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ABSTRACT 

In response to the dramatic decline of eastern oyster (Crassostrea virginica) 
populations in the Chesapeake Bay, introduction of the non-native Asian oyster 
Crassostrea ariakensis has been proposed. Currently several hatchery stocks of C. 
ariakensis, derived from a few wild populations along the coast of Japan and China, are 
being maintained in U.S. hatcheries in the Pacific northwest and on the east coast. In 
recent years, as the risks of the proposed introduction are being assessed, these hatchery 
animals have been widely used for various research or comparative studies on this 
species' ecology, biology and disease tolerance, although to date only reproductively 
sterile triploid individuals have been used for field trials. Genetic concerns have been 
raised regarding the proposed introduction. There is a need to assess genetic variation 
within and among native C. ariakensis, determine genetic relationships between existing 
U.S. hatchery stocks and native populations, and monitor the amount of genetic variation 
in hatchery populations. In addition, recent studies have revealed that it is very difficult, 
and indeed often impossible to discriminate among the many species of Crassostrea 
sympatric with C. ariakensis using morphological features. In fact, a newly described 
species, Crassostrea hongkongensis, is commonly found to coexist with C. ariakensis in 
southern China, and, as determined by molecular genetic identification of samples 
collected for broodstocks and research purposes, these two species are often confused. 

The genetic research presented here includes a comprehensive study of genetic 
variability within and among the hatchery stocks in the U.S. and wild populations in Asia 
using a novel set of microsatellite markers developed specifically for C. ariakensis. In 
addition, a laboratory hybridization trial was conducted for C. ariakensis and C. 
hongkongensis, as there are questions regarding the species status of these two taxa. 

In the hybridization trials, semi gametic incompatibility was observed between C. 
ariakensis and C. hongkongesis, indicating a partial reproductive isolation between these 
two taxa. In addition, an order of magnitude higher genetic divergence was observed 
between these two taxa compared with that found within each taxon based on analyses 
with three microsatellite markers. The results from the molecular marker analyses, 
coupled with additional genetic data indicating low transferability of C. ariakensis 
microsatellite loci to C. hongkongensis and detection of no natural hybrids in samples 
comprised of thousands of oysters, were consistent with previous sequence phylogeny 
studies and support the distinct species status of C. ariakensis and C. hongkongesis. 

Analysis of C. ariakensis wild populations from the coast of Japan, South Korea, 
and China based on polymorphisms at eight microsatellite loci found a small but 
significant genetic differentiation among them, which could be characterized by a genetic 
pattern of isolation by distance. Eight genetically differentiated populations were further 
identified across the distribution range of C. ariakensis confirmed to date. 

Genetic differentiation among five hatchery stocks in the U.S. was five-fold larger 
than that observed among wild populations in Asia. In addition, significant reduction in 
genetic diversity compared to wild source populations was observed in these five 
hatchery stocks, indicating a genetic bottleneck in the stocks. Two mature stocks (TUI 
and WCA), isolated from their wild source population over 30 yrs, showed greater 
reduction in allelic diversity (60%) and a significant decrease in heterozygosities ( ll% -

XIV 



26%) compared to their wild source population, whereas three recent stocks (NCA, 
SCA99 and SCAOO) showed less severe allelic diversity reduction (18%- 30%) and non
significant change in levels of heterozygosities. These microsatellite markers have proven 
useful for genetically tracking the origins of C. ariakensis that might be introduced to 
Chesapeake Bay, particularly for animals originating from hatchery stocks. 
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PREFACE: 

RATIONALE FOR AND OBJECTIVES OF POPULATION GENETIC STUDIES 

ON CRASSOSTREA ARIAKENSIS 



RATIONALE 

Crassostrea ariakensis is an Asian oyster species whose name 'Suminoegaki' in 

Japanese refers to the Suminoe River, where the aquaculture of this species has a long 

history (Langdon and Robinson 1996). In the 1970s, it was accidentally introduced to the 

west coast of the United States along with a shipment of Crassostrea gigas and 

Crassostrea sikamea seed oysters (Breese and Malouf 1977). Research on this species 

has been limited, and it did not draw much attention from American scientists and 

policymakers until the 1990s, when an alternative to the native oyster species 

Crassostrea virginica found along the US east coast was sought to help restore the oyster 

industry and improve water quality in the Chesapeake Bay. 

Populations of the native oyster C. virginica in the Chesapeake Bay have declined 

dramatically over the last century, due to long-term over-fishing, disease, and habitat 

degradation (NRC 2004). In the early 1990s there was a growing interest in the 

possibility of introducing a non-native oyster to the region (Mann et al. 1991 ), and in 

1995 the Virginia House of Delegates passed joint resolution NO. 450, which requested 

that the Virginia Institute of Marine Science (VIMS) " ... develop a strategic plan for 

molluscan shellfish research and begin the process of seeking the necessary approvals for 

in-water testing of non-native oyster species ... " Initial efforts focused on the Pacific 

oyster C. gigas, which has been introduced around the world. Early trials in the region 

with this species were not promising, however, and focus shifted to C. ariakensis (Calvo 

et al. 1999, 2001), leading to a call for more research on the species, including studies to 
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explore the "ecological, genetic and disease relations of the species in its natural range 

and environment" (ICES 2005). 

Though various studies have been conducted in the U.S. on the disease tolerance, 

biology and ecology of C. ariakensis using diploid and triploid animals from the 

hatcheries (Calvo et al. 200 I, Grabowski et al. 2004, Bishop and Hooper 2005, Hudson et 

al. 2005, Moss et al. 2006, Alexander et al. 2008, Kingsley-Smith and Luckenbach 2008, 

McGhee et al. 2008, Paynter et al. 2008, Tamburri et al. 2008), little work has been done 

on the genetic variability and genetic population structure within and among natural 

populations in Asia and hatchery stocks in the U.S. This data could provide important 

information for stock management and on the genetic background of those animals being 

used in research. In addition, notorious problems with oyster morphological plasticity and 

nomenclature has complicated species designations and the identification of C. ariakensis 

in its native region (Zhou and Allen 2003, Boudry et al. 2003, Reece et al. 2008, Cordes 

et al. 2008) and may also affect the sampling for intra-specific genetic studies on C. 

ariakensis. Specifically, a new species, Crassostrea hongkongensis (Lam and Morton 

2003), was described quite recently and reported to be sympatric with C. ariakensis in 

southern China (Wang et al. 2004, Zhang et al. 2005, Reece et al. 2008). There is little 

information on differences in biology, physiology or ecology between these two taxa 

except for several mitochondrial gene sequence phylogenies which support the two 

distinct species hypothesis (Lam and Morton 2003, Wang et al. 2004, Reece et al. 2008). 

In 1999, C. hongkongensis was mistakenly imported into U.S. along with C. ariakensis 

for propagation of hatchery broodstocks for C. ariakensis, though most F, progeny were 

found to be C. ariakensis (Zhang et al. 2005). In addition to the reported gene-based 
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sequence phylogenies, laboratory hybridization studies would provide additional 

evidence of species distinctness, given that speciation is a complex process and there can 

be variation among genes in their reflection of evolutionary processes and speciation. 

My doctoral research sought to first study the taxonomic relationship between C. 

ariakensis and C. hongkongensis from both a reproductive isolation aspect and from a 

population genetic perspective. Subsequently, oysters confirmed to be true C. ariakensis 

were chosen for the intra-species population genetic studies, and a set of highly 

polymorphic microsatellite markers was developed specifically for this species as a 

genetic tool. These markers were used to characterize the genetic structure, diversity, and 

gene flow among C. ariakensis populations in their native region, and to compare natural 

populations in Asia with hatchery stocks introduced into the U.S. This work provides 

genetic information critical to: I) assess the feasibility of a C. ariakensis introduction to 

the Chesapeake Bay region, 2) minimize the genetic bottlenecking of introduced stocks, 

and 3) provides genetic tools for long-term tracking and management of any C. 

ariakensis introductions. 
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OBJECTIVES 

I. Develop a suite of microsatellite markers for population genetic studies. 

a) Optimize primers and PCR parameters for successful amplification of 

microsatellite regions. 

b) Test the markers on family crosses to identify null allele problems. 

c) Redesign primers and retest as necessary to minimize null allele problems 

with these markers. 

2. Study the taxonomic relationship between C. ariakensis and the newly described 

species C. hongkongensis (Lam and Morton 2003) 

a) Determine the ability of C. ariakensis microsatellite primers to amplify 

homologous loci in C. hongkongensis. 

b) Do reciprocal hybridization studies between these two species, and evaluate 

fertilization and viability of hybrids. 

3. Use the microsatellite markers to study genetic variability among wild populations of 

C. ariakensis in its native region. 

a) Provide basic genetic information on wild C. ariakensis for future reference 

and for introduction activity. 

b) Investigate the evolutionary history and gene flow among those populations. 

4. Assess the genetic make-up of C. ariakensis hatchery stocks in the U.S. using the 

developed microsatellite markers. 

a) Look at the genetic variation within and among US hatchery stocks. 
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b) Compare hatchery stocks to native populations and specifically to source 

populations, where possible. 

5. Assess the ability of these markers to discriminate among different populations and 

stocks of C. ariakensis and identify the source of individuals by assignment testing. 
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CHAPTER 1 

MICROSATELLITE MARKER DEVELOPMENT FOR C. ARIAKENSIS 
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INTRODUCTION 

Microsatellites are simple sequence repeat regions (SSRs) in genomic DNA. 

Since microsatellite sequences were first found in eukaryotic genomes 20 years ago 

(Tautz and Renz 1984, Tautz 1989), they have been used as powerful genetic markers for 

disease studies, genome mapping, population genetics studies, and for examination of 

patterns of evolution and mutations in the repeat regions themselves (Jarne and Lagoda 

1996, Chambers and MacA voy 2000). In general, microsatellite loci are located in 

noncoding regions, although some microsatellite markers have been found associated 

with coding regions (e.g. EST -linked), typically in introns or flanking untranslated 

regions (Vasemagi et al. 2005, Carlsson and Reece 2007, Dreyer et al. 2007). 

Microsatellites are normally considered to be evolutionarily neutral DNA markers; 

however, various functions of certain SSRs have been identified, such as chromatin 

organization, regulation of DNA metabolic processes, and regulation of gene activity 

(reviewed by Li et at. 2002). Microsatellite mutation rates are generally high ( 1 o-z- 1 o-6 

events per locus per generation, Li et at. 2002) and often occur as changes in the number 

of repeat units. Putative mutation mechanisms include slippage during DNA replication 

and recombination between DNA strands (reviewed by Li et at. 2002). 

With several advantages compared to other common molecular markers (Liu and 

Cordes 2004), microsatellite markers have been utilized in many marine fish population 

genetic studies, parentage and kinship analyses, and genome mapping efforts (reviewed 

by O'Connell and Wright 1997, Liu and Cordes 2004). Since the first attempt to clone 

and study satellite DNA in C. gigas (Clabby et at. 1996), microsatellite markers have 
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been developed for a number of commercially important Crassostrea species over the 

past ten years. These markers have been successfully applied to examine the geographic 

structure of wild oyster populations (Huvet et al. 2000b, Launey et al. 2002, Rose et al. 

2006), perform parentage analyses (Huvet et al. 200 l, Boudry et al. 2002), study 

inbreeding effects (Bierne et al. 1998, Yu and Guo 2005) and for linkage mapping (Yu 

and Guo 2003, Hubert and Hedgecock 2004). Microsatellites developed for various 

Crassostrea species, including C. gigas (Huvet et al. 2000a, Li et al. 2003, Sekino et al. 

2003, Hedgecock et al. 2004) and C. virginica (Brown et al. 2000, Reece et al. 2004, 

Carlsson et al. 2006, Rose et al. 2006), are of limited utility for genetic studies in C. 

ariakensis due to low cross-species transferability (Hedgecock et al 2004). Specifically, 

microsatellite markers developed for C. gigas showed extensive heterozygote deficiency 

when they were applied to C. ariakensis populations (Zhang et al. 2005), which 

confounded the detection of finer population genetic structure in wild populations and 

founder effects in hatchery stocks. In this chapter, results of developing novel 

microsatellite primer pairs specifically for C. ariakensis and the performance of these 

markers in C. ariakensis family crosses and their transferability to a sister taxon C. 

hongkongensis (Reece et al. 2008) are reported. This work was recently published in 

Xiao et al. 2008. 
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MATERIALS AND METHODS 

Microsatellite-enriched library construction, primer design, testing and optimizing 

Four partial C. ariakensis genomic DNA libraries enriched for microsatellite 

sequences containing AAG, AAAG, AAAT, and TAGA repeat motifs were constructed 

by Genetic Identification Services (GIS, Chatsworth, CA) following the methods 

described in Jones et al. (2002). Resulting recombinant clones were selected at random 

and sequenced on an ABI 377 automated sequencer (Applied Biosystems, Foster City, 

CA) using ABI Prism® Taq dye terminator cycle sequencing methodology. Initial 

polymerase chain reaction (PCR) primers were designed for flanking regions of 

microsatellite-containing sequences using DesignerPCR vl.03 (Research Genetics Inc., 

Huntsville, AL). Primers were tested and PCR conditions optimized using whole 

genomic DNA extracted from a panel of eight C. ariakensis from Beihai, Guangxi 

Province, China, using the DNeasy Kit (Qiagen Inc., Valencia, CA). Loci were tested for 

null alleles by genotyping two parents and ten offspring for each of eight C. ariakensis 

full-sibling family crosses (96 individuals total) produced by the Aquaculture Genetics 

and Breeding Technology Center (ABC) hatchery at the Virginia Institute of Marine 

Science (VIMS) using Japanese-derived and northern Chinese broodstocks. Primers were 

redesigned for loci exhibiting null alleles, stutter bands, or secondary amplification 

products using MacVector®8.1.2 (MacVector Inc., Cary, NC). 

Loci were amplified in 5 ul reactions containing 0.6 ug/ul BSA, l X PCR buffer, 

0.2 mM dNTP mixture, 1.5 mM MgCI2, 0.05 U/ul Taq polymerase (Invitrogen, Carlsbad, 

CA), 0.2-0.5 ul template DNA, 0.025 pmol/ul forward primer with a T3 tail (5'-
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AATTAACCCTCACTAAAGGG-3') at the 5' end, O.I pmol/ul reverse primer, and 0.1 

pmol/ul universal T3 tailed primer labeled with one of four fluorescent dyes (Table I.I) 

at the 5' end. All primers were synthesized by Invitrogen. PCR cycling was performed on 

MJ Research thermocyclers (BioRad Inc., Hercules, CA) with the following program: 

initial denaturation at 95°C for 4 min, then 30 cycles of denaturation at 94 oc for I min, 

annealing for I min (see Table I.I for temperature), extension at 72°C for 2 min, and a 

final extension at 72°C for 20 min. Products were visualized on an ABI 3I30 Genetic 

Analyzer (Applied Biosystems) using 36cm capillary arrays and POP7TM polymer with 

GeneScan TM 500 uzrM Size Standard (Applied Biosystems). Image analysis and allele 

scoring were done using GeneMarker® (SoftGenetics, LLC State College, PA). 

Estimates of observed (H0 ) and expected (HE) heterozygosities and deviations from 

Hardy-Weinberg Equilibrium (HWE) were calculated using GENEPOP 3.I b (Raymond 

and Rousset I995). Tests for genotypic disequilibrium were calculated by GENETIX 

(Belkhir et al. 1996-2004) with 10,000 permutations based on 32 individuals from a wild 

population in theY ell ow River basin, Shandong Province, China. 

Microsatellite allele sequencing 

Problems such as null alleles and amplification of multiple loci were detected 

when nine primer pairs (CarS, CarlO, Car£12, CarG1, CarH7, Carl30, Car112, 

Car 115, CarG 122) were used to amplify the eight family crosses. It was believed that 

these problems could be overcome by primer redesign (Reece et al. 2004). Consequently, 

alleles amplified by these nine primer pairs were cloned and sequenced in order to find a 

conservative flanking region for primer redesign. Standard PCR amplification without 
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fluorescence-labeled T3 universal primer was conducted for each locus with DNA 

isolated from two to four individual C. ariakensis oysters. PCR was conducted using the 

same cycling protocols and reagent concentrations as described above for amplification 

of fluorescence labeled products, except that the primer concentrations were 0.1 pmol/ul 

for both forward and reverse primers, and no universal T3 tailed primer was used. 

Products were separated on 3% agarose gels and recovered from the gels using 

QIAquick® Gel Extraction Kits (Qiagen, Inc.). Products were then cloned into the 

pCR®4-TOPO® vectors, and transformed into competent E. coli cells using the TOPO® 

TA Cloning Kit (Invitrogen) following the manufacturer's protocol. Bacterial clones 

were screened for inserts by PCR amplification using the M 13 vector primers. Products 

with the inserts were cleaned using shrimp alkaline phosphatase (SAP) and exonuclease I 

(Exo I; Amersham Biosciences, Piscataway, NJ), and then sequenced bi-directionally 

with the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems). Each of 

the 5 ul sequencing reactions contained 0.875 ul sequencing buffer, 0.25 ul BigDye 

reagent and 0.32 ul of 100 pmol/ul forward or reverse M 13 primer. Sequencing reaction 

products were separated on an ABI 3130 after precipitation with the ethanol/sodium 

acetate method (Applied Biosystems) and were re-suspended in Hi-Di formamide. 

Sequences from each amplicon were aligned with the original sequence obtained from the 

library using the ClustaiW algorithm in the software package MacYector® 8.1.2 with the 

default parameters, and adjusted manually by eye. 
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Cross amplification of developed microsatellite markers 

Cross amplification efficiency of these C. ariakensis microsatellite markers in C. 

hongkongensis was tested using 24 individuals from Beihai, Guangxi Province, China 

(B_Ch) and 44 individuals from Yamen River, Zhuhai, Guangdong Province, China 

(C_Ch) (both collected in 1999), under the same PCR conditions as C. ariakensis 

amplifications. These 68 individuals were originally sampled as C. ariakensis I C. 

rivularis but later confirmed to be C. hongkongensis in a previous study (Zhang et al. 

2005, also see Chapter 2). 
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RESULTS 

Optimized microsatellite markers for C. ariakensis 

Microsatellite-containing sequences were found in 64 of 100 clones screened. 

Primers were designed and tested for 341oci after eliminating duplicate and high GC 

content sequences, and those with prohibitively short flanking regions. Tests on the panel 

and family crosses produced 11 polymorphic microsatellite markers (Table 1.1 ). 

Genotyping of the eight families revealed multiple null alleles or binding at multiple sites 

using initial primer pairs at nine of the 11 loci (see the section Polymorphisms detected in 

the flanking regions of microsatellite loci for details). Segregation in the families 

conformed to expected Mendelian patterns at each locus after primer redesign with the 

following exceptions: Carl 1-70, Carl30-08, CarH7-ca and Car£12-0a (Table 1.1). Null 

alleles at these loci ranged from one to three. Overall, two to 36 alleles per locus were 

observed (Table 1.1 ), and average H0 and He in the wild population were 0.743 (±0.279) 

and 0.783 (±0.218), respectively. After Bonferroni correction (Rice 1989), only one of 55 

pairwise tests of linkage disequilibrium (Carl 1 5-aO vs. CarG4-60) and two of 11 tests 

for deviations from HWE (Car5-0a and CarH7-ca) were found to be significant in the 

wild population. Deviations from HWE may be due to additional null alleles observed in 

the wild population, but not found during the family screens, or sampling error associated 

with small sample sizes. 
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Polymorphisms detected in the flanking regions of microsatellite loci 

Sequencing of PCR products produced by nine primer pairs detected a total of 69 

different alleles from 15 loci. Fourteen of them are listed in Table 1.2, while locus 

CarE/2 cis not listed since only one allele was amplified and sequenced. The sequencing 

confirmed that four of the initially designed primer pairs (CarS, CarlO, CarE/2 and 

CarG 1) were amplifying two or three different loci, which was initially indicated by 

allele segregation analysis in the eight family crosses. Another primer pair (CarH7) was 

found to bind multiple loci by sequencing analysis, though this was not detected in the 

segregation analysis. Redesigned primers were able to successfully bind to a single locus 

for four of these loci (CarE/2-0a, CarGJ b-Ob, CarH7-ca and Car5-0a), but not for the 

others. Within the 2370 bp of flanking regions sequenced, 17 indels were detected with 

approximately I indel every I 00 bp and an average size of 7 bp. Of these indels, 94% 

were less than 10 bp in length, but a large deletion of 44 bp was observed at locus 

CarG 1-a. A large number (86) of single nucleotide substitutions were also observed in 

these flanking regions with about 3.6 substitutions per 100 bp sequenced. With each indel 

weighted the same as a single substitution, the percentages of polymorphic positions in 

these flanking regions ranged from 0.0%- I5.6% with an overall average polymorphism 

of 4.3%. 

In general, sequencing of products by these nine primer pairs resulted in detection 

of 15 different loci and high numbers of polymorphisms at microsatellite flanking regions 

(4.3% ). Redesigned primers were able to successfully bind to a single locus for 4loci 

(CarE/2-0a, CarGlb-Ob, CarH7-ca and Car5-0a) and reduce the null alleles detected in 

families at another five loci (Car 11-70, Car 119-6a, Car 115-aO, CarG4-60 and Car 130-
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08) with or without sequencing analysis. These nine loci, along with three loci using the 

originally designed primers, were optimized and developed for amplification of DNA 

from C. ariakensis samples. 

Transferability of C. ariakensis markers to C. hongkongensis 

Three of these eleven markers were positively amplified in most (94.1% - 100%) 

of the 68 C. hongkongensis individuals from two samples (B_Ch and C_Ch) tested 

(Table 1.3). This low transferability (27%) of C. ariakensis markers to C. hongkongensis 

probably reflects the high levels of genomic heterogeneity often seen among Crassostrea 

species (Hedgecock et al. 2004) and supports the two species hypothesis (Lam and 

Morton 2003, Wang et al. 2004, Reece et al. 2008). A total of 32 alleles were amplified at 

these three loci in two C. hongkongensis populations, and these alleles had similar sizes 

to those amplified in C. ariakensis. The allele frequencies were in HWE in both 

populations at all three amplified loci after Bonferroni correction (a = 0.01, K = 2). 
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DISCUSSION 

Apparently, the relatively low efficiency of this microsatellite development 

process was at least partially due to the high level of polymorphism (4.3%) found in the 

flanking region sequences, as shown by the sequence analysis of multiple alleles at 15 

loci. A similar proportion of polymorphism (4.5%) was observed when C. virginica 

microsatellite alleles were sequenced (Reece et al. 2004). Hedgecock et al. (2004) 

indicated a high prevalence ( 1.2%) of SNPs in primer-binding regions of C. gigas 

microsatellite loci, and this could be an underestimation since only one SNP was assumed 

for each null allele. The results of the present study support the previous observations that 

intra-species genome sequence polymorphism is a common phenomenon in marine 

bivalves. 

Another factor that affected the efficiency of microsatellite marker development 

in this study was duplicated DNA sequences. Amplification of multiple loci by each of 

four primer pairs (CarlO, CarS, CarE/2, CarGI) was demonstrated by the allele 

segregation observed in family crosses, where more than two alleles were amplified for 

one individual parent and there was independent segregation in progeny. Sequence 

analysis confirmed that these four primer pairs were indeed binding to more than one 

locus, and indicated multiple binding at another locus (CarH7), a phenomenon that was 

not detected in the segregation analysis. The overall proportion of multiple loci amplified 

by the original 34 primer pairs was approximately 26.5% (Xiao et al. unpublished data), 

and this percentage could be higher since some duplicated sequences had been eliminated 

before primer design (see RESULTS). Loci amplified by the same primer pair were very 
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likely from duplicated DNA sequences (Zhang and Rosenberg 2007) since the chance of 

random loci being amplified by the same primer pair is quite low (8.27x 10-25
) for primers 

20 bp in length (the average length of primers used in this study). Gene and genome 

duplications are widely reported in human, fly and yeast genomes (Sankoff 200 I), and 

recently duplicated microsatellite loci have been used to study the evolutionary history of 

duplicated genes or genomes in a variety of organisms (David et at. 2003, Zhang and 

Rosenberg 2003). Reports of duplicated microsatellite loci in oysters are rare, and for this 

study most primers that amplified multiple loci were eliminated during the marker 

development process. However, Gaffney (2002) found that many microsatellites, 

particularly those with tri- and tetra-nucleotide motifs, were embedded in or associated 

with repetitive flanking regions after analyzing a 0.7 Mb genomic sequence database 

from C. virginica and a similar sized genomic region of other bivalve species. DNA 

duplication and the polymorphisms in the flanking regions illustrate not only the 

difficulties associated with microsatellite development, but also the complexity and 

variance within the genome sequences of marine bivalves. 

In summary, eleven novel microsatellite markers were developed from this study 

for C. ariakensis and optimized to control for the presence of null alleles, making them 

available to study genetic variability among and between wild and hatchery populations 

of C. ariakensis (Chapter 3 and Chapter 4). In addition, three of the markers should be 

applicable to population genetic studies in C. hongkongensis, or for further studies on 

inter-species genetic divergence between C. ariakensis and C. hongkongensis (Chapter 

2). 
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Table 1.1 Primer sequences, repeat motifs, annealing temperatures (Ta), and locus characteristics for 11 microsatellite markers 

developed for Crassostrea ariakensis. Significant departures of observed heterozygosity (Ho) from Hardy-Weinberg Equilibrium after 

Bonferroni correction are shown in boldface. 1 GenBank accession numbers EU241318-EU241328. 2 Based on analyses of two parents 

and ten offspring from eight family crosses (96 individuals total). 3 Allele sizes including primers and the extra 20 bp of the universal 

T3 primer. 4 Based on 32 individuals from a wild population. 
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Ta No. null Allele size No. 
Locus 1 Label Primer seguence Repeat motif (OC) alleles 2 range (bp) 2' 

3
' 
4 alleles 2'

4 H4 e. Ho4 p4 

CarGl 10 NED F: 5'-AACTCTCTGTCCACTTCTCTG-'3 (TTC)" 56 0 263-287 10 0.803 0.875 0.935 
R: 5'-ACACGCCATCAACACTATT-'3 

Carl 1-70 FAM F: 5'-ACAAGCCAAGGGGAATAC-3' (AGAT)" 53 I 127-216 17 0.906 1.000 0.783 
R: 5'-GAAACGGACGACTGAAAT -'3 

CarG4-60 VIC F: 5'-CGGAGAATTTATCCCGAATTTA-'3 (TCT)" 53 0 130-195 26 0.941 0.936 0.360 
R: 5'-CATCCAGTTTAAGCCTACAACT-'3 

Carl 19-6a PET F: 5'-ACCAGTGTTCCGAAAAATCT -'3 (TATC)" 52 0 104-190 14 0.865 0.875 0.448 
R: 5'-GTTT ACGGAGCCCCATGTT A-'3 

CarGl-Ob NED F: 5'-TGGCGAGAGT AAGTCATCA-'3 (CTT)" 52 0 187-214 14 0.694 0.688 0.666 
R: 5'-GAAA TTGTTTGGT AACTT AGTTC-'3 

Carl 15-aO PET F: 5'-GAGGGACAATTGGCTTT ACG-'3 (TATCMTA)" 56 0 166-266 22 0.875 0.875 0.485 
R: 5'-ACGCTT AGTCTTGGTCCAT AG-'3 

CarG122 FAM F: 5'-TACCTCTICCCTTCCTAACTG-'3 (CCT)"G(TTC)" 56 0 262-265 2 0.305 0.313 1.000 
R: 5'-GAAACCACTCCTGTTGT AAAAT -'3 

Car/30-08 VIC F: 5'-AGACATGAAGCATGAGGTT AT A-'3 (GATA)" 53 2 156-219 21 0.920 0.906 0.111 
R: 5'-CTGGAAGAAATAGGGTTICA-'3 

Car5-0a NED F: 5'-GT AACCTTTTTITCGTCTCAAG-'3 (TAGA)" 52 0 131-293 36 0.952 0.807 0.000 
R: 5'-CCTCTCAGGCACACCTCAAT-'3 

CarH7-ca PET F: 5'-TCCAGGGTTTATCTACATGTG-'3 (ATTT)" 58 2-3 210-222 4 0.438 0.111 0.001 
R: 5'-CTGTGACACTGGAGTCTGCTG-'3 

Car£12-0a VIC F: 5'-GGTAAACTTGACCAGCATCTGA-'3 (TAGA)" 54 3 226-364 18 0.914 0.786 0.008 
R: 5'-CTGGCGAAACGTTGAATAG-'3 
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Table 1.2 Polymorphisms in the flanking regions of 14 C. ariakensis microsatellite loci identified by sequencing alleles amplified 

by 9 primer pairs. 
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Flanking 
region length 

#of alleles sequenced #of % 
Locus sequenced (bp) # of indels (length) substitutions polymorphism Primers 
Car5-0a s 39 I (1 bp) I S.I CarS F, CarS R 
Car5-b 3 38 I (8 bp) 0 2.6 CarS F, CarS R 
CarlO-a 7 IS8 2 (1 of8 bp; I of 13 bp) II 8.2 Carl 0 F, Car 10 R 
Car lO-b s I64 I (8 bp) IO 6.7 Carl 0 F, Car 10 R 
Carl 12 8 I73 2 (1 of 3 bp; I of 2 bp) II 7.5 Carli2 F, Carli2 R 
Carl 15-aO 4 I6I I (2 bp) I 1.2 Car IIS F, Carl IS R 
Carl30-08 6 6S I (3) 2 4.6 Car130 F, Carl30 R 
Car£12-0a 8 64 2 (1 of 9 bp; I of I bp) 8 IS.6 CarEI2 F, CarEI2 R 
Car£12-b 3 77 0 0 0.0 CarEI2 F, CarEI2 R 
CarGl-a 3 463 4 (1 of S bp; I of 3 bp; I of 7 bp; I of 44 bp) 9 2.8 CarG I F, CarG I R 
CarGl-Ob 4 I72 I (S bp) s 3.S CarG I F, CarG I R 
CarG122 4 ISO I (1 bp) I2 8.7 CarG I22 F, CarG I22 R 
CarH7-ca 4 324 0 I3 4.0 CarH7 F, CarH7 R 
CarH7-b 4 322 0 3 0.9 CarH7 F, CarH7 R 
Overall 68 2370 I7 86 4.3 
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Table 1.3 Cross amplification of eleven C. ariakensis microsatellite markers in 68 C. 

hongkongensis individuals from Beihai, China (B_Ch, n = 24) and Zhuhai, China (C_Ch, 

n = 44). NA indicates no amplifications were successful for these loci. H0 is observed 

heterozygosity, HE is expected heterozygosity and Pis probabilities of HWE tests. P 

values in bold are significant departure from HWE after Bonferroni correction (a = 0.0 I, 

K= 2). 
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#of Allele size H0 (B_Ch, HE (B_Ch, P (B_Ch, 
Locus 

alleles range (bp) C_Ch) C_Ch) C_Ch) 

CarGJ 10 NA 

Carll-70 NA 

CarG4-60 5 145- 164 0.286, 0.364 0.254, 0.483 1.000, 0.066 

Car/19-6a NA 

CarGI-Ob NA 

Carll5-a0 NA 

CarG122 3 253-262 0.292, 0.068 0.259, 0.066 1.000, 1.000 

Car/30-08 24 156- 234 0.682, 0.825 0.904, 0.916 0.008, 0.091 

Car5-0a NA 

CarH7-ca NA 

Car£12-0a NA 
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CHAPTER2 

HYBRIDIZATION AND GENETIC DIVERGENCE BETWEEN C. ARIAKENSIS 

AND C. HONGKONGENSIS 
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INTRODUCTION 

Nomenclature of C. ariakensis has followed a tortuous path that involves a history 

of confusion between use of the names C. ariakensis and C. rivularis in different 

countries (reviewed by Zhou and Allen 2003). Although the designation C. rivularis 

(Gould 1861) has precedence, C. ariakensis (Fujita 1913) has been widely used in Japan, 

and C. rivularis was synonymized with C. ariakensis by Torigoe ( 1981 ). The name C. 

rivularis was traditionally used in China, referring to the 'jin jiang' oyster in Chinese 

(Zhang and Lou 1956, Xu 1997), which means "close to river" oyster (Zhou and Allen 

2003). Local fishermen often discriminate between two types of 'jin jiang' oysters they 

are culturing based on slight differences in the color of adductor muscle, called 'red 

meat' and 'white meat' in Chinese (Guo et al. 1999, Zhou and Allen 2003, Wang et al. 

2004). 

Recently, Lam and Morton (2003) designated a new name- C. hongkongensis 

- for a type of cupped oyster popularly cultured by local farmers in Hong Kong and 

later found to coexist with C. ariakensis along the coast of southern China, from Fujian 

Province to the Guangdong and Guangxi provinces (Wang et al. 2004, Reece et al. 2008). 

Debates concerning these two species, including species designations, their genetic 

relationship, and their morphological and biological differences, are still ongoing (Lam 

and Morton 2003, Wang eta!. 2004, Reece eta!. 2008). 

Currently the name C. rivularis is being replaced by C. ariakensis and C. 

hongkongensis in China based on genetic sequences deposited in GenBank (Wang et al. 

2004). C. ariakensis now refers to the oyster species originally described in Ariake Bay, 
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southern Japan. Based on the monophylotype from this population and molecular data, 

additional natural populations of this species have been found along the coast of South 

Korea and northern and southern China (Wang et al. 2004, Zhang et al. 2005, Reece et al. 

2008, Wang et al. 2008a, Yoon et al. 2008). In contrast, the name C. hongkongensis 

refers to the species originally described from Hong Kong and later found along the coast 

of southern China (Lam and Morton 2003, Wang et al. 2004). 

In general, shell morphology and anatomy of sympatric Crassostrea species are 

often considered to be indistinguishable (Littlewood 1994, Hedgecock et al. 1999, 

Boudry et al. 2003, Lam and Morton 2003), although slight differences in anatomy have 

been reported between C. hongkongensis and C. ariakensis (Wang et al. 2004). Most 

classifications of C. hongkongensis have been based on gene sequence phylogenies 

(Boudry et al. 2003, Lam and Morton 2003, Wang et al. 2004, Reece et al. 2008). Little is 

known about the ecology, morphology and physiology of C. hongkongensis, or 

differences between this species and C. ariakensis. 

Given complex speciation processes and inter- and intra-species interactions, 

categorizing species separations using more than one approach may be more appropriate 

and convincing. Although several species concepts have been advanced, none of them 

adequately define this basic unit for all types of organisms found in nature (A vise 1994). 

Cracraft (1983) advanced the phylogenetic species concept (PSC) - a monophyletic 

group composed of "the smallest diagnosable cluster of individual organisms within 

which there is a parental pattern of ancestry and descent". Although it has been widely 

used in the last several decades, facilitated by popularization of automatic sequencing 

methods and the blossoming number of molecular markers, researchers still struggle with 
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how to harmonize gene trees with other hypotheses of organism speciation (A vise 1994). 

Discrepancies occur between gene trees and species trees, especially when using 

sequences from only one gene or locus to generate species phylogenies. In addition, trees 

generated from multicopy gene sequences might include some paralogous as well as 

orthologous copies, confusing any species hypotheses and emphasizing the need for 

caution when interpreting results from molecular phylogenetic analyses. Mayr's ( 1942) 

biological species concept (BSC)- that species are "groups of actually or potentially 

interbreeding natural populations which are reproductively isolated from such other 

groups"- is the most influential concept, and remains popular now. Confirming the 

species status of C. hongkongensis and C. ariakensis under a combination of these two 

species concepts may help clarify their taxonomic relationship. 

Although more and more people have been using DNA sequence-based 

phylogenies to distinguish closely related species, there are still many debates on the 

utility of sequence-based taxonomy. Phylogenetic trees of Crassostrea species are quite 

different using different genetic datasets, such as those generated based on COl (6 

Foighil et al. 1998, Boudry et al. 2003, Lam and Morton 2003, Wang et al. 2004, Reece 

et al. 2008), l6S, l8S, 28S rONA (Lapegue et al. 2002, Boudry et al. 2003, Lam and 

Morton 2003, Wang et al. 2004) and other nuclear DNA regions (L6pez-Fiores et al. 

2004, Reece et al. 2008). In addition, DNA based taxonomy may not agree with species 

designations based on investigations into reproductive isolation, as in the case of C. 

angulata and C. gigas. Studies of COl sequences and microsatellite markers clearly 

demonstrated genetic differences between these two taxa, although monophyly of the 

clades was not always observed, and the genetic distance between them is very low 
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compared to that observed between other Crassostrea species (6 Foighil et al. 1998, 

Boudry et al. 1998, Huvet et al. 2000b, Boudry et al. 2003, Reece et al. 2008). 

Nonetheless, a series of hybridization experiments showed no evidence of a reproductive 

barrier between these two taxa, and natural hybrids were found in a contact zone (Huvet 

et at. 200 l, 2002, 2004 ). In contrast, the genetic distances between C. ariakensis and C. 

hongkongensis are larger than those observed between C. gigas and C. angulata (Lam 

and Morton 2003), and to date no natural hybrids have been observed in contact zones 

(Zhang et al. 2005, Wang et al. 2008b, Reece et al. 2008). There was, however, no direct 

information on the reproductive isolation between C. ariakensis and C. hongkongensis 

before this study. Another drawback of sequence phylogenetic studies arises because they 

usually include a limited number of genes and survey a limited number of individuals. At 

present, three mitochondrial genes (COl, l6S, 28S) and only one nuclear region (ITS-I) 

have been used to distinguish C. ariakensis and C. hongkongensis (Boudry et al. 2003, 

Lam and Morton 2003, Wang et al. 2004, Reece et al. 2008). In Reece et al. (2008) ITS-I 

sequences of C. hongkongensis did not form a monophyletic clade, despite the relatively 

large number of individuals of several Asian Crassostrea species sequenced (Reece et al. 

2008). Clearly, a survey of more nuclear genes and more individuals would help to 

confirm these are separate species, given the high intra-specific nucleotide diversity in 

oysters (Hedgecock et al. 2004), different polymorphic levels at different genes, and the 

close relationship between C. ariakensis and C. hongkongensis as sister taxa (Reece et al. 

2008). 

In this study, laboratory hybridization experiments were conducted and the 

genetic differences among populations of C. ariakensis and C. hongkongensis were 
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compared using three newly developed microsatellite markers, in order to study the 

taxonomic status between these two species. 
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MATERIALS AND METHODS 

Samples 

Live oysters, presumably including both C. ariakensis (A) and C. hongkongensis 

(H), were brought back from Beihai, Guangxi Province in China in November 2006. 

They were held in a quarantine room at the VIMS Kauffman Center at 23 ppt salinity and 

l7°C until preparation for spawning, when the salinity was progressively decreased to 20 

ppt and the temperature increased to approximately 25°C. Dead and/or sacrificed oysters 

were identified to species using molecular markers (Cordes et al. 2008; also see 

Molecular identification of species below). Due to the low occurrence of C. ariakensis in 

this sample based on the initial species screening (around I% after screening 165 

individuals), a C. ariakensis sample (about 50 individuals) from the SCA hatchery 

broodstock (derived from sources in Beihai, Guangxi Province, southern China), which 

had been held and spawned at the ABC since 1999, served as the source for C. ariakensis 

parents used in these reciprocal hybridization experiments. 

Hybridization experiment 

Spawning Ripened oysters of each species were selected, dissected, and identified as 

either male or female through microscopy. The gonad was stripped into filtered seawater 

using a sterile knife. Four to ten females and males were stripped for each cross, with the 

exact number dependent upon the gamete quality and density. Those with highest gamete 

viability were selected for hybridizing. A piece of gill and/or adductor muscle tissue from 
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each oyster was preserved in I 00% EtOH for subsequent DNA extraction and species 

identification. 

Hybridization Sperm and oocyte solution from a single dam or sire were mixed in 

a rough final ratio of I: IO oocyte to sperm. A higher number of sperm was sometimes 

added in cases of low sperm viability. The mating scheme followed the diagram in Figure 

2.I, with four crosses using two male and two female C. ariakensis and C. hongkongensis 

(4 individuals total) and three replicates of each cross (total 12 treatments). Abbreviations 

for crosses are as follows: A= C. ariakensis, H = C. hongkongensis and females were 

listed first. Formation of the I sr and 2nd polar bodies was followed by microscopy to 

determine fertilization success. The fertilization ratio (F) was estimated for each cross 

based on the count of larvae that passed the 2nd polar stage at Day 2 divided by the total 

number of eggs used for each cross. 

Post-insemination culture Larvae were cultured in hung 5-gallon buckets and sieved 

approximately every two days by mesh screens with progressively increased sizes. All 

crosses were reared at 20 ppt salinity and 23- 26°C. Only live and normal growing 

larvae were saved for continued culturing. During each sieve, numbers of remaining 

larvae were estimated and shell length was measured for lO individuals per treatment. 

Larvae were fed with mixed algae food (cultured in Kauffman Center) daily. Survival 

rate (Rs) was estimated as a proportion of live larvae counts determined at every sieving 

compared to the initial number of larvae produced after fertilization. 
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Molecular identification of species 

Genetic markers were used in this study to confirm the species of individuals used 

for spawning, determine the hybrid status of larvae, and control for potential 

contaminations that had commonly occurred in previous hybridization experiments 

(Gaffney and Allen 1993). Parental oyster DNA was extracted from the preserved tissue 

using the Qiagen DNeasy Kit. The species of each individual was determined by ITS-I 

and COl PCR-RFLP analysis as described by Cordes et al. (2008). ITS-I and COl 

amplicons were digested with Hae III and Dde I enzymes, respectively, based on their 

ability to discriminate among Crassostrea species (Cordes et al. 2008). For the larvae, 

however, a different DNA extraction procedure, PCR reaction, and restriction enzyme 

were used due to the small amount of available DNA from each individual and the 

complicated process of identifying the hybrid status of individuals. A small volume (~2 

ml) of concentrated larval culture solution was sampled for each treatment and preserved 

in 100% EtOH. Individual larvae were then picked out using a 10 ul pipet under a 

dissecting microscope, and the whole genomic DNA was extracted using the Chelex 

method modified from Launey and Hedgecock (2001). Basically, an individual larva was 

transferred into a 1.5 ml centrifuge tube containing 60 ul 5% Chelex®IOO resin (Bio-Rad) 

and 3 ul proteinase K (Qiagen Inc.). After vortexing for several seconds, the mixture was 

incubated at 55°C for 2 hr and 100°C for 10 min. The solution was then centrifuged at 

300 R/min for 5 min, and the supernatant was used as DNA template. Two ul of template 

DNA were used for each reaction in a total volume of 15 ul to amplify the ITS-I region. 

PCR amplification of the ITS-I region followed the protocol in Cordes et al. (2008). 

Products were then electrophoresed on a 1.5% agarose gel at 90 v for approximately 30 
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min, and the positive amplifications were subjected to RFLP assays. Due to the high 

number of fragments in the ITS-I RFLP pattern of these hybrids, the commonly used 

enzyme Hae III (Cordes et al. 2008) was not suitable for hybrid larval identification in 

this study. Another restriction endonuclease Sau96 I (New England Biolabs® Inc., 

Ipswich, MA) was selected for the RFLP assay based on its clear and simple digestion 

patterns to distinguish C. ariakensis and C. hongkongensis and its ability to clearly 

discriminate hybrids (J.F. Cordes, personal communication). Restriction digestions were 

conducted following the manufacturer's protocol. The digested fragments were separated 

on a 3% agarose gel and visualized under UV light after ethidium bromide staining. The 

RFLP pattern of hybrid larvae was not the simple combination of bands from parental 

species as expected. Extra bands were observed in hybrids (Figure 2.5), which is most 

likely from the heteroduplex DNA molecules formed during PCR reaction (Camara et al. 

2008). 

Microsatellite amplifications 

Samples from sixteen wild populations of C. ariakensis from various locations of 

Japan, South Korea and China (see Chapter 3 for details) and two populations of C. 

hongkongensis from Yamen River, Zhuhai, Guangdong Province (C_Ch) and Beihai, 

Guangxi Province (B_Ch), China were amplified using three microsatellite markers 

(CarG4-60, CarG/22 and Car/30-08) following the protocol described in Chapter l. The 

whole genotype dataset, which included 605 individuals of C. ariakensis and 68 C. 

hongkongensis, was input into the program GENETIX (Belkhir et al. 1996-2004) to 

estimate genetic differentiations (F5r, Weir and Cockerham 1984) among populations and 
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conduct the FCA analyses. A neighbor-joining (NJ) tree was also constructed to visualize 

the genetic differentiations using the software package PHYLIP 3.67 (Felsenstein 1989) 

based on Cavalli-Sforza & Edwards' (1967) chord distance (DC£). Robustness of each 

node was evaluated by bootstrapping over alleles with 10,000 iterations. 
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RESULTS 

Two hybridization trials, designated as "Spawn l" and "Spawn 2", were done 

during the periods of June 12, 2007- July 6, 2007 and August 14, 2007- September 3, 

2007, respectively, with six replicates for each cross and a total of 24 treatments. 

Unfortunately, no larvae from either pure or hybrid crosses survived to spat stage. 

Fertilization success and growth in the early developmental stages, however, were 

recorded for each cross in order to find any evidence of differential reproductive success 

between these two species and their hybrids. Because of contamination found in 

treatments AA6 and HA6 from Spawn 2 (Table 2.1, see below for details), this replicate 

was excluded from all the analyses on fertilization, survival and growth rates. 

Fertilization ratios 

Fertilization ratios for all 24 treatments are shown in Figure 2.2. Mean values 

were highly variable both among the four types of crosses and between spawns, with 

Spawn 2 having a significantly lower fertilization success (P = 0.004, nested ANOV A) 

for the HA and HH crosses compared to that observed in Spawn l. The two pure AA 

crosses (ranged from 83.0% - 98.2%) had relatively higher fertilization percentages 

compared to the HH and hybrid crosses. Percent fertilization success for the other hybrid 

(HA) crosses (mean of61.8±13.0% for Spawn 1, 14.9±1.3% for Spawn 2) did not differ 

significantly from the pure HH crosses (60.5±25.1% for Spawn I, 32.8± 19.4% for Spawn 

2) for both spawn trials (ANOV A P = 0.94 and 0.16, respectively). Five of the six 

replicates at the AH crosses showed zero fertilization, and the only live larva found in 
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sub-samples from Spawn 2 exhibited extremely retarded development (four-cell stage at 

Day 2) and did not survive beyond this point. 

Survival 

As described earlier, no larvae survived to the eye-spot stage, even in the control 

groups (AA and HH). As shown in Figure 2.3, most animals from both trials (96.5% -

100% in Spawn 1 and 92.8%- 100% in Spawn 2) died within three weeks. However, 

Spawn 2 had relatively lower mortalities (mean ranges 46.5%- 65.9%) at Day 7 than 

Spawn I (72.2%- 93.2% ). In Spawn I, the AA crosses had the best survival rates, 

followed by HA and HH; while in Spawn 2, the HH crosses performed best, and the 

hybrid HA crosses showed lower survival than AA before Day 7, but performed better 

after that point. AH crosses did not produce any viable larvae due to unsuccessful 

fertilizations. 

Growth 

Unfertilized eggs of C. ariakensis and C. hongkongensis were both approximately 

50 urn in diameter, and all larvae aborted development before the eye-spot stage. Some 

larvae in Spawn I passed the D-hinged stage and developed into veliger larvae, but 

almost none did so in Spawn 2. Figure 2.4 shows quite similar overall growth patterns 

among the three surviving crosses (AA, HA and HH). In both trials, larvae from the AA 

crosses had the largest sizes, followed by HA and HH. However, in Spawn 1, larvae 

demonstrated larger size differences across the three groups, where HH larvae did not 

show substantial growth after Day 7 (60- 85 urn at Day 7, 60- 80 urn at Day I4), but the 
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other two groups increased about 20% in mean size from Day 7 to 14, and reached sizes 

to 100- 120 urn by the end of the trial. In contrast, larvae in Spawn 2 did not 

demonstrate substantial growth after Day 3, and only reached sizes of 85- 100 urn (AA), 

85-95 urn (HA), and 80- 100 urn (HH) by the end of this trial. 

Species IDs 

All parents (total 24 oysters) used in the two spawns were positively identified 

after spawning as members of their initial species designation. ITS-1 RFLP patterns 

digested with Sau96 I enzyme could clearly distinguish among C. ariakensis, C. 

hongkongensis, and their hybrid progeny, as shown in Figure 2.5. In addition, species 

identifications were done for 99Iarvae (26 from Spawn 1, 73 from Spawn 2; Table 2.1). 

Apparent contamination occurred only in replicate 6 from Spawn 2, where eight 

unexpected genotypes were found. One larva from the pure AA cross had a hybrid 

genotype, while seven larvae from the HA hybrid cross showed a pure C. ariakensis 

genotype, indicating contamination occurred in these two treatments. Whether 

contamination happened before fertilization or after fertilization is unclear. Regardless, 

this replicate was excluded from all fertilization, growth and survival analyses. 

Microsatellite analysis 

Using three microsatellite markers, the two C. hongkongensis samples were 

clearly differentiated from the 16 C. ariakensis samples. FsT values between these two 

groups (0.330- 0.402) (Table 2.2) were more than ten times larger than those observed 

within the samples of C. hongkongensis (0.028) and C. ariakensis (-0.005 - 0.026). The 
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overall F 1T between C. ariakensis and C. hongkongensis was 0.328 (P < 0.001 ). Patterns 

of genetic relationships between the species were visualized by a 3D factorial 

correspondence analysis (FCA) (Figure 2.6) and an unrooted NJ tree (Figure 2.7). Three 

axes in the FCA explained 45.2%, 9.1% and 6.7% of total variance observed, 

respectively. Clearly a large proportion of the genetic variance was explained by 

differences between the two groups of oysters. In the NJ tree, the eighteen samples 

formed two distinct clades, with one comprised of the 16 C. ariakensis samples and the 

other comprised of the two C. hongkongensis samples. Both analyses indicate large 

genetic divergence between species, which is congruent with the FsT analysis. Genetic 

relationships among the 16 C. ariakensis samples shown here is different from that 

shown in Chapter 3, probably due to the low number of loci (3) used here. For details on 

the genetic relationships within C. ariakensis populations and hatchery stocks, the reader 

should refer to Chapter 3. 
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DISCUSSION 

Results from the population genetic analysis support the hypothesis that C. 

ariakensis and C. hongkongensis are separate species under the phylogenetic species 

concept. As shown in both the NJ tree and 3-D factorial correspondence analyses, levels 

of differentiation based on FsT and DeE measures of genetic distance between wild 

populations of C. ariakensis and C. hongkongensis were much larger than those observed 

within each of the two species, consistent with the results from Zhang et al (2005). 

Moreover, attempted cross amplification of C. ariakensis microsatellite markers failed at 

eight of eleven loci in C. hongkongensis (Chapter 1), indicating high genomic 

heterogeneity between these two species. All these results were congruent with the 

reported molecular data from several mitochondrial genes (Boudry et al. 2003, Lam and 

Morton 2003, Wang et al. 2004, Reece et al. 2008) and one nuclear region (ITS-I, Reece 

et al. 2008), and support the two-species hypothesis (Lam and Morton 2003, Wang et al. 

2004, Reece et al. 2008). The genetic divergence between C. ariakensis and C. 

hongkongensis (32.79%, based on Fsr value) estimated by microsatellite polymorphisms 

in the present study was much smaller than that estimated from PCR-RFLP (93.4-

100%, based on Fsr values) (Zhang et al. 2005), but higher than nucleotide divergence 

(13.6- 15.1 %) estimated from mitochondrial and nuclear DNA sequences (Boudry et al. 

2003, Lam and Morton 2003, Wang et al. 2004). This is probably due to different 

polymorphic levels of these markers and indicates the difficulty in comparing results 

from different types of markers. Using the same type of marker (microsatellite markers), 

the overall genetic differentiation (Fsr) between these C. ariakensis and C. hongkongensis 
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was an order of magnitude higher than that found between C. gigas and C. angulata 

(Huvet et al. 2000), two taxa with questionable species status but showing strong genetic 

structure between them (6 Foighil et al. 1998, Boudry et al. 1998, Huvet et al. 2000b, 

200 I, 2002, 2004). Estimated from several mitochondrial and one nuclear gene 

sequences, the genetic divergence between C. ariakensis and C. hongkongensis was 

comparable to the genetic divergence at the inter-species level reported among several 

other Crassostrea species (Boudry et al. 2003, Lam and Morton 2003, Wang et at. 2004, 

Reece et al. 2008). Therefore, genetic data from both this population genetic study and 

reported sequence phylogenies consistently support distinct species status between C. 

ariakensis and C. hongkongensis (Lam and Morton 2003, Wang et al. 2004, Reece et al. 

2008). 

In terms of the biological species concept, surveys of wild samples as well as 

hatchery progeny using various molecular markers did not reveal any natural hybrids 

between C. ariakensis and C. hongkongensis. Zhang et al (2005) found previously that 

oysters initially identified as C. ariakensis/C. rivu!aris from a southern Chinese location 

had alternate homozygous genotypes at the ITS-I locus, which were called S-type and N

type. The S-type C. ariakensis/C. rivularis was later confirmed to be C. hongkongensis, 

while the N-type was true C. ariakensis (Reece et al. 2008, Xiao unpublished data). No 

heterozygotes (hybrids) were detected in wild samples in this study (Zhang et al. 2005). 

In addition, after spawning was done at the VIMS hatchery using broodstock 

unknowingly comprised of both species, almost all progeny had the C. ariakensis 

genotype, and no hybrid individuals were observed (Zhang et al. 2005). Likewise, Reece 

et at (2008), and more extensive surveys conducted in her laboratory using the COl and 
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ITS-I RFLP keys of Cordes et al. (2008), did not detect any natural hybrids among nearly 

I 000 wild individuals that included both C. ariakensis and C. hongkongensis from the 

coast of southern China (K.S. Reece, pers. comm.). Surveys of various locations in China 

by colleagues from HSRL (Haskin Shellfish Research Lab, Rutgers University) using 

other molecular markers did not detect any natural hybrids of these two putative species 

either (Wang et al. 2008b), adding additional support to the hypothesis of strong 

reproductive isolation between C. ariakensis and C. hongkongensis in the natural 

environment. Consequently, laboratory hybridization experiments were conducted as part 

of the present research in order to provide direct information on whether there is 

reproductive isolation between these two species. 

Mechanisms of species isolation in marine taxa are variable and still unclear 

(Palumbi 1992, 1994). Laboratory hybridizations among Crassostrea species have been 

used for taxonomic studies (Banks et al. 1994, Huvet et al. 2001, 2002) and for seeking 

breeding stocks with novel genetic types (Allen et al. 1993, Allen and Gaffney 1993). 

Successful hybridizations have been reported between various Crassostrea species for 

centuries, but credibility of these reports is undermined by the now recognized 

difficulties of oyster identification and classification, and by the experimental designs 

themselves (reviewed by Gaffney and Allen 1993). Hybridization trials, which included 

genetic confirmation of parents and progeny, have shown that inter-specific hybrids 

through the umbo stage can be obtained in the laboratory between several species 

including C. gigas x C. ariakensis (Allen and Gaffney 1993, Que and Allen 2002), C. 

virginica x C. ariakensis and C. virginica x C. gigas (Allen et al. 1993, Lyu and Allen 

1999, Bushek et al. 2008). However, viable hybrids that survived past-settlement were 
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only found between C. sikamea and C. gigas (Hedgecock et al. 1993, Banks et al. 1994). 

Occurrence of natural hybrids between Crassostrea species is rare. With the exception of 

C. gigas and C. angulata, whose taxonomic relationship is still in question (Huvet et al. 

2001,2002,2004, Leitao et al. 2007, Reece et al. 2008), only one individual of C. 

hongkongensis x C. sikamea (Reece et al. 2008) and one of C. ariakensis x C. sikamea 

(Wang et al. 2008b) were found in southern China. Gaffney and Allen (1993) indicated 

little prezygotic obstruction to mating, but a strong postzygotic barrier may exist in this 

genus, where there is little correlation between genetic distances and the ability to 

hybridize. 

In the current study there was an almost complete failure of fertilization between 

C. ariakensis females with C. hongkongensis males, which indicates a gametic 

incompatibility between these two species, while low to moderate fertilization in the 

reciprocal crosses suggested this gametic incompatibility is unidirectional. This one-way 

gametic incompatibility resulted in at least a partial reproductive isolation and indicated a 

prezygotic barrier between C. ariakensis and C. hongkongensis. Similar one way gametic 

incompatibility was seen in a previous study of reciprocal crosses between C. gigas and 

C. sikamea, where a failure of acrosome reaction was speculated as the block of sperm

egg interaction (Banks et al. 1994). Artificial chemical stimulation of the acrosome 

reaction between C. gigas eggs and C. sikamea sperm suggested that this block occurs 

before acrosome reaction in the series of fertilization reactions (Palumbi 1992, Banks et 

al. 1994). Microscopic observations during spawning in the current research found that C. 

hongkongensis sperm bounced around the C. ariakensis eggs instead of sticking on the 

eggs' surface, as was observed in the control groups and the HA hybrid groups (data not 
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show), suggesting a recognition block between C. hongkongensis eggs and C. ariakensis 

sperm. 

Though studies on molecular mechanisms of reproductive isolation in oysters are 

lacking, extensive research on prezygotic barriers have found that various proteins are 

involved in the reproductive isolation of free-spawning marine organisms including a 

species-specific lysine in abalones, bindin in sea urchins, and M7 lysin in mussels (Nei 

and Zhang 1998, Swanson and Vacquier 2002, Geyer and Palumbi 2003, Riginos and 

McDonald 2003, Riginos et al. 2006). Nei and Zhang ( 1998) indicated that "reproductive 

isolation between different species appears to be caused by the incompatibility of alleles 

at two or more loci that control mating, spermiogenesis and development". Thus one

way gametic incompatibility probably represents different receptivity of eggs and sperm 

among species. Asymmetrical fertilization, including the extreme case of one-way 

gametic incompatibility, has been documented in marine invertebrates including 

Crassostrea oysters (Allen and Gaffney 1993, Palumbi 1994). Though the underlying 

biological mechanisms are still unknown, "changes in this receptivity have been 

hypothesized to be important to rapid species formation" (Palumbi 1994). 

Even with one-way gametic incompatibility, however, one might expect 

introgression to occur in the other direction, and at least F1 hybrids might be found in the 

contact zone. Nevertheless, no C. ariakensis/C. hongkongensis hybrids have been 

detected to date in the natural habitat of these two species (Zhang et al. 2005, Reece et al. 

2008, Wang et al. 2008b) or among the hatchery progeny derived from a source 

population containing almost equal numbers of the two species (Zhang et al. 2005). All 

these facts lead to the speculation that there might be additional mechanisms reinforcing 
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reproductive isolation. During the second spawn conducted for the current study, gonad 

condition varied markedly between these two species, which had been conditioned in the 

same tank for over six months. Both female and male C. hongkongensis had fully mature 

gonads, while C. ariakensis still demonstrated some gonadal immaturity. This suggests 

that different environmental conditions may be required for gonad maturation in the two 

species, hence differences in habitat requirements or spawning season could lead to 

reproductive isolation in nature. Unfortunately, there is no clear information on the 

ecology and biology of C. ariakensis in its native region so far. Earlier reports of the 

gametogenic cycle of C. ariakensis in its native region are suspect due to nomenclature 

confusions (Zhou and Allen 2003, Wang et al. 2004, Reece et al. 2008). Studies of C. 

ariakensis hatchery stocks on the west coast of the U.S. revealed late gonad maturity in 

this foreign environment, and currently the success of spawning and larval recruitment 

for this species in the west coast of U.S. relies entirely on artificial hatchery techniques 

(Breese and Malouf 1977, Perdue and Erickson 1984, Langdon and Robinson, 1996). 

Dependence on estuaries for natural larval growth and recruitment, however, has been 

suggested for C. ariakensis, and the optimal salinity for setting of C. ariakensis larvae 

was determined to be 15 to 20 ppt (Langdon and Robinson 1996). In comparison, it has 

been reported that C. hongkongensis requires temperatures> 27°C (optimal at 29°C) and 

salinities of :s; 15 %o (optimal at 7 %o) for spawning (Mok 1973, cited by Lam and Morton 

2003). In addition, as discussed before, 97% of the progeny propagated in the VIMS 

hatchery from a source population comprised of approximately 50% of each of the two 

species were identified as C. ariakensis genotypes (Zhang et al. 2005), suggesting that the 

hatchery environment favored reproduction of C. ariakensis. Thus, different optimal 
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environmental conditions for spawning and larval growth may be required by these two 

species, resulting in habitat and/or seasonal isolation. 

In summary, the results from this study support the hypothesis that C. ariakensis 

and C. hongkongensis are distinct species (Lam and Morton 2003, Wang et al. 2004, 

Reece et al. 2008), based both on genetic divergence and observations of some level of 

reproductive isolation. Large genetic differentiation between the two taxa was observed, 

which was an order of magnitude greater than that found among individuals within each 

of the two taxa, and is congruent with previous research (Zhang et al. 2005) and sequence 

phylogenies (Boudry et al. 2003, Lam and Morton 2003, Wang et al. 2004, Reece et al. 

2008). In addition, a semi-prezygotic reproductive isolation was found between the two 

taxa. Different habitat or spawning conditions for C. ariakensis and C. hongkongensis 

may reinforce the reproductive isolation. Nevertheless, it was difficult to characterize the 

postzygotic differences in growth and survival among the hybrid cross HA and the pure 

control crosses HH and AA. Larvae sizes and survival may have been affected by gamete 

quality, since low quality sperm and oocytes could result in inactive zygotes that show 

high mortality and retarded development. Furthermore, hatchery culling might artificially 

select traits of fast growth and larger size for the hatchery oysters (Taris et al. 2006). 

Because of the different sources of C. ariakensis (domesticated since 1999) and C. 

hongkongensis (from wild stocks) used in the experiment for spawning, the slight 

advantage of AA larvae in terms of both size and survival in Spawn I might represent 

improved performance of a domesticated stock in the laboratory environment. Finally, 

there could be many different explanations for the larvae in the current hybridization 

study failing to survive through early development, including a non-optimal laboratory 
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environment and low quality of gametes, since even the progeny of the pure control 

crosses did not survive. As the reasons for this are beyond the scope of the major research 

objectives of this dissertation, however, they were not thoroughly investigated. The focus 

of the discussion above centered on comparisons among the crosses in their performance 

at either the fertilization or post-fertilization stages, and the possible biological 

implications of these results to the hypothesis that C. ariakensis and C. hongkongensis 

are distinct species (Lam and Morton 3003, Wang et al. 2004, Reece et al. 2008). Further 

investigation will be needed to determine whether the HA hybrids are viable like C. 

sikamea and C. gigas c~ xcfl) hybrids (Hedgecock et al. 1993, Banks et al. 1994), or 

inviable like hybrids among most other Crassostrea species (Allen et al. 1993, Gaffney 

and Allen 1993, Lyu and Allen 1999). 
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Table 2.1 Number of larvae in all 24 treatments identified as either parental types or 

hybrids by PCR-RFLP analysis of the ITS-I region. Unexpected genotypes in treatments 

are indicated in parentheses. '-' indicates case with no individuals were tested due either 

to insufficient viable larvae or larval lysis during ethanol fixation. See Figure 2.1 for 

detailed descriptions on abbreviations of four crosses. 
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Trial Replicate AA AH HA HH 

9 

Spawn 1 2 14 

3 3 

4 10 10 10 

Spawn 2 5 10 10 

6 3 (1 hybrid) 10 (7 C. ariakensis) 10 
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Table 2.2 Pairwise F5T (Weir and Cockerham 1984) values based on three microsatellite loci between 16 wild C. ariakensis 

samples (IR99, IROS, KR04, SR04, KI04, YR99, YR06, BZOS, BZ06, NTOS, NT06, TT06, HCOS, HC06, BH99 and BHOS) and 2 C. 

hongkongensis samples (B_Ch and C_Ch). Significant values are shown in boldface after Bonferroni correction for multiple tests (a= 

0.05 and K = 17). Sample abbreviations for C. ariakensis are as indicated in Table 3.1 and abbreviations for C. hongkongensis 

populations are described in MATERIALS AND METHODS of this chapter. 
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IR99 

IR05 

KR04 

SR04 

KJ04 

YR99 

YR06 

BZ05 

BZ06 

NT05 

NT06 

TT06 

HC05 

HC06 

BH99 

BH05 

B_Ch 

c_ch 

IR99 

0.5203 

0.0005 

0.0291 

0.1061 

0.0168 

0.0009 

0.1017 

0.0012 

0.0223 

0.0025 

0.0231 

0.0006 

0.0057 

0.0010 

0.0005 

0.0000 

0.0000 

IR05 

-0.0006 

0.0001 

0.0064 

0.2379 

0.0285 

0.0001 

0.0503 

0.0006 

0.0353 

0.0035 

0.0216 

0.0005 

0.0066 

0.0001 

0.0001 

0.0000 

0.0000 

KR04 

0.0209 

0.0232 

0.6594 

0.0048 

0.0103 

0.0049 

0.0061 

0.1028 

0.0035 

0.1549 

0.0091 

0.0241 

0.0081 

0.0147 

0.0272 

0.0000 

0.0000 

SR04 

0.0115 

0.0159 

-0.0027 

0.1676 

0.5350 

0.2603 

0.5095 

0.4903 

0.3499 

0.8614 

0.2844 

0.5433 

0.1113 

0.0466 

0.0527 

0.0000 

0.0000 

KI04 

0.0071 

0.0032 

0.0245 

0.0066 

0.6028 

0.0332 

0.4474 

0.0153 

0.1710 

0.0138 

0.1214 

0.0926 

0.1571 

0.0036 

0.0034 

0.0000 

0.0000 

YR99 

0.0103 

0.0085 

0.0128 

-0.0013 

-0.0024 

0.2187 

0.5744 

0.1552 

0.6496 

0.2444 

0.0704 

0.0865 

0.0632 

0.0017 

0.0003 

0.0000 

0.0000 

YR06 

0.0126 

0.0157 

0.0100 

0.0024 

0.0108 

0.0023 

0.3885 

0.2104 

0.1963 

0.2073 

0.0273 

0.0054 

0.0031 

0.0004 

0.0000 

0.0000 

0.0000 

BZ05 

0.0090 

0.0124 

0.0234 

-0.0014 

-0.0010 

-0.0025 

0.0009 

0.3384 

0.2933 

0.2365 

0.4979 

0.1072 

0.0651 

0.0245 

0.0060 

0.0000 

0.0000 

BZ06 

0.0145 

0.0155 

0.0047 

-0.0007 

0.0168 

0.0036 

0.0020 

0.0018 

0.0432 

0.9247 

0.0788 

0.0085 

0.0029 

0.0005 

0.0006 

0.0000 

0.0000 

51 

NT05 

0.0071 

0.0058 

0.0118 

0.0013 

0.0042 

-0.0016 

0.0020 

0.0024 

0.0058 

0.2804 

0.4276 

0.6029 

0.7260 

0.0180 

0.0014 

0.0000 

0.0000 

NT06 

0.0120 

0.0114 

0.0033 

-0.0048 

0.0168 

0.0020 

0.0018 

0.0034 

-0.0038 

0.0011 

0.1518 

0.0366 

0.0071 

0.0039 

0.0012 

0.0000 

0.0000 

TT06 

0.0074 

0.0073 

0.0118 

0.0023 

0.0061 

0.0061 

0.0066 

-0.0008 

0.0048 

0.0001 

0.0029 

0.1213 

0.2261 

0.0086 

0.0070 

0.0000 

0.0000 

HC05 

0.0135 

0.0131 

0.0073 

-0.0008 

0.0064 

0.0045 

0.0077 

0.0068 

0.0086 
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Figure 2.1 Diagram of crosses between C. ariakensis (A) and C. hongkongensis (H) 

for each of the two hybridization trials. Each cross consists of a single dam and sire. 
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Figure 2.2 Fertilization ratio (%)for four crosses between C. ariakensis (A) and C. 

hongkongensis (H) (see Figure 2.1 for cross abbreviations). Black columns are mean 

values across three replicates of Spawn I, and white are mean values over all replicates 

(except replicate 6) at Spawn 2. Error bars indicate the standard deviation for each mean. 
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Figure 2.3 Mean survival rate over all replicates (except replicate 6) of two 

hybridization trials throughout the experimental period (23 days for Spawn I, and 19 

days for Spawn 2). Error bar is the standard deviation of each mean. Survival rates for 

AH crosses are not shown here since no viable larvae were produced in this group. 
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Figure 2.4 Mean larvae sizes over all replicates (except replicate 6) of each cross 

throughout the experimental period. Error bar indicates the standard deviation of each 

mean. Growth of the AH cross was not shown here because no viable larval were 

produced in this cross. 
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Figure 2.5 RFLP patterns of the rDNA ITS-I region digested with Sau96 I to confirm 

the species designations of larvae from the HA hybrid cross (Lanes 3-7) and the pure HH 

(Lanes 8-12) and AA (Lanes 13-17) crosses. Lanes 1-2 and 18-19 are C. hongkongensis 

female, male and C. ariakensis female, male, respectively; Lane 20 is a 1 kb+ size 

standard with molecular weight indicated at the right side. The arrow points to the extra 

band found in the hybrid which was not present in parental oysters or pure AA and HH 

crosses (see text). 
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Figure 2.6 Factorial correspondence analysis (FCA) of genetic distances among wild populations of C. ariaknesis and C. 

hongkongensis based on three microsatellite markers. Three axes explain 45.2%, 9.1% and 6.7% of the total variance, respectively. 
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Figure 2.7 Unrooted Neighbor-joining (NJ) tree based on a Cavalla-Sfourza and 

Edwards (1968) genetic distance matrix showing divergence between two C. 

hongkongensis (B_Ch and C_Ch) and 16 C. ariakensis wild samples. Length of each 

branch is proportional to the genetic distance. Numbers on the branches are percentages 

of bootstrapping support(> 50%) after I 0,000 iterations. Sample abbreviations are as 

indicated in Table 3.1 of Chapter 3 and MATERIALS AND METHODS in this chapter. 

Inferred species clades are labeled in bold. 

64 



B Ch 

C_Ch 

C. hongkongensis 

C. ariakensis 
SR04 

BH99 

0.01 

65 



CHAPTER3 

GENETIC POPULATION STRUCTURE OF C. ARIAKENSIS IN ASIA 

INFERRED BY MICROSATELLITE MARKER POLYMORPHISMS 
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INTRODUCTION 

Asian oysters in the genus Crassostrea have been widely transplanted, and some 

species such as C. gigas are commercially important aquaculture species around the 

world (Ruesink et al. 2005). In contrast to the rapid growth of bivalve aquaculture, 

natural populations of Crassostrea oysters are believed to be declining in their native 

regions (Guo et al. 1999,2006, Aranishi 2006) even as our knowledge of the taxonomy, 

abundance, and distribution of wild Asian Crassostrea oysters remains limited 

(Hedgecock et al. 1999, Boudry et al. 2003, Wang et al. 2004, Reece et al. 2008, Wang et 

al. 2008a). Even less is known about the genetic population structure of these oysters, 

important information needed for developing appropriate policies for stock management 

and conservation biology. With the rapid growth of oyster aquaculture and large breeding 

projects, molecular markers for studying the genetic variation among wild populations 

could help elucidate the genetic differences between wild populations, assess genetic 

variation within cultured stocks, determine genetic impacts of aquaculture on wild 

populations, and thereby promote sustainable aquaculture. 

As addressed in previous chapters, C. ariakensis was recently proposed for 

introduction into the Chesapeake Bay on the east coast of the U.S. to revitalize the local 

oyster industry. Though some research has been conducted in the U.S. using diploid and 

triploid hatchery stocks of C. ariakensis, little is known about this species in its native 

region including its distribution and population genetic structure. According to the Code 

of Practice on Introductions and Transfers of Marine Organisms from the International 

Council for the Exploration of the Seas (ICES), prior to introduction of a non-native, 
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intensive research is required regarding the ecology, disease, and genetics of the species 

in its native region (ICES 2005). 

Though sedentary as adults, oysters have high dispersal capability during their 2-

3 week planktonic larval stage (Thorson 1950). However, unlike marine invertebrates 

found in the open ocean that often have little genetic differentiation over large geographic 

scales due to a lack of geographic barriers (Palumbi et al. 1997, DeWoody and A vise 

2000), coastal invertebrate species are more influenced by historical or present-day 

biogeographic and oceanographic characters (A vise 1994, Kelly et al. 2006). According 

to ongoing distribution studies, C. ariakensis has been confirmed to occur along the coast 

of southern Japan, South Korea, and northern and southern China, probably with a patchy 

pattern of distribution (Wang et al. 2004, Zhang et al. 2005, Guo et al. 2006, Wang et al. 

2006, Reece et at. 2008, Wang et al. 2008a, Yoon et al. 2008). Wang et al. (2004) 

suggested that two ecotypes of C. ariakensis might exist, one in northern and the other in 

southern China, with a geographic barrier proposed to exist in the vicinity of the Yangzi 

River. Zhang et al. (2005) could not resolve significant population structure within this 

species (i.e. the "N-type" as designated in Zhang et al. 2005) based on PCR/RFLP 

analysis of mtDNA and nuclear markers, as well as three microsatellite loci. This may 

have been due to low polymorphisms of the RFLP markers and null allele problems with 

the microsatellite loci, since primers were designed to target C. gigas sequences. For the 

current study, eight microsatellite markers specifically developed for C. arakensis 

(Chapter 1 and Xiao et al. 2008) were selected and wild C. ariakensis populations 

identified and confirmed throughout its currently recognized distribution were sampled in 

order to examine the genetic population structure of C. ariakensis in its native region. 
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MATERIALS AND METHODS 

Sampling 

A total of 605 individual oysters were analyzed in this study. Tissue samples 

consisted of gill and/or mantle snips collected in the field and preserved in 95% ethanol 

for DNA extraction. Sixteen samples were collected from ten locations along the coastal 

waters of the northwest Pacific (Figure 3.1 ). Names of these samples were coded with 

two initials indicating the sampling location and two digits to indicate the year collected. 

Oysters from the ltoki River, Ariake Sea, Saga Prefecture, southern Japan (IR99, IR05) 

were collected from a traditional oyster farming area where local wild seed were used as 

broodstock. Korean samples KR04, SR04, and KI04 were from the Kahwa River, Sumjin 

River, and Kanghwa Island, Incheon, respectively. Four samples (BZ05, BZ06 and 

YR99, YR06) were collected from two proximal locations (Binzhou and Weifang, 

respectively) in the Yellow River Basin of Bohai Bay in northern China. Three samples 

(NT05, NT06, TT06) were also collected from an estuary of the Yangzi River with one 

(TT06) at the mouth and the other two (NT05, NT06) from Nantong, about 50 km 

upriver. Individuals from Haicheng in the Fujian Province of China were collected from a 

wild oyster reef in which C. ariakensis was the dominant oyster species. The samples 

BH99 and BH05 were taken from the Dafeng River near Beihai in the Guangxi Province 

of southern China, where C. ariakensis is cultured using local wild seed (Wang et al. 

2004). This sampling range covered most sites where to date, substantial C. ariakensis 

populations have been confirmed (Wang et al. 2004, Zhang et al. 2005, Guo et al. 2006, 

Wang et al. 2006, Reece et al. 2008). To test for temporal stability, multiple samples were 
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collected from six locations, three of which were sampled 6-7 years apart, while another 

three were sampled in successive years (Table 3.1). Due to plasticity in shell morphology 

and the large number of Crassostrea oyster species that coexist in Asia (Boudry et al. 

2003, Wang et al. 2004, Guo et al. 2006, Wang et al. 2006, Reece et al. 2008, Wang et al. 

2008a), samples collected for this study were identified as C. ariakensis using the 

molecular genetic key of Cordes et al. (2008). Samples collected by our lab for a previous 

study were also positively identified using genetic markers (Zhang et al. 2005), as were 

samples collected by colleagues from the Haskin Shellfish Research Laboratory at 

Rutgers University (Wang and Guo 2006, Wang and Guo 2008). 

DNA extraction and microsatellite amplification 

Whole genomic DNA extraction and amplification of eight microsatellite loci 

(CarGJJO, CarG4-60, CarJJ0-08, Carll9-6a, CarG122, Carll-70, CarGJ-Ob) for all C. 

ariakensis samples followed the protocols described in Chapter 1 and Xiao et al. (2008). 

Fluorescence-labeled products were separated on an ABI-Prism 3130 Genetic Analyzer 

(Applied Biosystems) with a GenScanrM 500LIZ™ size standard (Applied Biosystems) 

for each sample. 

Image processing and data analysis 

Alleles were scored using the software package GeneMarker (SoftGenetics) and 

coded by their sizes in nucleotides. A panel including all the alleles detected in 605 

individuals was created for each locus. 
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The software package Micro-Checker 2.2.1 (van Oosterhout et al. 2004) was used 

to check for possible null alleles and genotyping errors caused by stuttering and large 

allele dropout. Observed (H0 ) and expected (HE) heterozygosities, and Nei's (1978) gene 

diversity (H5) were then calculated in the program GENETIX (Belkhir et al. 1996-2004). 

Weir and Cockerham's (1984) unbiased F-statistics (F15 and 85r) were calculated using 

the web version of GENEPOP 3.4 (Raymond and Rousset 1995, 

http://genepop.curtin.edu.au/). Unbiased estimates of P-values for F15 and 85r were 

performed using the Markov chain method with parameters set at I ,000 

dememorizations, 1,000 batches, and 10,000 iterations per batch. To compare allelic 

richness (A) among populations with different sample sizes, the rarefaction method (Petit 

et al. 1998) implemented in FST AT 2.9.3 (Gaudet 2001) was used to estimate the 

expected number of alleles per locus in a sample size of 14 diploid individuals (the 

smallest sample size for this study). The statistical comparisons of A, H0 , HE and F15 

among populations were done in MINIT AB® (Mini tab Inc., State College, PA). 

The allele frequency table generated by GENETIX was imported into the 

program GENDIST in the PHYLIP 3.67 software package (Felsenstein 1989) to calculate 

Cavalli-Sforza & Edwards' genetic distances (DeE' Cavalli-Sforza and Edwards 1967) 

among all samples. Neighbor-joining (NJ) trees were constructed using the DCE matrix in 

the program NEIGHBOR. The robustness of each node was evaluated by bootstrapping 

with 10,000 iterations using SEQBOOT. The resulting consensus tree was calculated 

using CONSENSE and visualized in TREEVIEW 1.6.6 (Page 1996). 

A post hoc AMOVA analysis was performed to determine appropriate temporal 

and geographic pooling of samples in the program ARLEQUIN 3.11 (Excoffier et al. 
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2005). Molecular variances within populatjons, among populations within groups, and 

among groups were assessed with exact tests based on 10,000 permutations. 

In order to test the association between genetic and geographic distances, we 

performed Mantel tests (Mantel 1967) on the regressions between DCE and the geographic 

distance matrix among samples. Tests were done using ISOLDE in GENPOP 3.4 with 

10,000 permutations to assess the significance of each regression. Pearson's coefficiency 

(r) calculated by MINIT AB was annotated to illustrate the fitness of regressions. 

Geographic distances were measured according to the shortest route over water, and 

distances between temporal collections were set to 0. To analyze the effect of single loci 

on this correlation, we retested the regressions with datasets generated by jackknifing one 

locus each time through the program GENETIX. 

72 



RESULTS 

Allele frequency and genetic diversity within populations 

Amplification of 605 individuals from 16 wild samples generated a total of 294 

different alleles over the eight loci with an average of 16.6 alleles per locus per 

population. Seventy-two regionally specific alleles were detected, all of which had low 

frequencies (less than 5.3%) and with a majority (79.2%) present only once. Micro

Checker analysis indicated possible null alleles in 6 of 16 samples at locus Car 130-08 

and in 12 samples at locus Car 115-aO. Scoring errors resulting from stuttering were 

indicated in 2 cases at locus CarG I 22 based on heterozygote deficiencies. 

In order to eva! uate the performances of these markers, allelic richness (A), 

observed (H0 ) and expected (HE) heterozygosities, inbreeding coefficients (F15), and gene 

diversity (H5) were calculated at each locus for every sample (Table 3.2). Single locus 

HWE tests for each sample revealed 18 significant values out of 128 tests; 11 were at 

locus Carl 15-aO, 6 were at locus CarJJ0-08, and another at locus CarG122. The 

significant deviations from HWE at these loci were probably caused by the presence of 

null alleles or stutters as indicated by the Micro-Checker analysis. Estimations using all 

eight loci indicated that 7 of the 16 samples were out of HWE after sequential Bonferroni 

correction (a= 0.05, K = 16), all of which showed lower observed heterozygosity than 

expected. The number of significant deviations from HWE was reduced to one (a= 0.01 

level) and F15 decreased significantly for all samples when the locus Car 115-aO was 

excluded from the analysis, indicating that most deviations were due to this locus. 
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Multi-locus gene diversities, observed, and expected heterozygosities were 

comparable across all populations, with mean values of 0.818 (± 0.017), 0.766 (± 0.030), 

and 0.805 (± 0.017), respectively. However, mean A across all loci was significantly 

larger (II%, P = 0.00 I) for four southern samples (BH99, 05 and HC05, 06) as compared 

to the other samples. Further analysis found that this was primarily caused by one locus, 

Car 11 5-aO. When this locus was excluded from the analysis, the difference in mean A 

between the four southern samples and the other 12 samples decreased to 6%, and P was 

increased to 0.032. 

Variation in A values at the locus Car 11 5-aO (Table 3.2) was significantly higher 

(P < 0.00 I) for the four southern samples ( 18.9- 20.8) compared with the 12 samples 

collected from the northern sites (11.3- 16.7). At the same time, F15 values at this locus 

were marginally higher (P = 0.027) for the southern samples compared to the rest of the 

samples. Since a large number of deviations from HWE were observed at the locus 

Car 1 15-aO (see above), analyses of population structure were performed both with and 

without this locus to detect artifacts from a single locus. 

Inter -population genetic differentiations and structure 

Multi-locus global Bsr among populations was small (0.0 18) but highly significant 

(P < 0.00 I), indicating genetic heterogeneity among the natural populations. Single locus 

effect on global Bsr was tested through a jackknife procedure (Table 3.4). The variance 

among eight tests only accounted for I 0% of the total mean, indicating this genetic 

heterogeneity was not simply an effect from a single locus. Pairwise Bsr values among all 

sixteen samples (Table 3.3) ranged from -0.002 (BZ05 vs. BZ06) to 0.041 (NT06 vs. 
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BH99). Ninty-nine (82.5%) of the 120 comparisons were significant after Bonferroni 

corrections. The other 21 non-significant results consisted of the six comparisons 

between temporal samples, six comparisons between geographically contiguous groups 

less than 50 km apart, 8 comparisons involving samples SR04, KI04 and BZ05 (all with 

low sample sizes :S 20), and one comparison between HC05 and BH99. Nine of 15 

comparisons involving sample BZ05 were not significant, indicating that the low sample 

size ( 14) may have reduced the power of our tests to differentiate this population with 

others. 

The overall pattern of genetic differentiation was visualized by a NJ tree based on 

the Dee matrix of the 16 samples (Figure 3.2). In general, the tree topology was consistent 

with the results from the population pairwise Bsr matrix and the geographic locations of 

the samples. Temporal samples generally clustered together in the tree, however, the four 

samples from within the Yellow River basin (YR99, YR06, BZ05, BZ06) formed a clade 

(<50% support) with the two 2006 samples from the two sites forming a moderately 

supported (64%) sub-clade. Similarly, the two Haicheng samples (HC05 and HC06) did 

not form a monophyletic clade, although they fell into a clade with the neighboring 

Beihai samples with high boostrap support (95% ). In addition, the geographically 

contiguous samples NT and TT from the Yangzi River estuary, collected from sites that 

are less than 50 km apart were also closely grouped. In fact, three geographic groups, 

including a Japanese group (IR99 and IR05), a southern China group (BH99, BH05, 

HC05 and HC06) and the Yangzi River estuary group comprised of NT05, NT06, and 

TT06, were distinctly separated from each other and formed individual clades with high 

bootstrap support (> 90% ). Each of the three Korean samples (KR04, SR04 and KI04) 
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was separated from the clades described above, and formed a separate clade, though with 

relatively low bootstrap support(< 60%). 

The AMOV A analysis first tested the temporal genetic variation among samples 

by grouping the temporal samples from a given location and found that the variance 

among temporal samples at six locations only accounted for 0.14% of the total variance 

and was not significant (P = 0.220 ± 0.004) (Table 3.5). In contrast, 1.87% of variance 

was from among the ten geographic samples and was significant, which indicated a lack 

of temporal genetic variation and confirmed the presence of genetic structuring among 

wild geographic populations of C. ariakensis in its native region. Temporal samples at 

each of the six locations (IR, BZ, YR, NT, HC and BH) were subsequently pooled based 

on their genetic homogeneity. Since close genetic relationships among geographically 

contiguous samples <50 km apart (BZ and YR from the Yellow River basin, TT and NT 

from the Yangzi River estuary; Fig. 3.1) were implied by the results from both the 

pairwise 85T values and the NJ (see above for details), adjacent samples from the two 

river systems were further grouped to test for fine-scale population subdivision in our 

samples. Little and non-significant variance (0.08%, P = 0.292) among geographically 

contiguous samples suggested that oysters from each of these two regions (Y angzi River 

estuary and Yellow River basin) came from genetically homogenous populations. 

Ultimately, eight genetically differentiated populations (Figure 3.2) were detected among 

these 16 samples, and the variance among populations accounted for 2.03% of the total 

variance. 
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Mantel test 

A significant linear correlation (DC£= 0.017 + 4.09x I o-6 distance, ? = 0.428, P < 

0.01) between genetic distances (DC£) and geographic distances was detected, indicating a 

pattern of isolation by distance with a general increase in DCE of 0.00409 per 1000 km 

distance (Figure 3.3). Jackknife testing on this regression showed that both the slopes and 

Pearson's coefficients (r) varied little when individual loci were sequentially excluded 

from the analysis (Table 3.4), suggesting that the linear regression was not driven by 

artifacts from any single locus. 
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DISCUSSION 

Based on the polymorphisms at eight microsatellite markers, the magnitude and 

pattern of genetic structure was assessed among sixteen samples of natural Asian C. 

ariakensis collected from ten sites where large populations have been identified (Zhang et 

Ia. 2005, Guo et al. 2006, Wang et al. 2006, Reece et al. 2008, Wang et al. 2008a). Small, 

but highly significant, genetic heterogeneity was found among these populations, and a 

pattern of isolation by distance was observed indicating a correlation between genetic 

distances (DC£) and geographic distances. Hereafter, the robustness of this structure and 

the possible biological and geological factors that would account for this genetic 

variability will be discussed. 

Robustness of the genetic structure analysis in wild populations 

Levels of genetic differentiation in terms of pairwise Fsr values among these C. 

ariakensis samples were small (ranging from -0.002 to 0.041), but often highly 

significant. A recurrent problem associated with such small FsT values is the ability to 

discriminate real population structure from background noise due to sampling errors 

(Waples 1998). A 'sweepstakes' effect, caused by large variances in individual 

reproductive success, has been previously observed in the highly fecund marine organism 

C. gigas (Hedgecock 1994), which resulted in large inter-annual differences in genetic 

heterogeneity. Temporal genetic differentiation in the current study, however, either 

between samples with 6- 7 year intervals (corresponding to 2- 3 generations; IR, YR 

and BH) or those from consecutive years (BZ, NT, HC), only accounted for 0.14% of the 
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total variation and were all non-significant, indicating little temporal genetic variation in 

natural C. ariakensis populations and eliminating the role of temporal variation as a 

confounding factor in the results of the spatial genetic structure analysis. Small sample 

sizes of some populations such as BZ05 (14) and KI04 (20) may have limited the power 

of the analysis to detect differences among some populations, as indicated by a number of 

non-significant pairwise FsT values (Table 3.3) in which these samples were involved. 

The overall genetic structure nonetheless did not change significantly after these samples 

(KI04 and BZ05) were dropped from the analysis (data not show). Therefore, problems 

associated with small sample sizes of a few samples in this study did not influence the 

overall genetic structure, though they might have affected determination of the genetic 

structure at a local scale where these samples were involved. The consistency among 

temporal samples also points to the relatively small influence of sample sizes at some 

locations (BZ05 and BZ06). Moreover, the significant linear pattern of isolation by 

distance also increases the confidence that the small genetic differentiation among 

populations is not due to sampling errors (Palumbi 2003). 

Non-amplifying (null) alleles are often the result of high mutation rates in primer 

binding regions and are extremely common in marine bivalves (Hedgecock et al. 2004, 

Reece et al. 2004), raising concerns when applying microsatellite markers to population 

genetic studies in molluscs (Hedgecock et al. 2004). From a recent simulation study, 

microsatellite null alleles were found to cause a small but significant overestimation of 

FsT values (Carlsson 2008). Here, the eight polymorphic microsatellite markers used in 

this study had minimized the null allele presence through initial primer development and 

extensive optimization (Xiao et al. 2008). A high number (68.8%) of samples, however, 
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exhibited deviations from HWE at a single locus Carl 15-aO. Most of these samples were 

in HWE at the other 7 loci, indicating that population effects, such as the Wahlund effect 

or inbreeding, could be excluded as causing these deviations. Presence of null alleles at 

the Car I I 5-aO locus was indicated by Micro-Checker and may still be a problem for this 

locus, even though the primers and amplification parameters were optimized and initial 

testing did not detect any null alleles in eight family crosses and a wild population (Xiao 

et al. 2008). It is interesting that locus Car I I 5-aO showed a significantly higher allelic 

diversity (P = 0.000) along with marginally higher positive F15 values (P = 0.027) in four 

southern Chinese samples (HCOS, HC06, BH99, BHOS) compared to the northern 

locations. It would be difficult to explain these two concurrent observations based solely 

on the presence of null alleles. Further investigation is needed to determine whether other 

problems such as homoplasy, along with null alleles, are causing the significant 

differences in allelic diversity and F15 values found in the four southern Chinese samples. 

Another plausible explanation is selection. Selection on certain types of markers (such as 

allozymes) has been commonly used to explain inconsistent observations of genetic 

structure in some marine species (Karl and A vise 1992, Pogson et al. 1995, Arnaud

Haond et al. 2003). It was also applied as a reason to discard any individual locus at 

which strong structure was observed while not the other loci, since most structure 

analyses make the assumption of marker neutrality. Selection against deleterious alleles 

was recently hypothesized to explain the distorted marker segregation in oysters in the 

laboratory (McGoldrick and Hedgecock 1997, Bierne et al. 1998, Launey and Hedgecock 

2001). For the current study, in order to eliminate any undue influence of the Carl 15-aO 

locus on the results, analyses of genetic differentiation and structure for the natural C. 
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ariakensis populations were conducted with and without this locus. Though exclusion of 

the locus Car 115-aO did reduce multi-locus F15 values and the number of populations out 

of HWE, this marker did not affect the global Fsr value or the overall pattern of IBD. The 

effects of the other seven loci were also tested by removing them one at a time from the 

analysis. No significant changes were found, indicating overall measures of genetic 

structure were not affected by any single locus and further confirming the existence of 

overall genetic structure among wild C. ariakensis populations. 

Population genetic structure 

Global genetic differentiation among these natural populations of C. ariakensis 

was small (0.0 18) but highly significant, indicating population heterogeneity in this 

region. The genetic differentiations among these populations followed a pattern of 

isolation by distance (IBD), with no significant genetic differentiations among 

populations within small geographic scales (<50 km), but strong structure among 

populations hundreds to thousands of kilometers apart. Eight genetically distinguished 

populations were identified, based on the AMOV A, pairwise Fsr• and/or NJ analyses, 

composed of a Japanese population (IR), three populations along the coast of South 

Korea (KR, SR, and KI) and four populations along the coast of China. The four Chinese 

populations included a Yellow River basin population (YR) located within Bohai Bay, 

northern China, a population from the Yangzi River estuary (YzR), a central coast 

population (HC) and a southern coast population (BH). Whether this pattern of 

differentiation is due to real genetic discontinuities or patchy sampling along a 

continuous gradient (isolation by distance) is addressed later in the discussion. 

81 



Geographic distances among South Korean samples were intermediate to the 

distances between those samples showing no structure and strong structure. These three 

populations also showed significant genetic differentiations among them. The small 

sample sizes of these populations (20- 33), as well as one of the Yellow River basin 

samples (BZ05, n = 14), might influence estimation of their genetic differentiations due 

to random drift resulting from the high probability of sampling errors (Walpes 1998). 

Although the two temporal samples from Haicheng (HC05, HC06) did not form a 

monophyletic clade in the NJ tree, they did form a clade together with the two temporal 

samples from neighboring Beihai (BH99, BH06). Relatively small Bsr values (0.003 -

0.008) including one non-significant comparison ( Bsr = 0.003, P = 0.031) between the 

two Haicheng samples and two Beihai samples might indicate some gene flow among 

these two populations, though oyster transplantation by local farmers between these two 

locations could not be excluded. Records for anthropogenic transportation of C. 

ariakensis along the region surveyed by this study are hard to interpret due to notorious 

nomenclature problems (Zhou and Allen 2003, Wang et al. 2004, Reece et al. 2008). 

There were some reports of C. gigas being introduced from Japan to northern and 

southern China (Guo et al. 1999, Li et al. 2006) and from the U.S. west coast to Japan 

and South Korea (Ruesink et al. 2005 and references herein), though there was no known 

transportation of C. ariakensis between northern and southern China (Wang et al. 2004). 

Furthermore, oyster aquaculture is very popular and intensive within southern China 

including Fujian, Guangdong and Guangxi provinces (Guo et al. 1999, Zhou and Allen 

2003). In spite of some confusion regarding which species is being cultured (Guo et al. 

1999, Reece et al. 2008, Cordes et al. in press), C. ariakensis has been identified in both 

82 



oyster farming areas and in the wild throughout this region (K.S. Reece, unpublished 

data). It is not clear, however, if there have been un-documented transportation of C. 

ariakensis in southern China. 

Small but significant levels of genetic differentiation have also been observed in 

other marine bivalves across similar geographic scales, including Ostrea edulis, C. 

angulata, C. gigas, and Pinctada maxima (Huvet et al. 2000, Launey et al. 2002, Sellos et 

al. 2003, and Lind et al. 2007, respectively), and are comparable to observations for many 

marine fishes (Ward et Ia. 1994, Walpes 1998). Lack of geographic barriers in the ocean, 

high dispersal capability during their pelagic larval stage, and high effective population 

size normally contribute to the genetic homogeneity in marine fish (DeWoody and A vise 

2000). IBD patterns similar to those seen in this study of C. ariakensis were discovered in 

other coastal bivalve species (Murray-Jones and Ayre 1997, Launey et al. 2002, Mariani 

et al. 2002, Rfos et al. 2002, Rose et al. 2006, Lind et al. 2007), though the regression 

slopes were quite variable among taxa. This could be due to differences in biological 

traits such as duration of the planktonic larval stage, egg size, and drifting of adults 

(Bonhomme and Planes 2000, Kinlan and Gaines 2003, Lester and Ruttenberg 2005, 

Bradbury and Bentzen 2007), as well as other factors including the range of different 

genetic marker types (with varying levels of polymorphism) used in the different studies 

(Diaz-Aimela et al. 2004). 

In species sedentary as adults but having a long pelagic larval stage, dispersal of 

larvae is considered to be one of the major factors influencing patterns of geographic 

distribution and population structure in marine systems (De Woody and A vise 2000, 

Kinlan and Gaines 2003). A patchy pattern of C. ariakensis population distribution was 
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indicated after several surveys in China (Guo et al. 2006, Wang et al. 2006). This patchy 

pattern could suggest a non-continuous and fragmented natural habitat for C. ariakensis 

along the coast of China, which might limit larval dispersal and preclude geographically 

continuous settlement along this region. 

Some physical and geological barriers to genetic continuity in other regions, such 

as along the coast southern Georgia and Florida of southeast U.S., along the coast of 

Spain, France and Mediterranean Sea, were also suggested by other research in marine 

fish and invertebrates (A vise 1994, McMillan and Palumbi 1995, Rios et al. 2002, Nikula 

and Yainola 2003). These barriers to gene flow were often associated with a strong shift 

of gene frequencies over a short geographic range (Reeb and A vise 1990, Karl and A vise 

1992, Hare and A vise 1998), or significant changes in genetic patterns between 

populations across the barriers compared with those among populations on either side 

(McMillan and Palumbi 1995, Barber et al. 2002, Planes and Fauvelot 2002, Rfos et al. 

2002, Nikula and Vainola 2003). Wang et al. (2004) observed morphological differences 

and distinct l6S and COl mitochondrial haplotypes between C. ariakensis in southern 

China (Beihai, Guangxi Province and various locations in Guangdong Province) and 

northern China (Weifang, Yellow River basin) after surveying 18 C. ariakensis 

individuals, and suggested long-term isolation and subsequent population subdivision 

between these geographic populations. A biogeographical barrier was suggested to exist 

along the coast in this region close to the Yangzi River estuary (Wang et al. 2004), and 

was supported by distributions of other marine invertebrate species as described by Xu 

(1997). The Yangzi River estuary was also suggested as a barrier causing sharp genetic 

differentiations among populations of C. plicatula, C. gigas, and Coelomactra antiquata 
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(the xishishe clam) in China (Kong et al. 2007, Yu et al. 2008), but this conclusion was 

weakened by the fact that they did not explicitly exclude other species or hatchery 

animals from their samples, therefore they did not verify whether the genetic variation 

due to inter- and intra-species differences or between wild and hatchery populations 

(Kong et al. 2007, Wang et al. 2008a, Yu et al. 2008). Data from the current study did 

show significant genetic differentiation between the Yellow River basin population (YR, 

corresponding to northern samples in Wang et al. 2004) and the Beihai population (BH, 

where some southern samples were collected by Wang et al. 2004), though no significant 

change in the genetic pattern (such as larger Fsr values) among populations across this 

proposed barrier was observed compared with the overall structure, and results of the 

Mantel test were consistent with a pattern of IBD (Figure 3.3). It is unclear, however, 

whether the significant genetic differentiation between YR and BH populations at the 

extremes of the studied geographic range is a result of a fairly gradual accumulation of 

small non-significant genetic shifts that became significant over a large scale (IBD), or 

because of one or more sharp genetic discontinuities related to specific barriers. The fact 

that C. ariakensis populations are scattered in distribution over a wide geographic scale 

(Guo et al. 2006, Wang et al. 2006) suggests that the strong genetic differentiations 

between populations so far apart (> 1500 km) could be a consequence of patchy 

distribution, long geographic distances, and the associated factors influencing larval 

dispersal as described above. Unfortunately, our sampling density was not high enough to 

discriminate between these two scenarios (continuous genetic differentiation or sharp 

genetic discontinuity) due to limitations on finding and sampling natural populations of 

C. ariakensis in its native region. Without more intensive sampling along this region, it is 
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hard to determine whether or not there is a geographic barrier causing a sudden genetic 

shift in C. ariakensis populations along the coast of China. 

Wang et al. (2004) found that northern haplotypes in both COl and 16S genes 

were genetically closer to those found in Japan and South Korea (OFoighil et al. 1995, 

Kim et al. 2000), while southern haplotypes were closer to those found in Hong Kong 

(Lam and Morton 2003) indicating close genetic relationships among oysters within these 

two areas (northern area including northern China, Korea and Japan vs. southern area 

centered in southern China). However, haplotypes from neither the north nor the south 

were reciprocally monophyletic in either COl and 165 mitochondrial gene trees (Wang et 

al. 2004). Likewise, results from the current study showed significant genetic 

differentiation among populations within both the northern and southern sampling 

regions, such as theY ell ow River basin population vs. the Yangzi River population vs. 

Japanese population, and the Haicheng population vs. the Beihai population. Indeed, the 

levels of genetic differentiation within the northern samples were not significantly lower 

than those observed between the north and the south, For example, over similar 

geographic distances (about 600 km), Fsr values between the Yellow River basin and 

Yangzi River populations in the north (0.011 - 0.026) were similar to those observed 

between the Yangzi River and the Haicheng populations further south (0.0 17- 0.030) (P 

= 0.322, t-test). Overall, these data do not support the notion of a clear North-South 

genetic discontinuity. 

Wang et al. (2004) did not explain how the Yangzi River estuary might function 

as a barrier to gene flow between northern and southern C. ariakensis populations. Xu 

( 1997) argued that due to the different temperature and salinity characters of water 
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masses between northern areas (including Bohai Bay and the Yellow Sea north to the 

Yangzi River estuary) and the East China Sea (south to the Yangzi River estuary), some 

marine bivalve species adapted to low temperature and low salinity water in northern 

areas may be prevented from moving further south to the East China Sea, which is 

affected by a current with more saline and warmer water from south, and vice versa. He 

also mentioned that the large freshet from the Yangzi River in the summer might obstruct 

reciprocal invasions of some bivalve species adapted to high salinity waters, while not 

affecting those coastal species able to inhabit a broad spectrum of salinity and 

temperature ranges. Apparently, C. ariakensis can live across such a broad spectrum, as 

shown by its confirmed distribution to date (Wang et al. 2004, 2008, Zhang et al. 2005, 

Reece et al. 2008, Y oon et al. 2008). Estuarine habitats with seasonal freshets like the 

Y angzi River also seem suitable for C. ariakensis and its larvae, since samples for this 

study were collected in that (NT05, NT06, TT06) as well as other estuaries (BZ05, BZ06, 

YR99 and YR06 were from Yell ow River estuary; BH99 and BH05 were collected from 

Dafeng River estuary; see MATERIALS AND METHODS for details). It has been 

reported that C. ariakensis was often found to occur near rivers (Wang et al. 2006, Guo et 

al. 2006), and local fishermen in China often collect oyster seeds from upper-river areas 

(Guo et al. 1999). Langdon and Robinson ( 1996) speculated that this species is 

"dependent on estuaries for natural larval growth and recruitment" after some laboratory 

spawning trials. Therefore, it is questionable if a large amount of fresh water discharge 

from the Y angzi River in summer would be a barrier for larval dispersal of this species. 

Stable prevailing currents moving uni-directionally might also be a barrier to the gene 

flow among populations across the currents, whereas assisting gene flow along the 

87 



currents, like the case of pearl oyster populations distributed along the coast of the 

Central Pacific islands (Arnaud-Haond et al. 2003). The water currents in the native 

region of C. ariakensis, however, are quite variable among seasons (Figure 3.1 ). Though 

a major northeastward current joined with theY angzi River freshet moves from the south 

to the Sea of Japan through the strait between the Korean peninsula and Japan during 

summer, there is not much evidence showing that there is more gene flow among the 

populations along this route relative to that among populations across it. For example, 

genetic differentiations between Yangzi River population (NT and TT) and the Korean 

population (KR, SR) or the Japanese population (IR) were significant (along the current), 

but not substantially lower than those between KR and IR, which are located across the 

major current. Therefore, the hypothesis of a genetic barrier formed by the Yangzi River 

estuary was not supported by the data from this research. But again, samples from more 

locations north and south of theY angzi River estuary could produce a finer resolution of 

genetic population structure in this species and help to confirm or refute this hypothesis. 

Discrepant results, however, can be obtained when different types of markers are 

used to study phylogeographic changes in marine bivalves. For example, anonymous 

nuclear genes and mtDNA revealed a strong genetic break with little gene flow between 

Atlantic and Gulf populations of the eastern oyster (C. virginica), while allozyme 

markers showed genetic homogeneity, possibly due to balancing selection on the protein

coding loci (Karl and A vise 1992). Diaz-Aimela et al. (2004) found much higher genetic 

differentiation and differences in gene diversity variance among European flat oyster 

(Ostrea edulis) populations at a mitochondrial gene than was detected using several 

microsatellite loci, and speculated a sex-biased gene flow in this species. Wang et al. 
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(2004) used two mitochondrial genes (16S, COl), to examine genetic population structure 

in C. ariakensis, while the current research used eight nuclear microsatellite markers. 

Whether a similar phenomenon occurred in this Asian oyster species requires further 

investigation, especially in light of the small sample sizes (a total of 18 C. ariakensis 

individuals) used by Wang et al. (2004). 

Summary 

In conclusion, genetic heterogeneity does exist among C. ariakensis populations 

across its known native range. A small global genetic differentiation and a genetic pattern 

of isolation by distance were discovered, which is not surprising since it is also 

commonly observed in other marine invertebrates. There are, however, few reports on the 

genetic structure of marine coastal species in the northwest Pacific. A few studies 

assessing the genetic variation of coastal marine resources have focused either on local 

stocks (Shen et al. 2003, Chen et al. 2006, Yu and Chu 2006a, Yu and Chu 2006b, Kong 

et al. 2007) or cultured populations (Aranishi 2006, Li et al. 2006, Yu et al. 2008). No 

consistent pattern of genetic differentiation was revealed by these studies. Therefore, this 

research represents a novel observation on wild population genetic structuring in a coastal 

bivalve species along the coast of the northwest Pacific. 

As addressed above, the observed pattern of isolation by distance seen in this 

study was not sufficient to reject the hypothesis of a distinct geographic barrier existing 

along the coast of China. Higher sampling density in the distribution region, especially 

around the hypothesized barrier would be necessary to confirm or refute this hypothesis. 

Furthermore, the partial genetic structuring seen in this study across small geographic 
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scales (e.g. among the three South Korean samples) could be an artifact of sample size, so 

increasing n for those populations could resolve some inconsistencies at some branches 

of the species' phylogenetic tree. 

Finally, C. ariakensis from some native populations (particular the Japanese, 

Yellow River basin, and Beihai populations) have been transported into U.S. hatcheries, 

and their progeny were used in a variety of research projects (Breese and Malouf 1977, 

Langon and Robinson 1996, NRC 2004). It was unclear how much genetic variation 

existed within these hatchery stocks of C. ariakensis and what the genetic relationship is 

with their natural source populations. Therefore, in Chapter 4, these investigations were 

further extended to include the hatchery stocks of C. ariakensis, in order to get a more 

complete picture of the genetic variations within and among all wild populations and 

hatchery stocks of C. ariakensis. 

90 



Table 3.1 Source, sample code, collection date (month/year), type, and sample sizes of all populations used in this study. a 

Samples from an oyster farming area where local natural seeds were collected for culturing. 
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Source Sample code Collection Sample type 
Sample 

date size 
Ariake Sea, Saga Prefecture, Kyushu, Japan IR99, IR05 5/99, 10/05 wild, 8CUitured 49,50 

Kahwa River, South Korea KR04 04 wild 33 

Sumjin River, South Korea SR04 04 wild 20 

Kanghwa Island, Incheon, South Korea KI04 04 wild 20 

Binzhou, Shandong Province, China BZ05, BZ06 8/05, 4/06 wild 15,35 

Yellow River, Weifang, Shandong Province, China YR99, YR06 6/99,4/06 wild 32,50 

Nantong, Jiangsu Province, China NT05, NT06 5/05,4/06 wild 50,50 

Tangtou, Shanghai, China TT06 8/06 wild 37 

Haicheng, Fujian Province, China HC05, HC06 4/05,4/06 wild 50,45 

Dafeng River, Beihai, Guangxi Zhuang, China BH99, BH05 5/99, 3/05 wild, acultured 26,43 
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Table 3.2 Estimated allelic richness (A) standardized with rarefaction method (Petit 

et al. 1998), observed and expected heterozygosities (H0 , He), inbreeding coefficient 

(F15), and gene diversity (H5) for each sample at each locus, across all loci e), and across 

all loci excluding Carll S-aO (b). Bold fonts denote significant P values after Bonferroni 

correction (K= 16) at a = 0.01 (**) and 0.05 () levels. 
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CarGllO CarG4- Carll9- Carll- Carl30- CarGJ22 CarGJ- Car115- Multi Multi 
60 6a 70 08 Ob aO loci" locib 

IR99 

A 6.8 

H0 0.776 

HI, 0.793 

p 0.130 

F1s 0.032 

Hs 0.801 

IROS 

A 7.6 

H0 0.878 

H1, 0.835 

p 0.141 

F1s -0.041 

H.1· 0.843 
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HI:' 0.874 

p 0.215 

F1s 0.010 
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Ho 0.850 

HI, 0.764 
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H0 0.950 
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H.1 0.871 
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16.8 

1.000 

0.940 
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0.950 

16.3 
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0.936 
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9.3 
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0.850 

0.147 

0.026 

0.859 

9.6 

0.816 

0.867 

0.070 

0.027 0.069 

0.946 0.876 

18.2 
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0.949 

0.028 

10.6 
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0.240 

0.089 0.001 
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19.5 
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0.500 

-0.035 
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19.6 
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0.949 
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-0.028 

0.973 
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13.7 
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0.923 
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0.257 
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10.0 
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14.0 13.7 
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o.ooo·· 
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0.925 
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o.ooo·· 
0.061 0.364 
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14.5 
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0.922 

0.031 

0.019 0.100 
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12.9 

0.900 

0.904 
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0.030 

0.927 

12.7 

0.750 

0.911 

0.006 

0.202 

0.935 

12.3 

1.000 

14.4 

0.800 

0.914 

0.025 

0.150 

0.937 

12.0 

0.800 

0.901 

0.043 

0.138 

0.924 

13.7 

0.906 

94 

2.7 

0.306 

0.351 

0.103 

0.138 

0.355 

2.0 

0.440 

0.343 

0.052 

-0.273 

0.347 

2.0 

0.121 

0.165 

0.206 

0.281 
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2.0 

0.250 

0.219 
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0.224 

2.0 

0.400 

0.420 
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0.073 
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2.0 

0.313 

6.5 16.5 
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6.5 
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12.3 
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0.061 

0.904 

9.6 
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16.7 

0.850 
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0.050 

0.111 

0.954 

14.4 
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0.904 

0.029 

0.154 

0.929 

13.0 

0.875 

10.8 10.0 

0.725 0.722 
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o.ooo·· o.oo1· 
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11.6 10.8 
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0.806 0.785 
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0.809 
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0.058 
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10.7 
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0.788 
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H1 0.803 

p 0.141 

F1s -0.074 

H.1. 0.816 

YR06 

A 7.7 

H0 0.760 

HI, 0.802 

p 0.094 
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Hs 0.810 

BZ05 
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H0 0.800 

H1, 0.813 
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NT06 

A 7.3 

H0 0.860 

H1, 0.819 
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0.943 
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1.000 
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0.892 
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0.943 
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0.045 

0.906 

15.7 

0.943 

0.932 

0.286 

-0.027 0.003 

0.918 0.945 

12.9 

0.959 

0.917 

0.173 

-0.035 

0.927 

12.0 

0.900 

0.907 

0.174 

0.018 

15.5 

0.760 

0.930 

0.000 .. 

0.192 

0.939 

16.5 

0.900 

0.942 

0.061 

0.054 

0.916 0.951 

11.9 
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0.743 

0.906 

0.001* 

0.194 

0.919 

14.0 

0.840 

0.929 

0.008 

0.105 

0.938 

15.7 

0.816 

0.933 

o.ooo·· 
0.136 

0.852 0.943 

11.4 

0.914 

14.7 

0.800 

0.789 

0.312 

-0.009 

0.801 

10.7 

0.749 

0.789 

0.001" 

0.060 

0.797 

10.4 

0.756 

0.795 

0.006 

0.084 

0.823 

11.2 

0.771 

0.787 

0.039 

0.777 

0.647 

-0.013 

0.789 

10.6 

0.754 

0.775 

0.023 

0.037 

0.783 

9.7 

0.762 

0.778 

0.057 

0.055 

0.805 

10.8 

0.776 

0.770 

0.320 

0.034 0.008 

0.799 0.781 

11.5 

0.792 

0.820 

0.009 

0.043 

0.828 

11.3 

0.780 

0.799 

0.021 

0.035 

11.1 

0.786 

0.804 

0.050 

0.033 

0.812 

10.6 

0.774 

0.780 

0.159 

0.017 

0.807 0.788 

11.1 10.6 

0.804 0.805 



H~: 0.851 0.947 0.811 0.901 0.926 0.370 0.892 0.927 0.828 0.814 

p 0.125 0.040 0.080 0.194 0.003* 0.094 0.237 0.002* 0.017 0.115 

Fis -0.066 0.072 0.090 0.023 0.144 -0.228 -0.010 0.152 0.043 0.026 

Hs 0.863 0.960 0.823 0.913 0.939 0.375 0.905 0.941 0.840 0.826 

HCOS 

A 9.3 18.0 10.8 13.1 16.5 2.8 9.3 20.8 12.6 11.4 

Ho 0.840 0.980 0.816 0.960 0.837 0.380 0.820. 0.625 0.782 0.805 

HJ,· 0.862 0.953 0.880 0.922 0.941 0.318 0.778 0.967 0.827 0.808 

p 0.131 0.288 0.042 0.188 0.002* 0.118 0.137 o.ooo·· o.ooo·· 0.204 

Fis 0.035 -0.018 0.082 -0.031 0.121 -0.186 -0.044 0.363 0.065 0.014 

Hs 0.870 0.963 0.889 0.931 0.950 0.321 0.786 0.977 0.836 0.816 

HC06 

A 8.6 17.1 10.3 14.2 16.3 3.7 9.4 19.3 12.4 11.4 

Ho 0.778 0.889 0.796 0.933 0.864 0.489 0.628 0.558 0.742 0.768 

H~: 0.829 0.946 0.862 0.930 0.943 0.412 0.760 0.957 0.830 0.812 
p 0.080 0.030 0.050 0.232 0.009 0.061 0.005 o.ooo·· o.ooo·· 0.001* 

Fis 0.073 0.072 0.088 0.008 0.096 -0.175 0.185 0.426 0.118 0.065 

Hs 0.838 0.957 0.872 0.941 0.954 0.417 0.769 0.968 0.839 0.821 

BH99 

A 8.7 15.2 10.6 14.2 16.8 3.1 8.8 18.9 12.0 11.0 

Ho 0.962 0.885 0.808 0.885 0.846 0.269 0.654 0.769 0.760 0.758 

HE 0.812 0.919 0.859 0.925 0.928 0.270 0.675 0.948 0.792 0.770 
p 0.035 0.147 0.116 0.125 0.036 0.183 0.209 o.ooo·· 0.003 0.076 

Fis -0.165 0.057 0.079 0.063 0.107 0.022 0.051 0.207 0.060 0.034 

Hs 0.828 0.937 0.876 0.943 0.946 0.275 0.689 0.966 0.807 0.785 

BHOS 

A 9.2 16.4 9.7 13.2 13.0 3.4 9.4 20.3 11.8 10.6 

Ho 0.884 0.905 0.829 0.861 0.767 0.279 0.643 0.575 0.718 0.738 

HI, 0.865 0.934 0.842 0.912 0.899 0.338 0.717 0.960 0.808 0.787 

p 0.192 0.116 0.157 0.066 0.003* 0.062 0.047 o.ooo·· 0.000 .. 0.001* 

Fis -0.010 0.044 0.027 0.068 0.157 0.184 0.115 0.412 0.124 0.073 

Hs 0.875 0.946 0.852 0.923 0.909 0.341 0.726 0.972 0.818 0.796 
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Table 3.3 Pairwise 85T (above diagonal) and P values (below diagonal) among sixteen C. ariakensis samples. Bold fonts denote 

cases with non-significant genetic differentiation after Bonferroni correction (K = 15, a= 0.05). 
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IR99 IR05 KR04 SR04 KI04 YR99 YR06 BZ05 BZ06 NT05 NT06 TT06 HC05 HC06 BH99 BH05 

IR99 0.000 0.019 0.025 0.024 0.020 0.023 0.017 0.015 0.031 0.031 0.031 0.015 0.015 0.022 0.024 

IR05 0.037 0.018 0.022 0.025 0.018 0.022 0.021 0.017 0.033 0.035 0.033 0.016 0.017 0.024 0.021 

KR04 0.000 0.000 0.007 0.018 0.016 0.013 0.007 0.007 0.021 0.022 0.025 0.005 0.008 0.011 0.009 

SR04 0.000 0.000 0.002 0.015 0.012 0.009 0.004 0.007 0.023 0.018 0.023 0.019 0.021 0.032 0.026 

KI04 0.000 0.000 0.000 0.000 0.010 0.016 0.002 0.014 0.004 0.008 0.0041 0.012 0.016 0.030 0.028 

YR99 0.000 0.000 0.000 0.000 0.007 0.003 0.004 0.000 0.019 0.023 0.026 0.015 0.017 0.026 0.027 

YR06 0.000 0.000 0.000 0.000 0.000 0.010 0.002 -0.002 0.025 0.025 0.026 0.018 0.019 0.027 0.028 

BZ05 0.000 0.000 0.000 0.054 0.159 0.448 0.144 -0.002 0.011 0.013 0.012 0.004 0.005 0.016 0.018 

BZ06 0.000 0.000 0.000 0.000 0.001 0.415 0.261 0.775 0.021 0.019 0.024 0.012 0.012 0.019 0.022 

NT05 0.000 0.000 0.000 0.000 0.031 0.000 0.000 0.009 0.000 0.000 0.001 0.017 0.021 0.031 0.033 

NT06 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.521 0.002 0.023 0.030 0.041 0.038 

TT06 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.005 0.000 0.079 0.039 0.018 0.025 0.036 0.033 

HC05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.124 0.000 0.000 0.000 0.000 -0.001 0.003 0.003 

HC06 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.182 0.005 0.008 

BH99 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.003 

BH05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.080 
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Table 3.4 Estimates of Weir and Cockerham's (1984) global Fsr (f35r), and 

regressions of Cavalli-Sfourza and Edwards' (1968) genetic distance measure (DeE) 

versus geographic distances among 16 natural samples through a jackknife procedure 

which reiterates the analysis while excluding one of the eight loci each time. S= slope for 

linear regression, r= Pearson correlation for regressions. 
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Regression 
Locus excluded BsT 

S (x10"6
) r 

CarGJJO 3.42 0.601 0.017 

CarG4-60 4.35 0.656 0.020 

Carll9-6a 4.34 0.679 0.016 

Carll-70 4.62 0.684 0.021 

Carl30-08 4.24 0.628 0.020 

CarGJ22 4.11 0.649 0.019 

CarGJ-Ob 4.42 0.689 0.017 

Carll S-aO 3.18 0.537 0.018 

Mean 4.09 0.641 0.018 

Standard error 0.51 0.051 0.002 
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Table 3.5 Results of an AMOVA analysis for 16 C. ariakensis samples. *Denotes a 

significant result (P < 0.05). a Genetic relationships were inferred from pairwise eST 

analysis and NJ tree (see text for details). 
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Percentage 
No. of No. of 

Assumption Source of variation of p 

groups populations 
variation 

Temporal stability 10 16 within populations 97.99 0.000 ± 0.000* 

within groups 0.14 0.220 ± 0.004 

among groups 1.87 0.000 ± 0.000* 

Genetically closely related 8 10 within populations 97.95 0.000 ± 0.000* 

among geographically- within groups 0.08 0.292 ± 0.005 

contiguous samplesa among groups 1.96 0.002 ± 0.000* 

Eight populations 8 within populations 97.97 

within groups 2.03 0.000 ± 0.000* 

among groups 
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Figure 3.1 Map of sample locations and water circulations in the northwest Pacific 

Ocean (redrawn after Slindermann and Feng 2004). •= locations of C. ariakensis 

populations (see Table 1 for detailed descriptions of site abbreviations). (a)= water 

circulation in winter. (b)= water circulation in summer. 
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Figure 3.2 Neighbor-Joining (NJ) phenogram of sixteen C. ariakensis samples based 

on Cavalli-Sforza and Edwards' genetic distances (DC£). Numbers on the internal 

branches are bootstrap support values higher than 50% after 10,000 permutations over 

alleles. Sample abbreviations were listed in Table 3.1. Names of eight inferred 

genetically distinguished populations were labeled. 
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Figure 3.3 A significant linear regression between DeE based on eight microsatellite 

loci and geographic distances (km) among the natural samples (DeE= 0.0 I7 + 4.09x I o-6 

distance, r = 0.428, P < 0.0 I). 
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CHAPTER4 

GENETIC VARIABILITY IN U.S. HATCHERY STOCKS OF C. ARIAKENSIS: 

COMPARISONS WITH NATURAL POPULATIONS IN ASIA AND 

IMPLICATIONS FOR INTRODUCTION 
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INTRODUCTION 

Introduced stocks of C. ariakensis have been hatchery reared along the U.S. west 

coast in Oregon and Washington since the 1970s, but no natural populations have been 

established in the region, possibly due to the low water temperatures in the Pacific 

northwest (Breese and Malouf 1977, Perdue and Erickson 1984, Langdon and Robinson 

1996). Recently, proposals to introduce a non-native oyster species to the Chesapeake 

Bay region of the U.S. east coast have led to research and testing of nonnative oyster 

species including C. gigas and C. ariakensis. Since the 1990s, C. ariakensis broodstocks 

have been imported from the US west coast to Rutgers University and to YIMS from the 

U.S. west coast, northern China, and southern China (NRC 2004, Zhang et al. 2005). 

Though no reproductively capable C. ariakensis have been approved for in-water testing 

along the U.S. east coast, sterile triploid C. ariakensis derived from these hatchery stocks 

(Allen et al. 2003) have been used for various laboratory and comparative field studies on 

taste rating (Grabowski et al. 2003), biology and ecology of this species (Calvo et al. 

200 I, Grabowski et al. 2004, Bishop and Hooper 2005, Hudson et al. 2005, Alexander et 

al. 2008, Kingsley-Smith and Luckenbach 2008, McGhee et al. 2008, Paynter et al. 2008, 

Tamburri et al. 2008), non-indigenous pathogens (Burreson et al. 2004, Bishop et al. 

2006, Graczyk et al. 2006, Moss et al. 2007, Alavi et al. 2008, Schott et al. 2008), and 

disease tolerance (Calvo et al. 200 I, Grabowski et al. 2004, Moss et al. 2006). Little is 

known, however, about the genetic makeup of these stocks, the variation among these 

stocks, and the genetic differentiation from wild populations, which might be associated 

with differences in biology, behavior, and performance under various environmental 

conditions. 
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Studies on other marine bivalves show that allelic reduction is quite common in 

hatchery lines, and it is often associated with deviations in allelic or genotypic 

frequencies compared with the natural source populations (Hedgecock and Sly 1990, 

Gaffney et al. 1996, Yu and Guo 2005, Carlsson et al. 2006). This drift is thought to arise 

due to bottleneck effects from the small effective number of parents typically 

contributing to spawns in hatcheries and nonrandom selection that often occurs during 

breeding and larval recruitment in the hatchery (Hedgecock and Sly 1990, Gaffney et al. 

1996, Boudry et al. 2002, Yu and Guo 2005). Consequently, inbreeding and a 

concomitant decrease in various performance measures can occur in hatchery stocks 

(Hedgecock et al. 1995, Bierne et al. 1998, Ernande et al. 2003 ). Currently, levels of 

genetic variation among C. ariakensis hatchery stocks have not been thoroughly assessed, 

which could provide useful information for appropriate broodstock management. An 

initial study (Zhang et al. 2005) showed reduced genetic diversity in five VIMS hatchery 

stocks compared to wild populations. Unfortunately, this study did not provide detailed 

information on the genetic structuring within and among C. ariakensis hatchery and wild 

populations. 

The social, economical, and ecological risks of introducing the non-native C. 

ariakensis to the Chesapeake Bay ecosystem is a concern (Ruesink et al. 2005, 

Simberloff 2005, Bishop et al. 2006), and no introduction (or even field testing) of fertile 

non-native oysters has been approved to date (though currently under consideration), and 

an environmental impact statement (EIS) is being drafted 

(hlW.JbY.).Y._lY...,JlilQ"J.!S.i:l~-~J!fl!!Yl!li!LQ.)'Jlte rEI S /h o m~_p.rrg~.Jl1i.J2 ) . However, ace ide n tal reI ease 

or intentional, illegal introduction of reproductively capable C. ariakensis is still possible 

Ill 

http://www.nao.tisace.armv.mil/oysterElS/hotTJepage.asp


through various means (Simberloff 2005). The highly polymorphic microsatelllite 

markers used here have proven adept at differentiating among natural populations of C. 

ariakensis (Chapter 3). The present study further tested the utility of these markers to 

differentiate among hatchery stocks, to assess the relationship between these stocks and 

their natural source populations, and to assign C. ariakensis of unknown origin back to 

their source domestic stocks or wild populations in order to monitor C. ariakensis that 

might be introduced into Chesapeake Bay. 
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MATERIALS AND METHODS 

Samples 

A total of 245 individuals from five hatchery samples used in this study and 

confirmed to be C. ariakensis by Zhang et al. (2005) are listed in Table 4.1. They were 

sampled in 2002, and four of them (NCA, WCA, SCA99 and SCAOO) were from stocks 

maintained by the ABC at VIMS; the other one (TUI) was from Taylor Shellfish Farms 

Inc., located on the U.S. west coast. TUI and WCA were derived from the 'Oregon 

Strain', which was inadvertently introduced into the U.S. in the 1970s (Breese and 

Malouf 1977). In comparison to TUI, which has been hatchery-reared for several 

generations, WCA was directly collected in 1999 from a C. ariakensis stock being held in 

the waters along the coast of Washington State that does not spawn naturally. NCA was 

derived directly from wild broodstock brought to VIMS from the Yellow River Basin, 

Shandong Province, northern China, and spawned in 1999 at the ABC; similarly, SCA99 

and SCAOO were derived from a wild broodstock collected in Beihai, Guangxi Province, 

southern China. SCA99 was spawned in 1999 and another group from the same 

broodstock was spawned in 2000. For the purpose of this study, TUI and WCA were 

considered to be long-established stocks due to the long separation time (around 30 

years) from their natural source populations in Japan (Breese and Malouf 1977). NCA, 

SCA99, and SCAOO were considered recent stocks, since their parental broodstocks were 

transported into the U.S. quite recently and each stock had undergone only one 

generation of hatchery propagation at the time of sampling. 
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Samples from eight genetically heterogeneous natural populations (as inferred by 

the population genetic structure'analysis in Chapter 3) were also included in the analyses 

(Table 4.1 ). They were used for comparisons of genetic variability and diversity between 

hatchery stocks and wild populations and as reference populations for assignment tests. 

Two additional wild samples, which were not included in the wild population genetic 

structure analysis, were genotyped and used as test samples for the assignment analyses 

conducted here. These test samples were composed of 50 individuals collected from the 

ltoki River in Japan (IR05a) and 36 individuals from the Yellow River in China (YR05a) 

in 2005. These additional samples were confirmed to be C. ariakensis using the 

RFLP/PCR molecular identification key of Cordes et al. (2008). 

DNA extraction. microsatellite amplification and data analysis 

Genomic DNA extraction, PCR amplifications of eight microsatellite markers 

(CarGl 10, CarG4-60, Carl 19-6a, CarG122, Car/30-08, CarGl-Ob, Carl 1-70, Carl 15-

aO), and separation of PCR products on a PRISM® ABI 3130 genetic analyzer followed 

the protocols described in Chapter 1. Allele sizes in base pairs (bp) were called based on 

comparisons to the panels generated by scoring 605 wild individuals of C. ariakensis 

from Japan, South Korea, and China (Chapter 3), using the software package 

GENEMARKER. 

Based on multi-locus genotype data the inter- and intra-population variation as 

measured by various parameters (A, H0 , HE, F15, F5T) were analyzed using the same 

procedures as described in Chapter 3. In order to compare the allelic richness (A) of 

hatchery stocks and natural populations, A was adjusted to a sample size of 14 (the 
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smallest sample size in natural populations) by a rarefaction method (Petit et al. 1998). 

Significant levels of per sample F15 and Fsr values were assessed by bootstrapping with 

I 0,000 iterations at each locus and over all loci in GENETIX. The genetic relationship 

between hatchery and natural populations was visualized through construction of a 

Neighbor-Joining (NJ) tree using the software package PHYLIP 3.67 (Felsenstein 1989) 

based on Cavalli-Sforza & Edwards' (1967) genetic distances. 

In the assignment analyses, eight wild populations (IR, KR, SR, KI, YR, YzR, HC 

and BH; listed in Table 4.1) were used as the reference genotypic database for wild 

sources; the five hatchery samples served unaltered as the reference for hatchery sources 

since significant genetic differentiation was observed among all pairwise comparisons 

(see RESULTS for details). To assess the ability of the markers to correctly assign 

individuals back to their source populations, we first conducted self-assignment tests 

(where the population of origin for a sampled individual is considered the source) for the 

eight natural populations and five hatchery populations by a 'leave-one-out' procedure 

that excludes the individual to be assigned from the population during computation (Piry 

et al. 2004). We then assigned 136 putatively 'unknown' individuals to either wild or 

hatchery sources. To do this, ten individuals from each of the five hatchery populations 

(named TUia, WCAa, NCAa, SCA99a and SCAOOa) were randomly drawn from the 

hatchery populations and removed from the 'reference' database. These 50 hatchery 

individuals and 86 test individuals from two additional natural samples (IR05a and 

YR05a) were treated as putatively 'unknown' samples and assigned to the natural or 

hatchery sources based on their multi-locus genotype profiles. A Bayesian method 

(Rannala and Mountain 1997) implemented in the program GENECLASS 2 (Piry et al. 
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2004) was used to compute the probability of an individual being classified to each 

'reference' population. The 'reference' population with the highest assignment 

probability was chosen as the assigned source for this individual, and compared with the 

known information from sampling. 
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RESULTS 

Genetic diversity within stocks and comparisons with natural populations 

A total of 152 alleles were amplified at eight microsatellite loci in 246 individuals 

from five hatchery stocks. Only 52.6% of the alleles that amplified in wild samples 

(Chapter 3) were observed in the hatchery stocks. In addition, three alleles (from loci 

CarG4-60, Car 130-08 and Car 115-aO) were not observed in the wild samples, while they 

were amplified in hatchery stocks. One allele was only found in the Japanese derived 

hatchery stocks TUI and WCA; the other two were found only in stocks derived from the 

southern Chinese populations SCA99 and SCAOO. 

Adjusted allelic richness (A) across all loci ranged from an average of 3.3 (TUI) 

to 9.1 (SCA99) alleles per locus per population (Table 4.2). There was a significant 

difference in A values among these five hatchery stocks, and the long-established stocks 

(TUI and WCA) had much lower values for A compared to the recently derived stocks (P 

= 0.000, two tailed Mann-Whitney test). The overall mean A for these five hatchery 

populations was 6.8 alleles per locus/per population. 

Multi-locus analysis of the hatchery stocks indicated that only the TUI stock 

showed significant negative F15 (-0.226). However, individual HWE tests for each stock 

at every locus (Table 4.2) revealed that I6 of 40 tests were significantly out of HWE after 

Bonferroni correction (K = 8, a= 0.05), and II (69%) of them were due to an excess of 

heterozygotes. TUI had the highest number (5 out of 8) of deviations from HWE, all due 

to H0 >HE. 
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When comparing genetic diversity in terms of allelic richness (A) and the 

observed (H0 ) and expected (HE) heterozygosities between the hatchery stocks and wild 

populations (data from Chapter 3), significant reductions of A and HE(P = 0.001, 0.012, 

respectively; two tailed Mann-Whitney test), but not H0 (P = 0.615) were found in the 

hatchery populations. We further analyzed the variation of these three parameters in 5 

hatchery and 16 natural samples and found that fluctuations of H0 and HE across all 

samples were correlated with A (R2 = 0.431, P = 0.001 and R2 = 0.862, P = 0.000, 

respectively) (Figure 4.1). The values for all three parameters (A, H0 , HE) were decreased 

significantly (all P values< 0.05) in the two mature stocks TUI and WCA; while the 

three recent stocks (NCA, SCA99 and SCAOO) had reduced values of allelic richness (A, 

P = 0.009) but not heterozygosity (H0 and HE, P = 0.615 and 0.105, respectively). In 

addition, the magnitude of reduction in the hatchery samples was higher in A compared 

with H0 and HE. In general, average A and HE values for all hatchery populations were 

decreased by 40.0% and 13.7%, respectively, compared with the mean values over all 

wild populations. These hatchery stocks, however, did not contribute equally to the 

reductions. The average A, H0 , and HE values of the two long-established stocks (TUI and 

WCA) were decreased by 60.4%, 10.9%, and 26.4%, respectively, compared with their 

wild source population (IR). In comparison, the average reduction in A in the three recent 

hatchery stocks was much lower, with 17.7% for NCA compared with its source 

population YR, and 29.5% for SCA99 and SCAOO compared to the wild BH population, 

while HE and H0 values did not decrease significantly. 
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Genetic differentiation among hatchery stocks and wild populations 

Population pairwise esT values among hatchery samples (Table 4.3) ranged from 

0.054 (SCA99 vs. SCAOO) to 0.238 (TUI vs. SCAOO) (global e~T = 0.1352), and were 

clearly larger than those previously observed among natural populations (Chapter 3). All 

pairwise esT values among hatchery populations were highly significant (P < 0.001), and 

those comparisons that involved the long-established stocks (TUI and WCA) all had esT 

values> 0.1 00, and were larger than those observed among recent stocks ( < 0.065). 

Genetic relationships among these hatchery populations and the eight wild populations 

from Chapter 3 were visualized by an unrooted NJ tree (Figure 4.2). Hatchery 

populations derived from the same natural sources, such as TUI and WCA (Japan), and 

SCA99 and SCAOO (southern China), were grouped together with high bootstrapping 

support(> 90%). TUI and WCA were genetically closer to their wild source population 

(IR) with a relatively high bootstrap support value (75% ). SCA99 and SCAOO were also 

grouped with their wild source population (BH), but with low bootstrap support(< 50%). 

Similarly, the NCA stock (derived from broodstock collected from the Yellow River 

region in China) was genetically closest to the northern Chinese (including YR and YzR 

populations) and Korean populations (KR04, SR04 and KI04) without strong bootstrap 

support values (<50%). Long branch lengths indicated significant drift of the hatchery 

stocks away from their parental sources. 

Assignment tests 

The results of all assignment tests are shown in Table 4.4, including two groups of 

self-assignments and assignments of some additional and/or random samples to natural 
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and/or hatchery origins. The self-assignment tests correctly assigned 84.0%- 97.9% of 

hatchery individuals back to their hatchery stocks, while variable percentages (20.0% -

72.7%) of wild individuals were assigned back to their specific natural populations. The 

three Korean populations, which had small sample sizes (20- 33), had quite low 

incidences of correct assignments (20.0% - 30.0% ). Nevertheless, a comprehensive 

pairwise assignment table (Table 4.4) indicated that large proportions of wild individuals 

were assigned to geographically proximal populations. For example, 15.0%-40.0% of 

individual oysters from the three Korean populations (KR, SR and Kl) were assigned to 

theY ell ow River basin population (YR), and an additional 20.0% and 35.0% of 

individuals from the SR and KI populations, respectively, were assigned to the Yangzi 

River population (Y zR). Similarly, a substantial proportion of oysters ( 14.7%) from 

Haicheng (HC) were classified to the other southern Chinese population (BH), and vice 

versa. 

Tests using both hatchery stocks and natural populations as references for seven 

putatively 'unknown' samples resulted in overall 96.3% of individuals being correctly 

classified generally as wild or hatchery oysters. The exceptions were that one individual 

from IR05a was assigned to a hatchery stock (SCA99), and likewise, 3 from NCAa and 

one from SCA99a were assigned to wild populations instead of their source hatchery 

stocks. And similar with self-assignment tests, results from these 136 putatively 

'unknown' samples indicated that a high percentage (70.0% - 90.0%) of hatchery oysters 

were precisely assigned to their specific hatchery stock of origins and a moderate 

percentage (63.9%- 68.0%) of the wild individuals (YR05a and IR05a) were assigned to 

their specific natural geographic origins. 
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DISCUSSION 

Genetic makeup of the hatchery stocks 

Results of this study led to three main interrelated observations regarding the 

genetic variability within and among hatchery stocks of C. ariakensis: 1) there was 

significant reduction of genetic variability in terms of allelic richness and observed and 

expected heterozygosities in the hatchery stocks, 2) the greatest levels of genetic 

differentiation were found among hatchery stocks and between the hatchery stocks and 

wild populations, and 3) deviations from HWE were largely due to excess observed 

heterozygosity compared to expected, especially in the highly inbred population TUI. 

The three measures of genetic diversity commonly used as indicators of genetic 

bottleneck effects in natural and cultivated marine organisms are the number of 

polymorphic loci, allelic diversity, and heterozygosity, though the first two were 

suggested as more useful measures of bottlenecks than heterozygosity in allozyme studies 

(Leberg 1992). Although the number of polymorphic loci was commonly used in 

allozyme studies as a measure of bottlenecking, the overall high levels of polymorphism 

found in microsatellite loci make this measure less meaningful for this class of markers. 

In a hatchery setting, reductions in allelic diversity are believed to be caused by small 

effective population sizes (Ne) resulting from a small number of animals being used as 

broodstock and non-equal gametic viability and/or spawning condition of the potential 

parents (Hedgecock and Sly 1990, Hedgecock 1994). Reductions in heterozygosity, 

however, do not always respond immediately to these conditions, depending on the 

number and severity of the bottlenecks, the original N", and the evenness of allelic 
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frequencies after the bottleneck (Hedgecock and Sly 1990, Leberg 1992). Reductions in 

both types of diversity are commonly observed in cultivated fishes (Allendorf and Phelps 

1980, Ryman and Stahl 1980), while hatchery propagated marine bivalves have been 

typically observed to lose only allelic diversity (Hedgecock and Sly 1990, Yu and Guo 

2005, Carlsson et al. 2006). In the present case, reductions in genetic diversity were 

greatest in the long-established hatchery stocks (TUI and WCA) that had been isolated 

from their source populations for the longest times. This is not surprising since these 

stocks have been domesticated for over 30 years and have undergone multiple 

generations of hatchery spawning. In contrast, the more recently domesticated stocks 

showed reductions in allelic diversity but not in heterozygosity, consistent with previous 

reports that allelic diversity is more sensitive to bottleneck events and that a time lag 

exists before measurable decreases in heterozygosity are observed (Nei et al. 1975, 

Hedgecock and Sly 1990, Leberg 1992, Petit et al. 1998). In the current study, variations 

in H0 and HE were correlated with fluctuations of A (Figure 4.1). A relation curve based 

on studies of 78 animal species (De Woody and A vise 2000) showed that heterozygosity 

changed little once the effective number of alleles reached 10. However, if inbreeding is 

continued over several generations so that allelic diversity continues to decrease, 

heterozygosity will eventually decrease correspondingly. 

Unlike in natural populations where deviations from HWE were primarily due to 

heterozygote deficiencies (Chapter 3), overall a high proportion (68.8%) of the 

significant F1s values in these hatchery stocks were due to heterozygote excess. In fact, 

83.3% of the deviations observed in the TUI stock were due to an excess of observed 

heterozygotes compared to what was expected based on HWE, and a closer look at the 
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genotype frequencies found that a few genotypes were highly prevalent in this hatchery 

population (data not show), which is not an uncommon observation in hatchery 

propagated inbred oyster families (Saavedra and Guerra 1996, McGoldrick and 

Hedgecock 1997, Bierne et al. 1998, Marsic-Lucic and David 2003). Uneven parentage 

contribution and selection against deleterious homozygotes due to identical-by-descent 

markers might contribute to the distorted genotypic frequencies in those hatchery 

populations, particularly in the short term (McGoldrick and Hedgecock 1997, Bierne et 

al. 1998, Launey and Hedgecock 2001 ). Furthermore, the distorted genotypic frequencies 

observed here indicate non-equal contributions to the progeny genotypes from the 

parents, and there were probably only a few successful breeders (Ne) at each spawning. 

This "founder effect" can cause shifts in allele frequencies at individual loci by random 

chance (i.e. drift). Loss of rare alleles and a high prevalence of a few common alleles can 

result in very different allelic distributions. Relatively rapid divergence from source 

populations and from the other stocks derived from the same source is not uncommon 

with hatchery stocks and this phenomenon is often observed in highly fecund species like 

oysters (Hedgecock 1994, Saavedra and Guerra 1996, Vercaemer et al. 2006). This likely 

explains the large genetic distance among hatchery stocks and between the hatchery 

stocks and wild populations in this study. 

Implications for C. ariakensis introduction 

Based on the results described above, three possible effects of genetic bottlenecks 

on these hatchery stocks are discussed below. First, loss of genetic diversity over the long 

term may cause inbreeding depression. Though the cause of inbreeding depression and its 
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converse heterosis (hybrid vigor) remains poorly understood in marine bivalves, positive 

correlations between multi-locus heterozygosity and fitness-related traits were commonly 

observed in highly inbred families and populations of bivalves (Gaffney et al. 1990, 

Hedgecock et al. 1995, McGoldrick and Hedgecock 1997, Bierne et al. 1998, David et al. 

1998, Naciri-Graven et al. 2000, Launey and Hedgecock 2001, Hedgecock et al. 2007). 

High genetic load of deleterious recessive mutations in some bivalve species such as C. 

gigas has also been suggested and provides some basis for inbreeding depression (Launey 

and Hedgecock 2001). Reduction in heterozygosity, though undetectable in the first 

several generations of inbreeding (Hedgecock and Sly 1990), could become significant 

after continued use of a small numbers of individuals for spawning, which are drawn 

from stocks that are already showing reduced aJJeJic diversity. Stock erosion may occur 

due to detrimental changes in fitness parameters such as growth and early recruitment, 

which has been shown to be correlated with reduced heterozygosity (Hedgecock et al. 

1995, David 1998, Bierne et al. 1998). Therefore, successive introduction of broodstock 

from wild populations is recommended in order to enrich and maintain healthy genetic 

pools in existing hatchery stocks, especially for those stocks isolated from their source for 

the longest times (TUI and WCA). 

Second, given the high genetic differentiation among the hatchery stocks derived 

from different source populations, there might be phenotypic divergence among stocks. 

As the conceptual basis of selective breeding, phenotypic differences are often 

intentionally selected to produce broodstock with specific traits: however, this process 

can be unintentionally associated with a decrease in genetic diversity, and particularly in 

allelic diversity (Yu and Guo 2005, Carlsson et al. 2006). Likewise, involuntary artificial 
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selection pressure resulting from time and energy constrains under laboratory or hatchery 

conditions, has been shown to cause change and reduce variance in growth and 

development of domesticated oysters. For example, Taris et al. (2006) reported that by 

culling C. gigas larvae in early stages, the stocks resulted in individuals that were an 

average of 10% larger and had a 12% shorter time to settlement than control groups, and 

the variance in the parameter means was reduced by 30-40% and 55%, respectively. It is 

still unclear whether or not the genetic shifts in the C. ariakensis hatchery stocks 

compared to their wild source populations is linked to any changes in growth 

performance, early recruitment or development, as results of side-by-side performance 

trials comparing within and among hatchery stocks and wild populations have not been 

reported, and there is a lack of information on the basic biology of C. ariakensis in its 

native region. Differences in larval settlement and swimming, however, were observed 

among different stains of C. ariakensis (Luckenbach 2004, Tamburri et al. 2008). 

Numerous comparative studies between C. ariakensis and C. virginica on biological traits 

such as growth and early development have been conducted using a single strain of C. 

ariakensis for each study. The most commonly used stocks were derived from the so

called "Oregon Strain" from the west coast of the U.S. (Langdon and Robinson 1996, 

Calvo et al. 200 I, Hudson et al. 2005, Paynter et al. 2008, Kingsley-Smith and 

Luckenbach 2008), which corresponds to the TUI and WCA stocks used in this study. 

These stocks showed the greatest genetic bottleneck effects and genetic drift from their 

natural source populations and the other hatchery stocks. Therefore, interpretations of 

comparisons among studies conducted in the U.S. over the last decade might be 
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compromised due to the use of different stocks which might differ not only genetically, 

but also in performance and fitness parameters. 

Moreover, the specific strain used and its genetic character has to be taken into 

account when we evaluate the performance of C. ariakensis transplants, given the various 

environmental conditions in locations from which stocks were derived, including 

different disease challenges. Moss et al. (2007 and 2008) did a disease survey of C. 

ariakensis and other related oysters in Asia, and found that a herpes-like virus (OsHV -I) 

and Perkinsus olseni was prevalent throughout the sampling area used in the present 

study, from Japan to South Korea and northern and southern China, while a newly 

described Perkinsus species (P. beihaiensis) was also found only in southern China. 

Whether these disease challenges could result in different disease tolerance or resistance 

of oysters from different locations is still under investigation. There are, however, many 

reports of varying disease resistance in different geographic strains of bivalves. For 

example, Bushek and Allen ( 1996) found that different broodstocks of C. virginica 

exhibited distinct levels of P. marinus resistance; Brown et al. (2006) reported higher 

Dermo disease resistance in a North Carolina strain of C. virginica than in Chesapeake 

Bay conspecifics; and natural resistance to QPX was discovered among different 

geographic strains of the hard clam Mercenaria mercenaria (Ragone Calvo et al. 2007). 

Therefore, the stock or strain of C. ariakensis used in field or laboratory studies should be 

considered when evaluating the performance of this species in the U.S. 

126 



Genetic tracking 

Assignment tests based on an individual's genotypic profile have been widely 

used to detect immigrants, identify hybrids, trace the origins of animals and plants, and 

detect dispersal patterns (Paetkau et al. 1997, Maudet et al. 2002, Castric and Bernatchez 

2003, Mane! et al. 2005, Vercaemer et al. 2006). An introduction of fertile C. ariakensis 

oysters to Chesapeake Bay has not been approved but is currently under consideration, 

and an environmental impact statement (EIS) evaluating various alternative strategies for 

oyster restoration in the region is being drafted. Accidental release or intentional, illegal 

introduction of reproductively capable C. ariakensis, however, has been a concern 

(Simberloff 2005), and the ability to trace such introductions of C. ariakensis could be 

important for controlling these non-native oysters. 

Multiple tests conducted in this study first indicated that a high percentage 

(overall 96.3%) of putatively unknown oysters could be correctly classified generally as 

wild or hatchery oysters. Secondly, the domesticated oysters could be further tracked 

back to their specific hatchery origins with high accuracy (> 80% ). The ability to 

accurately assign wild oysters back to their specific source population, however, was low 

to moderate (20.0% - 72.7% ), probably due to reduced genetic differentiation among 

these natural populations compared to the relatively high differentiation among the 

hatchery stocks. It has been reported that a 100% correct assignment could be achieved 

by scoring I 0 microsatellite loci on 30- SO individuals from each of 10 populations with 

F5T values around 0.1 (Cornuet et al. 1999), which is in the range of what was observed 

among the hatchery populations in the present study (F5T = 0.132). However, for those 

populations with FsT values approximately I 0 fold lower, (i.e. around 0.0 I, comparable to 
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the F57 value of 0.020 that we observed among the eight natural populations), the 

percentage of correct assignments seldom reach 50%, even using 20 loci and 90 

individuals per population (Cornuet et al. 1999). Additionally, low sample sizes of some 

wild populations in this research (i.e. KR, SR and Kl) probably also affected the 

probability of correct assignments (Cornuet et al. 1999, Mane! et al. 2004). 

A closer look at the pairwise assignments found that a substantial proportion of 

wild individuals were assigned to their geographically proximal populations (see 

RESULTS). This is not surprising given a genetic pattern of isolation by distance 

observed in the wild populations (Chapter 3). Since the probability of correct assignments 

largely depends on population genetic differentiations (Cornuet et al. 1999, Mane! et al. 

2004), relatively smaller genetic differentiation and higher gene flow among populations 

with shorter geographic distances, compared with populations farther apart, probably 

resulted in a relatively high number of individuals being misassigned to a population 

geographically proximate to their sampled populations. 

Based on the testing results discussed above, an assignment strategy is proposed: 

1. an unknown sample could be first classified generally as hatchery or wild oysters with 

an average accuracy of 95%; 2. hatchery oysters could be further assigned to the specific 

hatchery stocks with a high probability (average 92% ); 3. if the unknown sample was 

assigned as originating from a wild Asian population, the geographically proximate 

populations are also likely to be the origin population, due to the low genetic 

differentiation among them; therefore, they could be traced back to a wild geographic 

group which is either a Japanese group, a northern Chinese group (including KI, SR, IN, 

YR and YzR populations), or a southern Chinese group (including HC and BH). In 
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reality, it is more likely that hatchery C. ariakensis would be released into the 

environment, since only hatchery stocks of diploid and triploid C. ariakensis have been 

used in the U.S. for research, at least to date (Grabowski et al. 2003, Hudson et al. 2005, 

Calvo et al. 2001, Grabowski et al. 2004, Burreson et al. 2004, Graczyk et al. 2006, Calvo 

et al. 200 I, Moss et al. 2006). 
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Table 4.1 Sample information for five C. ariakensis hatchery stocks and eight natural 

populations from Asia used for comparisons of genetic variability in Chapter 4. Based on 

results of the population genetic study presented in Chapter 3, 16 wild samples2 were 

combined into 8 populations1 (also see Figure 3.2). Two test samples comprised of 

additional individuals from two wild samples (IR05a, YR05a) used for validating the 

assignment tests. 
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Sample Sample Collecting Sample Sample 
Source 

code1 code2 date type size 
TUI 3/02 hatchery 48 Taylor Shellfish Farms, Inc., derived 

from 'Oregon Strain' in west coast of 
u.s. 

WCA 12/02, hatchery 50 ABC, derived from 'Oregon Strain' in 
1/03 west coast of U.S. 

NCA 7/02, hatchery 50 ABC, F1 generation of Yellow River 
12/02 stock (YR) in northern China, spawned 

in 1999. 
SCA99 7/02, hatchery 50 ABC, F1 generation of Beihai stock 

12/02 (BH) in southern China, spawned in 
1999. 

SCAOO 7/02, hatchery 47 ABC, F1 generation of Beihai stock 
12/02 (BH) in southern China, spawned in 

2000. 
IR IR99, IR05 5199, wild 49,50 Ariake Sea, Saga Prefecture, Kyushu, 

10/05 Japan 
KR KR04 04 wild 33 Kahwa River, South Korea 

SR SR04 04 wild 20 Sumjun river, South Korea 

KI KI04 04 wild 20 Kanghwa Island, Incheon, South Korea 

YR YR99, 6/99,4/06, wild 32, 50, 
Yellow River basin, Shandong 

YR06, BZ05, 8/05,4/06 15,35 
BZ06 

Province, China 

YzR NT05, NT06, 5/05,4/06, wild 50, 50, 
Y angzi River estuary, China 

TT06 8/06 37 
HC HC05, HC06 4/05, 4/06 wild 50,45 Haicheng, Fujian Province, China 

BH BH99, BH05 5/99,3/05 wild 26,43 Dafeng River, Beihai, Guangxi Zhuang, 
China 

IR05a 10/05 wild 50 Ariake Sea, Saga Prefecture, Kyushu, 
Japan. 

YR05a 5105 wild 36 Yellow River, Weifang, Shandong 
Province, China. 
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Table 4.2 Microsatellite diversity in five hatchery populations of C. ariakensis. A is 

allelic richness adjusted to a sample size of N = 14 by the rarefaction method (Petit 

1998); H0 and HE are observed and expected heterozygosity, respectively; F15 is Weir & 

Cockerham's (1984) inbreeding coefficiency estimate; Pis the probability that F15 is null. 

Numbers in boldface are significantly different from zero after Bonferroni correction (K 

= 8, a = 0.05). 
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CarGllO 
CarG4- Carll9- Carll- Car130-

CarG122 
CarGl- Carl IS- multi-

60 6a 70 08 Ob aO locus 

TUI 

A 2.9 5.2 3.3 3.8 3.2 2.0 2.0 4.1 3.3 

Ho 0.750 0.771 1.000 0.854 0.302 0.521 0.229 0.787 0.652 

H" 0.508 0.697 0.615 0.658 0.462 0.385 0.203 0.690 0.527 
p 0.000 0.089 0.000 0.001 0.002 0.000 0.000 0.052 0.000 

FIS -0.469 -0.096 -0.620 -0.289 0.356 -0.343 -0.119 -0.131 -0.226 

WCA 
A 3.5 8.7 5.4 6.5 5.1 2.3 2.0 7.1 5.1 

Ho 0.840 0.900 0.841 0.680 0.378 0.300 0.435 0.860 0.654 

Hli 0.655 0.848 0.721 0.809 0.690 0.285 0.386 0.820 0.652 
p 0.001 0.121 0.017 0.005 0.000 0.240 0.112 0.207 0.405 

Fls -0.273 -0.052 -0.155 0.169 0.462 -0.041 -0.117 -0.039 0.007 

NCA 

A 5.5 13.5 7.1 9.8 11.8 2.0 6.6 14.1 8.8 

Ho 0.640 0.900 0.840 0.960 0.860 0.340 0.820 0.940 0.788 

HI, 0.621 0.911 0.810 0.848 0.895 0.282 0.759 0.925 0.756 
p 0.327 0.192 0.271 0.003 0.094 0.000 0.112 0.341 0.055 

Fls -0.021 0.022 -0.027 -0.122 0.049 -0.195 -0.071 -0.007 -0.031 

SCA99 

A 7.8 11.8 8.8 9.5 11.0 3.2 6.7 14.0 9.1 

Ho 0.860 1.000 0.816 0.920 0.837 0.440 0.745 0.717 0.792 

HI, 0.836 0.900 0.861 0.864 0.883 0.426 0.722 0.911 0.800 
p 0.316 0.000 0.093 0.087 0.063 0.350 0.313 0.000 0.150 

FIS -0.018 -0.102 0.062 -0.055 0.063 -0.023 -0.021 0.223 0.021 

SCAOO 

A 7.5 10.7 6.9 8.7 8.1 3.4 6.5 9.8 7.8 

Ho 0.766 0.957 0.936 0.915 0.447 0.298 0.783 0.848 0.744 

HI, 0.730 0.890 0.809 0.850 0.807 0.268 0.687 0.870 0.739 
p 0.227 0.041 0.003 0.079 0.000 0.000 0.025 0.175 0.436 

FIS -0.039 -0.065 -0.147 -0.065 0.455 -0.100 -0.129 0.037 0.004 

Overall 

A 5.4 10.0 6.3 7.6 7.9 2.6 4.7 9.8 6.8 

Ho 0.771 0.906 0.887 0.866 0.565 0.380 0.603 0.831 0.726 

HI' 0.670 0.849 0.763 0.806 0.747 0.329 0.551 0.843 0.695 
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Table 4.3 Pairwise 85T (above diagonal) and P values (below diagonal) among five 

hatchery populations of C. ariakensis. All comparisons were highly significant after 

Bonferroni correction (K = 5, a = 0.0 I). 
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TUI 

NCA 

WCA 

SCA99 

SCAOO 

NCA 

0.228 

<0.001 

<0.001 

<0.001 

WCA 

0.123 

0.149 

<0.001 

<0.001 
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SCA99 SCAOO 

0.194 

0.062 

0.101 

<0.001 

0.238 

0.055 

0.150 

0.054 



Table 4.4 Percentages(%) of individuals assigned to various hatchery and wild reference samples using Rannala & Mountain's 

(1997) Bayesian method: a) %of correct self- assignments for eight wild populations, b)% of correct self- assignments for five 

hatchery samples and c) % of assignments for seven putatively 'unknown' samples to each of the reference populations from a) and b) 

above. See Table 4.1 for sample abbreviations. Numbers in bold are proportions of oysters correctly classified to its sample of origin. 

*Self assignment tests (Piry et al. 2004, also see text) were performed for a) and b) (also see above), and consequently no tests were 

conducted to assign the eight wild populations to the five hatchery populations and vice versa, as indicated by the empty grey cells. 
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Sample 
size IR KR SR KI YR Y1R HC BH TUI WCA NCA SCA99 SCAOO 

a) eight wild populations 

IR 99 72 (72.7) 5 (5.1) 2 (2.0) 3 (3.0) 4(4.0) 6 (6.1) 4(4.0) 3 (3.0) 
KR 33 2 (6.1) 8 (24.2) 3 (9.1) I (3.0) 8 (24.2) 3 (9.1) 5 (15.2) 3 (9.1) 
SR 20 2 (IO.G) 2 (10.0) 6 (30.0) I (5.0) 3 (15.0) 4(20.0) 2 (10.0) 0(0.0) 
Kl 20 0 (0.0) 1 (5.0) 0 (0.0) 4 (20.0) 8(40.0) 7 (35.0) 0 (0.0) 0 (0.0) 
YR 132 4 (3.0) 7 (5.3) 2 (1.5) 12 (9.1) 83 (62.9) 15(11.4) 9 (6.8) 0 (0.0) 
YzR 137 4(2.9) 4 (2.9) 3 (2.2) 7 (5.1) 15(10.9) 87 (63.5) 14(10.2) 3 (2.2) 
HC 95 7 (7.4) 9 (9.5) 0 (0.0) 3 (3.2) 6(6.3) 9 (9.5) 47 (49.5) 14(14.7) 
BH 69 l (1.4) 10 (14.5) 1 (1.4) 0 (0.0) I (1.4) 1 (1.4) 20 (29.0) 35 (50.7) 

b) five hatchery populations 

TlJI 48 47 (97.9) I (2.1) 0 (0.0) 0 (0.0) 0 (0.0) 
WCA 50 3 (6.0) 46 (92.0) 0 (0.0) I (2.0) 0 (0.0) 
NCA 50 0 (0.0) 0 (0.0) 42 (84.0) 0 (0.0) 8 (16.0) 

SCA99 50 0 (0.0) 0 (0.0) I (2.0) 47 (94.0) 2 (4.0) 
SCAOO 47 0 (0.0) 0 (0 0) I (2.1) 2 (4.3) 44 (93.6) 

c) seven putatively unknown samples 

IR05a 50 34 (68.0) 3 (6.0) I (2 0) 0 (00) 3 (6.0) 4 (8.0) 0 (0.0) 4(8.0) 0 (0.0) 0 (0.0) 0 (0.0) I (2.0) 0 (0.0) 
YR05a 36 0 (0.0) l (2.8) 0 (0.0) 2 (5.6) 23 (63.9) 8 (22.2) I (2.8) I (2.8) 0 (0.0) 0 (0.0) 0 (0.0) 0(0.0) 0 (0.0) 
TlJia 10 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0(0.0) 0(0.0) 9 (90.0) I (10.0) 0(0.0) 0 (0.0) 0 (0.0) 

WCAa 10 0(0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 9 (90.0) 0 (0.0) I (10.0) 0 (0.0) 
NCAa 10 0(00) 0 (0.0) 0 (0.0) 0 (0.0) 2 (20.0) I (10.0) 0(0.0) 0(0.0) 0 (0.0) 0 (0.0) 7 (7.0) 0 (0.0) 0 (0 0) 

SCA99a 10 0(0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) I (10.0) 0(0.0) 0 (0.0) 0 (0.0) 0(0.0) 9 (90.0) 0 (0.0) 
SCAOOa 10 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0(0.0) 0(0.0) 0 (0.0) 0 (0.0) 0 (0.0) l (I O.Q) 9 (90.0) 
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Figure 4.1 Multilocus observed (H0 ) and expected (HE) heterozygosities and adjusted 

allelic richness (A) for all21 samples including 16 wild (IR99, IR05, KR04, SR04, KI04, 

YR99, YR06, BZ05, BZ06, TT06, NT05, NT06, HC05, HC06, BH99, BH05) and five 

hatchery samples (TUI, WCA, NCA, SCA99 and SCAOO). See Table 4.1 for sample 

abbreviations. Long-established hatchery stocks (TUI and WCA) have significantly lower 

values of A, H0 . and HE, but recently derived hatchery stocks (NCA, SCA99, and SCAOO) 

only have reduced A. Correlations of H0 and HE with A are significant (R2 = 0.431, P = 

0.00 I and R2 = 0.862, P < 0.001, respectively). 
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Figure 4.2 Unrooted Neighbor-Joining (NJ) tree based on Cavalli-Sforza & Edwards' 

( 1967) genetic distances among five hatchery stocks (TUI, WCA, NCA, SCA99, and 

SCAOO) and eight wild populations (IR, KR, SR, KI, YR, YzR, HC and BH) of C. 

ariakensis. Numbers on internal branches are percentages of bootstrap support> 50% 

after 10,000 iterations. 
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SUMMARY: 

MAJOR ACHIEVEMENTS AND FUTURE PROSPECTS 
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Through this doctoral research, additional evidence was obtained to support the 

two-species hypothesis regarding the taxonomic status of C. ariakensis and C. 

hongkongensis (Lam and Morton 2003, Wang et al. 2004, Reece et al. 2008). In addition, 

a set of novel microsatellite markers was developed specifically for C. ariakensis (Xiao et 

al. 2008) and was used to assess genetic variability among and within natural populations 

of C. ariakensis in Asia and hatchery stocks in the United States. These markers also 

proved suitable for future tracking of C. ariakensis introductions in the Chesapeake Bay. 

Here the major achievements of this research and prospects for future study are 

summarized and discussed. 

A semi-gametic incompatibility was observed between C. ariakensis and C. 

hongkongesis during a laboratory hybridization experiment, indicating partial 

reproductive isolation between these two probable species. Additional evidence for the 

distinct species status was gained from the molecular marker work, which indicated low 

transferability of primers targeting homologous microsatellite loci between these two taxa 

(i.e. primers designed based on C. ariakensis microsatellite flanking region sequences 

failed to successfully amplify these targeted loci in C. hongkongensis individuals). There 

was an order of magnitude larger genetic divergence between these two taxa (Fsr = 

0.328) than that observed within each group, and no natural hybrids of these two species 

were found in multiple samples comprised of thousands of individual animals collected 

from their native region. Finally, there is some evidence from hatchery spawns for 

differences among these species in their reproductive cycles. These results are congruent 

with the molecular phylogenies based on several mitochondrial gene sequences (Boudry 

et al. 2003, Lam and Morton 2003, Wang et al. 2004, Reece et al. 2008) and one nuclear 
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region (Reece et al. 2008). More work, however, is obviously needed to further 

characterize these two species, since information on the physiology, biology and ecology 

of both is largely unknown, and earlier literature may have confused these two, as well as 

several other Crassostrea species, in their native region due to morphologically based 

misidentifications (Lam and Morton 2003, Wang et al. 2004, Guo et al. 2006). The 

fertilization ratio of a hybrid cross between C. ariakensis (male) and C. hongkongensis 

(female) was comparable to those observed in two pure C. ariakensis and C. 

hongkongensis control crosses. The hybrid larvae from this cross were inviable in this 

study; however, even larvae from pure crosses failed to survive through early 

metamorphosis. Therefore, it cannot be confidently determined that there is complete 

reproductive isolation by one-way gametic incompatibility and larvae inviability between 

C. ariakensis and C. hongkongensis. Future studies might focus on identifying any 

differences between normal and hybrid larvae in post-metamorphosis development. 

Based on the results from this laboratory hybridization experiment, as well as 

current and previous genetic studies and some biological and ecological observations, C. 

hongkongensis samples were dropped from the remaining intra-species genetic studies of 

C. ariakensis. Analyses of 16 natural samples from Japan, South Korea and China using 

eight polymorphic microsatellite loci found slight but significant genetic differentiation 

among the samples (Fsr = 0.018, P < 0.001), which could be characterized by a pattern of 

isolation by distance. Eight genetically differentiated populations (global Fsr = 0.020) 

were further identified in the native region according to various analyses, including one 

population from southern Japan (IR), three populations along the coast of South Korea 

(KR, SR and Kl) and four along the coast of China (Y R: Yell ow River basin; Y zR: 

144 



Yangzi River estuary; HC: Haicheng, southern China; BH: Beihai, southern China). The 

relatively uniform genetic distances that constitute the overall genetic structure, however, 

could not be used as support for the hypothesis of a distinct biogeographic barrier (e.g. 

the Yangzi River estuary; Wang et al. 2004) to the genetic continuity of C. ariakensis 

populations in their native range. This could be due, however, to limited sampling along 

the coast of China. Therefore, adding samples from intermediate locations to those 

targeted in the current sample set might provide a finer-scale spatial genetic structure of 

C. ariakensis. 

Genetic differentiation among five hatchery stocks in the U.S. (Fsr = 0.132) was 

five-fold larger than that observed among wild populations, indicating these hatchery 

stocks were genetically divergent. The NJ tree showed that each hatchery population was 

still relatively closer to its natural source population than to other wild populations, 

although substantial drift from these source populations was evident. Significant 

reduction in genetic diversity was observed in all hatchery stocks compared to source 

populations. There were decreases on both allelic diversity and heterozygosity by 60% 

and 11%- 26%, respectively, for the two mature stocks (TUI and WCA), which have 

been domesticated for about 30 yrs, compared to their source wild populations; whereas 

only decreased allelic diversity (18% - 30%) was found in the three new stocks (NCA, 

SCA99 and SCAOO) separated from their sources in northern and southern China by only 

one generation at the time of sampling. In addition, an unexpected large number of H0 

excess relative to HE was observed in these hatchery stocks. Apparently, a genetic 

bottleneck due to a relatively small number of animals used for spawning, combined with 

a likely uneven contribution to the next generation from the parents, has affected the 
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genetic make-up of these hatchery populations. Further investigation is needed, 

nonetheless, to determine whether the genetic bottlenecks, genetic drift from natural 

populations, and large differentiations among these hatchery stocks, are associated with 

any possible phenotypic heterogeneity among these hatchery populations, as some 

differences in larval performance have already been reported (Luckenbach 2004, 

Tamburri et at. 2008). Specifically, it would be helpful to evaluate the performance of 

these hatchery stocks in terms of disease tolerance and growth under different 

environmental conditions. The source populations were collected from sites with wide 

variations in environmental parameters such as temperature, salinity, substrate, etc. In 

addition, as the hatchery stocks are quite divergent, different hatchery stocks might be 

better suited for planting and/or aquaculture development at particular sites. 

Finally, the microsatellite markers developed here have proven useful for genetic 

tracking of C. ariakensis stocks, and assignment of hatchery individuals back to their 

source stocks could be done with a high degree of confidence. Though assignment of 

wild individuals back to their specific wild population of origin proved less reliable, a 

high percentage of individuals could be assigned to their source population or 

geographically proximal populations. A strategy for future tracking of unknown C. 

ariakensis in the Chesapeake Bay was proposed. The unknown sample will be first 

classified generally as originating from hatchery or wild populations, and subsequently be 

assigned to either a specific hatchery stock or a general geographic group of wild 

populations that would include the assigned population and those geographically 

proximate populations which formed a distinct genetic region based on both the FsT and 

NJ analyses. 
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For future work, a comparative study on the post-metamorphic development of 

hybrid and pure crosses between C. ariakensis and C. hongkongensis should be 

conducted, as well as an ecological survey of these two species in order to determine 

which of the mechanisms indicated by the current research is most likely responsible for 

the reproductive isolation between these two taxa. Furthermore, adding more wild 

samples to the intra-specific genetic study could resolve a finer genetic structure for the 

wild C. ariakensis populations in the native region. Specifically, samples from 

intermediate locations along the coast of China could help test the proposed 

biogeographic barrier near the Yangzi River estuary (Wang et al. 2004). Finally, since 

high levels of genetic differentiation and genetic bottlenecking were observed among the 

hatchery stocks, side-by-side comparisons among the hatchery stocks would be 

informative to determine the possible phenotypic differences among these hatchery 

stocks with regards to disease tolerance and growth, associated with the genetic 

differentiation. In the future, the genetic make-up of stocks used for various research 

conducted in the U.S. should be taken into account when interpreting results, considering 

the heterogeneous environmental conditions of the locations in the native regions from 

which these stocks were derived. 
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