rublee 

and Gallegos, 1989; Sherr and Sherr, 1983) in which heat-killed cells are fed to grazers. 

However, many species o f protists discriminate or reject these labeled cells (Stoecker, 

1988). In order to overcome the discrimination against dead cells and the effects on 

grazing and ingestion rates, Li et al. (1996) developed a protocol in which CMFDA (5- 

chloromethyl-fluorescein diacetate) was used to label live cultures o f phytoplankton. 

CMFDA is a vital, biologically inert, green fluorescent stain that allows phytoplankton 

cells to be visualized inside the grazer’s food vacuole for at least 72 hours (Li et al.,

1996). The green stain is also easily distinguished from the red chlorophyll fluorescence 

emitted from the phytoplankton (Li et al., 1996).
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Objectives

In order to address whether microzooplankton are able to ingest colonial cells o f 

P. antarctica, ingestion and clearance rates o f single and colonial cells by Euplotes (a 

hypotrich ciliate) were measured using a novel live-staining fluorescently-labeled algae 

(FLA) method. The stain, CMFDA, used in Li et al. (1996), was applied to these 

ingestion rate experiments. Different morphotypes o f P. antarctica were stained different 

colors, mixed, and observed inside Euplotes to determine their feeding preference. The 

blue (7-aminocoumarin) (CMAC) stain was used on the colonial fraction (>150 pm) and 

the green (CMFDA) CellTracker Probe was used on solitary cells. Ingestion rates and 

presence o f P. antarctica colonial and solitary cells in Euplotes was compared using this 

dual-staining method.

M ETH O D S

FLA staining

P. antarctica colonial and solitary cells (CCMP 1346) were grown at continuous 

light and at -1 °C in the laboratory. Euplotes (obtained from Dr. David Caron at the 

University o f Southern California) were fed P. antarctica for at least two weeks at -1 °C 

and then starved for 48 hours prior to the experiment. The P. antarctica culture was then 

separated into >150 pm  (large colony) and <10 pm (single cell) size fractions using 

reverse filtration. The reverse filtration method was not 100% efficient, with colonial 

cells making up 18.8% o f the solitary cell treatment and solitary cells making up 5.4% o f 

the colonial cell treatment based on microscopic analyses. Working stocks o f 

CellTracker solutions (CMAC and CMFDA) were made up using dimethyl sulfoxide 

(DMSO) at 100 pM  concentrations. Additional concentrations (5 pM and 0.1 pM ) o f
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CMFDA/CMAC at 0.5, 1, and 2 hours, were also used to determine optimal staining and 

minimization o f  background color on the slides with the microzooplankton. The optimal 

staining procedure was determined as an exposure o f P. antarctica to CellTracker Green 

and CellTracker Blue fluorescent stains in f/2 media with 1 pM final concentration for 2 

hours in the dark at -1 °C (Figure 26). After staining, the cells were fed to Euplotes for 

28-h. Four treatments were included in this pilot experiment including (1) a control 

containing only Euplotes and a 0.2 pm  filtrate (using an Acrodisc® syringe filter o f 

CMAC and CMFDA), (2) a solitary cell (< 10 pm) treatment stained with CMAC fed to 

Euplotes, (3) a colonial cell (>150 pm) treatment stained with CMFDA fed to Euplotes, 

and (4) a mixed treatment with equal proportions o f green stained colonial cells and blue 

stained solitary cells fed to Euplotes (Figures 27a,b). Final concentration was 1.08 X 104 

cells m L '1 for P. antarctica and 1680 cells m L '1 o f Euplotes was added for all treatments. 

While the concentrations o f  Euplotes were much higher than observed field values, the 

purpose o f this experiment was to determine the success o f the method and the ability o f 

Euplotes to graze on P. antarctica colonial cells, rather than determine in situ grazing 

rates. Two replicates for each treatment were incubated in 50 mL polypropylene 

centrifuge tubes at -1° C in the dark. Subsamples o f 10 mL were taken at 4, 10, 16, 22 

and 28-h and filtered onto 0.4 pm  black nucleopore filters after preservation with 1% 

glutaraldehyde. Thirty random Euplotes were chosen for observation o f Green 

Fluorescent Inclusions (GFI) and Blue Fluorescent Inclusions (BFI) inside the food 

vacuoles using epifluorescent microscopy with filters Chroma UV-2A Excitation 340- 

350 DM400 BA420 for BFI, and Nikon B-2A Excitation 450-490 D M 510 BA520 for 

GFI within 48-h o f  filtration (Figure 27c,d). Ingestion rates were calculated by assuming
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linearity for the initial portion o f  the uptake curves (FLA protist'1 t im e 1). By dividing the 

ingestion rate by the concentration o f labeled algae, the clearance rate can be calculated 

(Sherr and Sherr, 1983). Using this linear model, however, assumes the protist is 

processing food vacuoles in a “conveyor belt” fashion, where food vacuoles have a set 

lifetime in the ciliate (McManus and Okubo, 1991). Carbon conversion factors for 

solitary and colonial cells were 3.33 and 13.6 pg C c e ll_1, respectively (Mathot et al., 

2000).

RESU LTS

Efficiency o f  FLA staining technique

The CMFDA/CMAC label persisted in the cytoplasm o f P. antarctica over the 

28- h experiment (Figures 27a,b). Background staining o f Euplotes still occurred. The 1 

pM CMFDA/CMAC concentrations maximized fluorescent inclusion visualization in 

food vacuoles (Figures 27c,d) and minimized background fluorescence. P. antarctica 

fluorescent inclusions were present in all treatments during the duration o f the 

experiment. Euplotes did have some background staining and rinsing the cells with 

filtered seawater could have decreased this effect. Even at 40X magnification, Euplotes 

BFI and GFI could be easily visualized and counted (Figure 27d).

Fluorescent Inclusions

Fluorescent inclusions for all treatments were present in over 50% o f the ciliates 

in all treatments after 4-h (Figure 28). Controls had no inclusions present over the 

incubation period. The <10 pm  had over 80% o f Euplotes cells with GFI over the 28-h 

period. The mixture had intermediate values and the >150 pm treatment usually had 

greater than 50% o f the grazers with BFI.
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The single cell and mixed treatment (both single cells and colonies) had the 

highest ingestion o f  P. antarctica throughout the duration o f the experiment (Figure 29). 

As expected, the number o f FLA ciliate'1 leveled o ff due to digestion/egestion after a 

period o f time. The colonial P. antarctica treatment had less than 2 FLA ciliate'1 

throughout the experiment. W hen fed mixed cells, the presence o f the BFI and GFI 

combined were significantly higher than the colonial cell treatment. The grazers in the 

mixed treatment had a decrease in solitary cell ingestion and ingestion o f  the colonial 

form was comparable to the colonial treatment (Figure 30). This suggests that even when 

Euplotes is exposed to both solitary and colonial cells, that Euplotes will still graze 

colonial cells at the same rate showing no preference for cell type or morphology. 

Ingestion and clearance rates

There was no significant difference between ingestion rates o f P. antarctica 

colonial or solitary cells when comparing the 95% Cl o f the slopes o f the linear 

regressions (Table 14; Figure 29). The mixed treatment, when Euplotes had closer to a 

natural assemblage o f both solitary and colonial cells, had the highest ingestion and 

clearance rates (ingestion rate 0.26 FLA ciliate'1 h '1, clearance rate 0.024 pi ciliate'1 h '1 ) 

(Figure 30, Table 14). The ingestion rate for solitary (<10 pm) cells decreased from 0.23 

to 0.17 FLA ciliate'1 h '1 in the mixed treatment. The ciliates ingested more single cells 

than colonial cells, but there was no significant difference between their ingestion rates 

using comparisons o f the 95% Confidence Intervals o f the slopes. Grazing o f colonial cell 

carbon was higher than solitary cell carbon in all treatments due to the increased carbon 

content o f  colonial cells with carbon ingestion rates highest in the >150 pm  treatment.
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Colonial cells, therefore, may provide more carbon to microzooplankton than solitary 

cells even when they are ingested by grazers at a lower rate.

DISCUSSION

FLA Technique

The dual staining FLA technique was an efficient method for determining 

ingestion rates o f P. antarctica using Euplotes as the grazer. The CMFDA/CMAC label 

persisted in the cytoplasm o f P. antarctica over the 28-h experiment, suggesting that this 

method can be used in long duration grazing experiments. The FLA technique for 

Phaeocystis sp. could provide an increased understanding o f the roles o f 

microzooplankton grazing o f  colonial cells. The use o f a dual stain also helped illustrate 

the preference that a grazer can have for a specific food type. The Green (CMFDA) and 

Blue (CMAC) dyes were easily visualized in the mixed treatments, but a cell rinse may 

be beneficial, especially for the green CMFDA dye which, tended to cause more 

background staining than the CMAC stain. Surrogate food particles that include beads or 

pigments (McManus and Okubo, 1991) and other FLA/heat-killed techniques will not 

elucidate how ciliates and other potential grazers could graze colonial P. antarctica. Putt 

(1991) also found that FLA techniques using heat-killed algae underestimated grazing 

rates. Other experiments that used ciliates with prey stained with CMFDA found that it 

did not influence the feeding activity o f the ciliates (Kamiyama, 2000). They found no 

difference between the ingestion o f  labeled and non-labeled prey items. The use of 

CMAC stain in grazing experiments is infrequent and experiments investigating its affect 

on feeding activity o f ciliates have not been performed. Ciliates did actively graze blue-
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labeled, CMAC colonial cells at comparable rates to CMFDA stained cells. Therefore, it 

is unlikely that the stain had any negative effect on the grazers.

FLA should be considered for further grazing experiments in the Ross Sea and 

other marine systems. Dolan and McKeon (2005) note that dilution experiments are time 

consuming and can overestimate grazing rates. They also suggest that in cases where 

grazing is low as in Caron et al. (2000), that this technique may not be able to quantify 

these low rates. Another drawback o f dilution experiments is that they often have a small 

number o f replicates because the amount o f  preparation time is large. Finally, Dolan and 

McKeon (2005) suggest that the grazer community may change, and the grazer 

concentrations may not be linearly related to the dilution. The drawbacks o f  FLA 

experiments are the addition o f  cultured prey (which increases prey density), and that the 

green CMFDA might be confused with the autofluorescence o f heterotrophic 

dinoflagellates (Li et al., 1996). A direct comparison o f the dilution and FLA method 

could be a useful tool in assessing grazing rates in many marine systems.

Ingestion and clearance rates

Rose and Caron (2007) describe how there is a constraint on microzooplankton 

growth rates relative to the effects o f temperature on phytoplankton growth rates. These 

decreased growth rates (Qio=3.75 for herbivores) compared to phytoplankton (Qio=1.88) 

might explain the large P. antarctica blooms in the Ross Sea. The effect o f temperature 

on Euplotes and other microzooplankton ingestion rates has not been explored in detail in 

the Ross Sea. However, microzooplankton grazing rates have been observed to exhibit a 

positive relationship with temperature (Verity et al., 2000). Low temperature can affect 

organisms by decreasing chemical reactions and through altering viscosity and diffusion
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in the marine environment (Begon et al., 1986). Encounter rates and digestion can also 

increase with temperature. Kamiyama (2000) found higher ingestion rates for another 

aloricate ciliate (Loboea strobila) o f  1.83 cells ciliate’1 h’1 on Heterocapsa triquetra (23.9 

pm X 17.3 pm) at 20 °C. Ingestion rates in this study were much lower. The highest 

ingestion rate measured in our experiment was 0.26 FLA ciliate’1 h’1. A Qio value o f 2.8 

is an average for zooplankton rate processes (Hansen et al., 1997). Using a Qio value o f 

2.5 (Caron et al., 1990) that included both the effects o f prey concentration and 

temperature, Loboea strobila would have had an ingestion rate o f 0.26 FLA grazer'1 h’1, 

identical to what was calculated for our highest ingestion rate in the mixed treatment. 

Heterocapsa triquetra is also much larger than P. antarctica solitary cells and is a 

harmful algal species. W hile Loboea and Euplotes may not be directly comparable, our 

ingestion rates calculated during this experiment are what would be calculated using Qio 

values alone. Euplotes vannus has been observed to have an ingestion rate 2-54 cells 

ciliate’1 h’1 (Premke and Arndt, 2000). Qio values calculated using the lower values o f 

that range also estimate 0.29 FLA '1 ciliate'1 h '1 with a maximum in that range o f  7.3.

It is surprising that Euplotes would graze on P. antarctica at all, as Rousseau et al. 

(2000) concluded that during large Phaeocystis blooms in the North Sea that 75% o f the 

carbon ingested by zooplankton was from diatoms even when they represented only 30% 

o f the whole assemblage. Future experiments in the field when diatoms are also present 

along with P. antarctica will assess whether ciliates utilize it as a preferred food source. 

Ciliates, however, have been shown to be important grazers o f Phaeocystis in some 

marine systems (Admiraal and Venekamp, 1986; Weisse and Scheffel-Moser, 1990; Tang
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et al., 2001). Ciliates generally prefer nanophytoplankton under 20 pm  (Bernard and 

Rassoulzadegan, 1990; Hansen, 1992).

Ingestion rates could have also been underestimated during our study. Grazers and 

the labeled cells were incubated in the dark to minimize light effects on chemical 

reactions (Li et al., 1996). Complete darkness during our incubations could have lowered 

the rates since light can enhance growth rates and feeding efficiency o f the grazer (Strom,

2001). It is recommended that future field experiments should be performed under in situ 

light conditions since the dye did not fade quickly over the 28-h period. In order to get 

more data in the linear portion o f the uptake curve, shorter experiments (15 h) with more 

time periods would be recommended. Slides also must be examined quickly since our 

slides began to fade after inspection one week after initial counts were made.

Colonial P. antarctica ingestion

Colony formation may be a strategy o f  Phaeocystis for avoiding grazing pressure 

(e.g., Jakobsen and Tang, 2002). Microzooplankton structure phytoplankton communities 

during P. globosa blooms in the North Sea (Stelfox-Widdicome et al., 2004). W hile 

ciliates and heterotrophic dinoflagellates show positive growth and active ingestion o f 

solitary cells (Weisse and Schefel Moser, 1990; Tang et al., 2001), our preliminary 

results suggest that P. antarctica colonial cells actually may represent more o f the daily 

carbon ingestion by microzooplankton than solitary cells, especially during large blooms. 

For example, since colonial cells contain about four times more carbon than solitary cells, 

the highest carbon ingestion rate by Euplotes is in the >150 pm  treatment (2.3 pg C 

ciliate'1 h '1). Microzooplankton have been observed to actively move in and out o f 

colonies (Shields, unpublished observations). Hamm (2000) also suggests that smaller
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organisms may be able to enter the colonies the same way other organisms such as 

rotifers penetrate and feed on Volvox colonies. Field observations using this technique 

would provide estimates o f the magnitude o f microzooplankton utilization o f colonial P. 

antarctica as a food source. The grazer community would be more diverse, and the 

grazers would have other species o f phytoplankton to preferentially ingest.

Clearance Rates

Clearance rates were highest in the mixed treatment (0.024 pL ciliate '1 h '1), 

though there is uncertainty associated with our measurements due to small sample sizes 

used in the linear regressions. In addition, these clearances rate calculations will not 

apply to surface grazers in the water column. Clearance rates for ciliates rarely exceed 10 

pL h '1 (Capriulo et al., 1991). Rates higher than this are usually in warm, low 

chlorophyll waters. Pitta et al. (2001) found lower clearance rates o f 1 pL  ciliate"1 h"1 

based on food vacuole content. Ciliates are able to discriminate prey on different prey 

characteristics besides just prey volume and are not simple mechanical feeders (Stoecker, 

1988; Verity, 1991; Li et al. 1996). In addition, Euplotes is a benthic ciliate and is 

associated with surfaces while it scavenges particles (Wilks and Sleigh 1998), and 

clearance rates may be underestimated because in the natural environment they would be 

encountering prey in greater numbers. The high feeding rates on P. antarctica colonial 

cells could be due to colonies representing a benthic like environment that is analogous to 

the marine snow that Euplotes graze in the natural environment. The ciliates may also be 

grazing upon bacteria associated with the Phaeocystis colonies, but we have no estimates 

o f the ingestion rates on this prey.
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Field experiments

Additional field experiments using this technique were planned in McMurdo 

Sound over the past two years to estimate the relative ingestion rates o f colonial and 

solitary P. antarctica by a natural grazer assemblage. Field experiments when natural 

grazers were abundant along with other food sources, would allow for further 

observations o f the ingestion rates and the magnitude o f colonial P. antarctica grazing. 

But, due to the low abundances o f microzooplankton in January 2006 and 2007, we were 

not able to get the high abundances that would be needed for this experiment.

M icrozooplankton experiments were performed in parallel to these FLA attempts 

(Tang and Shields, unpublished). During late January and early February 

microzooplankton dilution experiments resulted in higher grazing rates in McMurdo 

Sound compared to Caron et al. (2000). FLA combined with dilution experiments in the 

Ross Sea would determine the magnitude o f herbivorous grazing where P. antarctica 

forms large phytoplankton blooms in open polynyas.

Conclusions

Due to the critical role o f  the morphological form o f Phaeocystis antarctica in 

carbon transformations and food web dynamics, it is important to understand the controls 

o f the various life stages o f the species. Unlike P. globosa, the evolution o f the life 

history strategy involving the transition between solitary and colonial cells may not be 

due to grazing. This is supported by observations that as colonial and solitary cells are 

being grazed at the same rate in these FLA experiments. These results also suggest that 

the microbial loop may play a significant role in the Ross Sea and that large colonies may 

actually enter the microbial food web before sedimentation. P. antarctica colonies were
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not observed to be in high abundance in our sediment trap collection during 2001 -2004. 

The rapid export o f P. antarctica in the Ross Sea prior to entering the microbial food 

web, therefore, may not reflect all years and locations in the Ross Sea.

W hile it is widely believed that mesozooplankton and microzooplankton do not 

effectively graze colonial cells, the results from this study show that some grazers may 

ingest single and colonial cells at the same rate. Little is known about rates o f grazing by 

nano- (2-20 pm) and microzooplankton (20-200 pm) on phytoplankton in the Ross Sea. 

Diverse assemblages o f ciliates, heterotrophic dinoflagellates, and choanoflagellates have 

all been observed in other studies. The grazer used in this experiment is benthic and 

associates with marine snow and other aggregates, therefore additional studies using 

planktonic microzooplankton will assess the ability o f  other grazers to feed on colonial P. 

antarctica cells. These future experiments looking at the utilization o f P. antarctica as a 

food source by micro and mesograzers may change our view o f the importance o f the 

Ross Sea microbial food web.
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Table 14. Calculated ingestion and clearance rates for Euplotes. Ingestion rates were 
calculated by plotting FLA cilate'1 vs. time (hour) and a regression o f the linear portion o f 
the uptake curve was performed. Clearance rates were calculated by dividing the 
ingestion rate by the concentration o f FLA per pL added (Sherr and Sherr, 1993).

Treatment Ingestion Rate 
(FLA ciliate"1 h"1)

Clearance Rate 
(pL ciliate'1 h"1)

Control 0 0

>150 pm 0.17
R2= 67.8%; p=0.044

0.015

<10 pm 0.23
R2= 91.4%; p=<0.0001

0.021

Mix 0.26
R2=93.7%; p=<0.0001

0.024

Mix <150 pm 0.11
R2=84.2%;p=0.004

0.009

Mix <10 pm 0.17
R2=85.9%;p=0.003

0.016
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Figure 26. Diagram o f fluorescently labeled Algae (FLA) methodology using a dual 
staining method.
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Figure 27 a) P. antarctica solitary cells after stained with 1 pM  CMFDA (Green) for two 
hours under epifluorescent microscopy (1000X). b) P. antarctica colonial cells after 
stained with 1 pM  CMAC (Blue) for 2 hours under epifluorescent microscopy (1000X). 
c) P. antarctica solitary cells after stained with 1 pM CMFDA (Green) ingested by 
Euplotes under epifluorescent microscopy (1000X). Arrow points to ingested cells inside 
ciliate. d) P. antarctica cells after stained with 1 pM  CMFDA (Green) ingested by 
Euplotes under epifluorescent microscopy (400x).
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Figure 28. Presence o f P. antarctica fluorescent inclusions inside Euplotes food 
vacuoles. Error bars represent averages j^s.e.m. (n=2)
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Figure 29. The average number o f FLA inclusions per ciliate in each treatment. Error bars 
represent averages + s.e.m. (n=2)
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Figure 30. The average number o f inclusions per ciliate in the mixed treatment (ciliates 
were fed both single and colonial cells). Error bars represent averages + s.e.m. (n=2)
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The primary objective o f this dissertation was to study three interrelated processes 

o f the biological pump, which is the principal biological regulator o f ocean-atmosphere 

carbon cycling, o f the Ross Sea: primary production, export, and the role o f grazers in the 

acceleration o f carbon flux to depth. As part o f the Interannual Variability o f the 

Antarctic-Ross Sea program, the interannual variability in these processes was also 

explored.

Carbon Production and Nutrient Budgets

As shown in Section I, nutrient data were collected from within transects o f 

largely ice free regions, and simple, one dimensional nutrient budgets were made using in 

situ nitrogen and silicon concentrations. Using these budgets, phytoplankton carbon 

production and export were calculated. W hile Phaeocystis antarctica was thought to 

primarily dominate the southeastern sector o f the Ross Sea and diatoms dominate the 

southwestern sector, interannual variations showed significant variability in both bloom 

composition (diatoms or P. antarctica) and in magnitude, interannually and seasonally. 

During February 2004, a large secondary bloom o f diatoms occurred due to water mass 

intmsions that delivered micronutrients. This bloom was greater in magnitude than the 

February climatology and historical observations and summer uptake o f nitrogen had an 

8-fold increase compared to the other years.

Primary controls o f phytoplankton blooms

Section II included a synthesis o f the data from Section I. Principal components 

analysis was used to ascertain the main factors in December bloom development in the 

Ross Sea. This analysis was critical in examining patterns in the large IVARS data set. 

Through visualization o f the loadings and scores o f  the principal components, the
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primary controls o f  biomass and organic matter were seasonality combined with 

phytoplankton community composition and temperature. Further regression analysis o f 

sea surface nitrate and temperature suggested a positive relationship o f temperature and 

nitrate removal in the surface waters o f the Ross Sea. Data from the United States Joint 

Global Ocean Flux (JGOFS) program was combined with the IVARS data set. Since 

temperature and nitrate had a significant linear relationship, the Goes et al. (1999) model 

was used using data that can also be predicted using remote satellite measurements, 

chlorophyll and temperature. Our model was successful in predicting sea surface nitrate 

concentrations from temperature and chlorophyll in the Ross Sea and may be utilized as a 

tool in predicting new production (from nitrate) and export at a larger scale than ship 

measurements alone.

Vertical Flux

In order to understand the efficiency o f the biological pump during IVARS, trap 

collections were examined from 2003-2004 (~ 40 days) that was dominated by a large P. 

antarctica colonial bloom in late December to mid-January and a secondary diatom 

bloom greater in magnitude from late January to our sediment trap retrievals in February

2004. This trap material and its biogenic composition were compared to December 2004-

2005, where a large diatom bloom occurred in December. Biological uptake o f nitrogen 

during January 2005 was minimal and export compared to January 2004 was expected to 

be minimal. W hile this short trap deployment only allowed for a glance at the export for 

both seasons, fecal pellet carbon flux represented a large percentage o f flux for both years 

which, suggests that mesozooplankton grazers were actively grazing and packaging 

phytoplankton in quickly sinking fecal pellets. One major conclusion from this section

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 2 6

was that ovoid green and brown pellets represented flux at > 100% during certain 

intervals o f  trap material collection. Herbivorous grazing o f phytoplankton, therefore, 

should be further explored due to the role it would have on vertical export and increasing 

efficiency o f the biological pump.

Photosvnthetic parameters o f colonial and solitary P. antarctica

Phaeocystis antarctica is the main source o f primary production and vertical flux 

in the Ross Sea and understanding colony formation is critical in the determination o f 

biogeochemical cycling. Section IV examined the role that morphology (colonial vs. 

solitary) plays in maximum photosynthetic rates. Experiments from IVARS were 

combined with culture work to describe how bloom stage affects photosynthesis.

During December 2001, maximum photosynthetic rates o f the bulk phytoplankton 

assemblage were significant compared to the other years. Also, during 2003-2004 

solitary cells had significantly higher photosynthetic rates than colonial cells. W hile the 

conclusion that solitary cells are more efficient in photosynthesis during all times, further 

examination o f  satellite chlorophyll measurements showed that 2001-2003 and 2003- 

2004 different in the bloom stage o f P. antarctica. During December 2001, our sample 

collection was during the exponential phase o f the P. antarctica bloom (chlorophyll 

continued to increase after our sample collection), while in December 2003, the bloom o f 

colonial P. antarctica was in decline. Iron limitation was observed (Peloquin, 2005) 

which m ay have driven the low maximum photosynthetic rate o f colonial P. antarctica. 

The laboratory studies over a 16-d period suggested that the maximum photosynthesis o f 

the colonial form o f P. antarctica was significantly higher than solitary cells during the 

exponential phase o f the bloom. After the 16-d period (where nutrients were limiting),
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maximum photosynthesis o f the solitary cells was significantly higher than the colonial 

cells. These are the first results to show that bloom stage affects the maximum 

photosynthetic rates o f the different morphological forms o f P. antarctica and are the first 

to describe how colonial P. antarctica may grow and form large colonies in the Ross Sea 

earlier than diatoms.

Microzooplankton grazing on colonial P. antarctica

A dual-staining procedure to examine the ingestion rates o f colonial and solitary 

P. antarctica was developed in Section V. The combination o f two probes (CMFDA and 

CMFDA) was efficient in allowing for the visualization o f  the two morphological forms 

o f P. antarctica in Euplotes. The colonial cells o f  P. antarctica contain over four times 

more carbon than the solitary cells. Therefore, even though Euplotes ingested solitary 

cells at a higher rate, carbon ingestion rates o f colonial P. antarctica were higher. This is 

the first experimental result suggesting that Euplotes and possibly other 

microzooplankton may be capable o f  grazing upon P. antarctica colonial cells in the 

colonial matrix. This procedure would allow for the further examination o f the actual 

grazing rates o f P. antarctica by natural grazers in the Ross Sea and would be more 

efficient than analyzing microzooplankton grazing through dilution experiments which, 

are time consuming and are not useful in measuring grazing in areas with low grazing 

rates, such as the Ross Sea.

Future directions

A combination o f all o f these sections allows for further insight into the regulation 

o f the biological pump by primary producers. W hile primary producers appear to be 

driven by seasonal factors such as temperature and water mass intrusions, other variables
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not measured in our study such as iron should be further explored to make definitive 

conclusions on whether sea surface temperature controls phytoplankton composition and 

export. This study raised more questions than it answered. Several important questions 

come out o f this project, and the IVARS project including the role that water mass 

intrusions play in driving secondary blooms in the Ross Sea and which parameter 

(temperature or iron) is affecting the bloom composition and magnitude. By isolating 

specific mechanisms that control phytoplankton growth, accumulation and loss through 

grazing and sedimentation, we will be able to further predict how future changes in 

climate or increased water mass intrusions will affect the efficiency o f the biological 

pump and carbon sequestration in the Ross Sea.
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Appendix A. December 2001 and February 2002 scores from Principal Components
Analysis o f IVARS data set located at www.vims.edu/bio/ivars.

Year Season Longitude
(°E)

Scores
PCI

Scores
PC2

Scores
PC3

2001 Dec 173.2 -0.6 -2.7 -0.8
2001 Dec 173.2 -0.4 -2.8 -0.6
2001 Dec 173.2 -1.8 -3.0 -1.5
2001 Dec 175.6 0.2 -3.7 -0.7
2001 Dec 175.6 -0.2 -3.7 -1.1
2001 Dec 175.6 -2.0 -2.8 -1.2
2001 Dec 179.2 -1.0 -2.7 -1.0
2001 Dec 179.2 0.5 -3.9 -1.3
2001 Dec 179.2 -1.2 -3.2 -1.3
2001 Dec -178.8 -2.8 -1.8 -1.8
2001 Dec -178.0 -0.2 -2.0 -1.8
2001 Dec -178.0 0.5 -2.6 -2.3
2001 Dec -176.7 -0.5 -2.1 -0.7
2001 Dec -176.7 -0.2 -2.6 -1.2
2001 Dec -176.7 -2.5 -1.7 -1.6
2002 Feb 171.8 -0.2 1.1 -1.1
2002 Feb 171.8 0.8 0.7 -1.2
2002 Feb 175.5 0.5 0.4 -1.3
2002 Feb 175.5 0.2 0.3 -1.2
2002 Feb 175.5 0.7 0.0 -1.4
2002 Feb 176.7 0.3 0.7 -0.8
2002 Feb 176.7 1.1 -0.1 -0.8
2002 Feb 176.7 -1.1 -0.7 -0.4
2002 Feb -178.8 -1.2 1.4 -1.8
2002 Feb -178.8 -1.7 1.3 -1.9
2002 Feb -178.8 -0.3 0.5 -1.8
2002 Feb -178.0 -1.0 1.5 -1.4
2002 Feb -178.0 -0.7 1.4 -1.4
2002 Feb -178.0 -1.2 1.2 -1.2
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Appendix B. December 2003 and February 2004 scores from Principal Components
Analysis o f IVARS data set located at www.vims.edu/bio/ivars.
Year Season Longitude

(°E)
Scores

PCI
Scores
PC2

Scores
PC3

2003 Dec 172.8 0.8 -0.1 -0.6
2003 Dec 172.8 1.2 -1.2 0.1
2003 Dec 173.8 0.8 -3.3 0.0
2003 Dec 173.8 -2.0 -2.9 -1.2
2003 Dec 174.8 2.1 -1.1 -0.8
2003 Dec 174.8 0.6 -3.4 1.5
2003 Dec 174.9 2.0 -1.6 -1.1
2003 Dec 174.9 2.2 -1.4 -0.6
2003 Dec 174.9 -2.6 -2.4 -1.4
2003 Dec 176.9 -0.9 0.7 0.2
2003 Dec 176.9 1.8 -2.4 -1.2
2003 Dec 176.9 -2.4 -2.4 -1.2
2003 Dec 177.9 0.8 0.6 -1.2
2003 Dec 177.9 -0.9 -0.3 -2.1
2003 Dec 177.9 -3.6 -1.4 -0.8
2003 Dec 179.0 -1.2 0.8 -0.7
2003 Dec 179.0 -1.4 -1.4 -1.4
2004 Feb -177.9 3.3 3.4 -1.8
2004 Feb -177.9 2.2 2.7 -1.4
2004 Feb -177.9 -1.1 2.5 -1.7
2004 Feb -179.0 0.7 2.7 -1.5
2004 Feb -179.0 0.8 2.5 -1.5
2004 Feb -179.0 -0.6 2.0 -2.1
2004 Feb 179.0 5.5 1.8 -2.5
2004 Feb 179.0 6.3 0.1 -3.9
2004 Feb 177.9 6.5 1.4 -2.5
2004 Feb 177.9 5.4 1.3 -1.1
2004 Feb 177.9 -2.6 0.5 -1.4
2004 Feb 176.9 6.3 2.0 -2.6
2004 Feb 176.9 6.3 1.7 -2.7
2004 Feb 176.9 -1.2 0.9 -1.3
2004 Feb 175.9 3.6 1.3 -5.2
2004 Feb 175.9 5.4 3.5 -2.1
2004 Feb 175.9 -2.8 1.0 -2.4
2004 Feb 174.8 -2.7 1.8 -1.0
2004 Feb 172.8 6.1 2.1 -1.5
2004 Feb 172.8 5.1 2.0 -1.9
2004 Feb 172.8 -3.9 0.3 -1.3
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Appendix C. December 2004and February 2005 scores from Principal Components
Analysis o f IVARS data set located at www.vims.edu/bio/ivars.
Year Season Longitude

(°E)
Scores
PCI

Scores
PC2

Scores
PC3

2004 Dec 170.8 0.7 1.1 2.8
2004 Dec 170.8 0.1 -1.6 1.2
2004 Dec 170.8 -0.4 -2.5 0.1
2004 Dec 172.8 5.7 -0.8 2.8
2004 Dec 172.8 0.8 -2.5 0.9
2004 Dec 173.8 -1.0 0.8 3.0
2004 Dec 173.8 -1.1 0.6 2.5
2004 Dec 174.8 -1.8 0.7 2.7
2004 Dec 174.8 -1.8 0.3 2.3
2004 Dec 174.8 -2.3 -1.4 0.7
2004 Dec 175.9 7.8 -1.0 2.8
2004 Dec 175.9 4.6 -1.2 2.2
2004 Dec 176.9 3.3 -1.6 1.9
2004 Dec 176.9 3.5 -1.9 1.2
2004 Dec 176.9 -1.1 -2.8 -0.3
2004 Dec 177.9 5.0 -0.4 2.5
2004 Dec 177.9 1.3 -0.7 1.6
2004 Dec 177.9 0.3 -2.6 -0.4
2004 Dec 179.0 4.5 -0.6 1.8
2004 Dec 179.0 2.9 -1.4 1.6
2004 Dec 179.0 -3.1 -1.5 -0.4
2004 Dec 180.0 4.6 -0.5 1.1
2004 Dec 180.0 2.6 -0.9 1.1
2004 Dec 180.0 -2.8 -1.3 0.1
2004 Dec -178.9 3.3 -0.7 0.8
2004 Dec -178.9 2.1 -0.8 0.7
2004 Dec -178.9 -3.2 -0.9 -0.5
2004 Dec -178.9 4.8 -0.6 1.4
2004 Dec -178.9 -0.3 - 1.2 -1.0
2004 Dec -180.0 2.7 -0.2 1.3
2004 Dec -180.0 1.6 -0.3 0.8
2004 Dec -180.0 -3.6 -1.3 -0.5
2004 Dec 176.9 3.8 -1.1 2.9
2004 Dec 176.9 -2.1 -2.6 0.0
2004 Dec 175.9 0.6 -0.2 2.7
2004 Dec 175.9 0.7 0.0 2.6
2004 Dec 175.9 -2.7 -1.5 0.0
2004 Dec 174.7 0.8 0.6 2.4
2004 Dec 174.7 0.5 -0.4 2.1
2004 Dec 174.7 -2.7 - 1.0 0.5
2004 Dec 173.8 -0.1 0.4 2.3
2004 Dec 173.8 -0.1 -0.3 1.9
2004 Dec 173.8 -3.2 -1.2 -0.2
2004 Dec 172.8 2.6 0.4 3.4
2004 Dec 172.8 2.5 0.1 3.8
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Appendix C, cont. December 2004and February 2005 scores from Principal Components
Analysis o f IVARS data set located at www.vims.edu/bio/ivars.

Year Season Longitude
(°E)

Scores
PCI

Scores
PC2

Scores
PC3

2004 Dec 172.8 -1.8 -2.3 0.8
2004 Dec 171.8 3.3 -0.2 2.9
2004 Dec 171.8 3.4 -0.3 2.4
2004 Dec 171.8 -3.7 -1 0.4
2005 Feb 171.8 -2.2 2 0.6
2005 Feb 171.8 -2.5 1.7 0.4
2005 Feb 171.8 -3.4 0.7 -0.2
2005 Feb 172.8 -1.9 1.8 1.6
2005 Feb 172.8 -3.2 0.9 1
2005 Feb 173.8 -1.6 2.5 1.5
2005 Feb 173.8 -1.5 2.1 1.5
2005 Feb 173.8 -3.6 0.2 0.3
2005 Feb 174.8 -1.7 1.8 1.4
2005 Feb 174.8 -1.6 1.6 1.3
2005 Feb 174.8 -2.5 1.3 1.2
2005 Feb 175.9 -2.6 1.8 1
2005 Feb 176.9 -2.4 1.5 1.3
2005 Feb 176.9 -2.6 1.2 1.3
2005 Feb 177.9 -2.1 2 0.7
2005 Feb 177.9 -2.4 2 0.6
2005 Feb 177.9 -2.8 1.6 0.5
2005 Feb 179 -2.3 1.9 0.5
2005 Feb 179 -2.4 2 0.4
2005 Feb 180 -2.2 1.9 1.1
2005 Feb 180 -2.4 2 1
2005 Feb 180 -2.9 1.7 0.8
2005 Feb -178.9 -1.6 1.9 0.5
2005 Feb -178.9 -1.9 2.2 0.5
2005 Feb -178.9 -2.7 1.8 0
2005 Feb -177.9 -1 2.6 -0.6
2005 Feb -177.9 -1.1 2.5 -0.7
2005 Feb -177.9 -1.8 2 -0.5
2005 Feb 175.9 -1 2 1.2
2005 Feb 175.9 -3.4 0.4 0.3
2005 Feb 174.8 -0.7 2.7 1.5
2005 Feb 174.8 -1.2 2.4 1.2
2005 Feb 174.8 -2.3 1.1 0.2
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Appendix D. Principal components analysis loadings for PC2 vs. PC3.
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Appendix E. Principal components analysis scores plotted for PCI vs PC2 during
December 2001. (Circles, triangles, and x represent 0, 20, and 50 m, respectively).
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Appendix F. Principal components analysis scores plotted for PCI vs PC2 during
December 2003. (Circles, triangles, and x represent 0, 20, and 50 m, respectively).
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Appendix G. Principal components analysis scores plotted for PCI vs PC2 during
December 2004. (Circles, triangles, and x represent 0, 20, and 50 m, respectively).
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Appendix H. December 2003-February 2004 Sediment trap fecal pellet morphological properties. Dashes represent that there were no 
pellets in that category.

Sam ple
Ovoid Pellets 

Length Width 
(urn) dim)

Tabular Pellets 
Length Width 

(nm) (um)

Spherical Pellets 
Diameter 

(nm)

Forams 
Length Width
(pm) (pm)

Unknown Pellets 
Length Width
(pm) (pm)

Total
Pellets

Xiphias Day 365
N 80 6 10 2 2 100
Mean 234.92 227.03 - - 128.89 319.12 321.54 443 .04 84.39
Standard Deviation 153.20 122.97 - - 130.49 71.61 39.95 0.00 0.00
Xiphias Day 371
N 57 3 11 71
Mean 260.97 198.51 1025.76 184.55 166.16 - - - -

Standard Deviation 119.93 85.91 405.45 88.01 97.11 - - - -

Xiphias Day 373
N 48 10 1 59
Mean 224.08 152.73 - - 124.13 - - 270.64 147.68
Standard Deviation 149.37 90.87 - - 69.84 - - - -

Xiphias Day 389
N 74 8 1 - - 83
Mean 298.60 215.62 - - 112.04 291.74 253.16 - -

Standard Deviation 96.97 72.29 - - 52.34 - -

Xiphias Day 401
N 72 2 4 78
Mean 331.79 189.82 - - 209.56 - - 388.33 124.56
Standard Deviation 113.31 72.11 - - 122.40 - - 373.29 35.62
Callinectes Day 364
N 63 1 15 1 80
Mean 332.23 201.08 340.19 340.19 157.69 - - 307.78 307.78
Standard Deviation 155.62 75.80 - - 98.11 - -

Callinectes Day 370
N 44 2 30 10 86
Mean 240.53 103.43 246.47 145.87 148.67 - - 305.91 151.73
Standard Deviation 175.93 57.33 169.55 62.23 91.03 - - 444.81 99.45



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Appendix H., cont. December 2003-February 2004 sediment trap fecal pellet morphological properties. Dashes represent that no 
pellets were observed for that category.

Sample

Ovoid

Length
(pm)

Pellets

Width
(pm)

Tabular Pellets

Length Width 
(pm) (pm)

Spherical
Pellets

Diameter
(pm)

Forams

Length Width 
(pm) (pm)

Unknown Pellets

Length Width 
(pm) (pm)

Total

Pellets

Callinectes Day 374

N 53 1 54

Mean 264.57 172.52 476.62 63.29 - - - - -

Standard
Deviation 124.75 64.77 - - - - - - -

Callinectes Day 388
N 94 1 4 1 15 115

Mean 310.14 215.4 210.97 267.02 147.07 1042.3 291.74 502.27 322.84
Standard
Deviation 173.72 123.24 - - 76.83 - - 147.85 96.9

Callinectes Day 400

N 81 8 1 1 91

Mean 299.1 168.93 - - 219.02 - - 1137.09 170.28
Standard
Deviation 112.54 65.11 — — 92.57 — — “ “

Total pellets for seasonal sampling
period: 817
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Appendix I. December 2004-February 2005 sediment trap fecal pellet morphological properties. Dashes represent that there were no 
pellets in that category.

Sample
Ovoid Pellets 

Length Width
(pm) (pm)

Tabular Pellets 
Length Width 
(pm) (pm)

Spherical Pellets 
Diameter

(pm)

Forams 
Length Width 
(pm) (pm)

Unknown Pellets 
Length Width 
(pm) (pm)

Total
Pellets

Xiphias Day 360
N 7 1 8
Mean 278.3 131.1 - - - - - 485.2 107.6
Standard Deviation 121.5 22.4 - - - - — - -

Xiphias Day 368
N 165 4 3 172
Mean 276.0 204.2 - - 78.2 260.6 190.9 - -
Standard Deviation 129.9 95.7 - - 18.6 107.6 78.5 - -

Xiphias Day 374
N 87 1 26 114
Mean 195.9 182.5 - - 119.3 - - 127.6 154.0
Standard Deviation 89.5 92.2 - - - — 56.6 52.9

Xiphias Day 388
N 101 1 2 7 111
Mean 205.3 121.1 232.1 76.1 80.2 - - 164.2 113.4
Standard Deviation 85.4 54.7 - - 5.9 - - 102.9 27.0

Xiphias Day 392 
N
Mean

53
303.1 169.4

27
410.3 114.6

80

Standard Deviation 116.5 64.4 - - - - - 438.3 52.1
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Appendix I., cont. December 2004-February 2005 sediment trap fecal pellet morphological properties. Dashes represent that there 
were no pellets in that category.

Sample
Ovoid Pellets 

Length Width 
(urn) (pm)

Tabular Pellets 
Length Width 
(pm) (pm)

Spherical Pellets 
Diameter 

(pm)

Forams 
Length Width 
(pm) (pm)

Unknown Pellets 
Length Width 
(pm) (pm)

Total
Pellets

Calinectes Day 360 

N
Mean

26
269.1 144.8

3
817.1 231.1

9
118.5

1
165.6 126.6

11
576.7 93.2

50

Standard Deviation 128.6 57.7 892.9 304.6 58.8 - - 429.5 36

Callinectes Day 374 

N
Mean

63
338.6 192.1

6
167.2

8
200.4 161.1

17
531 93.7

94

Standard Deviation 102.5 59.7 - - 77.3 54.5 54.3 412.1 32.3

Callinectes Day 384 

N
Mean

145
326.6 184.2

2
146.6 540.3

8
162.2

2
191.7 199.7

11
591.8 396.5

168

Standard Deviation 88.9 51.7 25.8 97 72.6 80.1 91.4 637.3 510.9

Callinectes Day 392 

n
Mean

158
252.8 218.7

2
246.7 248.7

160

Standard Deviation 105.4 92.5 - - - 15.3 22.1 - -

Total Pellets counted for seasonal sampling period: 957
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