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The ratiofieldofvalues, ageneralizationof theclassicalfieldofvalues

to a pair of n-by-nmatrices, is defined and studied, primarily from a

geometric point of view. Basic functional properties of the ratio field

are developed and used. A decomposition of the ratio field into line

segments and ellipses along a master curve is given and this allows

computation. Primary theoretical results include the following. It is

shown (1) for which denominator matrices the ratio field is always

convex, (2) certain other cases of convex pairs are given, and (3) that,

at least for n = 2, the ratio field obeys a near convexity property that

the intersection with any line segment has at most n components.

Generalizations of the ratio field of values involving more than one

matrix inboth thenumerator anddenominator are also investigated.

It is shownthat generally suchextensionsneednotbe convexor even

simply connected.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The classical field of values of a single matrix A ∈ Mn(C) is defined by

F(A) ≡ {x∗Ax : x ∈ C, x∗x = 1}
It has been long and deeply studied (see e.g. [4]). Recently, an analogous field for two matrices has

arisen in a numerical application [6]. It may also be a natural tool for generalized eigenvalue problems,
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since similar tools have been used to study eigenvalue problems as in [11]. For A, B ∈ Mn(C) with

0 /∈ F(B)we call:

R(A, B) =
{
x∗Ax
x∗Bx

: x ∈ C
n, x∗x = 1

}

the ratio field of values of A and B. Of course,

R(A, B) =
{
x∗Ax
x∗Bx

: x ∈ C
n, x �= 0

}

is an equivalent description. The ratio field of values turns out to be a special case of the numerical

range of a matrix polynomial as introduced by Li and Rodman [7]. Let P(λ) = A0 + A1λ+· · ·+ Amλ
m

where each Ai ∈ Mn(C). The numerical range of P(λ) is the set

W(P) = {λ ∈ C : 0 ∈ F(P(λ))}.
If P(λ) is the matrix pencil A − λB, then R(A, B) = W(A − λB) if and only if 0 /∈ F(B). The numerical

range of matrix pencils has been studied by several authors [10,9,1,2]. A related study of numerical

ranges in indefinite inner product spaces appears in [8]. Our purpose here is to develop theory for the

ratio field, primarily its geometry.

In the next section, we mention several elementary properties of R(A, B), many of which will be

used frequently, and most of which are the appropriate analogues of properties of the usual field. One

of these is the simultaneous congruential invariance of R(A, B). Then, using the congruential canonical
form for B [5], with 0 /∈ F(B), wemay give a congruential canonical form for the pair A, B that is crucial

for the development of the theory of R(A, B). In Section 3, we give a parametric description of R(A, B),
in general; in case n = 2, this description shows that R(A, B) is the union of ellipses with centers lying

on a curve that will either be a circular arc or a line segment. This observation provides a valuable tool

for the remaining analysis.

While the usual field of values is always convex, the ratio field may or may not be convex. We call

an ordered pair A, B ∈ Mn(C), a convex pair if R(A, B) is convex. In Section 4, several types of convex

pairs are identified when n = 2. In addition, for general n, the matrices B for which R(A, B) is convex
for all A are characterized. Besides A = 0, there are no matrices A for which R(A, B) is convex for all B.

Generally, R(A, B) is not convex or even star-shaped as shown by examples. For 2-by-2 matrices,

we will show that R(A, B) satisfies a “near convexity” property in Section 5. We conjecture that a

generalization of this property is satisfied in the n-by-n case as well.

In Section 6 we generalize the ratio field of values to include fields of values with more than one

matrix in the numerator and in the denominator.We prove that in general these (k,m)-fields of values
will not be simply connected.

Finally, in Appendix, we give a series of pictures of ratio fields, both as examples of our results and

to exhibit the rich variety of shapes that can occur in low dimensions. These pictures were generated

using the mentioned parametric description of R(A, B).

2. Elementary properties and canonical form

In this section, we introduce a number of basic properties of the ratio field of values. Many of these

properties are direct analogues of properties of the usual field of values. Some of these results are also

known for numerical ranges of matrix polynomials [7].

Lemma 2.1. Let A, B ∈ Mn(C) and 0 /∈ F(B). Then the ratio field of values R(A, B) satisfies the following

properties:

(1) (Compactness). R(A, B) is a compact subset of C.

(2) (Connectedness). R(A, B) is connected.
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(3) (Ratio homogeneity). R(αA, βB) = α
β
R(A, B) for any α, β ∈ C, β �= 0.

(4) (Translation). R(A + βB, B) = R(A, B)+ β for β ∈ C.

(5) (Inversion). R(A, B) = 1

R(B, A)
if 0 /∈ F(A).

(6) (Numerator subadditivity). R(A1 + A2, B) ⊆ R(A1, B)+ R(A2, B).
(7) (Generalized eigenvalue inclusion). The eigenvalues of B−1A are contained in R(A, B).
(8) (Degeneracy). R(A, B) is a single point if and only if A = βB for some β ∈ C.

Proof. Let f : C
n\{0} → C be the map f (x) = x∗Ax

x∗Bx
. Let Sn

C
= {x ∈ C

n : x∗x = 1}. By definition

R(A, B) = f (Sn
C
). Since 0 /∈ F(B), f is continuous. Both compactness and connectedness of R(A, B)

follow immediately. The ratio homogeneity, translation, inversion, and numerator subadditivity prop-

erties all follow immediately from the definition of R(A, B).
If λ is an eigenvalue of B−1A, then there exists x ∈ Sn

C
such that B−1Ax = λx. Therefore

Ax = λBx ⇒ x∗Ax = λx∗Bx ⇒ λ = x∗Ax
x∗Bx

so λ ∈ R(A, B).
We now prove the degeneracy property. It is well known (e.g. see [4]) that F(A) = {0} if and only if

A = 0. Consequently, R(A, B) = {0} if and only if A = 0. It remains to invoke the translation property,

according to which R(A, B) = {β} if and only if R(A − βB, B) = {0}. �

Since R(A, B) = {λ ∈ C : 0 ∈ F(λB−A)}, the principal submatrix inclusion property for the usual

field of values [4, Property 1.2.11] implies the following analogue for the ratio field of values.

Lemma 2.2 (Principal submatrix inclusion). For α ⊆ {1, 2, . . . , n},
R(A[α], B[α]) ⊆ R(A, B).

The following lemma relates the usual field of values to the ratio field of values.

Lemma 2.3. Let A, B ∈ Mn(C) and 0 /∈ F(B). Let U(n) denote the set of unitary matrices in Mn(C). Then

(1) R(A, B) ⊆ F(A)/F(B) and
(2)

⋃
U∈U(n) R(U

∗AU, B) = F(A)/F(B).

Proof. Suppose that z ∈ R(A, B). Then z = x∗Ax
x∗Bx

for some x ∈ C
n. Let z1 = x∗Ax and let z2 = x∗Bx.

Then z = z1/z2, so R(A, B) ⊆ F(A)/F(B). This implies that
⋃

U∈U(n) R(U
∗AU, B) ⊆ F(A)/F(B).

Suppose z ∈ F(A)/F(B). Then there exist x, y ∈ C
n with x∗x = y∗y = 1 such that

z = y∗Ay
x∗Bx

.

Since x∗x = y∗y = 1, there exists a unitary matrix U0 such that y = U0x. Therefore

z = y∗Ay
x∗Bx

= x∗U∗
0AU0x

x∗Bx
∈ R

(
U∗
0AU0, B

)

so that F(A)/F(B) ⊆ ⋃
U∈U(n) R(U

∗AU, B). �
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We now introduce two lemmas that restrict the class of matrices whose ratio fields we need to

study. While the usual field of values of a matrix is invariant under unitary similarity, the ratio field

of values is invariant under simultaneous congruence by an invertible matrix. This is a special case of

Proposition 2.1(d) in [7].

Lemma 2.4 (Congruential invariance). If A, B, C ∈ Mn(C), 0 /∈ F(B), and C is invertible, then R(A, B) =
R(C∗AC, C∗BC).

However, the ratio field is not invariant under congruence or even unitary similarity in only the

numerator or denominator, refer to Figs. 1 and 2 in Appendix for graphical examples.

Any B ∈ Mn(C)with 0 /∈ F(B) is congruent to a unimodular diagonal form [5].

Lemma 2.5. If B ∈ Mn(C) is non-singular, then B is congruent to a diagonal matrix diag(eiθ1 , . . . , eiθn)
with each θi ∈ [0, 2π).
Definition 2.1. We say that an ordered pair of matrices A, B ∈ Mn(C) is in congruential canonical

form if B = diag(1, eθ2 , . . . , eiθn) with θ2, . . . , θn ∈ (−π, π). We refer to the angles θi as the

canonical angles of B. By convention, we let θ1 = 0.

Given any twomatrices A, B ∈ Mn(C)with 0 /∈ F(B), Lemma2.5 togetherwith the congruential in-

variance and ratio homogeneity properties imply that there are n-by-nmatrices A0, B0 in congruential

canonical form such that R(A, B) = R(A0, B0).
In subsequent sections we will give parametric descriptions of the ratio field of values. The follow-

ing lemma shows that in order to generate the entire ratio field of values, we may assume the first

coordinate of each x ∈ C
n is real.

Lemma 2.6. Let A, B ∈ Mn(C) and 0 /∈ F(B). Let f : C
n\{0} → C be the map

f (x) = x∗Ax
x∗Bx

.

Let S′ = {x ∈ C
n : x∗x = 1 and x1 is real}. Then f maps S′ onto R(A, B).

Proof. We already know that f maps the unit sphere Sn
C

onto R(A, B). Suppose that z ∈ R(A, B) and
f (x) = z for some x ∈ Sn

C
. Choose α ∈ C such that |α| = 1 and αx1 is real. Then

f (αx) = (αx)∗A(αx)
(αx)∗B(αx)

= x∗Ax
x∗Bx

= z.

So every z ∈ R(A, B) is in the image f (S′). �

It is known that a bounded numerical range of amatrix pencil is simply connected (Theorem 4 [9]).

Since the numerical range of amatrix pencilW(A−λB) coincides with the ratio field of values R(A, B)
precisely when W(A − λB) is bounded, this result applies directly to ratio fields of value. We include

our own slightly shorter version of the proof given in [9].

Theorem 2.1. Let A, B ∈ Mn(C) and suppose that 0 /∈ F(B). The ratio field of values R(A, B) is simply

connected.

Proof. Choose any λ0 ∈ C\R(A, B). We will show that there is a ray originating from λ0 that does not
intersect R(A, B). We may assume without loss of generality that λ0 = 0 by replacing Awith A− λ0B.
Since 0 /∈ R(A, B), it follows that 0 /∈ F(A). The field of values F(A) is a convex set; therefore it is

contained in a sector of the plane with vertex at the origin and an angle of less that π . F(B) is also

contained in such a sector. The set F(A)/F(B) will then be contained in a sector with vertex at the
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origin and an angle of less than 2π . In particular, there must be a ray from the origin that is disjoint

from F(A)/F(B). Since R(A, B) ⊆ F(A)/F(B), the proof is complete. �

3. Master curve and ellipse description of R(A, B)

In this section, wewill derive a geometric description of the ratio field of values for 2-by-2matrices.

Suppose that A, B ∈ M2(C) and 0 /∈ F(B). By Lemmas 2.4 and 2.5 we may assume without loss of

generality that

A =
⎡
⎣ a11 a12

a21 a22

⎤
⎦ and B =

⎡
⎣ 1 0

0 eiθ

⎤
⎦ .

By Lemma 2.6 every point in F(A) has the form x∗Ax for some

x =
⎡
⎣ r√

1 − r2eiω

⎤
⎦

in which r ∈ [0, 1] and ω ∈ [0, 2π ]. Expanding this expression we get a parametric formula for the

field of values

F(A) =
{
r2a11 + (1 − r2)a22 + r

√
1 − r2(a12e

iω + a21e
−iω) : 0 � ω � 2π, 0 � r � 1

}
.

Let λ = 1 − r2 and let

E(A) =
{
a12e

iω + a21e
−iω : 0 � ω � 2π

}
. (3.1)

When the matrix A is understood, we will refer to the set E(A) as E. If we let

Eλ = Eλ(A) = λa22 + (1 − λ)a11 +
√
λ(1 − λ)E(A), (3.2)

then we derive the following explicit formula for the field of values as a union of sets that are either

ellipses or line segments:

F(A) = ⋃
0�λ�1

Eλ.

The following lemma gives explicit conditions for E = E(A) to be an ellipse, and we include it for

ease of reference later in the paper.

Lemma 3.1. Let E = E(A) be defined as in (3.1).

(1) E is a proper ellipse if a12 �= a21 and Re ( a12+a21
a12−a21

) �= 0.

(2) E is a line segment if a12 = a21 or Re
(
a12+a21
a12−a21

)
= 0 and a12, a21 are nonzero.

(3) E is a single point if a12 = a21 = 0.

Furthermore, any proper ellipse centered at the origin in C can be written in the form {beiω + ce−iω : 0 �
ω � 2π} for some pair b, c ∈ C.

Proof. Let b = a21 and c = a21. Let T : C → C be the real linear map defined by T(1) = b + c

and T(i) = (b − c)i. Since beiω + ce−iω = (b + c) cos(ω) + (b − c)i sin(ω), T maps the unit
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circle in C onto the set {beiω + ce−iω : 0 � ω � 2π}. If T is invertible, then it follows that the

set {beiω + ce−iω : 0 � ω � 2π} is a proper ellipse. On the other hand, T will be singular if and

only if b + c and (b − c)i both lie on the same line passing through the origin. In this case, the set

{beiω+ ce−iω : 0 � ω � 2π}will be a line segment or a single point, not an ellipse. Note that 0, b+ c,

and (b − c)i are co-linear if and only if b = c or Re ( b+c
b−c
) = 0. Furthermore 0 = b + c = (b − c)i if

and only if b = c = 0. This proves conditions 1–3.

Now suppose that E is any proper ellipse centered at the origin. Then there is an invertible real

linear map S such that S(E) is the unit circle. Let T = S−1, and choose b, c ∈ C so that b + c = T(1)
and (b − c)i = T(i). Then E will equal {beiω + ce−iω : 0 � ω � 2π}. �

For each λ ∈ [0, 1] let

τλ = τλ(B) = 1

λeiθ + (1 − λ)
. (3.3)

Note that τλ is well-defined for every λ ∈ R since the requirement that 0 /∈ F(B) implies that

0 /∈ conv {1, eiθ } so the line passing through 1 and eiθ does not intersect the origin. Using τλ we may

write the ratio field of values as

R(A, B) = ⋃
0�λ�1

τλEλ

in which τλEλ = {τλz : z ∈ Eλ}. In this way, we see that the ratio field of values is also a union of

ellipses. Since the ratio field of values is simply connected (Theorem 2.1) we may replace the ellipses

τλEλ in the equation above with the solid ellipses conv τλEλ. Thus the ratio field of values is a union

of solid ellipses.

R(A, B) = ⋃
0�λ�1

conv τλEλ. (3.4)

Each of the sets Eλ is centered at λa22 + (1−λ)a11. Therefore the center of each τλEλ is τλ(λa22 +
(1 − λ)a11). It will be useful to define the following function:

σ(λ) = τλ(λa22 + (1 − λ)a11). (3.5)

We will refer to the set M = {σ(λ) : 0 � λ � 1} as the master curve of R(A, B). Note that

M ⊆ R(A, B) by Eq. (3.4). Furthermore, σ(λ) is a linear fractional transformation in λ. Therefore the

master curve is either a line segment, a circular arc, or a single point, since it is the image of the line

segment [0, 1] under a linear fractional transformation.

Although each ratio field of values is a union of convex sets, it is not hard to construct examples of

ratio fields that are not themselves convex. In fact, there are 2-by-2 ratio fields of values, R(A, B), with

non-empty interior that have a cut point, that is, there is a point z0 ∈ R(A, B) such that R(A, B)\{z0}
is disconnected. The following lemma is useful to explain how this surprising behavior can occur.

Lemma 3.2. Suppose that each Eλ is a line segment rather than an ellipse. Let lλ denote the line containing

Eλ for each 0 � λ � 1. If θ �= 0, then the lines τλlλ all intersect at a single point, and furthermore, the

union
⋃

0�λ�1 τλlλ has a cut point at that point of intersection.

Proof. Choose α ∈ C such that |α| = 1 and such that the line {z ∈ C : Re (αz) = 0} is parallel to E.

Let bλ = Re (α(λa22 + (1 − λ)a11)). By construction lλ = {z ∈ C : Re (αz) = bλ} for all 0 � λ � 1.

For any z ∈ C, the function

fz(λ) = Re
(
ατ−1
λ z

)
− bλ
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is a real linear function of λ since τ−1
λ = λeiθ + (1 − λ). Furthermore, z ∈ τλlλ if and only if

fz(λ) = 0. Since θ �= 0, it follows that τ0λ0 and τ1λ1 cannot be parallel and instead must have a point

of intersection z0. Thus fz0(0) = fz0(1) = 0, and since fz0 is linear, fz0(λ) = 0 for all 0 � λ � 1.

Therefore z0 ∈ τλlλ for all 0 � λ � 1. It is immediately clear that z0 is a cut point for the set⋃
0�λ�1 τλlλ. �

The above lemma gives us a sufficient condition for the ratio field of values of a pair of 2-by-2

matrices to have a cut point. We describe this condition along with a necessary condition in the

theorem below. See Figs. 3, 4, and 5 for illustrations of the cut point for 2-by-2 ratio fields of value.

Theorem 3.1. Let A, B ∈ M2(C) be in congruential canonical form with 0 /∈ F(B) and suppose E = E(A)
is defined as in (3.1). If E is a proper ellipse, then R(A, B) does not contain a cut point. If E is a nontrivial

line segment, then R(A, B) contains a cut point if and only if there exists distinct λ1, λ2 ∈ (0, 1) such that

the relative interiors of τλ1Eλ1 and τλ2Eλ2 have non-empty intersection.

Proof. If E is a proper ellipse, then so is each set τλEλ with λ ∈ (0, 1). Since τλEλ is a proper ellipse

for λ ∈ (0, 1), each of the corresponding solid ellipses conv τλEλ has non-empty interior.

Choose any two points z1, z2 ∈ R(A, B). Let λ1, λ2 ∈ [0, 1] be chosen so that z1 ∈ conv τλ1Eλ1 and
z2 ∈ conv τλ2Eλ2 . Let σ(λ1) be the center of τλ1Eλ1 and similarly let σ(λ2) be the center of τλ2Eλ2 .
Both σ(λ1) and σ(λ2) are elements of the master curve.

We can construct a path connecting z1 to z2 in R(A, B) by taking the line segment from z1 to σ(λ1)
then traveling along the master curve from σ(λ1) to σ(λ2), and finally following a straight line from

σ(λ2) to z2. With the possible exception of z1 and z2, every point in this path is an interior point of

R(A, B), and therefore cannot be a cut point. Therefore R(A, B) cannot have any cut points.

If E is a line segment, then so are each of the sets τλEλ. If there are two distinct values λ1 and λ2
such that the line segments τλ1Eλ1 and τλ2Eλ2 intersect at a point in their relative interiors, then that

point of intersection will be a cut point for the set R(A, B) as a direct consequence of Lemma 3.2.

It remains to show that if the relative interiors of the line segments τλEλ do not intersect, then

R(A, B) does not have a cut point. Let us parametrize the line segment E = E(t) with a parameter

t ∈ [0, 1]. This induces a parametrization Eλ(t) for each of the line segments Eλ. The map ϕ(t, λ) :=
τλEλ(t) is continuous. Since the relative interiors of the line segments Eλ donot intersect, it follows that

ϕ is a continuousbijectionof (0, 1)×(0, 1) intoasubsetofR(A, B). Sinceclosedsubsetsof (0, 1)×(0, 1)
are compact and compact sets are mapped to compact sets, we see that ϕ is a homeomorphism onto

its range, and we conclude that R(A, B) cannot have a cut point. �

Remark 1. Let A, B be any n-by-n matrices with 0 /∈ F(B). If R(A, B) has empty interior, then R(A, B)
is either a circular arc, a line segment, or a single point (Theorem 7 [9]). In the first two cases, every

point in R(A, B) except the endpoints will be a cut point.

4. Convex pairs

The general problem of characterizing all pairs A, B with R(A, B) convex is currently unsolved. The

master curve and ellipse model for the ratio field when n = 2 illustrates the difficulty of developing

specific criteria for convexity even in this low dimensional case. Modifying a single entry of A or B

can radically distort R(A, B). See the Figs. 6, 7 and 8 in Appendix at the end of this paper for examples

showing some of the difficulties that arise.

Despite the difficulties, there are some special cases in which simple conditions on A and B can be

given to ensure that R(A, B) is convex or to ensure that R(A, B) is not convex. In this section, we will

focus on some of these special cases.

We say that amatrix P ∈ Mn(C) is rotationally positive definite or RPD if there existsα ∈ [0, 2π)
such that eiαP is positive definite. When B is RPD, R(A, B) is convex for all choices of A ∈ Mn because

R(A, B) reduces to the field of values of a single matrix. Conversely, we will show that if B is not

rotationally positive definite, there exist A such that R(A, B) is not convex.
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Theorem 4.1. Let B ∈ Mn(C) such that 0 /∈ F(B). Then R(A, B) is convex for all A ∈ Mn(C) if and only if

B is RPD.

Proof. If B is RPD, then eiαB is congruent to the identity for some α ∈ [0, 2π). Consequently we

may let the pair A0, B0 = In be the congruential canonical form of A, B. By Lemma 2.4, R(A, B) =
R(A0, B0) = R(A0, In) = F(A0). Since the field of values of a matrix is always convex [4], R(A, B) is
convex.

Consider the case in which B is not RPD and let C and α be given such that eiαC∗BC is in congru-

ential canonical form and A = e−iα(C∗)−1C so that eiαC∗AC = In. Then R(A, B) = 1/F(eiαC∗BC).
Let the canonical angles of eiαC∗BC be enumerated as {θj}n1 in which θ1 = 0. Note that for some j0,

θj0 �= 0, otherwise C∗(eiαB)C = In which implies that eiαB is positive definite by Sylvester’s law of

inertia [3].

Since the usual field of a diagonal matrix is the convex closure of its diagonal entries, F(eiαC∗BC)
is a polygon with two or more vertices all lying on the unit circle, so if z ∈ eiαC∗BC, then |z| � 1.

Therefore, if y ∈ R(A, B), |y| � 1. Consequently, the chord joining the distinct points 1 and e−iθj0 ,

which are elements of 1/F(eiαC∗BC), cannot lie in R(A, B). Therefore, R(A, B) is not convex. �

Unlike the case in which B is RPD, the ratio field is not always convexwhen A is RPD. By a result due

toWilker concerning the convexity of the inverse of an ellipse, it is possible to determine the convexity

of the ratio field of values in the 2-by-2 case when A is RPD.

Theorem 4.2. Let A ∈ M2(C) be RPD. For all C ∈ M2(C)with 0 /∈ F(C), there is an α ∈ R and a matrix

B = [bij]1�i,j�2 with b11 ∈ C and b21, b12 ∈ R � 0 such that R(A, C) = eiαR(I2, B). Furthermore,

R(A, C) = eiαR(I2, B) is convex if and only if

|2b11(b12 − b21)+ 4ib12b21| � (b12 + b21)
2 and

|2b11(b12 − b21)− 4ib12b21| � (b12 + b21)
2.

Proof. SinceA is RPD, A is congruent to amatrix eiα1 I2 for someα1 ∈ R. Using Lemma2.4,wemayfind

Q such thatR(A, C) = R(eiα1 I2,Q) = eiα1R(I2,Q). There is a unitarymatrixU and anα2 ∈ R such that

eiα2U∗QU = B in which B has the form B = [bij]1�i,j�2 with b11 ∈ C and b21, b12 ∈ R � 0 (Lemma

1.3.1 in [4]). By congruential invariance R(I2, B) = e−iα2R(I2,Q) = ei(α1−α2)R(A, C). Letα = α1 −α2.
Then,

R(A, C) = eiαR(I2, B) = eiα · 1/F(B).
Since R(A, C) and 1/F(B) are rotations of each other, one is convex if and only if the other is. Using

the description of the field of values given at the beginning of Section 3, we can see that F(B) is a

convex ellipse centered at b11 with major axis of length b12 + b21 parallel to the real axis and minor

axis |b12 − b21|, so R(A, B) is the inverse of a convex ellipse.

The inverse of the ellipse F(B) is convex if and only if 0 lies on or outside the circles of curvature

belonging to the endpoints of the minor axis of F(B), or if the eccentricity of F(B) does not exceed
√

2,

0 lies on or inside the circles of curvature belonging to the endpoints of themajor axis of F(B) [12]. We

may eliminate the second case, because 0 /∈ F(B).
We parametrize the boundary of F(B) as

∂F(B) = b11 + 1

2
(b12 + b21) cos(ω)+ 1

2
i|b12 − b21| sin(ω)

with ω ∈ [0, 2π ]. The curvature of ∂F(B) as a function of ω is
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κ(ω) = 2(b12 + b21)|b12 − b21|
((|b12 − b21| cos(ω))2 + ((b12 + b21) sin(ω))2)

3
2

.

The curvature at the endpoints of the minor axes is given by

κ

(
π

2

)
= κ

(
3π

2

)
= 2(b12 + b21)|b12 − b21|

(b12 + b21)3
= 2|b12 − b21|
(b12 + b21)2

.

Recall that the radius of each circle of curvature is 1/κ(ω). From this, we calculate the following

expressions for the circles of curvature at the endpoints of the minor axis

{
b11 ± i

2

(
|b12 − b21| − (b12 + b21)

2

|b12 − b21|
)

+ (b12 + b21)
2

2|b12 − b21| e
iψ : ψ ∈ [0, 2π ]

}
.

Using these expressions, we condense Wilker’s condition to the following necessary and sufficient

conditions for R(I2, B) to be convex.

∣∣∣∣∣b11 + i

2

(
|b12 − b21| − (b12 + b21)

2

|b12 − b21|
)∣∣∣∣∣ � (b12 + b21)

2

2|b12 − b21|
and ∣∣∣∣∣b11 − i

2

(
|b12 − b21| − (b12 + b21)

2

|b12 − b21|
)∣∣∣∣∣ � (b12 + b21)

2

2|b12 − b21| .

If we multiply both sides of the equations above by 2|b12 − b21|, we obtain the desired conditions for

R(A, C) to be convex. �

Another special case in which we can say for certain that R(A, B) is not convex arises when n = 2

with A normal.

Theorem 4.3. If A ∈ M2(C) is a nonzero normal matrix with 0 ∈ F(A) and B = diag(1, eiθ ) with

θ ∈ (−π, π), then R(A, B) is not convex.

Proof. Since A is normal, F(A) is the convex hull of the eigenvalues of A (see e.g. [4]). Thus F(A) is a line
segment. From Section 2 we know that F(A) = ⋃

λ Eλ (see Eq. (3.2)). Let l denote the line containing

F(A). Note that every Eλ ⊆ l. Therefore, every τλEλ ⊆ τλl. Since 0 ∈ l it follows that 0 ∈ τλl for all
0 � λ � 1. Suppose that A = (aij). By construction E0 = {a11} and E1 = {a22}. If a11 = a22 = 0,

then 0 is the center of each of the line segments τλEλ for 0 � λ � 1. In that case, 0 is a cut point for

R(A, B) and since R(A, B) is not a subset of a line, this proves that R(A, B) is not convex.
If a11 �= 0, then the line τ0l contains a11 and it also contains 0, but it does not contain any other

point in R(A, B), since the other lines τλl only intersect the line τ0l at the origin. Therefore R(A, B) is
not convex. If a22 �= 0, then the line τ1l contains e

−iθa22 and it also contains 0, but it does not contain

any other point in R(A, B). This completes the proof that R(A, B) is not convex. �

The question of when two matrices have a convex ratio field of values seems very delicate, even in

the simple 2-by-2 case in which A is normal. See Figs. 9, 10, 11 and 12 in Appendix for an illustration of

the difficulties. This problemof classifying pairs ofmatriceswith a convex ratio field of values certainly

merits further investigation.

5. n-Convexity of R(A, B)

We begin this section with a definition that generalizes the notion of convexity.
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Definition 5.1. For any integer n > 0, we say that a subset S of a real vector space is n-convex if the

intersection of S with any straight line has at most n connected components.

Lemma 5.1. Let S1 ⊇ S2 ⊇ · · · Sk ⊇ · · · be a nested family of compact n-convex sets. Then
⋂

k∈N Sk is

an n-convex set.

Proof. Choose a line l that intersects
⋂

k∈N Sk . Suppose the intersection of lwith∩(⋂k∈N Sk) hasmore

than n connected components. Let x1, . . . , xn+1 be points on l arranged in linear order such that each

xi is in a different connected component of l ∩ (⋂k∈N Sk). Between any pair (xi, xi+1), there must be

a point yi that is not in l ∩ (⋂k∈N Sk). For each yi, there is some ki such that yi /∈ Ski . By letting k be

the maximum ki, we see that yi /∈ Sk for all i ∈ {1, . . . , n}. But each xi must be in Sk so we see that Sk
must have at least n + 1 connected components which is a contradiction. �

Theorem 5.1. If A, B ∈ M2(C) and 0 /∈ F(B), then R(A, B) is 2-convex.

Proof. We may assume without loss of generality that A and B are in congruential canonical form,

so that B = diag(1, eiθ ) for some θ ∈ [0, 2π) and A = (aij)1�i,j�2. In what follows we will use the

notation for E = E(A), Eλ = Eλ(A), and τλ = τλ(B) established in Eqs. (3.1), (3.2), and (3.3).

Case 1. Suppose that E is a proper ellipse. Choose any line l in C that intersects R(A, B). Assume that

l = {αt + β : t ∈ R} in which α, β ∈ C. Since R(A, B) = ⋃
0�λ�1 τλEλ, the intersection of l with

R(A, B) is non-empty if and only if l ∩ τλEλ �= ∅ for some λ. Let

lλ = τ−1
λ l = (λeiθ + (1 − λ))l.

Then l intersects τλEλ if and only if lλ intersects Eλ. Equivalently, lλ − λa22 − (1 − λ)a11 intersects√
λ(1 − λ)E.
Let S be a real linear transformation such that S(E) is the unit circle. Then the condition above is

equivalent to saying that the distance between the line S(lλ − λa22 − (1 − λ)a11) and the origin is

less than
√
λ(1 − λ) for some 0 � λ � 1. Note that

S(lλ − λa22 − (1 − λ)a11) = {p(λ)t + q(λ) : t ∈ R}
in which

p(λ) = λS(eiθα)+ (1 − λ)S(α) and

q(λ) = λ(S(eiθβ)− S(a22))+ (1 − λ)(S(β)− S(a11)).

SinceC is a real inner product spacewith inner product 〈z1, z2〉 = Re (z1z2), we conclude that distance

between the line {p(λ)t + q(λ) : t ∈ R} and the origin is less than
√
λ(1 − λ) for some λ ∈ (0, 1) if

and only if the following fourth degree polynomial inequality is satisfied by that λ.

|Re (ip(λ)q(λ))|2 + (λ2 − λ)|p(λ)|2 � 0. (5.1)

In other words, the line l intersects τλEλ if and only (5.1) is satisfied by λ.
Suppose that the roots {r1, r2, r3, r4} of the polynomial in Eq. (5.1) are real, and assume that r1 �

r2 � r3 � r4. Since the polynomial on the left side of (5.1) is always nonnegative for λ < 0 and λ > 1,

the solutions of the inequality can have at most two connected components, namely the intervals

[r1, r2] and [r3, r4]. If the roots are not all real, then we see by the same reasoning that the set of

solutions to (5.1) must have fewer than two connected components.

We have shown that the set ofλ ∈ [0, 1] such that l intersects τλEλ can have atmost two connected

components. We will now show that this implies that l ∩ R(A, B) can have at most two connected

components. Let I be a closed interval of λ such that l ∩ τλEλ �= ∅ for all λ ∈ I. We will prove
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that subset of l which intersects
⋃
λ∈I τλEλ is connected. Write l = {αt + β : t ∈ R} and define

tmax(λ) = max{t : αt + β ∈ τλEλ} and tmin(λ) = min{t : αt + β ∈ τλEλ}. Since the intersection

points of the line lwith the ellipse τλEλ are the solutions of a quadratic equation, we see that both tmax

and tmin are continuous functions of λ. Since I is a closed interval in [0, 1], tmax attains a maximum

on I which we will call M and tmin attains a minimum on I which we will can m. Note that for any

m � t � M, we may use the continuity of tmax and tmin to find a λ such that tmin(λ) � t � tmax(λ).
It follows that αt + β ∈ conv τλEλ and therefore αt + β ∈ R(A, B). Thus the intersection of l with⋃
λ∈I conv (τλEλ) is convex and therefore connected.

The set of λ for which l intersects τλEλ has at most two connected components, which we will call

I1 and I2. Note that

l ∩ R(A, B) = l ∩
⎛
⎝ ⋃

0�λ�1

τλEλ

⎞
⎠ =

⎛
⎝l ∩

⎛
⎝ ⋃
λ∈I1

τλEλ

⎞
⎠

⎞
⎠ ∪

⎛
⎝l ∩

⎛
⎝ ⋃
λ∈I2

τλEλ

⎞
⎠

⎞
⎠

which implies that l ∩ R(A, B) is the union of two connected sets.

Case 2. If E is a line segment, then it is possible to construct a family of ellipses {Ẽk}k∈N, each centered

at the origin, such that conv Ẽk+1 ⊆ conv Ẽk and E = ⋂
k∈N conv Ẽk . Each ellipse Ẽk can be written as

{bkeiω + cke
−iω : 0 � ω � 2π} for some pair bk, ck ∈ C by Lemma 3.1. Let

Ak =
⎡
⎣ a11 bk

ck a22

⎤
⎦ .

By construction, R(Ak+1, B) ⊆ R(Ak, B) and R(A, B) = ⋂
k∈N R(Ak, B). Since each R(Ak, B) does satisfy

the conditions of case 1 of this proof, R(Ak, B) is 2-convex for each k ∈ N. Therefore, R(A, B) is the

intersection of a nested family of 2-convex sets and so by Lemma 5.1, R(A, B) is 2-convex. �

Based on computer generated images of ratio fields of values (see e.g. Figs. 13 and 14 in Appendix),

we propose the following conjecture.

Conjecture 5.1. Let A, B ∈ Mn(C) and 0 /∈ F(B). Then R(A, B) is n-convex.

Remark 2. It is possible to construct pairs of n-by-n matrices A and B such that R(A, B) is n-convex,
but not (n − 1)-convex. To see this, choose a circle C ⊆ C such that 0 ∈ C. Choose a convex n-sided

polygon P ⊆ C such that every side of P intersects C but every vertex of P is outside of C. Let us also

assume that 0 /∈ P. Let B ∈ Mn(C) be the diagonal matrix with diagonal entries equal to the n vertices

of P. Let In be the n-by-n identity matrix. Then R(In, B) = 1/P . Note that the set 1/C is a line that

passes through R(In, B) exactly n times.

Remark 3. For 3-by-3 diagonalmatrices,A and B, the ratio field of valueswill be 3-convex. By Corollary

15 in [9], the boundary of R(A, B) consists of precisely three sets that are either circular arcs or line

segments. Each of these boundary sets is contained in a set of the form {x + iy ∈ C : p(x, y) = 0}
where p(x, y) is a second degree polynomial for a circular arc or a first degree polynomial for a line

segment. Thus the boundary of R(A, B) is a subset of the set of roots of a polynomial of degree at most

six. Of course, this implies that a line can cross the boundary in at most six places. If the intersection

of the line with R(A, B) has an isolated point, then that isolated point must be either a place where the

line is tangent to one of the circular arcs in the boundary, or it is a placewhere two of the boundary arcs

intersect. In either case, the isolated point will be a root with multiplicity at least two in the boundary

polynomial. This implies the intersection of a line with R(A, B) can have at most three connected

components since each componentwill contain at least two roots of theboundarypolynomial counting

multiplicity.

The current best known upper bound for Conjecture 5.1 is as follows.
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Theorem 5.2. Let A, B ∈ Mn(C) and 0 /∈ F(B). Then R(A, B) is m-convex, where m = 2n(n − 1).

Proof. By Theorem 3 in [2] the boundary of R(A, B) is a subset of a set of the form {x + iy : x, y ∈
R and p(x, y) = 0} where p is a polynomial of degree at most 2n(n − 1). Now consider a line passing

through R(A, B). If the line has equation x0 + iy0 + t(x1 + iy1), then the intersection of the line with

∂R(A, B) is contained in the set of roots of a polynomial in t of degree at most 2n(n − 1). Therefore,
the intersection of the line with R(A, B) has at most 2n(n − 1) connected components. �

6. (k,m)-Field of values

In addition to the ratio field of values, there are other possible generalizations of the field of val-

ues involving more than one matrix. For any collection of matrices A1, A2, . . . , Ak ∈ Mn(C) and a

second collection of matrices B1, B2, . . . , Bm ∈ Mn(C) with the property that 0 /∈ F(Bi) for each

i ∈ {1, . . . ,m} we can define the (k,m)-field of values as the set

F(k,m)(A1, . . . , Ak; B1, . . . , Bm) =
{
(x∗A1x) (x

∗A2x) · · · (x∗Akx)

(x∗B1x) (x∗B2x) · · · (x∗Bmx)
: x ∈ C

n, ||x|| = 1

}
.

As with ratio fields of value, we can ask whether (k,m)-fields are always simply connected. Unlike,

the standard field of values and the ratio field of values, there are examples of (k,m)-fields of values
that are not simply connected.

Example 6.1. Let A1 = A2 =
⎡
⎣ i 0

0 1

⎤
⎦ and B1 = B2 =

⎡
⎣1 0

0 i

⎤
⎦. Let x = (x1, x2) ∈ C

2 with ||x|| = 1.

Note that

(x∗A1x)(x
∗A2x)

(x∗B1x)(x∗B2x)
=

( |x1|2i + |x2|2
|x1|2 + |x2|2i

)2

=
(
λi + (1 − λ)

λ+ (1 − λ)i

)2

,

where λ = |x1|2. The expression

f (λ) = λi + (1 − λ)

λ+ (1 − λ)i

is a linear fractional transformation with f (0) = −i, f
(
1
2

)
= 1 and f (1) = i. Since linear fractional

transformations map lines to lines or circles, it follows that the image of the line segment [0, 1] under
f is the half circle {eiθ : −π/2 � θ � π/2}. The (2, 2)-field of values F(2,2)(A1, A2; B1, B2) is the set

(f ([0, 1]))2 = {e2iθ : −π/2 � θ � π/2} which is the unit circle and is not simply connected.

Example 6.2. Let A1 = A2 =
⎡
⎣1 + i 0

0 1

⎤
⎦ and let B =

⎡
⎣2i 0

0 1

⎤
⎦. Let x = (x1, x2) ∈ C

2 with ||x|| = 1

and let λ = |x1|2. Then

(x∗A1x)(x
∗A2x)

x∗Bx
= (|x1|2(1 + i)+ |x2|2)2

2i|x1|2 + |x2|2 = (λ(1 + i)+ 1 − λ)2

2iλ+ 1 − λ

= 2iλ− λ2 + 1

2iλ− λ+ 1
= 1 + λ(1 − λ)

(2i − 1)λ+ 1
.
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Let

f (λ) = λ(1 − λ)

(2i − 1)λ+ 1
,

then F(2,1)(A1, A2; B) = {f (λ) + 1 : λ ∈ [0, 1]}. Note that f (0) = f (1) = 0, and f (λ) is one-to-

one on (0, 1) since the argument of ((2i − 1)λ + 1)−1 is a one-to-one function. We conclude that

F(2,1)(A1, A2; B) is a simple closed curve in C and therefore not simply connected.

Example 6.3. Let A1 = A2 = A3 =
⎡
⎣e2π i/3 0

0 1

⎤
⎦. If x = (x1, x2) ∈ C

2 satisfies ||x|| = 1, then

(x∗A1x)(x
∗A2x)(x

∗A3x) = (x∗A1x)
3 = |x1|2e2π i/3 + |x2|2.

Let λ = |x1|2 and

f (λ) = (λe2π i/3 + (1 − λ)).

Then F(3,0)(A1, A2, A3) = (f ([0, 1]))3. Since the function f is linear, the set f ([0, 1]) is a line segment

that does not pass through the origin and the argument of f (λ) is a one-to-one function on [0, 1].
Furthermore, each point in f ((0, 1)) has an argument in (0, 2π/3). Therefore, the function (f (λ))3 is

one-to-one on the interval (0, 1). Since (f (0))3 = (f (1))3, the curve F(3,0)(A1, A2, A3) = (f ([0, 1]))3
is a simple closed curve and is not simply connected.

Remark 4. Examples 6.2 and 6.3 prove that in general we cannot expect the (2, 1)- and (3, 0)-field of

values to be simply convex. In fact, since themap z �→ 1/z is a homeomorphism fromC\{0}onto itself,
it follows that we may construct (1, 2) and (0, 3) ratio fields of values that are not simply connected

by taking the reciprocals of Examples 6.2 and 6.3, respectively. This observation leads directly to the

following theorem.

Theorem 6.4. Let m and k be nonnegative integers such that m + k � 3. Then there is a (k,m)-field
of values F(k,m)(A1, . . . , Ak; B1, . . . , Bm) with A1, . . . Ak and B1, . . . , Bm in M2(C) that is not simply

connected.

Proof. If k + m = 3, then Example 6.2, Example 6.3, and their reciprocals cover all possible cases. If

k+m > 3, thenwemaychoosenonnegative integersk′ � k andm′ � m such thatk′+m′ = 3.Thenwe

may construct a (k′,m′)-field of values F(k′,m′)(A1, . . . , Ak′ ; B1, . . . , Bm′) that is not simply connected.

If we let Ai and Bj be the 2-by-2 identity matrix for all i > k′ and j > m′, then F(k,m)(A1, . . . Ak) =
F(k′,m′)(A1, . . . , Ak′ ; B1, . . . , Bm′). Thus we have constructed a (k,m)-field of values that is not simply

connected. �

Appendix A. Sample illustrative pictures of R(A, B)

In Figs. 1–14, 1 blue background shows the entire ratio field, green lines indicate a small sample of

the ellipses Eλ, yellow shows the master curve and red lines are segments connecting the eigenvalues

of B−1A. Some segments may have been added by Matlab.

1 For interpretation of the references to color in this figure, the reader is referred to the web version of this article.
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Fig. 1. The ratio field with a singular Hermitian matrix in the numerator:

A =
⎡
⎣1 1

1 1

⎤
⎦ , B =

⎡
⎣1 0

0 eiπ/5

⎤
⎦.

Fig. 2. Unitary rotation of the numerator in figure 1 yields a completely different shape.

R(U∗AU, B)with A, B as in figure 1 and U =
⎡
⎣cos( 11π

13
) − sin( 11π

13
)

sin( 11π
13
) cos( 11π

13
)

⎤
⎦.

Fig. 3. A ratio field containing a cut point exhibiting master curve and line segments in place of ellipses: R(A, B) for

A =
⎡
⎣ 2 3 + i

3 + i i

⎤
⎦ and B =

⎡
⎣1 0

0 eiπ/5

⎤
⎦.
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Fig. 4. A ratio field similar to figure 3 but with shorter line segments, so no cut point is attained, R(A, B) for:

A =
⎡
⎣ 2 .3 + .3i

.3 + .3i i

⎤
⎦ and B =

⎡
⎣1 0

0 eiπ/5

⎤
⎦.

Fig. 5. A ratio field similar to figure 3 but with ellipses instead of line segments, so there is no cut point, R(A, B) for:

A =
⎡
⎣.2 1

.9 .03

⎤
⎦ and B =

⎡
⎣1 0

0 eiπ/5

⎤
⎦.

Fig. 6. For this pair A, B, the ratio field of values is convex.

A =
⎡
⎣1 1

0 0

⎤
⎦ and B =

⎡
⎣1 0

0 eiπ/5

⎤
⎦.
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Fig. 7. Changing the second canonical angle from figure 6 makes R(A, B) non-convex:

A =
⎡
⎣1 1

0 0

⎤
⎦ and B =

⎡
⎣1 0

0 e3iπ/4

⎤
⎦.

Fig. 8. A ratio field which is a convex disc with trivial master curve, R(A, B) for:

A =
⎡
⎣0 1

0 0

⎤
⎦ and B =

⎡
⎣1 0

0 eiπ/5

⎤
⎦.

Fig. 9. In the next four figures, A is a normal matrix withparameter k. Here k = 1.

A =
⎡
⎣ 2i k

−k 2i

⎤
⎦ and B =

⎡
⎣1 0

0 i

⎤
⎦.
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Fig. 10. Here k = 1.25

A =
⎡
⎣ 2i k

−k 2i

⎤
⎦ and B =

⎡
⎣1 0

0 i

⎤
⎦.

Fig. 11. Here k = 1.5.

A =
⎡
⎣ 2i k

−k 2i

⎤
⎦ and B =

⎡
⎣1 0

0 i

⎤
⎦.

Fig. 12. Here k = 1.75.

A =
⎡
⎣ 2i k

−k 2i

⎤
⎦ and B =

⎡
⎣1 0

0 i

⎤
⎦.
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Fig. 13. A 3-by-3 ratio field with a cut point, R(A, B) for:

A =

⎡
⎢⎢⎢⎣
−1 0 0

0 e2.5i 0

0 0 e
i
2

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎢⎣
1 0 0

0 e2.5i 0

0 0 e− i
2

⎤
⎥⎥⎥⎦.

Fig. 14. A 3-by-3 ratio field which is 3-convex:

R(A, B) for A = I3 and B =

⎡
⎢⎢⎢⎣
1 0 0

0 eπ/3 0

0 0 eπ/4

⎤
⎥⎥⎥⎦.
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