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The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric

muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of

data, is measured to be 1:266� 0:001ðstatÞþ0:015
�0:014ðsystÞ. This measurement is consistent with previous

results from other shallow underground detectors and is 0:108� 0:019ðstatþ systÞ lower than the

measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase

in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from

kaon decay for increasing muon surface energies.

DOI: 10.1103/PhysRevD.83.032011 PACS numbers: 13.85.Tp, 95.55.Vj, 95.85.Ry

I. INTRODUCTION

High energy cosmic-ray primaries interact with nuclei in
the upper atmosphere and produce showers which contain
pions and kaons. These secondary mesons can either in-
teract in further collisions in the atmosphere or decay to
produce atmospheric muons. Since the majority of primary
cosmic rays are protons, there is an excess of positively
charged mesons in the showers, and consequently, the
atmospheric muon charge ratio N�þ=N�� is larger than

unity. A precise measurement of the atmospheric muon
charge ratio can be used to constrain cosmic-ray shower
models and, since atmospheric neutrinos are produced in
conjunction with atmospheric muons, better determine
atmospheric neutrino fluxes.

The differential muon production spectrum in extensive
air showers can be parameterized as [1]

dN�

dE�

� 0:14E�2:7
�

cm2 ssrGeV

�
1:0

1þ 1:1E� cos��

��

þ 0:054

1þ 1:1E� cos��

�K

�
; (1)

where E� is the muon surface energy and �� is the zenith
angle at the muon production point. Accounting for the
curvature of the Earth, this angle is geometrically related to
the observed zenith angle �:

cos�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2�

�
Re

Re þ h

�
2

s
; (2)

where Re is the radius of the Earth and h is the muon
production height for horizontal muons. Assuming the
mean column depth for the initial cosmic-ray primary
interaction to be 85 g=cm2 gives h ¼ 30 km [2]. The two
terms in Eq. (1) represent the contribution to muon pro-
duction from pion and kaon decay, respectively. The values
�� ¼ 115 GeV and �K ¼ ½850� GeV are the critical
energies at the muon production height above which the
pion and kaon interaction probability exceeds the decay
probability. The larger value of �K implies that the kaon

contribution to the muon flux, and therefore to the charge
ratio, will be more significant at values of the vertical muon
surface energy E� cos�� exceeding ��. The charge ratio is

expected to increase as a consequence of the increasing
kaon contribution to the muon flux because in high energy
interactions, single Kþ’s can be produced in associated
production with strange baryons while single K�’s cannot.
The muon charge ratio is expected to decrease at even
higher energies due to heavy flavor production [3,4] and
changes in composition of the cosmic-ray primaries [5–7].
However, as these latter two processes are expected to only
affect the charge ratio at energies greater than those studied
here they are not considered further.
Atmospheric muon charge ratio measurements utilizing

deep underground detectors are typically higher in value
than those produced using detectors which are shallower
since they sample muons with a larger value of E� cos��.
A previous measurement of the muon charge ratio utilizing
the MINOS Far Detector, at a depth of 2070 mwe, reported
a value of 1:374� 0:004ðstatÞþ0:012

�0:010ðsystÞ [8] for surface

energies greater than 1 TeV. Another measurement [9] of
the charge ratio at TeV energies, conducted using the
OPERA experiment located at a depth of 3800 mwe, is
in good agreement with the MINOS Far Detector result.
Atmospheric muon charge ratio measurements performed
by the L3þ C [10], Bess-TEV [11], and CMS [12]
Collaborations, for muons with surface energy E� above

10 GeV and below 300 GeV, are consistent with the 2001

world average of 1:268� ½0:008þ 0:0002 � E�

GeV� [13].
The MINOS Near and Far Detectors [14] are large

underground magnetic calorimeters at depths of 225 and
2070 mwe, respectively. The detectors are designed to
study neutrino interactions from the Fermilab Neutrinos
at the Main Injector beam [15] but also trigger on atmos-
pheric muons between beam spills. The depths of the
MINOS detectors are ideal for making a measurement of
the muon charge ratio at values of E� cos�� in the region
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dominated by the pion contribution and the transition
region where the kaon contribution becomes significant.
In this paper we present a measurement of the atmospheric
muon charge ratio using the MINOS Near Detector. This
result is then compared to the same measurement per-
formed using the MINOS Far Detector [8].

This paper is organized as follows. Sections II and III
describe the MINOS Near Detector and the atmospheric
muon Monte Carlo simulation, respectively. Section IV
describes the criteria for selecting atmospheric muon
tracks with correct charge sign identification. Section V
outlines the technique used to combine the data collected
from two detector magnetic field configurations to deter-
mine the atmospheric muon charge ratio. Section VI
also elaborates on the evaluation of the systematic uncer-
tainties. Finally, Sec. VI presents the results of this
analysis.

II. THE MINOS NEAR DETECTOR

The MINOS Near Detector [14] at Fermilab is a
magnetized-steel and scintillator sampling calorimeter.
It is located 94 m underground, with an approximately
flat overburden of 225 mwe. Its dimensions are 3:8�
4:8� 16:6 m3. The detector contains 282 vertical steel
planes, each 2.54 cm thick. The scintillator layers are
composed of either 64 or 96, 4.1 cm wide and 1 cm thick
strips which vary in length from 2.5 to 4 m. The scintillator
strips are rotated by 90� with respect to the previous layer
to allow for three-dimensional track reconstruction. The
first 120 steel planes each have a scintillator layer attached
to their surface. The scintillator layer of every fifth steel
plane contains 96 strips and is said to be fully instru-
mented. The remaining four planes in each set of five are
partially instrumented and contain 64 strips. Of the last 162
steel planes, only every fifth plane has an attached scintil-
lator layer. These scintillator layers are fully instrumented.

Scintillation light is collected by wavelength shifting
fibers embedded in the scintillator strips. Each strip is
coupled to a single pixel on a 64-pixel multianode photo-
multiplier tube [16] by a clear fiber. Each photomultiplier
tube pixel is digitized continuously at a frequency of
53 MHz. The detector response for a candidate atmos-
pheric muon event is recorded either when four strips in
five sequential planes or when strips from any 20 planes
register a signal above the 1=3 photoelectron dynode
threshold within 151 ns.

The detector’s approximately toroidal magnetic field
[14] varies in strength from 2.1 T near the magnetic coil
hole to 0.2 T near the periphery of the steel planes. The
magnetic field can be oriented to focus either northerly
going �� or �þ. These magnetic field orientations will be
referred to as ‘‘forward’’ and ‘‘reverse,’’ respectively. The
detector is oriented horizontally and its long axis points
26.5548� west of north. The curvature induced by the
magnetic field together with the three-dimensional track

reconstruction allows the determination of the charge sign
of a muon traversing the detector.
Detailed information regarding the MINOS Near

Detector, the electronics, and the data acquisition systems
can be found in [14,17,18].

III. SIMULATED ATMOSPHERIC MUONS

A sample of 42� 106 simulated atmospheric muon
events are used to evaluate the analysis sensitivities and
efficiencies, as well as to help assess systematic errors.
Surface level muon events were generated by the HEMAS

[19] atmospheric cascade simulation. Muons expected to
intersect with the detector are propagated through a
GEANT3 [20] model of the overburden and the MINOS

Near Detector.

IV. EVENT SELECTION

The selection criteria have been chosen to optimize
the event selection efficiency observed in the data and
the charge sign identification purity obtained from the
Monte Carlo simulations. The data sample for this analysis
consists of atmospheric muons with well-reconstructed
energy and charge sign. Preselections are made to reject
events that are not consistent with the passage of an atmos-
pheric muon through the detector. Further selections are
applied to ensure track reconstruction quality and good
charge sign determination. A summary of the selection
criteria, as well as the selection efficiencies and charge
identification purities, can be found in Table I.
This analysis uses data collected between 2006 and

2009. During the data taking period, the direction of the
magnetic field was periodically changed between the two
orientations referred to as forward and reverse magnetic
fields. The final reverse magnetic field exposure was
150.5 days. Equivalent exposures of forward magnetic field
data were collected immediately following the reverse
magnetic field data periods to reduce systematic uncertain-
ties. A total of 7:16� 108 triggers were collected over a
combined 301 days of exposure.

A. Preselections and track quality

For an event to be included in this analysis it must
possess a single downward-going atmospheric muon track,
have been collected during a period of good detector run
conditions, and have a reconstructed initial interaction
point within 50 cm of the detector edge. If the recon-
structed initial interaction point is further than 3 cm outside
the detector volume, the track is rejected. The curvature of
the track is known to be poorly determined, and the track is
rejected if any scintillator strips hit are further than 3 cm
from the reconstructed position of the track or if the track
does not pass through a region of the detector where there
is a scintillator on each layer of steel.
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Track reconstruction errors may occur when the event
contains a large amount of activity which is not related to
the track. These extra hits degrade the charge sign deter-
mination and can be generated by muon bremsstrahlung,
natural radioactivity, or electrical and optical cross talk
between the channels on the multianode photomultiplier
tube [16]. Events are rejected if more than 40% of the strips
hit are not track-related. Muon tracks determined to be
poorly reconstructed by internal consistency checks of the
reconstruction algorithm are also removed from the data
sample.

B. Charge sign quality selection

Two selection variables are used to further increase the
degree of confidence in the assigned curvature and charge
sign of the track. The Kalman filter [21] used in the track
curvature fitting provides an uncertainty �ðq=pÞ on the
measured value of q=p, where q is the charge and p the
momentum of the track. The first charge sign quality
selection is based on the value of ðq=pÞ=�ðq=pÞ deter-
mined by the track fitter. The second selection variable
BdL is defined to be equivalent to

P
N
i¼1 jBi � dLij, where

N is the total number of planes in the muon track and Bi

and dLi are the magnetic field and muon path length
vectors, respectively, at plane i. A selection based on
BdL is used to ensure that the magnitude of the bending
due to curvature is larger than the apparent bending due to
multiple scattering. Figure 1 shows the muon charge ratio
as a function of ðq=pÞ=�ðq=pÞ and Fig. 2 the charge
ratio as a function of BdL, for data collected in both
magnetic field orientations as well as the combined data
set. The charge ratio for data collected during a single
magnetic field orientation is defined as the ratio of positive
to negative muons collected only in that orientation. The

observed variation in the charge ratio above the selection
thresholds in a single field orientation, as well as the
difference in the charge ratio between the two different
field orientations, stems from acceptance effects due to the
magnetic field, detector asymmetry, and detector align-
ment errors. The technique used to combine data taken in
the two field orientations and remove these biases is dis-
cussed in the next section. For this analysis we required
that BdL > ½3:0� Tm and ðq=pÞ=�ðq=pÞ> 3:0. Below
these values the charge ratio tends towards unity, indicating
a degradation of the charge sign determination. Events
which have passed all the selections described in this
section are used in the calculation of the atmospheric
muon charge ratio described in the next section.

V. CHARGE RATIO DETERMINATION

As demonstrated in the previous section acceptance
effects in the Near Detector introduce a bias in the charge
ratio when it is calculated using only data from a single
magnetic field orientation. Figure 3 shows the charge ratio
as a function of azimuthal angle, a variable sensitive to
these biases, for the forward and reverse magnetic field
data sets. Canceling these biases is done in the same
manner as described in [8,22]. If "1 is the efficiency for
the selection of�þ and "2 is the selection efficiency of�

�
in the forward field direction (FF), then the selection
efficiencies for �þ and �� in the reverse field direction
(RF) are "2 and "1, respectively. Two independent equa-
tions for the charge ratio, ra and rb, can be constructed in
which the acceptance effects cancel. These ratios, cor-
rected for live time, are

ra ¼ ðN�þ
FF =tFFÞ=ðN��

RF =tRFÞ (3)

and

(q/p)σ(q/p)/

0 2 4 6 8 10

- µ
/N + µ

N

1

1.1

1.2

1.3

1.4

Forward Field

Reverse Field

Geometric Mean

FIG. 1. Charge ratio as a function of ðq=pÞ=�ðq=pÞ after all
selections and requiring that BdL > ½3:0� Tm. The vertical line
is the ðq=pÞ=�ðq=pÞ threshold value used in the charge sign
quality selection.

 m]⋅BdL [T

0 2 4 6 8

- µ
/N + µ

N

1

1.1

1.2

1.3

1.4

Forward Field

Reverse Field

Geometric Mean

FIG. 2. Charge ratio as a function of BdL, after all selections
and requiring that ðq=pÞ=�ðq=pÞ> 3:0. The vertical line is the
BdL threshold value used in the charge sign quality selection.
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rb ¼ ðN�þ
RF =tRFÞ=ðN��

FF =tFFÞ; (4)

where N�þ
(N��

) is the number of positive (negative)
muons observed during an exposure time t in a particular
magnetic field orientation. The geometric mean of ra
and rb,

N�þ

N��
¼ ffiffiffiffiffiffiffiffiffi

rarb
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
N�þ

FF

N
��
FF

��
N�þ

RF

N
��
RF

�vuut ; (5)

provides a measurement of the charge ratio that is free of
biases due to geometric acceptance effects, alignment
errors, and the different magnetic field live times.

Figure 3 illustrates that the significant bias in the charge
ratio, that is apparent in a single field orientation data set, is
strongly suppressed in the geometric mean.
After the selection criteria in Table I have been applied

we obtain a final data set of 3 234 066 events. In the forward
field sample we select 893 854�þ and 721 428��. In the
reverse field sample we select 912 944�þ and 705 840��.
The resulting charge ratio obtained by applying Eq. (5) is
N�þ=N�� ¼ 1:266� 0:001ðstatÞ.

A. Systematic uncertainties

The event selection criteria are chosen to remove events
in which the charge sign of the muon track has been
incorrectly assigned. Systematic uncertainties associated

]°Azimuthal Angle [

0030020010

- µ
/N + µ

N

1.1

1.2

1.3

1.4

1.5
Forward Field

Reverse Field

Geometric Mean

E S WN

FIG. 3. The observed charge ratio as a function of azimuthal angle. The charge ratio varies as a function of the azimuthal angle in the
forward and reversed data sets due to acceptance effects and alignment errors. When data from the two fields are combined using
Eq. (5) a flat distribution is obtained, indicating that the residual uncertainty due to these biases is small. The uncertainties shown are
statistical only.

TABLE I. Summary of the event selection. Each row shows the total number of events
remaining after all the applied cuts; in parenthesis, the percentage of events remaining; and
last, the percentage of the remaining Monte Carlo events which have their charge sign
determined correctly.

Selection Data selection efficiency Monte Carlo charge ID purity

Number of triggers 7:16� 108 (100%) � � �
Preselections

Single track events 3:18� 108 (44.46%) 70.7%

Detector quality 3:16� 108 (44.19%) 70.7%

Track quality selections

Reconstructed initial interaction

point and curvature selections

1:01� 108 (14.19%) 72.9%

Track-related activity 6:13� 107 (8.56%) 77.5%

Good reconstruction 5:31� 107 (7.42%) 78.8%

Charge sign quality selections

ðq=pÞ=�ðq=pÞ> 3:0 1:11� 107 (1.55%) 97.0%

BdL > 3:0 Tm 3:23� 106 (0.45%) 99.5%
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with event selection are determined by establishing the
sensitivity of the measured charge ratio to variations in
the selections above their thresholds. Two selections, track-
related activity and ðq=pÞ=�ðq=pÞ, display variations in
the observed charge ratio above their thresholds. These
data were divided into three equal statistics samples, cor-
responding to increasing confidence in the muon charge
sign, and their charge ratios calculated. The maximum
deviation from the nominal charge ratio, 0.012 and 0.006
for the track-related activity and ðq=pÞ=�ðq=pÞ selections,
respectively, is taken as the systematic uncertainty associ-
ated with that particular selection.

Another systematic uncertainty relates to the remaining
events that have a misidentified charge sign after the
selections. Since the atmospheric muon charge ratio is a
value greater than unity, more positive than negative muons
will have their charge sign misidentified. Thus charge sign
misidentification can only decrease the measured charge
ratio resulting in a positive one-sided systematic uncer-
tainty. Monte Carlo studies suggest that 0.5% of the events
in the final data sample have an incorrect charge sign
determination. However, one cannot discount the possibil-
ity that the misidentification rate is different in the data
than in the Monte Carlo simulation. For this analysis it is
assumed that the true charge sign misidentification rate in
the data differs from that in the nominal Monte Carlo by an
energy independent factor �. The true charge sign mis-
identification rate in the data can be estimated by exploit-
ing the fact that it influences the shape of the charge ratio
versus ðq=pÞ=�ðq=pÞ curve shown in Fig. 1. A toy
Monte Carlo model was written to produce similar curves
assuming a charge ratio Ra, and a charge sign misidentifi-
cation rate equivalent to that in the nominal Monte Carlo
simulation scaled by a factor�. The difference between the
measured charge ratio and Ra for the values of � and Ra

that provide the best agreement between the data and the
Monte Carlo prediction is taken as a systematic uncertainty
on the measured charge ratio. Figure 4 plots the charge
ratio as a function of ðq=pÞ=�ðq=pÞ, along with the
nominal and best-fit Monte Carlo results. The best-fit
Monte Carlo result is obtained using a charge ratio Ra of
1.272. A similar study was performed on the curvature of
the charge ratio versus BdL data in Fig. 2; in that study the
best-fit Monte Carlo result is obtained with an actual
charge ratio of 1.266. The maximum deviation of Ra

from the nominal charge ratio is þ0:006, which is taken
as the one-sided systematic uncertainty associated with
charge sign misidentification uncertainties.

Two alternative charge confidence selection criteria,
similar in motivation to the BdL, have been investigated.
The first alternative required that the muon traverse at least
27 planes at positions covered by the partially instrumented
scintillator planes, within 1.75 m of the magnetic coil hole.
The second alternative required that at least 37 planes be
traversed where the jB� dLj for each of those planes is

greater than 0:03 Tm. These particular selection criteria
have been chosen to optimize data selection efficiency
while maintaining a charge misidentification rate in the
Monte Carlo similar to that of the default BdL selection.
The maximum deviation from the nominal charge ratio was
observed to be 0.003. This value is taken as the systematic
uncertainty associated with the BdL selection.
An imperfect reversal of the detector’s magnetic field

would introduce a geometric bias and lead to a systematic
uncertainty in the charge ratio stemming from imperfect
acceptance asymmetry cancellation. This error can be
determined by evaluating the charge ratios calculated using
Eq. (3) and (4) since the quantities ra and rb will diverge as
the magnitude of this bias increases. It is found that ra and
rb agree to within their statistical uncertainties, indicating
that the magnetic field bias is negligible compared to the
statistical uncertainty.
Table II lists the systematic errors that are discussed

above and their assigned values. Including systematic un-
certainties the atmospheric muon charge ratio measured at
the MINOS Near Detector is 1:266� 0:001ðstatÞ þ0:015

�0:014 �
ðsystÞ.

(q/p)σ(q/p)/
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FIG. 4. Charge ratio as a function of ðq=pÞ=�ðq=pÞ, compared
with the nominal and best-fit charge misidentification
Monte Carlo simulations.

TABLE II. Summary of the systematic uncertainties in this
analysis. The total systematic uncertainty is the quadratic sum
of the individual uncertainties The magnitude of these uncer-
tainties are independent of E� and E� cos��.

Uncertainty classification �
N�þ
N��

Track-related activity �0:012
ðq=pÞ=�ðq=pÞ �0:006
BdL selection �0:003
Charge misidentification þ0:006
Total systematic uncertainty þ0:015

�0:014
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B. The muon charge ratio underground

The maximummomentum for which the charge sign of a
muon track can accurately be determined with the MINOS
Near Detector is limited by the scintillator granularity and
the strength of the magnetic field. The reconstructed mo-
menta p�;det of all muon tracks which pass the selections

outlined in Table I is shown in Fig. 5. The maximum
momentum of muons used in this analysis is approximately
300 GeV; the mean momentum is 15 GeV. The observed
charge ratio as a function of reconstructed track momen-
tum underground is shown in Fig. 6. The charge ratio is
observed to be flat as a function of track momentum to
within the statistical uncertainty of the measurements.

VI. THE ATMOSPHERIC MUON CHARGE
RATIO AT THE SURFACE

The muon energies measured at the Near Detector depth
must now be converted to energies at the surface of the
Earth by accounting for energy lost by the muons in the
overburden above the detector. For muons, the energy loss
in matter can be parameterized by

� dE

dX
¼ aðE�Þ þ

X3
n¼1

bnðE�ÞE�; (6)

where X is the slant depth; a is the ionization term and the
bn account for the radiative energy loss from bremsstrah-
lung, pair production, and photonuclear processes. These
parameters have a mild energy dependence, whose values
for standard rock can be found in [23]. Using the technique
outlined in [24], the energy lost by muons traversing the
Near Detector overburden has been calculated as a function
of reconstructed track energy and zenith angle. These
energies have been calculated assuming a flat vertical
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FIG. 5. The reconstructed momentum of the muon tracks
which survive all the selection criteria outlined in Table I. The
mean momentum is 15 GeV.
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FIG. 6. Charge ratio as a function of reconstructed under-
ground track momentum. The y-axis uncertainties are statistical.
The x-axis uncertainties are the width of the momentum bins
used; the data are plotted at the median momentum values. The
dotted horizontal line is the best-fit charge ratio of 1.266.
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(b) E� cos�� distributions of muons passing all the analysis

selection criteria. The mean surface energy is 152 GeV and the
mean E� cos�� is 66 GeV.
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overburden of 224.6 mwe, which is comprised of two
distinct geological layers. Above the cavern hall lies
72.1 m of dolomite-shale bedrock with a density of
2:41 g=cm3, followed by 22.2 m of glacial till with a
density of 2:29 g=cm3. It has been suggested in [7] that
at the MINOS Near Detector depth the slightly higher rate
of energy loss of �þ over �� [25–30] could lead to a
surface charge ratio that is slightly higher than that ob-
served underground. However, as the magnitude of this
effect is negligible when compared to the systematic un-
certainties of this measurement we have assumed the same
energy loss function for both charges.

The surface energy resolution obtained with this ex-
trapolation method is dependent on the accuracy of the
overburden model and the muon pointing accuracy.
Topographical measurements [31] show that the surface
altitude varies by no more than 13 m within 3 km of the
detector. This contributes a 14% uncertainty on the surface
energy estimation at all zenith angles. The zenith pointing
resolution of the Near Detector has been determined to be
1:1� 0:2� by measuring the zenith angle separation be-
tween the two muons in multimuon cosmic-triggered
events for which both muons pass the charge ratio selection
criteria. The corresponding error on the surface energy is
negligible for vertical muons increasing to 5% at 70�, 14%
at 81�, 25% at 85�, and 50% at 87�.

The extrapolated muon surface energy distribution E� is

plotted in Fig. 7(a). The muons which populate the high
energy tail have a large zenith angle and thus pass through
the largest amount of matter before reaching the detector.
To first approximation the minimum energy a surface
muon needs to reach the Near Detector is 52 GeV= cos�.
The E� cos�� distribution is much narrower than the E�

distribution as the cos�� and cos� terms effectively cancel.
Because of this cancellation the muon events which occupy
the high energy tail in Fig. 7(b) are those which possess the
highest reconstructed momentum at the detector.

Table III presents the measured atmospheric muon
charge ratio, E�, and E� cos�� in equal bins of cos��.
The median surface energy increases as cos�� decreases
due to the increasingly large overburden. E� cos�� in-

creases more slowly than E� as the increase is due primar-

ily to the detector’s larger analyzable momentum range as
a function of zenith angle [32]. The charge ratio is ob-
served to be independent of cos��, E�, and E� cos�� to

within the uncertainties of our measurements. The charge
ratio measurement at E� ¼ 964 GeV is consistent with the

MUTRON spectrograph measurement [22] but is lower
than other TeV energy scale measurements [8,9,33].
This difference is due to the range of zenith angles sampled
by each of the detectors and the cos�� dependency of
Eq. (1).
The ‘‘�K’’ [7,8] model is derived from the differential

muon production spectrum parameterization given in
Eq. (1) and predicts that the muon charge ratio is only
dependent on E� cos��. The �K model is a qualitative

model describing the relative contribution of pions and
kaons to the atmospheric muon charge ratio. Following
the prescription in [8] and defining f� and fK as the
fraction of all decaying pions and kaons which decay
with a detected �þ, the atmospheric muon charge ratio
N�þ=N�� is given in Eq. (7):

N�þ=N�� ¼

�
f�

1þ1:1E� cos��=��
þ 0:054�fK

1þ1:1E� cos��=�K

�
�

1�f�
1þ1:1E� cos��=��

þ 0:054�ð1�fKÞ
1þ1:1E� cos��=�K

� : (7)

The charge ratio as a function of E� cos�� is plotted in

Fig. 8 along with the results from L3þ C [10,34], Bess-
TEV [11], UTAH [33], MUTRON [22], OPERA [9], CMS
[12], and the MINOS Far Detector [7,8]. In instances
where the data were not already listed as a function of

TABLE III. The charge ratio, E�, and E� cos��, in equal bins of cos��. The range of energies observed in each cos�� bin is
comparable to the energy resolution expected from the surface extrapolation. The charge ratio is observed to be independent of cos��,
E�, and E� cos�� to within the uncertainties of our measurements.

cos�� Surface energy [GeV] E� cos�� [GeV] Charge ratio þ0:015
�0:014 ðsystÞ

Interval Median Interval Median Interval Median r �ðstatÞ
>0:9 0.914 55–67 61.5 53.5–61.0 56.5 1.257 0.069

0.8–0.9 0.824 60–77 70.5 54.2–62.9 58.0 1.270 0.013

0.7–0.8 0.735 69–91 80.5 54.6–65.0 59.2 1.277 0.005

0.6–0.7 0.642 79–112 94.5 55.2–69.0 60.8 1.270 0.003

0.5–0.6 0.549 95–142 115 56.2–74.0 62.7 1.269 0.003

0.4–0.5 0.452 115–191 145 57.4–80.9 64.8 1.259 0.003

0.3–0.4 0.356 148–280 195 59.4–91.0 68.0 1.263 0.003

0.2–0.3 0.262 212–484 290 63–109 75 1.263 0.005

0.15–0.2 0.181 382–864 513 76–140 92 1.276 0.013

<0:15 0.139 697–3450 964 104–390 134 1.249 0.032
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E� cos�� we convolved the published cos� acceptances

with the given E� data, with assistance from the original

authors in the case of L3þ C [35].
A �2 per degree of freedom fit test to the �K model was

performed over ðfK; f�Þ space using only the charge ratio
measurements from the MINOS Near and Far Detectors.
The �2 minimum was found at f� ¼ 0:55 and fK ¼ 0:70.
These results are consistent with earlier fits by [7–9]. The
best-fit curve to the data is plotted in Fig. 8 and indicates
that the kaon contribution to the charge ratio becomes
significant at E� cos�� greater than a few hundred GeV.

Using two functionally identical detectors, at two different
depths, we have demonstrated that the increase in charge
ratio observed at the deeper Far Detector is consistent with
an increase in the fraction of observed muons arising from
kaon decays in the extensive air shower.

VII. SUMMARY

A charge ratio measurement has been performed on 301
days of atmospheric muon data collected using the MINOS
Near Detector. The atmospheric muon charge ratio mea-
sured at 225 mwe underground is

N�þ

N��
¼ 1:266� 0:001ðstatÞþ0:015

�0:014ðsystÞ: (8)

The reconstructed underground energy and zenith angle for
each muon used in the analysis were used to extrapolate the
muon surface energy. No statistically significant change
was observed in the charge ratio as a function of either the
surface energy E�, from 62 to 960 GeV, or in the vertical

muon surface energy E� cos�� from 57 to 134 GeV. This

work presents the first demonstration of an increase in the
observed muon charge ratio between functionally equiva-
lent shallow and deep underground detectors. The most
likely source of this increase is the greater probability that
a muon in the deep detector data sample results from kaon
production in extensive air showers. A fit has been per-
formed to a simple parametric model of muon production
from pion and kaon parents, and the results of the fit
support this interpretation of the combined MINOS Near
and Far Detector charge ratio measurements.
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