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ORIGINAL
RESEARCH

A Sparse Intraoperative Data-Driven
Biomechanical Model to Compensate for Brain
Shift during Neuronavigation

D.-X. Zhuang
Y.-X. Liu
J.-S. Wu
C.-J. Yao

Y. Mao
C.-X. Zhang
M.-N. Wang

W. Wang
L.-F. Zhou

BACKGROUND AND PURPOSE: Intraoperative brain deformation is an important factor compromising
the accuracy of image-guided neurosurgery. The purpose of this study was to elucidate the role of a
model-updated image in the compensation of intraoperative brain shift.

MATERIALS AND METHODS: An FE linear elastic model was built and evaluated in 11 patients with
craniotomies. To build this model, we provided a novel model-guided segmentation algorithm. After
craniotomy, the sparse intraoperative data (the deformed cortical surface) were tracked by a 3D LRS.
The surface deformation, calculated by an extended RPM algorithm, was applied on the FE model as
a boundary condition to estimate the entire brain shift. The compensation accuracy of this model was
validated by the real-time image data of brain deformation acquired by intraoperative MR imaging.

RESULTS: The prediction error of this model ranged from 1.29 to 1.91 mm (mean, 1.62 � 0.22 mm),
and the compensation accuracy ranged from 62.8% to 81.4% (mean, 69.2 � 5.3%). The compensation
accuracy on the displacement of subcortical structures was higher than that of deep structures (71.3 �
6.1%:66.8 � 5.0%, P � .01). In addition, the compensation accuracy in the group with a horizontal
bone window was higher than that in the group with a nonhorizontal bone window (72.0 � 5.3%:
65.7 � 2.9%, P � .05).

CONCLUSIONS: Combined with our novel model-guided segmentation and extended RPM algorithms,
this sparse data-driven biomechanical model is expected to be a reliable, efficient, and convenient
approach for compensation of intraoperative brain shift in image-guided surgery.

ABBREVIATIONS: BC � boundary condition; CG � conjugate graduate; FA � flip angle; FE � finite
element; LRS � laser range scanner; min � minimum; NRR � nonrigid registration; PDE � partial
differential equation; PRF � patient reference frame; RPM � robust point matching

Image-guided surgery has been widely used in neurosurgical
units in the past decade. As an important milestone in the

development of contemporary neurosurgery, navigation has
significantly improved the accuracy and the safety of surgery.
Most of the current systems, however, were unable to provide
absolute real-time navigation because of the assumption that
the brain being operated on is rigid. The preoperatively ac-
quired 3D data were registered to the patient coordinate sys-
tem. In fact, the brain tissue is nonrigid, and brain deforma-
tion always occurs in the course of surgery owing to the
biomechanical property of brain tissue, gravity effect, varia-
tion of intracranial pressure, and surgical maneuvers. The lab-
oratory studies from ours and other teams that monitored

cortical shift during surgery showed that the displacements of
brain surface ranged from 1.2 to 20 mm in the direction of
gravity.1-4 Moreover, brain shift occurs not only on the surface
but also in the deep brain structures.3,4 Thus, increasing con-
cern has been generated concerning intraoperative brain de-
formation, which significantly compromises the accuracy of
neuronavigation. Hitherto, techniques available for the com-
pensation of brain deformation fell into 2 categories: intraop-
erative imaging (CT, MR imaging, or sonography) and
NRR.5-18 Among these, CT and sonography are not exten-
sively applied on direct intraoperative imaging because of
their low image resolution of soft tissue. Although intraoper-
ative MR imaging12-18 provides the best solution for brain de-
formation, it is not widely applied due to its high cost and long
image-updating time.

NRR19-33 is expected to be a promising alternative in ac-
counting for brain deformation. NRR can be classified into 2
categories based on the intraoperative devices: surface meth-
ods and volume methods. Surface methods use a device (eg,
LRS) to obtain the surface deformation and then apply this
surface deformation on a biomechanical model to derive the
entire brain deformation. Volume methods use intraoperative
CT6 or sonography7-11 to obtain intraoperative brain images
(low-resolution images) and then use these to deform preop-
erative MR imaging by NRR.

In this article, we present a robust brain-shift framework
based on a linear elastic model and implemented in our
3DIMAGE system. The compensation accuracy of this model
was validated by the real-time image data of brain deformation
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acquired from the PoleStar N20 iMRI system (Medtronic
Navigation, Louisville, Colorado).

Materials and Methods

Patient Population
Eleven patients (10 males and 1 female; age range, 9 – 66 years; mean,

48.5 � 19.3 years) who underwent intraoperative MR imaging�assisted

supratentorial lesion resection in our center between February and

March 2008 were enrolled in this study. All patients were eligible for

surgery on the basis of clinical and radiologic evaluations and com-

plied with the protocol after providing informed consent. The study

was approved by the ethics committee of Fudan University.

Among the lesions, 9 were located in the cerebral hemisphere (5 in

the frontal lobe, 2 in the temporal lobe, 1 on the parietal convexity, 1

in the occipital lobe) and 2 were located at the skull base (1 at the

anterior skull base, 1 in the sella region). All patients underwent su-

pratentorial craniotomies (7 frontal, 2 temporal, 1 parietal, and 1

occipital). The surgical postures included supine position (7 cases),

lateral position (3 cases), and prone position (1 case). The size of the

bone windows ranged from 40 � 50 to 126 � 52 mm2; mean,

4447.27 � 1277.23 mm2. Six bone windows were horizontal, while

5 others were nonhorizontal with an angle between 0° and 45° to the

ground.

Acquisition of the Preoperative Image
In our routine neuronavigational procedure, fiducial markers were

attached to the scalp of each patient and the preoperative MR imaging

was performed 1 day before the operation. The 3D neuronavigational

MR imaging dataset was acquired with a 3T whole-body MR imaging

scanner (Signa VH/i; GE Healthcare, Milwaukee, Wisconsin) by us-

ing a T1-weighted 3D fast-spoiled gradient recalled sequence after

intravenous contrast administration of gadolinium-diethylene-tri-

amine pentaacetic acid. The parameters were as follows: TR, 11.7 ms;

TE, 5.1 ms; FA, 20°; thickness, 1.25 mm; matrix, 320 � 224 pixels;

FOV, 240 � 240 mm; NEX, 1. On each patient, 75–135 contiguous

nonoverlapping axial sections were acquired from the top of the head

to the tip of the nose for a complete coverage of the whole operating

field and all fiducial markers. For some nonenhancing lesions, fluid-

attenuated inversion recovery T2-weighted imaging (spin-echo se-

quence; TR, 8500; TE, 120; TI, 2250 ms; FA, 90°; FOV, 240 � 240 mm;

matrix size, 320 � 224 pixels; section thickness, 2 mm; NEX, 2; axial

section) was performed when the operating neurosurgeon considered

it appropriate.

Construction of the FE Linear Elastic Model

Segmentation of Brain
Before constructing the FE model, the problem domain (ie, the brain)

needs to be specified. As a crucial procedure in this framework, the

segmentation of the brain influences not only the accuracy of mesh

generation but also surface tracking. To obtain an accurate segment-

ing result, we designed a novel model-guided segmentation algo-

rithm, which is composed of 2 steps: coarse segmentation and refined

segmentation.

Model-Guided Coarse Segmentation. This algorithm aligned a

well-segmented brain model with the preoperative MR images of each

patient to get an initial segmentation. The segmented model was gen-

erated by delineating the boundary section by section on a virtual

human brain dataset from the Chinese Visible Human (Institute of

Computerized Medicine, Third Military Medical University, PLA,

Chongqin, China). To align this model with the preoperative images,

we designed a graphic user interface, allowing the user to interact with

the model. The idea behind this method is to transform the opera-

tions of the mouse on the screen into the operations in the image

space. First, the user moves the model close to the MR images by

dragging it with the mouse (translation transform). Then, by rotating

(rotation transform) and zooming in or out (scaling transform), the

orientation and size of the model can be adjusted to be as similar to

the MR images as possible. After these operations, the model provided

an initial estimation of the position and shape of the brain (Fig 1A,

-B).

Refined Segmentation with Level Set. After the first step, we ob-

tained an initial brain surface, which was very close to the MR imaging

surface. Then the level set method was used for a more precise result.

“Level set” is a numeric method for tracking the evolution of contours

and surfaces.34 The level set function �(X,t) is evolved under the

control of a differential equation,

1) �t � F���� � 0,

where F is a speed function. To make the front maintain its smooth-

ness, one should move in the interior of the object and then stop at the

boundary. F is defined as

2) F � S� g	 ��1FA � �2FG	,

where g is the magnitude of the image gradient of image I. S(g) is a

nonlinear mapping function to map the lower magnitude of the gra-

dient (interior of the object) to 1.0 and the higher magnitude of the

gradient (boundary of the object) to 0. FA is a constant advection

speed, and FG, depending on the local curvature of the front, is used to

maintain the smoothing of the front.

Mesh of the Segmented Brain
After segmentation, the continuous problem domain (brain) needs to

be discretized into connected elements with a mesh-generation algo-

rithm. In this study, tetrahedra, instead of hexahedra, were used as the

elements to express the brain surface accurately. Additionally, for the

purpose of reducing the computational time and maintaining higher

computational accuracy, we adopted a multiresolution mesh-gener-

ation algorithm presented by Ferrant et al.27 This algorithm combines

the Octree algorithm with the marching tetrahedron algorithm. It

generates the mesh with higher attenuation on the boundary and

lower attenuation in the internal area (Fig 1C, -D). To improve the

computational efficiency, this algorithm uses the case table to record

all cases of dividing and clipping.

FE Equations and Acquisition of BC
After the problem domain is discretized, the linear elastic model can

be approximated as a linear system of equations by the FE method:

3) Ka � P,

where K is a structure rigid matrix, P is a structure load vector, and a

is node displacement vector. BC needs to be applied to equation 3, to

get a unique-solution a.

In this framework, surface deformation is taken as the BC. The

initial surface is extracted from the mesh of the preoperative image.

The deformed surface can be acquired by scanning the exposed cor-

tical surface by using a 3D LRS (RealScan USB Model 200; 3D Digital,

Sandy Hook, Connecticut). The procedures were as follows:
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1) After endotracheal intubation and general anesthesia, the patient’s

head was fixed on a dedicated MR imaging– compatible holder to

which the PRF was attached. Then the 3D preoperative MR imag-

ing datasets were loaded into our 3DIMAGE system, which had

been integrated in the Surgical Navigation System/Excelim-04

(Shanghai Fudan Digi-Medical Technology, Shanghai, P.R.

China) (Fig 2A). The fiducial markers were registered by tracking

the PRF.

2) The magnet of PoleStar was raised to the scanning position, and

the magnet reference frame attached on the magnet was tracked by

the Polaris (an infrared navigation camera). First, an 8-second

e-steady scanning was performed to confirm that the area of in-

terest was included in the FOV. Then a series of preoperative im-

ages typically including a 6.5-minute T1-weighted image and an

11-minute contrast-enhanced T1-weighted image was acquired.

The thickness of sections were 3 and 2 mm, respectively.

3) After preoperative imaging was completed, the magnet was low-

ered beneath the table. Craniotomy was then performed in the

usual way until the dura was opened. The LRS was moved into

position and registered by tracking the infrared reference frame

attached to it. Then the LRS was opened, and the deformed brain

surface was scanned (Fig 2A, -B).

4) In surface tracking, both the initial surface and the deformed sur-

face were represented by point sets. Tracking of the moving sur-

face involved the following 2 steps:

Registering the LRS Space with the Image Space. The initial and

deformed surfaces needed to be transformed into the same space first,

to track the movement of the brain surface. There are a total of 5

coordinate spaces in the operating room: image space, LRS space,

Polaris space, reference frame space, and tracked tool space. With the

neuronavigation system, we transformed the deformed surface,

which was acquired in LRS space, into the image space (Fig 2C, -D).

2) Surface Tracking. After the 2 surfaces were transformed into 1

space, the surface deformation needed to be computed. We designed

a surface-tracking algorithm by extending the classic RPM algo-

rithm.35 Primarily, a brief review was conducted for this RPM algo-

rithm combined with the data used in our method. We defined the

initial surface as source point set X and the deformed surface as target

point set Y. These consisted of points {xi,i�1,2,...M} and

{yj,j�1,2,...N}, respectively. The goal was to find the correspondence

point yj of xi and the nonrigid transformation f, which was used to

map xi to yj. The energy function was motivated as

4) min
c,f

E�C, f 	 � min
c,f

�
j � 1

N �
i � 1

M

cij� yj � f� xi	�2 � �

�� �2f

� x2� 2

� 2� �2f

� x� y�
2

� � �2f

� y2� 2�
which is subject to �j � 1

N cij � 1 for i�{1,2,...M} and cij�{0,1}. cij was

used to measure the correspondence between xi and yj. The second

item imposes a smoothing constraint on f and is balanced by param-

eter �. The expectation-maximization method was used to solve C

and f simultaneously.

The disadvantage of this classic RPM algorithm is that it is inca-

pable of dealing with the outliers existing in both point sets. To com-

pensate for brain shift, we used 2 point sets. One represented the

scanned cortical surface by using LRS and the other represented the

extracted surface from mesh generation. Each contained many outli-

ers. To overcome this difficulty, we defined a range �R, which is a

sphere centered at the source point with radius R and only took into

Fig 1. A and B, Model-guided segmentation. The model (green) is aligned with the preoperative MR imaging to get a primitive result with a contour (bright gray) very close to the real
contour (dark gray). C, Coarse mesh. D, Multiresolution mesh.
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account the target points located in this sphere. The search range

basically makes the surface tracking act as a multiresolution registra-

tion. As the range reduces, the registration will move from the coarse

level to the fine level. The R plays a role similar to that of the temper-

ature T of the simulated anneal technique used in Chui and Rangara-

jan,35 but our method is more computationally efficient because it

only considers the target points located in �R. For each source point

si, we assume that its potential correspondences are subject to Gauss-

ian distribution (as shown in equation 5). Cij is defined as the proba-

bility with which the point Si corresponds with tj located in �R. It can

be calculated as

5) cij �
cij

�
k � 1

k � m

cij

, cij �
1

R�2�
exp��

�tj � si	
2

2 R2 � ,

� tj��R, j � 1...m.

The outliers in both point sets can be effectively rejected by using this

search range. For each source point, we found target points within the

search range �R. If there were no target points for this source point,

we marked it as outlier. For the outliers in the target point set, if they

were out of the range, they were not involved in the computation. So,

this method can be used to deal with the outliers in both point sets.

After we got surface deformation, we could apply it to equation 3

directly to obtain a unique solution. The predictive deformation was

visualized by different-colored meshes as in Fig 3A, and the warped

image was visualized by the ray casting method (Fig 3B).

Validation of the Framework
In this study, due to the PoleStar N20 iMRI system, the compensation

accuracy of this linear elastic model can be validated by the real-time

data of brain deformation during the surgery (Fig 2A). The validating

procedures were as follows:

1) After finishing the cortical scanning by LRS and the operating field

draping, the scanner of PoleStar was raised to the previous scan

position (inherent memory in the PoleStar system) and the second

intraoperative MR imaging was performed to get the deformed

image after craniotomy.

2) We input the intraoperative MR imaging data into our

3DIMAGE system, and then we registered the preoperative

high-field MR image, the intraoperative low-field MR image,

and the predictive image of brain shift by this biomechanical

model to the same space by using the fiducial markers on the

scalp and several firm anatomic markers. Before validation, all

of the preoperative, predictive, and the intraoperative MR im-

ages were regularized with spacing 1 � 1 � 1 mm3 by an inter-

polation algorithm.

3) Two groups of deformation markers (2 markers for each group)

were selected to calculate the compensation accuracy of the model.

The subcortical group included some morphologically special

points on the surface of the tumor and some subcortical vascular

bifurcation points with obvious enhancement. The deep group

included the frontal horn, temporal horn, and occipital horn of

the lateral ventricle, foramen of Monro, and the choroid plexus of

the triangular region of the lateral ventricle. To alleviate the sub-

jective error and the interobserver variability, an anatomist, a neu-

rosurgeon, and a neuroradiologist were invited to select the defor-

mation markers separately. All of these points could be identified

on the corresponding section from the preoperative and intraop-

erative images by every observer.

4) The real displacement and the predictive displacement of every

marker were calculated by using norm-2.

Definition 1: prediction error ��B�C�2,

Definition 2: compensation accuracy � (�C�A�2C�B�2//�C�A�2,

Fig 2. A, Surface scanning by LRS (left) after registration with the Excelim-04 system (middle) and PoleStar N20 iMRI system (right). B, The deformed surface (right side) acquired by LRS
scanning. C, Transformation from the LRS space to the image space. D, Registration of the initial surface with the deforming surface.
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where A represents the preoperative position of the marker, B repre-

sents the predictive position computed by our framework after brain

shift, and C represents the real position revealed by intraoperative MR

imaging. For each case, the mean value of the 4 markers was taken as

the value of the model.

5) Representative data are shown as means � SD. Statistical analysis

was conducted by using the Statistical Package for the Social Sci-

ences software, Version 14.0 (SPSS, Chicago, Illinois).

Results
The mean prediction error, real displacement, and compensa-
tion accuracy of the 4 markers of each case are shown in Table
1. The comparison between the subcortical markers and the
deep markers is shown in Table 2.

The prediction error of this model ranged from 1.29 to 1.91
mm (mean, 1.62 � 0.22 mm). The compensation accuracy
ranged from 62.8% to 81.4% (mean, 69.2 � 5.3%). The real
displacement of the subcortical markers was larger than that of

the deep markers (6.56 � 1.93 mm:4.37 � 0.77 mm, P � .01).
The prediction error on the displacement of the subcortical

Table 1: Result of model validationa

Patient
No.

Prediction Error
(mm)

Real Displacement
(mm)

Compensation
Accuracy (%)

1 1.78 5.27 66.0
2 1.49 4.54 66.9
3 1.91 6.22 68.1
4 1.29 4.39 70.0
5 1.60 5.22 66.6
6 1.73 4.39 62.8
7 1.31 4.79 72.1
8 1.65 4.51 63.3
9 1.73 5.90 69.6
10 1.90 7.61 74.0
11 1.39 7.29 81.4
a All the values are mean values of the 4 markers of each patient.

Fig 3. A, The predictive deformation of mesh. The red mesh represents the preoperative surface, the blue mesh represents the deformed surface, and the yellow arrow indicates the direction
of gravity. B, 3D visualization of the deformation field by the ray casting method (above) and the final warped MR images (below). The magnitude of the deformation increases as the
color changes from dark red to bright red; the blue arrows near the frontal lobe indicate the direction of the deformation.
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markers was higher than that of the deep markers (1.78 �
0.33:1.46 � 0.24 mm, P � .05). The compensation accuracy
on the displacement of the subcortical markers was higher
than that of the deep markers (71.3 � 6.1%:66.8 � 5.0%, P �
.01). Moreover, the compensation accuracy in the group with
a horizontal bone window was higher than that in the group
with a nonhorizontal bone window (72.0 � 5.3%:65.7 �
2.9%, P � .05) (Table 3).

The fiducial-based registration error of each case ranged
from 1.10 to 1.99 mm, mean 1.57 � 0.28 mm, and it was
controlled under 1 mm within the operating field.

Discussion
Dynamically updating the navigational image data via a com-
putational brain model has been proved to be a potential ap-
proach to correct brain-shift error.18,20-33 Compared with in-
traoperative imaging, this method may be more favorable for
its convenience and time savings. Furthermore, it is more ap-
plicable because the software modules can be integrated into a
commercial neuronavigational system without relying on an
expensive intraoperative imaging system. The models that are
used to account for brain shift fall into 3 categories: a free-
form model, a physical model (linear and nonlinear), and a
statistical model.

Rueckert et al36 provided a free-form model based on B-
splines. To reduce computational complexity, this technique
uses a lattice of control points to represent the continuous
deformation field. Compared with a physical model, this
model has no assumption as to physical properties. In contrast
to thin-plate splines or elastic-body splines, B-splines are lo-
cally controlled, making them computationally efficient even
for a large number of control points. In particular, the basis
functions of cubic B-splines have a compact support (ie,
changing a control point only affects the transformation in the
local neighborhood of that point). However, the free-form
model is not suitable for the surface-based brain shift because
it is incapable of estimating the shift far away from the sparse
intraoperative data (deformed surface).

Miga et al20 proposed a computational model based on a
consolidation theory, which is characterized by an instanta-
neous deformation at the contact area followed by subsequent
additional displacement with time as interstitial fluid drains in
the direction of strain-induced pressure gradients (ie, from
high to low pressure). Sun et al21 adopted a similar poroelastic
brain model by using the Biot consolidation formulation37 to
simulate the brain as an elastically deformable porous me-

dium. The solution to the model equations was obtained by
applying the known boundary and volumetric forcing condi-
tions. These consolidation theory�based nonlinear models
are capable of realistically describing the behavior of the brain.
However, it is difficult to estimate the drainage of CSF to get
the body force. A nonlinear hyperviscoelastic mechanical
model was proposed by Witek el al and Miller.22,38 Their rheo-
logic experiments make a significant contribution to the un-
derstanding of the physics of the brain tissue, and their exten-
sive investigation into brain tissue engineering shows very
good concordance of the hyperviscoelastic constitutive equa-
tion with the experiments both in vivo and in vitro. This
model is capable of simulating the deformation of the cortex
and subcortical structures. It can be applied in large-scale FE
simulations and, therefore, offers the possibility of developing
a biomechanically accepted detailed surgical planning and
training system. A practical difficulty associated with these
nonlinear models, including the consolidation theory�based
model, is that an excessive amount of time is needed to seek
the solution of the constitutive equation.

Davatzikos et al23 proposed a statistical model based on
precomputing the main modes of brain deformation by using
a biomechanical model. Recent extensions of this framework
showed promising results for intraoperative surgical guidance
based on sparse data.24 Although these statistical models are
computation-efficient, their accuracy needs to be further
evaluated.

One solution for the trade-off between accuracy and com-
putation time is to use the linear elastic model. This method
has been used by many groups to compensate for soft-tissue
deformation.25-33 Although it is inferior to the nonlinear
model in describing the behavior of the brain, the linear elastic
model is more computation efficient and the solution of the
constitution equation can be found in a reasonable amount of
time. The volumetric results could be obtained by relying
solely on the direct measurement of the cortical surface as a
displacement BC.25 This BC is much easier to obtain than that
of the consolidation theory model. On the basis of these fac-
tors, a linear elastic model was chosen in our work.

To build a more efficient linear model, we made some
modifications to the segmentation and the surface-tracking
algorithm. First, a novel model-guided algorithm was de-
signed to segment the brain out of the skull. This algorithm
aligned a well-segmented brain model acquired from a virtual
human dataset with the patient’s brain MR imaging to get an
initial segmentation. Then, the level set method was used to
refine the initial segmentation. In our study, this model-
guided method of segmentation has proved more efficient for
solving the problem of the initial contour in level set. Second,
to drive this model, we designed a surface-tracking algorithm
by extending the classic RPM algorithm to deal with the
outliers in both the source point set (initial surface) and
the target point set (deformed surface) by a Gaussian

Table 2: Comparison between subcortical and deep markers (paired t test)

Mean � Subcortical Mean � Deep No. T df P Value
Prediction error (mm) 1.78 � 0.33 1.46 � 0.24 11 2.930 10 .015
Real displacement (mm) 6.56 � 1.93 4.37 � 0.77 11 3.994 10 .003
Compensation accuracy (%) 71.3 � 6.1 66.8 � 5.0 11 3.220 10 .009

Table 3: Comparison of compensation accuracy between the
horizontal and nonhorizontal bone window group

Mean
(%)

SD
(%) No. T df P Value

Horizontal 72.0 5.3 6 2.365 9 .042
Nonhorizontal 65.7 2.9 5

400 Zhuang � AJNR 32 � Feb 2011 � www.ajnr.org



distribution�based search range. In our implementation, the
surface of the preoperative image was extracted as the initial
surface because it can be represented with mesh nodes, which
makes it possible to apply the BC on FE equations directly.

The FE model requires a long time for computing the de-
formation, which hampers its routine clinical use. To over-
come this difficulty, we adopted a multiresolution mesh-gen-
eration algorithm. This algorithm is characterized by
decomposing the inhomogeneous region into smaller ele-
ments to retain the accuracy but decomposing the homoge-
neous region into larger elements to reduce the total number
of the elements, and, therefore, to reduce the computation
time. Furthermore, the message passing interface�based par-
allel computing was used to maximize the parallel computing
power of a workstation in our method. The Portable, Extensi-
ble Toolkit for Scientific Computation, a well-known parallel
scientific computing library,39 is used to solve the FE linear
system of equations.

Evaluation of the clinical application of a method for cor-
recting brain shift error in neuronavigation should be based
on the following criteria:

1) Acceptable Compensation Accuracy
In this study, validated by the criterion standard real-time in-
traoperative MR imaging, the compensation accuracy of our
framework averaged 69.2 � 5.3% (71.3 � 6.1% on the sub-
cortical structures and 66.8 � 5.0% in the deep structures).
This means the registration error caused by brain shift under
conventional neuronavigation was significantly reduced
(from an average of 5.47 to 1.62 mm), making it sustainable
for clinical acceptance.

2) Real-Time Image Updating
Benefiting from the multiresolution mesh-generation algo-
rithm and parallel computation, the computation time of the
FE model in our workstation (Intel Core2 Duo E6850 4GB
RAM) ranged from 43 to 56 seconds (mean, 48.3 � 4.2 sec-
onds). The image-processing time (from mesh to gray image)
was steadily around 22 seconds. Therefore, the duration of the
whole image�updating process (including LRS scanning, sur-
face tracking, model computing, and image processing) can be
controlled within 15 minutes, which is shorter than intraop-
erative MR imaging time.37 Because our 3DIMAGE system has
been integrated into a conventional neuronavigation system,
during the operation the preoperative images can be immedi-
ately updated by the deformed images to guide the surgical
procedures.

3) High Image Quality
Because the original image data were acquired from high-field
MR imaging (3T) preoperatively, the final updated gray im-
age, which was generated from the FE equation computation
and a trilinear interpolation algorithm, demonstrated a simi-
lar soft-tissue resolution to the preoperative image, which is
significantly higher than the image from intraoperative sonog-
raphy, CT, and low-field intraoperative MR imaging.

In addition, with in-depth analysis of the results of model
validation, we found that our framework showed a higher pre-
diction error on the subcortical structures than in the deep
structures (1.78:1.46 mm, P � .05). Nevertheless, a higher

compensation accuracy was observed on the subcortical struc-
tures than in the deep structures (71.3%:66.8%, P � .01). This
phenomenon indicates that the absolute value of prediction
error might be determined by the magnitude of displacement
(for the real displacement of subcortical markers is signifi-
cantly larger than that of deep markers, P � .01), and the
relative rate of compensation accuracy might be determined
by the distance from the marker to the brain surface, which
serves as the BC to drive this model.

There were several limitations for this study. First, the spa-
tial resolution of the preoperative and intraoperative images
and the fiducial-based registration error will inevitably bias
our validation results. Because these kinds of errors may not be
in the same spatial direction as the error caused by brain shift,
they cannot be simply added up. Therefore, it is difficult for us
to evaluate how much and to what extent these biases will
influence the validation result. Second, the linear elastic model
driven by surface information mainly simulates the brain de-
formation induced by physical factors (such as gravity effect,
CSF loss, and so forth). For the deformation caused by surgical
manipulations, such as tissue resection and retraction, volume
methods (eg, intraoperative sonography) based on NRR may
be more favorable. For other types of deformation that are caused
by pathophysiologic factors such as tumor growth, edema
around lesions, administration of dehydration drugs and anes-
thesia, and so forth, there has been no perfect solution so far.
Third, because the brain deformation patterns are complex,
which may occur not only on the surface but also in deep brain
structures, the principal direction of displacement does not al-
ways correspond with the direction of gravity. Therefore, the sim-
ple computational algorithms that use limited intraoperative in-
formation (eg, brain-surface shift) will not always accurately
predict the whole-brain deformation. Finally, recovery of soft-
tissue deformation depends on a reliable biomechanical model.
The model we used in this study, though allowing local parameter
control, is still a homogeneous model. Hence, the development of
a heterogeneous biomechanical model, more specifically the de-
velopment of a multimaterial mesh-generation algorithm and
the estimation of the material properties, will be helpful to im-
prove our framework in future studies.

Conclusions
In this article, a biomechanical model was used to compensate
for the intraoperative brain shift in neuronavigation. Due to
some effective modifications, this linear elastic model is likely
to be a reliable, efficient, and convenient approach to correct
the brain shift error during image-guided surgery.

Although our 3DIMAGE system has been integrated into a
self-developed traditional navigation system, there is still
much work needed to improve the accuracy and feasibility of
this technology before it could be applied in the operating
room.
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