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High precision measurements of induced and transferred recoil proton polarization in d( �γ , �p)n have been
performed for photon energies of 277–357 MeV and θcm = 20◦–120◦. The measurements were motivated
by a longstanding discrepancy between meson–baryon model calculations and data at higher energies. At
the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either
something is missing in the calculations and/or there is a problem with the accuracy of the nucleon–
nucleon potential being used.

© 2011 Elsevier B.V. All rights reserved.

The conventional nuclear model uses baryon and meson de-
grees of freedom to describe nuclear structure and reactions. While
this approach has been broadly successful for low-energy phenom-
ena, it is widely believed that it will break down at high energies.
Meson–baryon model (MBM) calculations require high precision
N N potentials which are used to describe the finite spatial ex-
tent of hadrons [1] and contain free parameters fit to experimental
N N scattering data. MBM calculations have been quite success-
ful below excitation energies of a few hundred MeV in describing
cross-section and polarization observables for electromagnetic re-
actions involving small nuclear systems [2–5].

In the few GeV energy region, cross-section measurements of
the deuteron photodisintegration reaction [6] were found to ap-
proximately scale according to the constituent counting rules [7–
9], predictions based on quark degrees of freedom. Also, quark
models such as the quark–gluon string (QGS) [10,11] and hard
rescattering (HR) [12] have been moderately successful in describ-
ing d( �γ , �p)n polarization observables above ∼ 1 GeV [13,14].

Small nuclear systems, such as the deuteron and 3He, provide a
useful testing ground for MBM calculations as they allow for reli-
able theoretical calculations. Electromagnetic probes of these small
systems are useful since the weak coupling constant allows for
perturbative methods to be used. Furthermore, polarization mea-
surements in electron– and photon–deuteron reactions allow for a
detailed study as they are sensitive to small amplitudes and effects.
Since the beginning of polarization measurements, over 70 publi-
cations have presented over 1200 polarization data points for pho-
todisintegration and the time-reversed radiative capture reaction.
These data have been very useful in constraining and testing low
energy MBM calculations. In order to test the upper limit in energy
of the meson–baryon model, experiments and calculations have
been extended to higher and higher energies. As the energy and
momentum transfer increase, the distance scale probed decreases
and one would expect that at some point the sub-nucleonic de-
grees of freedom would have to be considered.

The most advanced MBM calculation for d( �γ , �p)n in the few
hundred MeV region comes from Schwamb and Arenhövel [15–17,
2]. They have included meson-exchange currents, final-state in-
teractions, relativistic corrections and a modern baryon–baryon
potential in a non-relativistic field theory with nucleon, meson
and � degrees of freedom. Free parameters are constrained by
fits to N N scattering, π N scattering and pion photoproduction
data [15]. Up to excitation energies of roughly 500 MeV, there
is generally good agreement between their calculations and data
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Canada.

for the differential cross-section, the cross-section asymmetry for
linearly polarized photons (Σ ) and the polarized target asymme-
try (T ). However, a striking disagreement emerges between 300
and 500 MeV, where the induced recoil proton polarization (P y)
at θcm = 90◦ is predicted to approach zero with increasing en-
ergy, yet the data grow in magnitude to nearly −1 at 500 MeV.
Kang et al. [18] developed a model for d( �γ , �p)n using a diagram-
matic method which predicted a large magnitude of P y above
300 MeV. They considered π , ρ , η and ω meson exchanges and
17 well-established nucleon and � resonances with a mass less
than 2 GeV and J � 5/2, with all resonance parameters taken
from the Particle Data Group [19]. However, the work cannot be
validated as it was not published, it did not include channel cou-
pling or consider final-state interactions completely (by solving the
Schrödinger equation with an N N potential) and failed to describe
the large induced polarization seen at ∼ 500 MeV [13]. The pre-
existing data between 300 and 500 MeV consist mainly of induced
polarization measurements taken at different labs (with good an-
gular distributions at only a few energies), Σ cross-section asym-
metry measurements [20–23], along with a recent set of tensor
analyzing powers [24] spanning 25–600 MeV. Also, no data of po-
larization transfer for circularly polarized photons had been taken
below 500 MeV. We obtained a systematic set of the induced re-
coil polarization observables between 277 and 357 MeV in order to
identify where in energy the measurements and the existing calcu-
lations begin to diverge. Benchmark measurements of transferred
recoil polarization were also taken in this energy region to further
constrain the theory. The polarization observables are written as
(P c′

x , P y , P c′
z ), where c′ denotes transferred polarization due to a

circularly polarized photon beam, ẑ is along recoil proton momen-
tum in the center-of-mass frame, ŷ is perpendicular to the reaction
plane in the center-of-mass frame and x̂ = ŷ × ẑ. Note that P c′

x and
P c′

z are sometimes denoted as Cx and Cz , as in [13]. P c′
x and P y are

the real and imaginary parts of the same combination of ampli-
tudes, so a measurement of both fully determines this amplitude
combination.

The experiment was carried out in Hall A of Jefferson Lab [25].
A continuous electron beam with longitudinal polarization rang-
ing from 80–85% was produced using a strained gallium–arsenide
(GaAs) source [26,27]. The longitudinal polarization in Hall A was
limited to 38–41% due to multi-hall running. The beam helicity
was flipped pseudo-randomly at 30 Hz, with negligible difference
in total beam charge between the two helicity states. The electron
beam, with energy 362 MeV, was incident on a copper radiator
with thicknesses of 3, 4 or 5% of a radiation length. The outgo-
ing (untagged) circularly polarized Bremsstrahlung photons were
incident on a 15 cm long liquid deuterium target. The ratio of
photon to electron polarization varied from 80 to near 100% and
was calculated on an event-by-event basis using the formula found
in [28].
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Fig. 1. (Color online.) Angular distributions of the recoil proton polarizations in d( �γ , �p)n, for Eγ = 277 ± 10 MeV (left-hand side) and Eγ = 357 ± 10 MeV (right-hand side).
Error bars are statistical only; systematic uncertainties are shown as black bands. The solid line is the Schwamb and Arenhövel calculation [15–17,2]. The dashed line is a
recent improvement from [36]. Present data are denoted by the filled circles and previous P y data are from Stanford (filled triangles) [37], Bonn (open squares) [38], Tokyo
(open circles) [39], Yerevan (open triangles) [40] and Kharkov (asterisks [41–43], filled stars [44], open diamonds [45]). Note that there are two overlapping P y measurements
with different uncertainties for Eγ = 277 MeV and θcm = 90◦ .

The protons were detected in the left High Resolution Spec-
trometer (HRS) [29], made up of one dipole and three quadrupole
magnets. The vertical drift chambers, or VDCs, were used to track
the protons after the magnetic field of the dipole. The HRS optics
matrix was used to reconstruct the scattering angles, momentum
and positions at the target. Triggering and time-of-flight informa-
tion was provided by two planes of plastic scintillators, S1 and S2.

The Focal Plane Polarimeter (FPP), downstream of the VDCs
and trigger panels, is used to determine the recoil polarization of
the protons by measuring a secondary scattering of the protons
with a ∼ 1.7 g/cm3 carbon analyzer, where the spin–orbit cou-
pling between the transverse proton spin and the orbital angular
momentum about the carbon nucleus leads to an asymmetry in
the azimuthal scattering angle, φfpp . The spin–orbit force is insen-
sitive to the longitudinal component of proton spin at the focal
plane. GEANT [30] Monte Carlo studies were used to determine
the optimal analyzer thickness for each kinematic setting (varied
from 0.75′′ to 3.75′′). The transferred and induced proton polar-
izations at the focal plane were extracted using the maximum
likelihood method taking into account the beam helicity state for
each event [13]. The focal plane polarizations were transported
back to the target using COSY [31], a differential algebra based
code. Spin transport of the beam polarization dependent (inde-
pendent) proton focal plane polarizations gives access to the beam
polarization dependent (independent) target polarizations P c′

x and
P c′

z (P y). A detailed description of the polarimeter can be found
in [32,33].

The experiment covered an angular range of θcm = 20◦–120◦ ,
generally in 10◦ steps, although some intermediate angles were
skipped due to time constraints. Five 20 MeV bins in photon en-
ergy spanning 277–357 MeV (bin center) were covered at each
center-of-mass angle using two spectrometer momentum settings,
except at the three largest angles and one of the intermediate ones.
In all measurements the proton had sufficient momentum to ex-
clude the existence of a pion in the final state. Background due
to electrodisintegration reactions and interactions with the target
walls was subtracted using a method similar to previous photodis-
integration experiments [13].

The FPP was calibrated with ep elastic scattering [34], which
determines the false asymmetry and the analyzing power [35], the

strength of the spin-dependent p–C interaction. False asymmetries,
caused by chamber misalignments and inhomogeneities in detector
efficiency, cancel to first order for polarization transfer but remain
for the induced polarization. The FPP chambers were aligned both
internally and to the VDCs using straight-through trajectories, with
the analyzer block removed. The remaining false asymmetries were
parameterized as a Fourier series and subtracted out.

The angular dependence of the present transferred (P c′
x and

P c′
z ) and induced (P y) polarization data are shown as filled cir-

cles in Fig. 1 for photon energies of 277 MeV (left-hand side) and
357 MeV (right-hand side). Previous induced polarization measure-
ments [37–46] are also shown, where uncertainty bars are statis-
tical only, except for the Tokyo measurements (open circles) [39]
which have bars representing both statistical and systematic un-
certainties. The uncertainty bars for the present measurements are
statistical only; systematic uncertainties are shown as black bands.
The systematic uncertainties include uncertainties in beam energy,
polarization and position, false asymmetry and analyzing power
parameterizations, spin transport, momentum, and FPP angular
resolution. The spin transport systematic analysis was similar to
that of a previous work [32]. Absolute statistical (systematic) un-
certainties for P c′

x , P y and P c′
z ranged from 0.01–0.15 (0.01–0.04),

0.01–0.50 (0.01–0.33) and 0.01–0.15 (0.02–0.10), respectively. The
largest contribution to the systematic uncertainty for both P c′

x and
P c′

z was the analyzing power parameterization while the largest
contribution for P y was the false asymmetry parameterization.

Our P y data at 70◦ and 90◦ for Eγ = 357 MeV are larger in
magnitude than previous results. We are in a region where there is
the start of a strong energy dependence and small cross-sections.
Measurements covered different energy ranges. As a results of this,
older measurements suffered from large backgrounds and poor
consistency. This was seen previously [13]. The trend of P y in our
data at 90◦ is consistent with higher energy measurements, and
our P y results cannot be changed independently of the polariza-
tion transfer data.

The solid line is the Schwamb and Arenhövel calculation [15–
17,2]. The dashed line is a recent refinement from [36], which
includes several technical advances such as a non-perturbative
treatment of the π N N dynamics (as opposed to an approximate
treatment). The new calculation fulfills unitarity to leading order,
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Fig. 2. (Color online.) Energy distribution of the recoil proton polarization in
d( �γ , �p)n for θcm = 90◦ . Error bars are statistical only; systematic uncertainties are
shown as black bands. The solid line is the Schwamb and Arenhövel calculation [15–
17,2], the dashed line is a recent improvement from [36] and the dashed-dotted
curve is the Kang et al. calculation [18]. Present data are denoted by the filled
circles and previous P y data are from Stanford (filled triangles) [37], Tokyo (open
circles) [39] and Kharkov (asterisks [41–43], filled stars [44], open diamonds [45],
open stars [46]).

requires fewer free parameters and is more rigorous from a con-
ceptual point of view, as it considers seven reactions simultane-
ously in a coupled channel approach, rather than only γ d → pn
and N N → N N .

The calculations of Schwamb and Arenhövel describe fairly well
the transferred polarizations, P c′

x and P c′
z . At the lowest energy,

these calculations are also in good agreement with the induced
polarization, P y , but at the higher energies the present data show
a strong deviation from the theoretical predictions. The calcula-
tions also appear to overestimate the magnitude of P y for small
θcm , even at the lowest energy of 277 MeV. Since P c′

x and P y are
the real and imaginary parts of the same sum of amplitudes, the
real part appears to be better predicted above the � resonance
(dominant at roughly 300 MeV) while the imaginary part is better
predicted at low energy, below the � resonance.

P c′
z arises from the combination of amplitudes squared and

aside from the lowest energy the data exhibit a different angular
dependence than both theoretical predictions. The disagreement
may be due to something being inaccurately approximated in the
calculations (e.g. the restriction to one-meson exchange). Also, free
parameters in the potential, which enter into the final-state inter-
actions, were fit to N N scattering data. Although the free param-
eters are well defined below pion threshold, only the dominant
1 D2 channel was described well above pion threshold [15]. Al-
ternatively, QCD-inspired potentials, based on chiral perturbation
theory (see [47] for a review), may have to be considered. How-
ever, these potentials are currently only considered up to the pion
threshold, indicating a need for improved QCD-inspired potentials
in the �-region.

The energy dependence at θcm = 90◦ is shown in Fig. 2 for pho-
ton energies of 280–480 MeV. The Kang et al. calculation for P y is
denoted by the dashed-dotted curve and describes the data well in
this energy region but underestimates the magnitude of the high-
est energy point from the present measurements. The Schwamb
and Arenhövel calculations (old and new denoted by solid and
dashed lines, respectively) predict P y to remain relatively flat and
near zero below 500 MeV, whereas the present P y results reach
a value of −0.63 ± 0.14 ± 0.09 by 357 MeV. Beyond an energy

of roughly 320 MeV, the Schwamb and Arenhövel calculations are
unable to describe the present P y measurements. The increasingly
poor agreement for P y as the energy is raised may be due to tails
of higher lying resonances. Within the impulse approximation, it
was found that neither the D13 (invariant mass W = 1520 MeV)
nor S11 (W = 1535 MeV) resonances played significant roles in
P y below 400 MeV [48]. However, a coupled channel approach in-
volving the D13 and S11 as well as the Roper resonance (P11 with
W = 1440 MeV) and possibly a double � excitation (both of which
were included approximately within the impulse approximation
in [48]) may have to be considered.

Note that the old and present calculations are roughly equiva-
lent, aside from a divergence at the highest energies for the po-
larization transfer P c′

x , where the old calculation more closely re-
sembles the data. The new calculation (dashed line) gives a slightly
better description of P y while the old calculation (solid line) more
accurately describes P c′

z . A similar situation was observed [24]
for the deuteron photodisintegration tensor analyzing powers (T20,
T21 and T22), where it was found that the new calculation was
better at describing T20 and T22 but worse at describing T21. Nei-
ther the old nor new calculations describe the energy dependence
of P c′

x at θcm = 90◦ , except for the agreement at 357 MeV between
the present data and the old calculation. The overall shape of P c′

z
as a function of energy appears to be modeled well, but the mag-
nitude is underestimated by both calculations (more-so by the new
model).

To summarize, we have provided new induced and transferred
recoil proton polarization measurements for deuteron photodisin-
tegration over a range of energies and angles. The present induced
polarization measurements are consistent with theoretical predic-
tions and previous measurements at all but the highest energies,
where the most technically advanced MBM calculations appear
unable to describe the large value of P y . P c′

x appears to be de-
scribed well using an old MBM calculation at the highest energy
while P c′

z agrees with the same calculation (within uncertainties)
at the lowest energy. It may be possible to remedy the situation
by improving the fits of N N scattering partial waves above pion
threshold, including higher mass resonances in a coupled channel
approach or extending the calculation beyond the one-meson ap-
proximation. These present measurements should provide input for
important tests to the state-of-the-art meson–baryon model cal-
culations above pion threshold and it will be interesting to see
whether the issue can be resolved or if other models (based on
chiral perturbation theory, for instance) should be considered.
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