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Two-flavor chiral expansions provide a useful perturbative framework to study hadron properties. Such
expansions should exhibit marked improvement over the conventional three-flavor chiral expansion.
Although one can theoretically formulate two-flavor theories for the various hyperon multiplets, the
nearness of kaon thresholds can seriously undermine the effectiveness of the perturbative expansion
in practice. We investigate the importance of virtual kaon thresholds on hyperon properties, specifically
their masses and isovector axial charges. Using a three-flavor expansion that includes SU(3) breaking
effects, we uncover the underlying expansion parameter governing the description of virtual kaon
thresholds. For spin-half hyperons, this expansion parameter is quite small. Consequently virtual kaon
contributions are well described in the two-flavor theory by terms analytic in the pion mass-squared. For
spin three-half hyperons, however, one is closer to the kaon production threshold, and the expansion
parameter is not as small. Breakdown of SU(2) chiral perturbation theory is shown to arise from a
pole in the expansion parameter associated with the kaon threshold. Estimating higher-order corrections
to the expansion parameter is necessary to ascertain whether the two-flavor theory of spin three-
half hyperons remains perturbative. We find that, despite higher-order corrections, there is a useful
perturbative expansion for the masses and isovector axial charges of both spin-half and spin three-half
hyperons.

© 2010 Elsevier B.V.

1. Introduction

The low-energy regime of QCD can be described by an effec-
tive field theory. This theory, chiral perturbation theory, encodes
the pattern of spontaneous and explicit chiral symmetry breaking
present in QCD. Using chiral perturbation theory, hadron properties
can be determined in terms of universal low-energy parameters in
an expansion about vanishing light quark masses. The three-flavor
chiral expansion relies upon treating the up, down, and strange
quark masses as small compared to the QCD scale. In the baryon
sector, this expansion has well-known convergence issues, and at-
tempts have been made to improve the expansion, see, e.g., [1].

The physical mass of the strange quark is potentially too large
to be considered a small perturbation about the SU(3) chiral limit.
Phenomenological and lattice QCD calculations have determined
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the ratio of light quark masses to be ms/m̂ ∼ 25, where ms is the
strange quark mass, and m̂ is the average of up and down quark
masses. The size of this ratio suggests an alternate expansion: treat
only the lighter up and down quark masses as small, and expand
about the SU(2) chiral limit. This approach has long been advo-
cated for pions [2], nucleons [3], and deltas [4], however, only
recently have strange hadrons been treated in the two-flavor chi-
ral expansion. Following earlier work of [5], kaon properties have
been investigated in SU(2) chiral perturbation theory [6–8]. This
renewed interest stems from lattice QCD applications. Current sim-
ulations no longer require extrapolation in the strange quark mass,
rather an interpolation. Consequently formulae parametrizing only
the pion mass dependence of observables are required, for which
SU(2) is an ideal framework, independent of the potential con-
vergence issues of SU(3). Baryons with non-vanishing strangeness
have been treated using SU(2) chiral perturbation theory [9–14].
Much of this work, too, has been motivated by progress in lattice
QCD computations.

As with any effective theory, it is not a priori obvious that an
SU(2) treatment of hyperons is possible. Consider the Σ baryons.
In order to describe the Σ multiplet in SU(2) chiral perturbation
theory, the N and Ξ multiplets must be energetically well sep-
arated. This separation occurs in nature due to the size of the
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strange quark mass. If the separation were much larger, however,
the Σ would decay strongly to K N . Thus the baryon mass split-
tings must be large compared to the pion mass; but naïvely small
compared to the kaon mass. While all hyperons are stable with re-
spect to strong strangeness-changing decays, not all baryon mass
splittings are small compared to the kaon mass. A natural ques-
tion emerges: without explicit kaons, can the SU(2) expansion re-
produce the non-analyticities required sub-threshold? We observe
that it appears to be possible; however, we cannot answer the
question for all low-energy hyperon observables. This observation
was alluded to in [15], and our goal is to concretely solidify the
argument. As we consider only the specific examples of hyperon
masses and isovector axial charges, further work is needed to clar-
ify when an SU(2) treatment is warranted by nature. The efficacy
is quite likely observable dependent.

We employ the following organization for our presentation.
First in Section 2, we motivate the two-flavor chiral expansion
through the investigation of hyperon masses. We begin by con-
sidering the SU(3) symmetric case, and then proceed to include
SU(3) breaking, which is necessary to account for virtual kaon
production thresholds. We deduce the expansion parameters that
controls the effects of kaon thresholds in the two-flavor theory.
We then investigate how well the kaon threshold is reproduced in
SU(2) chiral perturbation theory in Section 3. Specifically we focus
on the kaon–baryon sunset diagrams that contribute to hyperon
masses, and isovector axial charges. A brief summary, Section 4,
concludes this work. Finally, Appendix A is devoted to estimating
higher-order corrections to expansion parameters.

2. Two-flavor chiral expansion for hyperons

In order to investigate the effect of virtual kaon thresholds on
hyperon properties, we begin with SU(3) heavy baryon chiral per-
turbation theory [16,17]. Dissecting an explicit kaon loop contribu-
tion, we uncover the parameters governing the convergence of the
two-flavor expansion. This requires SU(3) breaking corrections.

2.1. Schematic example

Kaon and eta loops typically yield large numerical contributions
to baryon observables in SU(3) chiral perturbation theory. For this
reason, it is efficacious to have an SU(2) expansion of baryon prop-
erties; so that, with only explicit pions, the convergence properties
of the theory are markedly improved. In [11], the SU(2) theory
of hyperons was written down by appealing to symmetries that
emerge when the quark masses are treated in the hierarchy

m̂ � ms ∼ ΛQCD. (1)

As a consequence, the efficacy of this theory is determined by the
size of the quark mass ratio, εSU(2) ≡ m̂/ms ∼ 1/25. This estimate
is naïve, however, because it cannot account for non-perturbative
contributions. A way to infer the underlying expansion parameters
is to match SU(3) onto SU(2).

As the fate of the SU(2) expansion for hyperons is largely deter-
mined by the nearness of kaon thresholds, we focus on the kaon
mass, mK , and the mK -dependence of kaon loop contributions. Us-
ing the hierarchy in Eq. (1), we can expand the kaon mass about
m̂ = 0, namely [5]

m2
K = [

mSU(2)
K

]2 + 1

2
Cm2

π + O
(
ε2

SU(2)

)
, (2)

where mSU(2)
K is the kaon mass in the SU(2) chiral limit, and

C is a low-energy constant of SU(2) chiral perturbation theory.
This low-energy constant depends on mSU(2)

K in the form C =

C([mSU(2)
K ]2/Λ2

χ ), where Λχ ≈ 1.1 GeV is the chiral symmetry

breaking scale. To estimate mSU(2)
K , we appeal to SU(3) chiral per-

turbation theory. At leading order, the Gell-Mann–Oakes–Renner
(GMOR) relation implies the value C(0) = 1. Using the neutral pion
mass and the average mass-squared of the kaons, we find

mSU(2)
K = 0.486(5) GeV, (3)

where the uncertainty has been estimated from the analytic term
of O(x) in the expansion of C(x) about x = 0, assuming the value
C ′(0) = 2. The O(x) corrections including logarithms are known
from SU(3) chiral perturbation theory, but depend on low-energy
constants that are not precisely determined from phenomenology.
In Appendix A, we use phenomenological and lattice QCD inputs
to estimate mSU(2)

K at next-to-leading order in SU(3), and find that
all estimates lie within the error-bar quoted in Eq. (3).

Now we turn to kaon loop contributions to hyperon observ-
ables. As a schematic example, we consider the mass of the Σ

baryon. In SU(3) chiral perturbation theory, the leading kaon loop
contribution enters at third order, O(m3

K ). Writing only this con-
tribution, we have

�MΣ = aK m3
K , (4)

where aK depends on the low-energy constants of SU(3). Inserting
the SU(2) expansion of the kaon mass from Eq. (2) into the loop
contribution in Eq. (4), we find

�MΣ = aK
[
mSU(2)

K

]3 + 3

4
aK CmSU(2)

K m2
π + O

(
ε2

SU(2)

)
. (5)

Above, the first term is a contribution to the Σ mass in the SU(2)

chiral limit, MSU(2)
Σ , while the second term is a contribution to the

π–Σ sigma term of SU(2), which has a form ∝ σΣm2
π . In carrying

out the SU(2) expansion, non-analytic kaon mass dependence is
traded for a tower of terms analytic in the pion mass squared. The
only non-analytic pion mass dependence arises from pion loops.
The convergence of the Σ mass in SU(2) is governed by: the chiral
expansion, m2

π/Λ2
χ ; and the heavy Σ expansion, mπ/MSU(2)

Σ . This
reorganization is possible due to the small parameter εSU(2) that
underlies the SU(2) expansion of kaon contributions.3

We have presented a schematic argument to motivate the SU(2)

expansion of the Σ mass. This argument generalizes to other hy-
perons and to other observables; however, we have ignored baryon
mass splittings in loop contributions. These require a more careful
treatment, to which we now turn.

2.2. Kaon production thresholds

An expansion of hyperon observables in powers of εSU(2) is very
well behaved. There are additional expansion parameters, however,
that underly the SU(2) theory of hyperons. These additional pa-
rameters are related to kaon production thresholds. Clearly for the
two-flavor theory to be effective, kaon production thresholds can-
not be reached. When this condition is met, the kaons and eta
need not appear explicitly in the effective theory, and their virtual
loop contributions can be reordered. Such an SU(2) formulation
can describe the virtual strangeness changing transitions provided
one is suitably far from thresholds. We make this criterion quan-
titative by considering the effect of kaon production thresholds in
the matching of SU(3) onto SU(2).

3 Similar to the kaon, the small parameter 1
2 εSU(2) underlies the expansion of eta

loop contributions.
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Let us return to SU(3) chiral perturbation theory. Loop diagrams
in which the baryon strangeness changes typically have non-
negligible mass splittings between the external and intermediate-
state baryons. This is primarily due to the strange quark mass,
and it is efficacious for the two-flavor expansion to consider these
baryon mass splittings in the SU(2) chiral limit. For example, a
generic B ′ → K B process is a �S = −1 strangeness changing
baryon transition, and is characterized by the mass splitting δB B ′ ,
given by

δB B ′ = MSU(2)

B ′ − MSU(2)
B . (6)

When the physical mass splitting exceeds the kaon mass, the decay
is kinematically allowed, otherwise the process B ′ → K B is virtual.

To estimate the SU(2) chiral limit splittings, we use the exper-
imental values for the isospin averaged baryon masses. This is a
leading-order estimate, and higher-order corrections are consid-
ered in Appendix A. Values for the positive �S = −1 splittings
between baryons are: δNΣ∗ = 0.45 GeV, δΛΞ∗ = 0.42 GeV, δΞΩ =
0.36 GeV, δΣΞ∗ = 0.34 GeV, δNΣ = 0.25 GeV, δΛΞ = 0.20 GeV,
δNΛ = 0.18 GeV, δ�Σ∗ = 0.15 GeV, δΣ∗Ξ∗ = 0.15 GeV, δΞ∗Ω =
0.14 GeV, and δΣΞ = 0.12 GeV, while there are a few positive
�S = 1 splittings as well: δΛ� = 0.12 GeV, δΞΣ∗ = 0.07 GeV, and
δΣ� = 0.04 GeV. The latter describe processes of the generic form
B ′ → K B . While all |�S| = 1 splittings are below threshold, δB B ′ <

mK , with mK = 0.50 GeV, certain spin-3/2 to spin-1/2 transitions
are not considerably far from threshold. At first glance, it appears
that the SU(2) theory will poorly describe the non-analyticities as-
sociated with such inelastic thresholds. This impression is based on
the value of δB B ′/mK ∼ 1; which, however, is not the appropriate
expansion parameter for SU(2) chiral perturbation theory.

To deduce the expansion parameter relevant for an SU(2) de-
scription of hyperons, we focus on a schematic example, and in-
clude the splitting, δB B ′ . The introduction of this scale into loop
integrals produces a more complicated non-analytic function in-
volving both mK and δB B ′ . For diagrams of the sunset type, a loga-
rithm is generically produced of the form

L
(
m2

K ,−δB B ′
) = log

(−δB B ′ −
√

δ2
B B ′ − m2

K + iε

−δB B ′ +
√

δ2
B B ′ − m2

K + iε

)
, (7)

which contains the non-analyticities associated with kaon produc-
tion. We stress that this example is schematic. Explicit functions
describing loop contributions to masses and axial charges will be
considered in detail below. Just above threshold, δB B ′ � mK , the
logarithm behaves as

L
(
m2

K ,−δB B ′
) → −2π i + · · · . (8)

The imaginary part of the logarithm is associated with the width
for the real decay process B ′ → K B . In this regime, an SU(2) de-
scription fails as explicit kaon degrees of freedom are required.

For the mass splittings listed above, however, our concern is
with the region below threshold. When δB B ′ � mK , the SU(2) treat-
ment must also fail, and we address whether the physical splittings
actually put us in this regime. Applying the perturbative expansion
about the SU(2) chiral limit for the generic logarithm, we make the
following observation: terms in the logarithm that are expanded
can be written as functions of the form

f
(
m2

K − δ2
B B ′

) = f
([

mSU(2)
K

]2 − δ2
B B ′

)
+ (

m2
K − [

mSU(2)
K

]2)
f ′([mSU(2)

K

]2 − δ2
B B ′

) + · · · .
(9)

Thus for the subthreshold case, the expansion parameter, εB B ′ , is
of the form

εB B ′ =
1
2 Cm2

π

[mSU(2)
K ]2 − δ2

B B ′
, (10)

having dropped terms of O(εSU(2)). When the baryon mass split-
ting is negligible compared to the chiral limit kaon mass, δB B ′ �
mSU(2)

K , we arrive at εB B ′ = εSU(2) by utilizing the GMOR relation
to set C = 1. This reduces to the case considered above in Sec-
tion 2.1, where we neglected the baryon mass splittings. On the
other hand, in the limit δB B ′ → mSU(2)

K , the expansion parameter
becomes arbitrarily large. This is the signal of the breakdown of
SU(2) chiral perturbation theory. With εB B ′ ∼ 1, non-analyticities
associated with the virtual kaon threshold cannot be described by
a perturbative expansion in the pion mass-squared.

For the strangeness transitions listed above, we can diagnose
the convergence properties of the SU(2) expansion by estimat-
ing the size of the expansion parameters governing the descrip-
tion of kaon thresholds. We use the leading-order values for the
masses along with C = 1; higher-order corrections are discussed
in Appendix A. For the �S = −1 virtual transitions, we have:
εNΣ∗ = 0.24, εΛΞ∗ = 0.15, εΞΩ = 0.08, εΣΞ∗ = 0.08, εNΣ = 0.05,
εΛΞ = 0.05, εNΛ = 0.04, ε�Σ∗ = 0.04, εΣ∗Ξ∗ = 0.04, εΞ∗Ω = 0.04,
and εΣΞ = 0.04, while for the �S = 1 virtual transitions, the pa-
rameters are: εΛ� = 0.04, εΞΣ∗ = 0.04, and εΣ� = 0.04. For a ma-
jority of the strangeness changing transitions, the mass-splittings
play little role in the SU(2) expansion, i.e. εB B ′ ≈ εSU(2) . Despite the
nearness of thresholds (compared to the kaon mass), the expan-
sion parameters in SU(2) are all better than the generic expansion
parameter for SU(3), εSU(3) = mη/MSU(3) ∼ 0.5. Finally we remark
that a perturbative treatment in SU(2) excludes non-analytic pion
mass dependence to describe the kaon threshold. For sufficiently
small expansion parameters, the kaon threshold can be described
by terms analytic in the pion mass-squared, but obviously non-
analytic with respect to the strange quark mass.

3. Effect of kaon thresholds

3.1. Hyperon masses

The masses of spin-1/2 and spin-3/2 hyperons have been de-
termined using SU(2) chiral perturbation theory [11]. As the spin-
3/2 resonances are closest to the kaon production threshold, we
address how well the non-analyticities associated with the vir-
tual process are described in the SU(2) theory. Based upon our
schematic arguments given above, we expect the virtual threshold
to be well described by terms non-analytic in the strange quark
mass, but analytic in the pion mass-squared.

We can investigate the degree to which kaon thresholds affect
hyperon masses by analyzing the associated kaon loop contribu-
tions. At leading-loop order, these arise from sunset diagrams. For
the virtual process B → K B ′ , the sunset diagram evaluates to

F
(
m2

K ,−δB B ′ ,μ
)

= (
m2

K − δ2
B B ′

)[(
δ2

B B ′ − m2
K

)1/2 L
(
m2

K ,−δB B ′
) + δB B ′ log

m2
K

μ2

]

+ 1

2
δB B ′ m2

K log
m2

K

μ2
, (11)

up to overall group theory factors, axial couplings, and inverse
powers of the chiral symmetry breaking scale. The dependence
on μ is exactly cancelled by the scale dependence of local con-
tributions to the hyperon mass which are at the same order in the
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Fig. 1. Virtual threshold contribution from the K –N sunset diagram for the Σ (top left), and Σ∗ (top right) baryon masses. Plotted versus the pion mass and shown in
dashed green is the non-analytic contribution F (m2

K ,−δB B ′ ). Also shown is the virtual contribution for a heavier external-state baryon (bottom) with splitting δ = 0.485 GeV.
Compared with these curves are three approximations that are analytic in the pion mass squared. The red curve is the zeroth-order approximation, F (0) , while the blue
curve also includes the first-order correction, m2

π F (2) , and finally the black curve includes all terms to m4
π . Notice we show the same range, albeit shifted, in each plot. (For

interpretation of the references to colour in this figure, the reader is referred to the web version of this Letter.)

chiral expansion. The logarithms appearing in Eq. (11) are straight-
forward to treat in the SU(2) chiral expansion, as they are only
functions of the kaon mass. One can use Eq. (2), and expand in
powers of the pion mass. This part of the SU(2) expansion is well
behaved due to the size of the expansion parameter, εSU(2) .

To isolate the long-distance physics associated with the kaon
threshold in the sunset diagram, we merely evaluate the function
at the scale μ = mK , which results in the function

F
(
m2

K ,−δB B ′
) ≡ F

(
m2

K ,−δB B ′ ,μ = mK
)

= −(
δ2

B B ′ − m2
K

)3/2 L
(
m2

K ,−δB B ′
)
. (12)

When one is near the threshold from above, δB B ′ � mK , this func-
tion has the behavior

F
(
m2

K ,−δB B ′
) → 2π i

(
δ2

B B ′ − m2
K

)3/2 + · · · , (13)

which leads to the width for the decay process. The functional
form of the width is dictated by the available two-body phase
space at threshold, and the requirement that the kaon and B ′
baryon be in a relative p-wave.

For the sub-threshold case, the expansion of the function
F (m2

K ,−δB B ′ ) in SU(2) chiral perturbation theory results in a per-
turbative series governed by εB B ′ given in Eq. (10). Specifically we
have

F
(
m2

K ,−δB B ′
) = F (0) + Cm2

π F (2) + C2m4
π F (4) + · · · , (14)

where the coefficients are implicitly functions of the strange quark
mass and the baryon mass splitting. The first few coefficients are
given by

F (0) = F
([

mSU(2)
K

]2
,−δB B ′

)
,

F (2) = δB B ′

2[mSU(2)
K ]2

(
δ2

B B ′ − [
mSU(2)

K

]2)

+ 3

4

(
1

[mSU(2)
K ]2 − δ2

B B ′

)
F (0),

F (4) = − δB B ′

8[mSU(2)
K ]4

(
δ2

B B ′ + 3

2

[
mSU(2)

K

]2
)

+ 3

32

(
1

[mSU(2)
K ]2 − δ2

B B ′

)2

F (0). (15)

Notice that by utilizing Eq. (10), we have dropped terms of
O(εB B ′εSU(2)). For the case of near threshold processes, this ap-
proximation is legitimate because εB B ′εSU(2) � ε2

B B ′ . From these
explicit terms in the expansion, we see that the virtual kaon
threshold present in the sunset diagram has been reduced to a
sum of terms analytic in the pion mass squared, but non-analytic
with respect to the strange quark mass.

To explore the SU(2) expansion of kaon contributions to hy-
peron masses, we show the non-analytic contribution, Eq. (12),
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to the masses of Σ∗ and Σ baryons arising from virtual K –N
fluctuations in Fig. 1. This result is compared with successive ap-
proximations derived by expanding about the SU(2) chiral limit,
as in Eq. (14). We use the leading-order values of masses, and
set C = 1 to avoid estimating unknown low-energy constants. The
plots show the non-analytic contribution associated with the vir-
tual kaon threshold can be captured in the two-flavor effective
theory. This is possible because the non-analyticities are domi-
nated by the strange quark mass, whereas the lighter quark mass
can be treated as a perturbation. Fig. 1 confirms that the expan-
sion in terms of εB B ′ in Eq. (9) is under control for the range
of values corresponding to the |�S| = 1 transitions, because in
general εB B ′ � εNΣ∗ . The figure also depicts the case where the
mass splitting has the value δ = 0.485 GeV, which corresponds to
an expansion parameter of size εB B ′ = 6.9 at the physical pion
mass. The series expansion in m2

π does not better approximate the
non-analytic result with the addition of higher-order terms. As the
series is in general asymptotic, the first term gives the best agree-
ment when the expansion has broken down. For a fixed strange
quark mass, there will always be a value of the pion mass above
which the series breaks down. This value depends delicately on the
size of the baryon mass splitting.

3.2. Isovector axial charges

Having explored the effect of the virtual kaon threshold on hy-
peron masses, we now turn to address the same effect on the
hyperon isovector axial charges. The isovector axial charges of
spin-1/2 hyperons have been determined using SU(2) chiral per-
turbation theory [12]. This study was motived by the poor per-
formance of SU(3) chiral perturbation theory in describing lattice
QCD data [18]. The corresponding axial charges of spin-3/2 hyper-
ons have not been studied in SU(2) or SU(3), with the exception
of a large-Nc analysis [19], and the axial charge of the delta reso-
nances [20]. In the latter work, the delta axial charge was shown
to exhibit strong non-analytic behavior with respect to the pion
mass. The relatively large value of g�� , or of its SU(3) incarnation,
H, could undermine the chiral expansion of baryon properties.
The commonly adopted value, g�� ∼ 2.2, however, has only been
inferred from chiral perturbation theory calculations. Such calcu-
lations of g A , or of D and F in SU(3), obtain the resonance axial
coupling by neglecting local terms which contribute at the same
order in the expansion [21,22]. With lattice QCD, it will be inter-
esting to measure and study SU(3) breaking in the axial charges of
hyperon resonances.4 To this end, we analyze the behavior of kaon
loops to determine whether an SU(2) treatment for the resonances
is feasible. Analyzing such contributions for the spin-1/2 hyperons,
moreover, justifies the findings in [12], where it was argued that
an SU(2) treatment would better describe lattice data compared to
SU(3).

At leading loop order, one encounters a variety of diagrams in
the evaluation of axial-vector current matrix elements, for exam-
ple, see [24]. The tadpole diagram with a kaon, of course, does
not produce a threshold; only the diagrams of sunset type con-
tain the non-analyticities associated with kaon production. With a
kaon loop, the general sunset diagram consists of a vertex for the
process B ′ → K B , followed by an axial current interaction B → B ′′ .
For the isovector axial current, this is an isospin transition, possi-
bly also a transition from a spin-1/2 baryon to a spin-3/2 baryon

4 This will not be an easy task as the pion mass is lowered to the physical point.
Resonance properties can be studied from Euclidean space correlation functions
through finite volume effects. Such studies are at an early stage [23], and have thus
far focused on determining masses and widths of resonances.

or vice versa. The remaining vertex encodes the process K B ′′ → B ′ .
Evaluation of a loop diagram of this type produces terms propor-
tional to the non-analytic function

I
(
m2

K ,−δB B ′ ,−δB ′′ B ′ ,μ
)

= 2

3

1

δB B ′ − δB ′′ B ′

[
F

(
m2

K ,−δB B ′ ,μ
) − F

(
m2

K ,−δB ′′ B ′ ,μ
)]

. (16)

Notice we have related this function to the non-analytic function
arising in the mass sunset diagram. This is possible because the
product of the two intermediate-state baryon propagators can be
written as a difference of two terms having only single baryon
propagators.

In SU(2) chiral perturbation theory, the most subtle contribu-
tions to analyze arise from the external-state baryon B ′ fluctuating
into a kaon plus an intermediate-state baryon B that is lighter
than the B ′ . Let us focus on the Σ∗ baryon as a concrete example
for the worst-case scenario. Suppose that the first meson coupling
produces a nucleon, Σ∗ → K N . The second meson coupling in
the diagram depends on the action of the axial current insertion.
There are two possible isovector axial-current insertions: baryon
spin changing, and baryon spin conserving. For the baryon spin-
changing current, the nucleon transitions to a delta, N → � with
an axial coupling proportional to g�N . The second meson coupling
is required to be K� → Σ∗ , and the corresponding diagram is
proportional to the function I(m2

K ,−δNΣ∗ ,−δ�Σ∗ ,μ). By virtue of
the algebraic simplification made in Eq. (16), this contribution can
be expressed in terms of F (m2

K ,−δNΣ∗ ,μ) and F (m2
K ,−δ�Σ∗ ,μ).

The SU(2) expansion of this function has been detailed above in
the context of hyperon masses. We thus conclude that the non-
analyticities present in the sunset diagram with the axial transition
Σ∗ → K N → K� → Σ∗ can be described in an SU(2) chiral ex-
pansion.

The spin-conserving axial current requires a more detailed anal-
ysis. For our example of the Σ∗ baryon, the intermediate state N
then makes an isovector transition with coupling g A , and the final
vertex describes the process K N → Σ∗ . Such kaon sunset diagrams
are proportional to the non-analytic function

J
(
m2

K ,−δB B ′ ,μ
) = I

(
m2

K ,−δB B ′ ,−δB B ′ ,μ
)
, (17)

with δB B ′ = δNΣ∗ for the specific example of the Σ∗ . Taken at the
scale μ = mK , the function J contains only long-distance contri-
butions associated with kaon production; explicitly we have

J
(
m2

K ,−δB B ′
) ≡ J

(
m2

K ,−δB B ′ ,μ = mK
)

= −2δB B ′
(
δ2

B B ′ − m2
K

)1/2 L
(
m2

K ,−δB B ′
)
. (18)

At threshold, this function is proportional to the available phase
space. Appealing to a perturbative SU(2) expansion, we write

J
(
m2

K ,−δB B ′
) = J (0) + Cm2

π J (2) + C2m4
π J (4) + · · · , (19)

where the coefficients are implicitly non-analytic functions of the
strange quark mass and baryon mass splitting. Omitted terms are
proportional to higher powers of the pion mass-squared. The first
three coefficients in the expansion are given by

J (0) = J
([

mSU(2)
K

]2
,−δB B ′

)
,

J (2) = δ2
B B ′

[mSU(2)
K ]2

+ 1

4

(
1

[mSU(2)
K ]2 − δ2

B B ′

)
J (0),

J (4) = − δ2
B B ′

8[mSU(2)
K ]4

(
1 − δ2

B B ′

[mSU(2)
K ]2 − δ2

B B ′

)
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Fig. 2. Virtual threshold contribution from the kaon sunset diagram with intermediate-state isovector axial transition N → N for the Σ (top left), and Σ∗ (top right) baryons.
Plotted versus the pion mass and shown in dashed green is the non-analytic contribution J (m2

K ,−δB B ′ ). Also shown is the virtual contribution for a heavier external-state
baryon (bottom) with splitting δ = 0.485 GeV. Compared with these curves are three approximations that are analytic in the pion mass squared. The red curve is the zeroth-
order approximation, J (0) , while the blue curve also includes the first-order correction, m2

π J (2) , and finally the black curve includes all terms to m4
π . Notice we show the

same range, albeit shifted, in each plot. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this Letter.)

− 1

32

(
1

[mSU(2)
K ]2 − δ2

B B ′

)2

J (0). (20)

Because our interests lie in near threshold virtual processes, we
have again utilized Eq. (10), and dropped terms of O(εB B ′εSU(2)).

To explore the SU(2) expansion of kaon contributions to ax-
ial charges arising from sunset diagrams with processes of the
form B ′ → K B → K B → B ′ , we plot the non-analytic contribution,
Eq. (18), as a function of the pion mass in Fig. 2. We special-
ize to the case of the Σ and Σ∗ baryons, for which the split-
tings δNΣ and δNΣ∗ are relevant, respectively. To avoid uncer-
tainties with parameter values, we utilize leading-order estimates,
and thereby take C = 1. We also consider the case of a fictitious
external-state baryon which has a mass splitting with the nucleon
of δ = 0.485 GeV. In the case of the Σ and Σ∗ , the plots show the
non-analytic virtual kaon contribution can be captured by terms
in the effective theory that are analytic in the pion mass-squared.
These particular contributions, however, exhibit more sensitivity to
the virtual threshold compared to contributions to the mass. This
sensitivity can be easily accounted for by studying the behavior
at threshold: the F -function vanishes with the third power of the
available energy, while the J -function only vanishes with the first
power. Consequently the range of pion masses for which expan-
sion is viable is more limited. For the Σ∗ , the expansion becomes
unreliable past mπ ∼ 0.3 GeV. For the fictitious heavier baryon,

the expansion has broken down even at the physical pion mass,
where the expansion parameter has the value εB B ′ = 6.9. There
is only a narrow range of pion masses about the SU(2) chiral
limit for which the expansion at δ = 0.485 GeV exhibits conver-
gence.

4. Summary

Above we explore the effect of kaon contributions on the prop-
erties of hyperons. Strangeness changing fluctuations allow a hy-
peron to make virtual transitions to kaons and baryons of smaller
masses. Because some of these processes are not considerably
far from the kaon production threshold, δB B ′ ∼ mK , one requires
non-analytic behavior with respect to the kaon mass-squared to
describe such fluctuations. This can be accomplished with SU(3)

chiral perturbation theory at the price of a rather large expansion
parameter, εSU(3) = mη/MSU(3) ∼ 0.5.

To improve the convergence of the chiral expansion, one can al-
ternately formulate theories of hyperons using an expansion about
the SU(2) chiral limit. The presence of kaon sub-thresholds naïvely
seems to complicate an SU(2) description of hyperon properties,
because explicit kaon contributions are absent. We show, how-
ever, that certain hyperon observables are amenable to an SU(2)

treatment. In the SU(2) expansion, the relevant expansion pa-
rameter describing the kaon threshold is not δB B ′/mK , but rather
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Table 1
Values of low-energy constants taken from lattice QCD and phenomenology, along with the resulting estimates of mSU(2)

K , and the expansion parameters εNΣ∗ , and εΛΞ∗
using Eq. (10). Gasser–Leutwyler parameters, denoted by Li , are quoted in units of 10−4 at the renormalization scale μ = 0.770 GeV. As we are unable to take into account
correlations among parameters, we do not cite uncertainties.

Source 2L6 − L4 2L8 − L5 mSU(2)
K [GeV] εNΣ∗ εΛΞ∗

RBC/UKQCD [6] 0.0 2.4 0.486 0.33 0.17
2007 MILC [26] 3.4 2.6 0.483 0.37 0.18
2009 MILC Lattice [27] 1.0 −1.2 0.487 0.33 0.16
Phenomenology “Main Fit” [28] ≡ 0 3.3 0.486 0.34 0.17
Phenomenology “Fit D” [29] ≡ −2.0 2.0 0.488 0.31 0.16

εB B ′ given in Eq. (10). For the most troublesome cases, the ex-
pansion parameters take on values smaller than εSU(3) . This re-
mains true when higher-order corrections to the SU(2) expansion
parameters are estimated, although one requires higher-precision
lattice data than currently available to arrive at a definitive con-
clusion.

For hyperon masses and isovector axial charges, we find that
non-analyticities associated with the kaon threshold in sunset di-
agrams can be described in two-flavor chiral perturbation the-
ory. While the two-flavor expansion of these thresholds con-
tains only terms that are analytic in the pion mass-squared,
the coefficients of such terms are non-analytic functions of the
strange quark mass and baryon mass splittings. Certain contri-
butions to hyperon axial charges exhibit greater sensitivity to
the kaon threshold than others. This sensitivity arises from the
behavior of the non-analytic contributions as the threshold is
approached: the slower the function vanishes at threshold, the
more sensitive to the kaon threshold. While hyperon masses and
isovector axial charges appear amenable to SU(2) chiral pertur-
bation theory, our observations do not generalize to all observ-
ables. In fact, our analysis shows a limitation of the two-flavor
theory: observables that become singular at the kaon threshold
will not be well described by an expansion in the pion mass-
squared.

Finally we remark that potential problems with kaon sub-
thresholds are only relevant for a description of hyperons ex-
plicitly including the spin-3/2 degrees of freedom. One can thus
attempt to dodge the issue by restricting the theory to only
spin-1/2 states, and integrating out the virtual spin-3/2 fluctua-
tions. The resulting theory is governed by an expansion param-
eter εB∗ ∼ mπ/�B B∗ , where �B B∗ is the mass splitting between
the spin-3/2, B∗ , and spin-1/2, B , hyperon multiplets. This ap-
proach is less advantageous compared to the nucleon sector, for
example, in the cascade sector at the physical pion mass one has
εΞ∗ ≈ 2/3. In the extrapolation of lattice data, moreover, one of-
ten has εB∗ � 1 which often necessitates the inclusion of spin-3/2
multiplets. The study of inelastic contributions to other observ-
ables is certainly needed to ascertain in which cases a two-flavor
expansion is valid. Further, the utility of an SU(2) treatment of
hyperons, with the significant growth of LECs, probably requires
the aid of lattice QCD calculations to determine all these un-
known parameters. Ultimately lattice QCD data will enable us
to determine when the SU(2) theory of hyperons is an effective
one.
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Appendix A. Higher-order corrections

Our assessment of SU(2) chiral perturbation theory for hyper-
ons relies on estimating the kaon mass and baryon mass splittings
in the SU(2) chiral limit. The expansion parameters underlying
SU(2) depend quite sensitively on these masses. For example, re-
ducing mSU(2)

K by 10% from that in Eq. (3) shows that an expansion

in εNΣ∗ is ill-fated. At this value of mSU(2)
K , the expansion parame-

ter is negative indicating that we have passed through the pole in
Eq. (10) by lowering mSU(2)

K . To further assess the convergence of
SU(2), we address the impact of next-to-leading order corrections.

Using SU(3) chiral perturbation theory at next-to-leading or-
der [25], the SU(2) chiral limit mass of the kaon can be written
in the form: [mSU(2)

K ]2 = m2
K − 1

2 C m2
π , with

C = 1 + 32
m2

K

f 2

( log
4m2

K
3μ2 + 1

4

288π2
+ 2L8(μ) − L5(μ)

+ 2
[
2L6(μ) − L4(μ)

])
, (21)

where we have dropped terms that behave as m4
π because these

are suppressed by a relative factor of εSU(2) . To determine mSU(2)
K

using this next-to-leading order expression, we must rely on val-
ues for the low-energy constants. In Table 1, we list estimates
of these parameters and their sources. Although there is consid-
erable spread in values for the low-energy constants, the various
sources produce the same kaon mass in the chiral limit to about
1%. The size of the next-to-leading order correction to C is inline
with expectations, but the value varies over the data sets by ±20%.
Thus we have C = 1.0(2), and adopt the central value for all esti-
mates. Due to the pole present in εB B ′ , it is comparatively more
important to improve the estimate of the denominator than the
numerator.

For the baryon masses, we utilize the expansion about the
SU(2) chiral limit

MB = MSU(2)
B + σB

4π f
m2

π + · · · . (22)

Here f = 0.132 GeV is the pion decay constant, which is our con-
ventional choice to make the low-energy constant dimensionless.
Knowledge of the physical baryon masses, MB , and the σB param-
eters enables us to determine the SU(2) chiral limit value of the
mass splittings, namely

δB B ′ = MSU(2)

B ′ − MSU(2)
B = MB ′ − MB + σB ′ − σB

4π f
m2

π + · · · . (23)

For estimates of the low-energy parameters, σB , we use those
in [11] for the spin-1/2 baryons, and the procedure of [11] to es-
timate those for the spin-3/2 baryons using lattice data from [30].
For the two largest |�S| = 1 baryon mass splittings, we need
the values σN = 1.8(4), σΛ = 1.2(2), σΣ∗ = 0.75(15), and σΞ∗ =
0.52(10). The uncertainties have been somewhat arbitrarily as-
signed at 20%, and are due to the SU(2) chiral extrapolation. From
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these values of σ -parameters and the physical baryon masses, we
arrive at the two largest SU(2) chiral limit baryon mass splittings:

δNΣ∗ = 0.457(4) GeV, δΛΞ∗ = 0.426(3) GeV. (24)

These values are only slightly larger than the physical splittings,
because there is partial cancellation in differences of the m2

π cor-
rections.

Combining the chiral limit value of the kaon mass and baryon
mass splittings, we can estimate the SU(2) expansion parameters
that govern the description of kaon thresholds beyond leadin-
gorder. Values for εNΣ∗ , and εΛΞ∗ derived using Eq. (10) also
appear in Table 1. The values derived using lattice QCD input and
phenomenology suggest that the leading-order expansion param-
eters given in Section 2.2 have been underestimated. More pre-
cise determination requires lattice QCD values of SU(2) chiral limit
masses at the level of a few MeV. Having considered the two worst
possible baryon transitions, however, we still expect the SU(2)

chiral expansion to provide a good description of kaon threshold
contributions to hyperon masses and isovector axial charges con-
sidered above.
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