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ABSTRACT

Ecotoxicologists adopted median lethal concentration (LC50) methods from 
mammalian toxicology. This conventional LC50 approach has shortcomings in spite o f 
its expediency and convenience. Fixing the exposure duration and selecting the 50% 
mortality level result in loss o f ecologically relevant information generated at all other 
times. It also ignores latent mortality that can manifest after exposure ends. As a result, 
the conventional LC50 approach cannot adequately predict pulsed exposure effects in 
which concentration, duration, and frequency o f pulses change through time. 
Furthermore, the underlying theory o f the dose-response models used to calculate LC50 
values, stochastic versus individual effective dose (IED) theory, has not been tested 
rigorously, while a better understanding o f it  is needed in order to better predict the 
effects o f pulsed exposures.

In this study, the effects o f exposure duration and concentration on mortality 
during and after exposures, and the effects o f recovery time between two pulses on 
mortality during the second pulse were quantified. The influences o f toxicant modes o f 
action on latent mortality were discussed. The underlying explanation for survival 
distribution models was further explored. Survival analysis methods were used to 
incorporate these factors affecting mortality during pulsed exposures into predictive 
models and to circumvent some o f the shortcomings o f the conventional LC50 method. 
The experiments were done with two notionally contrasting toxicants, copper sulfate 
(CUSO4) and sodium pentachlorophenol (NaPCP). The amphipod, Hyalella azteca, was 
used as the model organism.

Latent mortality is an integral part o f the lethal effects o f some toxicants that 
cause cumulative damage. Exposure concentration has a significant effect on latent 
mortality. For toxicants that cause minimal damage during the exposure, the latent 
mortality is not significant and can be potentially ignored. Exposure duration did not 
show any significant effect on latent mortality w ithin the experimental ranges for either 
toxicant. It is recommended that for other experimental conditions the effect s till needs 
to be considered. Recovery time between two pulses had significant effect on mortality 
during the second pulse for both toxicants. However, to recover to a sim ilar background 
level mortality, the time an exposed organism needed to return to a stage similar to its 
original resistance was much longer for Q1SO4 than for NaPCP. The hypothesis that 
individual effective dose is the dominant explanation for the dose-response models was 
rejected for both toxicants. By effectively incorporating exposure duration and other 
factors into the models, the application o f survival analysis methods better predicted 
pulsed exposure consequences than did the conventional LC50 method. It is important 
for current ecotoxicology and environmental risk assessment to consider the factors 
potentially affecting pulsed exposure consequences. The survival analysis provides a 
better way to address the issue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPLICATION OF SURVIVAL ANALYSIS METHODS TO PULSED EXPOSURES 

EXPOSURE DURATION, LATENT M ORTALITY, RECOVERY TIM E, AND THE 

UNDERLYING THEORY OF SURVIVAL DISTRIBUTION MODELS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

CHAPTER I. INTRODUCTION

A. Current Metric o f Lethality in Ecotoxicology

The current use o f the median lethal concentration or dose approach 

(LC50/LD50) to measure chemical toxicity in ecotoxicology has its roots in classic 

mammalian toxicology. Historically, researchers quantified toxicity by defining 

threshold concentrations for toxicants using a fixed exposure duration but found that the 

high uncertainty in predictions at the lower tail o f the dose-response curve made 

estimation too imprecise. Finney (1947) argued that the 50% response level should be 

used instead because the associated estimates o f lethal concentrations at 50% exhibit 

less variability than those at higher or lower percentiles. The LC50/LD50 became the 

metric o f toxicity in mammalian toxicology.

From the mid-1940s, environmental toxicologists began to adopt this approach 

for their use in laboratory bioassays, using the results to imply environmentally safe 

concentrations (Cairns and Pratt 1989). Experimental organisms are exposed to a series 

o f toxicant concentrations and their percentage mortalities are recorded at the end o f an 

experiment. Exposure durations are grossly defined as acute (e.g., 48 h or 96 h) or 

chronic (e.g., 10% or more o f the species’ life  span). These time-endpoint methods are 

used to evaluate the chemical concentration producing a specific level o f effect such as 

the 96 h LC50. This method is fast and simple to perform, and insensitive to violations 

o f statistical assumptions, e.g., assuming either a log-normal or log-logistic distributed
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model w ill result in sim ilar LC50 values (Dixon and Newman 1991). During early 

applications o f these methods, people adequately predicted toxicity associated with 

point sources and compared the relative toxicities o f different toxicants or different 

species o f the same toxicant. However, there was and still is a tendency to uncritically 

apply these routine toxicity test protocols to situations in which they have important 

shortcomings.

Toxic effect is a function o f both exposure duration and intensity (concentration 

or dose). In general, the higher the exposure concentration or the longer the duration, 

the more damage that is caused. However, environmental regulators tend to focus on 

concentration while considering duration peripherally. The duration o f a LC50 test is set 

based on convenience, e.g., 96 h fits conveniently w ithin a work week, not ecological 

relevance. Exposure durations differing from 96 h are like ly and the 96 h LC50 w ill 

imperfectly predict mortality fo r these other durations. Scoring mortality only at the end 

o f the exposure period results in lose o f valuable information generated for other 

ecologically relevant times. For example, w ith the 96 h LC50 o f dissolved Cu o f a fish 

species, we can neither quantitatively predict the proportion o f fish dead at 48 h, nor if  

the fish population w ill be viable after the 96 h Cu exposure.

In the context o f predicting ecological consequences, the statistically most 

precise 50% point has questionable biological significance. In many situations, 

concentrations resulting in lower or higher percentage mortalities can be meaningful to 

determine risk upon toxicant released and helpful for regulators while setting toxicant 

standards in the environment.
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Conventional endpoint tests also do not address lethal effects that happen after 

exposure ends (latent mortality). In mammalian toxicology, the LC50 method is 

designed to measure toxic effects on individuals; in ecotoxicology, the primary interest 

is to predict the fate o f a field population after exposure. Latent mortality could be an 

integral component o f the exposure consequences (e.g., Newman and McCloskey 2000, 

Arthur 2001, Cerqueira and Fernandes 2002). To quantify latent mortality, observation 

must continue after the exposure ends. Noting mortality only at the end o f exposure 

compromises the usefulness o f the associated lethality predictions.

In reality, organisms experience pulsed exposures in which exposure 

concentration, duration, and frequency change through time. The conventional toxicity 

tests are derived for an exposure scenario o f fixed durations and constant concentrations, 

and cannot accurately model pulsed exposure. Pulsed exposures normally occur after 

events such as multiple pesticide sprayings, snowmelt or rainstorms follow ing dry 

periods, repeated discharges, or tidal fluctuation in an estuary. Chemicals, especially 

agrochemicals, occur at different sub-lethal concentrations for most o f the time with 

potentially lethal concentrations being reached periodically. The assessment o f these 

pollutant effects requires more than the conventional concentration-response methods 

provide.

Finally, people tend to use the LC50 metric as a measure o f toxicity without 

paying sufficient attention to its underlying mechanism. A probit (log-normal) model is 

assumed in most analyses o f dose-response data. The dominant explanation o f this log­

normal distribution is the individual effective dose (IED) theory: each individual has a 

characteristic tolerance for the toxicant and w ill die i f  the exposure dose or
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concentration exceeds its IED (Gaddum 1953). The IED values are thought to be log- 

normally distributed w ithin a population. This IED concept permeates interpretations o f 

other models o f acute lethality as well. However, it has not been rigorously tested 

before Newman and McCloskey (2000) and may not be a sufficient explanation for all, 

or even most, applications of the model. A plausible alternative explanation is a 

stochastic one: at a specific concentration, all exposed animals have the same chance of 

dying and which specific individual w ill die is determined by a random process defined 

commonly by a log-normal (or skewed) model (Berkson 1951). To determine the 

correct explanation for the probit and sim ilar models is important in predicting 

population fate after pulsed exposures. Under the IED theory, the survivors o f the 

exposures are more robust than the dead ones but, under the stochastic theory, there is 

no difference between the dead and the survivors. W ith a same exposure scenario o f 

repeated pulses, a population would persist much longer i f  the IED theory were true 

rather than i f  the stochastic theory were.

B. Survival Analysis Method

The survival analysis method was applied in this dissertation to overcome 

several shortcomings o f the LC50 methods mentioned above. The survival analysis 

method is also called time-to-event, survival time, or failure time analysis. It was 

in itia lly  developed in medical sciences and engineering. In agricultural sciences, it  has 

been applied to insect pathology. This includes the study of mortality when insects are 

challenged by pathogenic microorganisms (e.g., Fenlon 2002). In engineering, it  has 

been used in re liab ility testing o f components and systems where the event o f interest is
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usually failure o f the component or degradation o f system performance (e.g., Kimber 

2002). Fully parametric models are usually used in engineering because good predictive 

models for the failure time distribution are valued. In the medical field, it is used to 

predict the effects o f various variables on survival o f animals or humans. Semi- 

parametric models are often used i f  researchers are more interested in relative effects o f 

different treatments, not the exact failure time. For example, in the classic Stanford 

Heart Transplant experiment (Crowley and Hu 1977), the Cox semi-parametric model 

was used to study whether transplantation raised or lowered the risk o f death with 

covariates such as date o f birth and age o f acceptance included in the study. Other 

applications in medical, engineering, and other fields can be found in text books (e.g., 

Crowder et al. 1991, Ansell and Phillips 1994, Collett 1994, A llison 1995, Cantor 2003).

Only recently has survival analysis been applied to environmental risk 

assessment and ecotoxicology. Survival time modeling was applied to acute NaCl 

toxicity data for the mosquitofish, Gambusia holbrooki (Newman and Aplin 1992).

Both concentration and fish wet weight were included in the model. The authors 

suggested consideration o f this method as an adjunct to conventional toxicity testing 

endpoints. A  population o f rainbow trout was challenged with viral haemorrhagic 

septicaemia (VHS) and the survival function was estimated by assuming a W eibull 

distribution (Henryon et al. 2002). Honeybee (Apis mellifera ligustica) survival after 

chronic exposure to the insecticides, deltamethrin and imidacloprid, has been studied 

with survival models (Moncharmont et al. 2003). The time required for an individual 

amphipod (Leptocheirus plumulosus) to burrow below the sediment-water interface was 

recorded and analyzed with survival modeling (Vogt 2003). The results suggested that
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amphipod burrowing behavior is sensitive to sediment contamination. Survival analysis 

was used to evaluate the effect o f the number o f infected fish and acute exposure on the 

development o f branchial xenomas during a Loma salmonae infection (Becker et al. 

2005).

The general approach o f survival analysis involves exposing organisms to 

toxicant solutions and monitoring the effects (e.g., mortality, lose o f equilibrium, hatch, 

sexual maturity, or spawn) through time. Non-responders (e.g., survivors) are treated as 

statistically censored because their exact times-to-event are unknown. Maximum 

likelihood estimations (MLE) are conventionally used to analyze the data because of 

this censoring.

Some terminologies are important and frequently used in survival analysis. The

mortality o f individuals can be described with a cumulative distribution function (cdf),

F(t), or probability density function (pdf),/(f). The cdf at a certain time T is a function

o f the probability that the variable w ill be less than or equal to any value t that we

choose: F(t) -  P(T < t). An estimate o f the F(t) would be the total number o f individuals

dead at time, t, divided by the total number o f individuals exposed to the toxicant:

r,/ , Number Dead (t) ... ,,
Fit) = ------------------------- ——  (1.1)

Total Number Exposed

The pdf is the derivative or slope o f the cdf curve:

/ « = ^  ( 1 .2 )
at

The survival function S(t) describes the probability o f surviving beyond time t. It is 

estimated by the number of individuals surviving to time t divided by the total number 

o f individuals exposed to the toxicant:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



S( ,) = P ( T > , )  = l - F ( , ) =  Numher (13)
Total Number Exposed

The hazard function h(t) is used to describe the instantaneous death rate at time t 

conditioned on the organism’s survival to time t:

Pit < T  < t + At\T > t) f(t) 
h(t) = l im ^   ------ !-------^ = ^  (1-4)

aj->o At S (t)

The cumulative hazard function H(t) is the integral o f the hazard function:

t

H ( t ) -   ̂h(t)dt -  - ln ( l -  F(t)) (1.5)
o

Nonparametric, semi-parametric, and fu lly  parametric methods are available for 

analyzing these data. Nonparametric methods include product-lim it and life-table 

methods, and do not require a specific distribution for the survival curve. Survival for 

different groups o f exposed individuals can be tested for equality w ith the 

nonparametric log-rank or W ilcoxon test. The general form o f the semi-parametric and 

parametric models is:

/* (f, jcO = e f(xi) h0( t , e nx'} ) (1 .6 )

where h (t, jq) is the hazard function for group x,; ho (t, e f (Xi)) is the baseline hazard at

time t fo r group xr, e f (Xl) is a function that relates the hazard to the baseline hazard; and/

(xi) is a function o f either continuous variables such as concentration, or class variables 

such as sex. For a semi-parametric proportional hazards model, the distribution of 

baseline hazard ho (t, e f (X|)) does not need to be specified. The hazard o f a treatment 

group is some multiple o f the baseline hazard. For a parametric model, Equation 1.6 can 

be rearranged to the form of an accelerated failure time model:

In t i = f ( x i )  + £j (1.7)
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where l\ is the tim e-to-event,/( Xj) is a function that relates the covariates to and e, is 

the error term, which for prediction purposes is a  x  L. The L  varies with the proportion 

dead for which prediction is being made and can be obtained from the Table 7 of 

Newman (1995). The scale parameter a defines the scale o f the hazard curve. The ti w ill 

have a W eibull, exponential, log-logistic, or log-normal distribution i f  e, is assumed to 

have either the distribution o f extreme value with two parameters, extreme value with 

one parameter, logistic, or normal, respectively (Cox and Oakes 1984). I f  the numbers 

o f parameters for the four candidate distributions above were the same, the log 

likelihood statistic associated with each distribution could be applied directly to select 

the best-fit model. Larger log likelihood value indicates better fit. I f  the numbers of 

parameters differ among candidate models, Akaike’s information critierion (AIC) can 

be used (Atkinson 1980):

AIC -  -2 x  (log likelihood statistic) + 2 x  (number of parameters) (1.8)

It favors parsimony in selecting among models. Lowest AIC values indicate the best- 

fitting and parsimonious model, i.e., the model w ith the most information per estimated 

parameter.

Survival analysis has many advantages relative to the conventional LC50 

method, including:

1) Survival analysis can include exposure duration, a crucial determinant o f 

toxic effect, into the model.

2) More data can be produced from it than from the conventional LC50 method. 

Therefore, statistical power is greatly enhanced (Newman and Dixon 1996, Dixon 

2002).
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3) Because o f the increase o f statistical power, important covariates associated 

with the exposure such as concentration, temperature, and pH value can be included in 

the models and their effects quantified. Also, because times-to-death are recorded for 

individuals, covariates associated with individuals such as sex, age, and body weight 

can be included in predictive models more effectively.

4) Time-to-event results can be applied directly in ecological, demographic, and 

epidemiological models. For example, i f  the time-to-death and time-to-reproduce are 

monitored for a fish population exposed to a toxicant, the number o f young bom (mx) 

and proportion o f individuals dying (lx) can be generated. W ith mx, lx, and the original 

number o f a fish population, the Leslie matrix approach (Leslie 1945, Caswell 1996) 

can be used to predict population qualities and fate through time (Newman and 

McCloskey 2002).

5) The conventional endpoint estimates, such as LC50, and the associated 

confidence intervals can be estimated as well from survival models. More precise 

prediction can result in many (but not all) cases (Dixon 2002).

The advantages o f survival analysis allow us to potentially overcome many of 

the shortcomings o f conventional LC50 methods, especially to predict pulsed exposure 

effects more effectively. Firstly, both exposure duration and concentration can be 

included in the model and their effects predicted. Secondly, latent mortality and the 

variables affecting latent mortality can be quantified. Thirdly, lethal effect o f pulsed 

exposure may be quantitatively predicted by incorporating former exposure 

concentration and duration, recovery duration, and current exposure time into the
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model. Last, the underlying mechanism o f log-normal and sim ilar models can be further 

explored.

C. Model Chemicals: Copper Sulfate (CuSCL) and Sodium Pentachlorophenol (NaPCP) 

Copper sulfate and NaPCP were selected because their different modes o f action 

on aquatic animals and anticipated contrasting latent effects. Copper can cause 

cumulative damage to g ills and the exposed animals w ill like ly need a long period of 

time to recover and the latent mortality might be high. For NaPCP which causes less 

cumulative damage, the exposed animals have a good chance o f recovery after exposure 

ends and the latent mortality might be low. Because latent mortality is an integral, albeit 

often ignored, consequence o f pulsed exposure, the effects o f the two toxicants during 

pulsed exposure could be different as well. Furthermore, the two toxicants can be 

representative o f two contrasting modes o f action, and the underlying dominant theory 

(IED versus stochastic) for probit and sim ilar models might be different. Their uses, 

environmental fates, and toxicities are briefly discussed below.

1. Copper and copper sulfate

Copper sulfate is used to control bacterial and fungal diseases o f fruits, 

vegetables, nuts, and fie ld crops. It is also used as an algaecide and herbicide, and to k ill 

slugs and snails in irrigation and municipal water treatment systems.

Copper can be bound or adsorbed to organic material, and to clay and mineral 

surfaces. The degree of adsorption to soils depends on soil acidity or alkalinity. I t  is 

considered one o f the more mobile metals in soils. Because o f its binding capacity, its
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leaching potential is low in all but sandy soils. Applied with irrigation water, CuS04 

does not accumulate in the surrounding soils. About 60% deposits in the sediments at 

the bottom o f the irrigation ditch, and becomes adsorbed to clay, mineral, and organic 

particles (U.S. National Library o f Medicine 1995).

Copper sulfate is highly toxic to fish. Even at recommended rates o f application, 

this material may be poisonous, especially in soft or acid waters. Its toxicity generally 

decreases as water hardness increases. It is toxic to aquatic invertebrates too. Some 

amphipod species are especially sensitive to it. Copper inhibits Na+/K + ATPase activity 

and induces chloride cell necrosis and apoptosis. It increases g ill membrane 

permeability and chloride cell dysfunction. In the end, the osmotic and ionic functions 

o f gills are disrupted (Cerqueira and Fernandes 2002). The prevalence o f lesions 

depends on the chemical concentration and exposure duration, and the tissue recovery 

depends on the severity o f the damage and the environmental conditions (Poleksic and 

M itrovic-Tutundzic 1994). Copper also bonds between heterocyclic bases o f DNA, 

competes with the normal hydrogen binding, and destabilized the DNA structure 

(Eichhom 1975). Therefore, organisms may need relatively long periods o f time to 

recover depending on the cumulative damage caused during exposure. Studies (e.g., 

Icely and Nott 1980, Caparis 1989, Eriksson and Weeks 1994) have shown that 

amphipods can accumulate significant amount o f Cu by storing it in granules o f midgut. 

Metallothioneins and metallothionein-like proteins can be induced by Cu, thus reduce 

the amount available to cause a toxic effect on amphipods.
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2. Pentachlorophenol and sodium pentachlorophenol

Sodium pentachlorophenol’s greatest use is as a wood preservative. It was 

banned for herbicide use in 1987. Other uses include soil fumigation for termites, seed 

treatment for beans, antibacterial agent in disinfectants/cleaners, and preservative for 

glues, starches, and photographic papers (EPA fact sheet 2003).

Pentachlorophenol and NaPCP may be released to the environment as a result of 

its production, storage, transport, or usage. In air, PCP w ill be degraded through 

photolysis. Any PCP released to soils w ill slowly biodegrade and leach into 

groundwater. It tends to adsorb to soil and sediment, and the adsorption is stronger 

under acid conditions. Evaporation from water is slow, especially at natural pH values.

It does not appear to oxidize or hydrolyze under environmental conditions (EPA fact 

sheet 2003).

Hedtke et al. (1986) conducted PCP acute freshwater toxicity tests on the 

amphipod, Crangonyx pseudo gracilis, obtaining 96 h LC50 values o f 0.32, 0.22, and 

1.55 mg/L in different periods during the summer. Juvenile amphipods, Gammarus 

psuedolimnaeus and Crangonyx pseudo gracilis, were exposed to PCP at different pH 

values and PCP toxicity decreased with increased pH (Spehar et al. 1985). 

Pentachlorophenol is expected to bioconcentrate in organisms and the bioconcentration 

factor (BCF) w ill be dependent upon the pH o f the water because PCP w ill be more 

dissociated at higher pH values (EPA fact sheet 2003). The toxicological mode o f action 

o f PCP is increased cellular oxidative metabolism resulting from the uncoupling o f 

oxidative phosphorylation. It tends to diffuse across the g ill from the amphipod’s body
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(Spacie and Hamelink 1985). It was found that the clearance rate increases as salinity 

increases (Tachikawa and Sawamura 1994). It can be converted directly by phase II  

conjugation reactions at a faster rate than contaminants that are transformed by 

oxidative metabolism with cytochrome P450. Therefore, after it is removed from the 

environment, the toxic effect is reversible and the cumulative damage after the exposure 

may not be as prominent as that o f Cu. Organisms exposed to PCP could acquire 

increased tolerance through acclimation (e.g., Norup 1972).

D. Model Organism: Amphipod Hyalella azteca

The freshwater amphipods H. azteca were used as experimental animals. 

Amphipods are one o f the orders in the subphylum Crustacea and class Malacostraca. 

The genus Hyalella belongs to the order Amphipoda and fam ily Hyalellidae (Voshell

2002). They are bottom dwellers in small spaces, such as cool streams, springs, and 

ponds, coarse detritus, or upper layer of soft sediment.

The normal body length o f adult H. azteca is 8  mm for males and 6  mm for 

females. Body color is a creamy light gray and somewhat translucent. It is omnivorous 

but its most common food is detritus. It also grazes on algae, fungi, and bacteria. It 

completes its life  cycle in 27 days or longer depending on the temperature and die 

within one year. Individuals that live in waters where temperatures change seasonally 

usually reproduce in spring and summer. Bovee (1950) and Sprague (1963) found 

temperatures tolerated by H. azteca range from 0 to 33 °C.

Amphipods are nearly ubiquitous in permanent fresh waters o f the New World. 

They are important items in the diet o f many invertebrates, fish, amphibians, and water
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birds. They are important in the breakdown o f particulate organic matter. The amphipod

H. azteca has many desirable characteristics as an experimental organism including 

short generation time, ease o f culture, relative sensitivity to contaminants and tolerance 

o f varying physical-chemical properties o f environments, and an easily identifiable 

mortality end point. Therefore, it  became one o f the EPA recommended species for 

assessing acute toxicity o f freshwater sediment (EPA 2000). However, in a recent study, 

Wang et al. (2004) suggested that because o f the gap between laboratory and nature, it 

is probably a suitable surrogate species for determining sediments that are like ly not 

toxic to fie ld populations, while not suitable for determining sediments that are like ly 

toxic to fie ld populations.

In a study conducted on H. azteca (De March, 1978), higher temperatures 

produced smaller animals. Higher temperatures and longer photoperiods increased 

reproductive activity o f the species (Kruschwitz 1978). The survival, growth, and 

reproduction o f H. azteca were determined under various test conditions (Borgmann et 

al. 1989). There have been numerous studies with H. azteca on acidification (e.g., 

Grapentine and Rosenberg 1992, France 1996), and toxicity (e.g., Morris et al. 2003, 

Borgmann et al. 2005) and bioaccumulation (e.g., Jessiman and Qadir 1983, Burton et 

al. 2005) o f various toxicants.

E. Hypotheses to be Tested

Based on the lim itations of current LC50 method, the advantages o f survival 

analysis method, and the need to predict lethal consequences o f pulsed exposures, I 

established the follow ing four hypotheses for my dissertation:
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Hypothesis 1: Survival analysis better predicts lethal effects than does the 

conventional LC50 method. It more efficiently includes time, concentration, and other 

important covariates into predictive models.

Hypothesis 2: Survival analysis allows statistical testing for and effective 

quantification o f latent mortality.

• For CuS04, cumulative damage to gills and other tissues causes high 

latent mortality and the m ortality is a function o f previous exposure 

concentration.

• For NaPCP, reversible and less pervasive cumulative damage causes 

insignificant latent mortality and the mortality is relatively independent 

o f previous exposure concentration.

Hypothesis 3: Survival analysis permits more effective prediction o f lethal 

effects from pulsed exposure.

After the preliminary experiments and the results o f Hypothesis 2, the follow ing 

sub-hypotheses of Hypothesis 3 were established:

•  For CuS04, there is significant effect o f previous pulse duration on latent 

mortality, and the effect can be quantified; for NaPCP, there is not 

significant effect o f pulse duration on latent mortality.

• For both CuS04 and NaPCP, there are significant effects o f recovery 

time between the two pulses on mortality during the second pulse.

Hypothesis 4: The IED theory is the sole or dominant explanation for the 

survival distribution model fo r both CuS04 and NaPCP.
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CHAPTER II. INCORPORATION OF EXPOSURE DURATION INTO SURVIVAL 

ANALYSIS MODELS AND APPLICATION OF THE MODELS TO LATENT

MORTALITY

A. Introduction

In a variety o f fields such as medical sciences and engineering, duration is 

commonly included as one of the variables in the statistical models described in Chapter

I. In ecotoxicology, scientists began including exposure duration in their models from 

the beginning of the last century. One of the first applications was a rectangular 

hyperbola-like survival curve for Daphnia (Warren 1900). The times-to-death and 

percent mortality data of tuberculoid mice were f it  to log-probability paper, and a 

median lethal time (LT50, the predicted exposure time needed to get 50% mortality at a 

preset concentration) of 46 d was calculated (Litchfield 1949). Herbert and Merkens 

(1952) generated a log concentration versus log survival time graph for rainbow trout in 

potassium cyanide solutions. The linear range was expressed as C " x  T -  k, where C 

was concentration, T was survival time, and n and k were estimated parameters. Burdick 

(1957) expanded the model to (C-a) ” x (T-b) -  K, where a and b were the threshold 

concentration and time, respectively. Jones (1964) found that survival time increased as 

concentration decreased until a point was reached where it became indefinitely long (the 

threshold concentration), and as concentration increased, a stage could be reached when 

further increases in the concentration would not materially shorten the survival time (the
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threshold reaction time). In order to normalize discrete atrazine exposure data for 

irregular sampling, a crude moving window technique was used more recently to 

approximate the 4-d and 21-d average atrazine effect concentrations (Solomon et al. 

1995). Mayer et al. (1994) described a two-step linear regression approach that uses 

acute lethal data to estimate chronic toxicity with exposure time as an independent 

variable. The predicted no-observed-effect concentration (PNOEC) was estimated from 

the regression. Based on this and another two methods (accelerated life testing and 

multifactor probit analysis), the Acute-to-Chronic Estimation software (Ellersieck et al.

2003) was developed to predict long-term toxicity with data from short-term 

experiments. A ll o f the methods described in this paragraph provide gross predictions o f 

the influence of exposure duration.

Though many scientists made efforts to include time into their toxicological 

models, most have restricted their attention to times during the exposure. Latent 

mortality is not routinely quantified and reported in lethality studies. Pascoe and Shazili 

(1986) observed significant post exposure mortality resulted from brief cadmium 

exposure. The term median post exposure lethal time (peLT50) was proposed as a 

means of assessing and comparing the results of brief exposure to a pollutant. Reinert et 

al. (2 0 0 2 ) suggested that, in order to demonstrate latency (or lack o f latency), 

observation intervals should be continued after the exposure ends.

Latent mortality could be affected by several variables such as life stage o f the 

exposed organisms, the toxicant to which the organisms are exposed, exposure 

concentration, exposure interval, and temperature. Guadagnolo et al. (2000) found that 

rainbow trout eggs were more sensitive after silver exposures during certain
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development periods than during other periods. Arthur (2001) found grain beetle 

mortality after the initial exposures to wheat treated with diatomaceous earth increased 

as exposure interval and temperature increased. Newman and McCloskey (2000) 

observed mosquitofish latent mortality extended for 3 to 4 weeks after NaCl exposure, 

but only 8  h after PCP exposure. Naddy et al. (2000) found daphnids did not experience 

any delayed effects from chlorpyrifo exposures up to 20 d after exposure. The 

difference may be because the effects are reversible unless death has occurred for 

substances that display a baseline or narcotic mode of action (Reinert et al. 2002). None 

of these studies formally quantified the relationship between the degree o f latent 

mortality and variables that could potentially affect it.

In the current study, the amphipod, H. azteca, was exposed to different CuSC>4 

and NaPCP concentrations. Time-to-death data taken during and after the exposures 

were f it  to survival models. By including exposure duration and concentration as 

covariates in the models, the proportion dead was predicted at any concentration and 

any exposure time within the experimental range. By comparing the conventional 48 h 

LC50 and the complete LC50 values (defined as the LC50 values calculated by 

including mortalities during and after exposure ends) and contrasting the latent effects 

of the two toxicants, the importance of including latent mortality into ecotoxicological 

models was demonstrated.

B. Methods

1. Amphipod culture and maintenance
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The amphipods, H. azteca, came from a population that had been maintained in 

our laboratory for more than two years and never experienced contaminant exposure. 

Well water was used as the culturing water and red maple (Acer rubrum) leaves as food. 

Test amphipods were one to two weeks old and were obtained by gently siphoning 

water from the cultures onto screens. The amphipods that passed through a 0.67 mm 

sieve but were retained by a 0.50 mm sieve were used as test organisms. They were 

maintained in the reformulated moderately hard reconstituted water (RMHRW) (Smith 

et al. 1997) with food at 23°C for at least 72 h before the exposures began. The 

chemicals needed to prepare RMHRW and the expected alkalinity and pH ranges are 

listed in Appendix 1.

2. Exposure procedure

Several range-finding tests were conducted to determine the concentrations to be 

used in the following formal experiments. Three CuSCE exposures were conducted in 

January, February, and July 2003, respectively. Copper sulfate was dissolved in 

RMHRW to make five solutions with nominal dissolved Cu concentrations of 0.0, 0.2,

0.3, 0.4, 0.6 mg/L. Each solution was delivered to four 12-well COSTAR 3513 Cell 

Culture Clusters (Corning, Coming, NY, USA) with approximately 4 ml in each well. 

Two hundred and forty amphipods were then randomly assigned to the wells with one 

animal per well. Each well contained a piece of red maple leaf as food (leaf weight in 

each well: 0.61 ± 0.32 mg, mean ± standard deviation, n = 40). Every amphipod 

exposed to the same concentration was considered a replicate. The cluster plates were 

then placed in a LAB-LINE AMBI-HI-LO Chamber (Lab-Line Instruments, Melrose
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Park, IL, USA). Mortality was checked at approximately 4 h intervals. An amphipod 

was scored as dead and removed from the well i f  no sign of appendage movement was 

discernible after gentle prodding. A ll the amphipods alive after 48 h were carefully 

transferred to fresh RMHRW. Latent mortality was noted approximately every 4 h. The 

experiment ended at 112 h when no more mortality was evident. A ll the survivors after 

that time were noted as right-censored. During all the experiments, 48 amphipods were 

established as control animals and maintained in water free of toxicant.

Three NaPCP exposures were conducted in early June, mid-June, and late July 

of 2003, respectively. Sodium pentachlorophenol was dissolved in RMHRW to make 

solutions with nominal NaPCP concentrations of 0.0, 0.2, 0.3, 0.5, 0.8 mg/L. The 

exposure and post exposure procedures were the same as those of Q 1SO4 . The only 

difference was that the experiments ended at 85 h, when no more latent mortality was 

evident. Forty eight amphipods were established as control animals as well.

The total alkalinity and pH of RMHRW were measured before exposures started 

to ensure that they were within the expected ranges. The solutions were renewed during 

the experiments every 12 h. Both newly prepared and 12 h-exposed water samples were 

collected for pH and toxicant concentration measurements. The pH values were 

measured with an ACCUMET Model-15 pH Meter (Denver Instrument, Denver, CO, 

USA) and PerpHect ROSS Electrode Model 8256 (Orion Research, Boston, MA, USA). 

Water samples for dissolved Cu measurement were acidified, stored at 4 °C, and 

analyzed with a Perkin-Elmer AAnalyst 800 atomic absorption spectrometer (Perkin- 

Elmer, Norwalk, CT, USA). Samples for NaPCP analysis were collected with glass 

bottles, stored in 4°C, and analyzed with the method of Carr et al. (1982). Each 25 ml
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water sample was mixed with 25 ml de-ionized water and 0.5 ml of concentrated HC1. 

Ten ml of chloroform was added before the sample was shaken vigorously for 60 s.

Five ml o f the extract was collected in a polypropylene centrifuge tube. Two ml of 0.2 

M NaOH were added to the extract, mixed vigorously for about 30 s, and centrifuged in 

an IEC HN-SII Centrifuge (International Equipment, Needham Heights, M A, USA) at 

5000 G for 5 min. The absorbance of the aqueous fractions was measured with a 

Beckman DU 650 spectrophotometer (Beckman Instruments, Fullerton, CA, USA) at 

320 nm. Samples for temperature and dissolved oxygen (DO) were taken periodically 

and measured with a Fisher mercury thermometer and YSI Model 57 oxygen meter 

(YSI, Yellow Springs, OH, USA), respectively.

3. Data analysis

The exposure concentration, total number of exposed amphipods, and number of 

dead amphipods were fit to a probit model with logio transformation of concentration to 

calculate the conventional 48 h LC50 and complete LC50 values. The associated 95% 

fiducial limits were calculated as well (TOXSTAT® 1989).

The parametric accelerated failure time model was used to analyze the survival 

data with toxicant concentration as the independent variable:

In t{ = / (  concentration) + £ j .  (2 . 1 )

In order to predict the mortality during and immediately after the exposures 

ended, and to determine i f  there was any significant effect of former exposure 

concentration on the latent mortality, the survival data o f exposure, post exposure, and 

complete (exposure + post exposure) were f it to the accelerated failure time models
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separately (SAS® Procedure LIFEREG, SAS 1999). The best-fit model selection criteria 

were the same as those described in Chapter I.

C. Results

The RMHRW for all solutions had an alkalinity of 59 ± 4 mg/L as CaCCE (n = 

10) and a median pH of 8.15 (range: 8.12 -  8.16, n = 30), which were within the 

anticipated normal ranges. The pH, DO concentration, and water temperature during the 

experiments are summarized in Table 2-1. The treatments with higher dissolved Cu 

concentration had lower pH values likely due to the hydrolysis o f the Cu2+. They have a 

relatively broader range because both newly prepared and 12-h exposed water pH 

values were measured. Table 2-2 summarizes the dissolved Cu and NaPCP 

concentrations during the 48 h exposures. The toxicant concentrations for controls and 

water during the post exposure period were below the detection limits o f the methods (7 

pg/L for dissolved Cu, 0.15 mg/L for NaPCP).

The control mortalities were less than 5% in all experiments. The amphipod 

mortality through time of all the experiments can be found in Appendix 2 and 3. The 

cumulative proportions o f dead amphipods at each observation time were plotted for the 

Q1SO4 and NaPCP experiments (Fig. 2-1). There was minimal mortality during the first 

several hours o f exposure. After the CUSO4 exposure ended, a large number of 

amphipods continued to die for a relatively long time. For NaPCP, only a few animals 

died during the post exposure period and most of their deaths occurred soon after the 

exposure ended.
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The conventional and complete LC50 values with their 95% fiducial limits are 

shown in Figure 2-2. For CuSCU, the conventional LC50 values were manifestly higher 

than the complete ones. In experiments 1 and 2, their 95% fiducial limits did not 

overlap and there was only about an 11% overlap in experiment 3. For NaPCP, the 

complete LC50 values were only a little lower than the conventional LC50 values, and 

more than 60% of their 95% fudicial limits overlapped. The data were then f it  to the 

log-normal model (SAS® Procedure PROBIT, SAS 1999) with conventional/complete 

as an independent categorical variable. The results o f a %2 statistic showed that for all 

three CUSO4 experiments, the conventional and complete LC50 values were 

significantly different from each other (^<0.0001, p<0.0001, and p=0.031), but they 

were not for the three NaPCP experiments (p=0.205, p - 0.386, and p=0.690).

The 112 h survival data for CUSO4 and 85 h survival data for NaPCP were first 

f it  to the accelerated failure time models with the candidate survival time distributions 

of exponential, Weibull, log-normal, and log-logistic (Table 2-3 and Table 2-4). Natural 

log transformation of the concentration was used because this is the most common 

concentration metameter (Newman 1995) and the associated AIC values were lower 

than those without this transformation. For all the data sets, log-normal distributions 

proved to be the best based on the AIC. For data generated during the exposures, either 

the Weibull or log-normal distribution displayed best fit. I f  only the post exposure data 

were used, the best-fit models for CUSO4 were log-normal, while coefficients of 

concentration were not significantly different from 0 for NaPCP exposures («=0.05).
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D. Discussion

1. Effects of the nature of toxicant on latent mortality

To illustrate the extent of latent mortality, the predicted proportion dead at the 

conventional LC50 concentrations and that after including latent mortality were plotted 

in Figure 2-3. When latent mortality for Q 1SO4 was considered, 65% to 85% of exposed 

animals died at the LC50 concentration, not 50%. Any prediction of field population 

mortality based on the conventional LC50 method would underestimate mortality by 

15% to 35%. In contrast, only 5% or fewer additional animals died for NaPCP. The 

amphipod displayed contrasting latent mortalities after the Q 1SO4 and NaPCP 

exposures, mainly because these two chemicals have different modes of action. Gills are 

likely the primary target organ of Cu due to their high surface area in contact with the 

external medium. The damage of Cu is cumulative and needs a long period to recover. 

Changes in g ill tissue o f the tropical fish, Prochilodus scrofa, were investigated after 96 

h Cu exposure (Cerqueira and Fernandes 2002). The restoration of g ill structure 

(epithelial lifting, cell swelling and proliferation, and blood vessel anomalies) was not 

completed until the forth-fifth day post exposure. Red blood cells and hemoglobin 

concentration remained high until the seventh day. Plasma Na+ and Cl" decreased, K+ 

increased significantly until the seventh day. In contrast to Cu, PCP toxicant effect is 

considered to be reversible and causes less cumulative damage. Nuutinen et al. (2003) 

quantified the H. azteca uptake, biotransformation, and elimination rates of PCP and got 

relatively short half-lives of 3.6 h and 9.1 h for PCP and its metabolite, respectively. 

Pentachlorophenol was converted directly by phase II conjugation reactions at a faster
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rate than contaminants that are transformed by oxidative metabolism with cytochrome 

P450. Therefore, animals have a good chance of rapid recovery after exposure ends.

2. Effects of previous exposure concentration on latent mortality

For certain toxicants, previous exposure concentration can affect latent mortality. 

In the post exposure models o f CUSO4 , the effects of former exposure concentration 

were significant: the higher the concentration, the less time needed for a certain 

proportion of animals to die during the post exposure period. Because in experiment 3 

the dissolved Cu concentration for each treatment was the lowest among all the three 

experiments, the cumulative g ill damage caused by Cu might not have been so 

extensive, and accordingly, the latent mortality was not as evident as in the other two 

experiments. For the post exposure models of NaPCP, the coefficients o f log 

concentration were not significantly different from 0 , indicating no significant effect of 

former exposure concentration on latent mortality. It was likely due to less cumulative 

damage occurring during the exposure, even at the highest concentration.

3. Incorporating exposure duration and latent mortality into survival models

The accelerated failure time models were generated for three different time 

periods (exposure only, immediately post exposure, and exposure plus post exposure). 

For most of the time, the best-fit-models were either log-normal or Weibull distributed. 

The log-normal model is among the most widespread models used for toxicity testing 

and has traditionally been used extensively for determination of acute lethality and other 

dichotomous responses. Furthermore, the log-normal distribution aspect of the model is
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biologically plausible and accounts for some degree of inter-individual variability (Rees 

and Hattis 1994). The Weibull distribution includes the exponential distribution as a 

special case and has an extreme value justification. During a toxicant exposure, a series 

of biological processes of bioaccumulation, biotransformation, detoxification, 

elimination, etc., are involved in. I f  the exposed organism is overwhelmed in one 

weakest process, the toxic effect such as mortality w ill manifest. Thus, one can regard 

the series of processes as a large number of links and its failure is determined by the 

lowest strength of all the links. Results from probability theory indicate that the 

distribution of the minimum of a set of quantities has a particular limiting form. The 

Weibull distribution satisfies this limiting form for minima.

With these models, the relationship among time, concentration, and percent 

mortality was constructed, and i f  the values of any two variables were given, the third 

could be estimated. For the purpose of illustration, the response contours combining 

these three factors based on the models are shown in Figure 2-4. The conventional 48 h 

LC50 values and their 95% fiducial limits are also shown there. Compared with the 

single LC50 value, the response surface allows estimation o f the concentration killing a 

certain proportion o f amphipods at any time within the experimental range. As for the 

post exposure models, not only the effect of recovery duration, but also the effect of 

former Cu exposure concentration can be quantified.

4. The importance of incorporating latent mortality and exposure duration into current 

ecotoxicology studies
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The conventional LC50 methods tend to minimize the effects of covariates by 

controlling all the experimental conditions except concentration. Exposure duration is 

considered peripherally and is often fixed. Consequently, information generated for all 

other times is lost, limiting the ability to predict toxicant effects on field populations. 

The survival analysis used in this study is a better approach than point estimation for 

avoiding this shortcoming. Predictions from survival models are also more useful than 

those from the conventional LC50 method because effects of other covariates such as 

exposure time, and effects o f latent mortality and pulsed exposures, can be quantified 

more efficiently.

When the LC50 metric was introduced into mammalian toxicology, the primary 

interest was quantifying relative chemical toxicity. When the method was adopted by 

ecotoxicologists, the toxic inferences should have been put into a broader, ecological 

context. It is inappropriate for ecotoxicologists to focus on lethal effects during the 

exposures only. Latent mortality should be taken into consideration, especially when 

relating laboratory effects to those occurring in the field. For two chemicals whose 48 h 

LC50 values are the same for a certain species, their effects on a field population may 

be quite different because of the different levels o f latent mortality. Copper sulfate and 

NaPCP results shown here illustrate this point. Recovery can be slow for toxicants like 

Cu that cause cumulative damage or have slow elimination. Therefore, i f  the Cu 

concentration was high enough to cause pronounced latent mortality, the proportion of 

exposed individuals dying w ill be much higher than the proportion projected with the 

LC50 value, and the species population may be at a higher risk of local extinction than 

suggested by the LC50 value. For toxicants with no significant latent mortality effect,
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such as NaPCP, there is a trivial difference between the conventional and the complete 

metric of mortality. There w ill be less possibility for a population going locally extinct 

and less attention could be paid to its latent lethal effects. Therefore, we suggest that 

observation should be continued after exposure ends for some toxicants and that latent 

mortality information should be included in estimates of lethal consequences to field 

populations. Survival analysis is a useful means of quantifying mortality during and 

after exposure ends.

E. Conclusion

Different levels of latent mortality occurred after 48 h of CUSO4 or NaPCP 

exposures. Because the nature of toxicant and exposure concentration affect latent 

effects, it is important to include latent mortality when comparing toxicities of 

chemicals and relating laboratory-derived metrics of toxicity to mortality in field 

populations. Survival analysis efficiently models such latent mortalities. Use o f survival 

analysis to model both exposure and post exposure effects does not exclude calculating 

the conventional LC50. Furthermore, it can include several covariates in the model and 

consequently enhance our predictive capabilities for field populations. The current 

bioassay protocols could be extended to better include both exposure duration and latent 

mortality.
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Table 2-1. The pH values, dissolved oxygen (DO) concentrations, and water temperatures of the CuS04 and NaPCP exposure media. 

The pH values were measured for both newly prepared and 12-h exposed water

CuS04 NaPCP

pH 8 . 1 0 8.19

(median) (range=7.89 -  8.27, 154) (range=8.13 -  8.28, «=100)

DO

(mean ± standard deviation, n=20, mg/L) 7.47 ±0.15 7.57 ±0.10

Water Temperature

(mean ± standard deviation, n=30, °C) 22.97 ± 0.09 23.10 ±0.29
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Table 2-2. Measured concentrations of total dissolved Cu and NaPCP during the 48 h exposures

Toxicant concentrations (mg/L, mean + standard deviation, n = 8 )

Experiment # Treatment 1 Treatment 2 Treatment 3 Treatment 4

1 0.19±0.02 0.28+0.03 0.35±0.04 0.53±0.06
Dissolved

2 0.13±0.02 0.22±0.03 0.30±0.04 0.47±0.06
Cu

3 0.13±0.02 0.21±0.03 0.29+0.04 0.45+0.05

1 0.20±0.08 0.36±0.04 0.51±0.03 0.77±0.07

NaPCP 2 0.20+0.05 0.33±0.03 0.51±0.05 0.81±0.03

3 0.19±0.02 0.32+0.06 0.50±0.02 0.79±0.05
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Table 2-3. The Akaike’s information criterion (AIC) values and the best-fit accelerated failure time models for Q 1SO4 experiments. 

A ll the listed coefficients were significantly different from 0 (pcO.OOl)

Experiment
AIC values for each distributiona

M odelb
Exponential Log-logistic Log-normal Weibull

General0 315.6 282.0 279.0 287.2 lnTd=3.33-1.39xlnCe+0.73xL

1 During f 173.2 123.0 124.6 121.6 lnT=3.64-0.58xlnC+0.21xL

A fte rg 232.6 231.0 230.6 232.2 lnT=2.65-1.99xlnC+1.28xL

General 395.2 361.0 358.6 369.6 lnT=3.33-0.98xlnC+0.80xL

2 During 2 1 1 . 8 186.4 187.6 186.2 lnT=3.37-0.89xlnC+0.40xL

After 320.2 320.8 319.4 322.2 lnT=2.92-1.17xlnC+1.50xL

General 421.2 411.2 404.6 423.0 lnT=2.64-1.54xlnC+1.24xL

3 During 309.0 280.4 275.4 285.6 lnT=2.92-0.90xlnC+0.76xL

After 151.2 152.0 150.8 152.4 lnT=3.70-1.82xlnC+2.19xL
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a The values in bold denote the smallest AIC and the best-fitting distribution,b The best-fit model is indicated by the AIC values,c 

Model produced by fitting all data, including post exposure mortality,d Time-to-death,e Concentration,f Model produced by fitting 

only data from the exposure phase o f the experiments, 8 Model produced by fitting only the data generated after the exposure ended
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Table 2-4. The Akaike’s information criterion (AIC) values and the best-fit accelerated failure time models for NaPCP experiments. 

A ll the listed coefficients were significantly different from 0 (p<0.001)

Experiment
AIC Values for Each Distributiona

M odelb
Exponential Log-logistic Log-normal Weibull

Generalc 382.7 359.6 358.6 367.7 lnT“=3 .51--1.11 x  lnCe+0.90x L

1 Duringf 309.5 248.7 259.7 238.3 lnT=3.67-0.56xlnC+0.34xL

A fte rg 1 1 2 . 0 110.3 108.8 1 1 0 . 6 / h

General 343.7 317.7 313.2 332.7 lnT=3.18-1.53xlnC+0.83xL

2 During 286.2 224.0 218.0 229.1 lnT=3.20-0.99xlnC+0.53xL

After 72.5 73.5 72.7 73.7 /

General 289.0 280.4 276.1 285.2 lnT=3.89-1.29xlnC+1.04xL

3 During 240.1 190.7 191.2 189.0 lnT=3.79-0.59xlnC+0.32xL

After 36.7 38.7 39.4 38.6 /
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aThe values in bold denote the smallest AIC and the best-fitting distribution,b The best-fit model is indicated by the AIC  values,c 

Model produced by fitting all data, including post exposure mortality,d Time-to-death,e Concentration,f Model produced by fitting 

only data from the exposure phase o f the experiments,s Model produced by fitting only the data generated after the exposure ended,h 

The best-fit models were not listed because the coefficients o f the natural log o f concentration were not significantly different from 0 

(<2=0.05)
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Figure 2-1. The cumulative proportions of amphipods dead through time for the CuSC>4 

and NaPCP exposures. The groups of lines indicate different nominal toxicant 

concentrations. (Refer to Table 2-2 for measured toxicant concentrations.) The dashed 

lines at 48 h separate exposure and post exposure periods.
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Figure 2-2. Conventional (during the exposure) and complete (exposure plus post 

exposure) LC50 values for the CUSO4 and NaPCP experiments. The error bars indicate 

their 95% fiducial limits and Exp 1, 2, and 3 denote the first, second, and third 

experiment, respectively.
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Figure 2-3. The predicted proportion dead at the conventional LC50 values and the 

proportion dead after including latent mortality for the CUSO4 and NaPCP experiments. 

Exp 1, 2, and 3 denote the first, second, and third experiment, respectively.
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Figure 2-4. Response contours generated from survival models of 48 h exposures to 

CUSO4 and NaPCP. The lines indicate different proportions dead. The 48 h LC50 values 

and their 95% fiducial limits were also shown.
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CHAPTER III. PULSED EXPOSURE: EFFECTS OF PULSE DURATION AND 

RECOVERY TIME BETWEEN PULSES

A. Introduction

Although most pulsed exposure studies have been conducted on mammals, 

increasing attention is being paid to effects of pulsed toxicant exposures characteristic 

of spills, episodic surface runoff, applications of agrochemicals, and many industrial 

discharges. For most of the time, aquatic organisms are exposed to background levels of 

toxicants with lethal concentrations being reached periodically. Prediction of lethal 

consequences of pulsed exposure through conventional LC50 methods is often difficult 

because conventional methods are associated with a fixed duration and constant 

concentration, as was discussed in Chapter II. They also do not routinely include latent 

mortality. For these reasons, they may not be adequate for prediction of pulsed exposure 

effects for which concentration, duration, and pulse frequency change through time.

Some researchers realize the inadequacy of the conventional methods and have 

begun exploring pulsed exposure effects in different ways. A llin  and Wilson (2000) 

investigated the sub-lethal acclimation effect on the 4 d lethal pulsed exposure to 

aluminum (Al) with juvenile rainbow trout, Oncorhynchus mykiss. The swimming 

behavior, mortality, and hematological changes were compared between the A l 

acclimated and naive groups. The results suggested that previous exposure to sub-lethal 

levels of A l in the natural environment could be an important factor abating A l impact.
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The effects of pulse frequency and interval among multiple chlorpyrifos exposures on 

mortality, mobility, and natality of Daphnia magna were evaluated (Naddy and Klaine 

2001). It was suggested that the organism could recover from the previous lethal 

chlorpyrifos exposure i f  there was adequate time for recovery between exposures. Clark 

et al. (1986) found that multiple-pulse exposures of substances were less toxic to 

aquatic organisms than continuous exposures o f equal total duration. The reasons may 

be that some detoxification, repair, or elimination occurring during the non-toxic period 

can reduce the toxic effects of the earlier exposures (Parsons and Surgeoner 1991) and 

is dependent on the length o f time between pulses (Wang and Hanson 1985). Reinert et 

al. (2 0 0 2 ) discussed the tools for deciding whether time-varying exposures are relevant 

in a particular risk assessment and approaches for laboratory toxicity testing, modeling, 

and risk characterization. However, most of these studies either made the predictions 

semi-quantitatively with statistical method such as conventional analysis o f variance 

(ANOVA), or did not incorporate duration effectively. Quantitative models that 

incorporate duration effect are needed to make better predictions.

In addition to exposure concentration and toxicant modes o f action as discussed 

in Chapter II, other variables such as pulse duration and recovery time between pulses 

can be important in order to better predict field population fate in pulsed exposures. 

Pulse duration could affect latent mortality, and recovery time could influence how an 

organism w ill respond to a subsequent exposure. Low latent mortality and long time for 

recovery could result in better recovery, and therefore, the effects of subsequent pulses 

w ill be less dependent on the previous exposure. To explore these hypotheses, I 

conducted laboratory studies that quantify effects of a subset o f these factors.
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Specifically, I asked: (1) is there any effect of exposure duration on latent mortality, (2) 

can the complete recovery time (i.e., the time that an organism needs to return to its 

original level of toxicant resistance) be predicted, and (3) what is the relationship 

between recovery time between pulses and mortality during the second pulse. Copper 

sulfate and NaPCP were used because they have contrasting levels of latent mortality.

To address the first question, H. azteca was exposed to two toxicant concentrations for 

three durations. The effect of exposure duration on latent mortality was quantified with 

survival modeling. For the second and third questions, the amphipods were provided 

four different recovery times between two pulses of the same concentration and 

duration. Time-to-death data collected during the second exposure were modeled, the 

complete recovery times estimated, and the effect o f recovery time quantified.

B. Methods

1. Effect o f exposure duration on latent mortality

The amphipod culture, maintenance, and general exposure design were similar to those 

described before. One to two weeks old amphipods were sieved and acclimated in the 

RMHRW for 6  d before the exposures began. Experimental concentrations, durations, 

and animal sample sizes were found based on preliminary experiments and the test 

results of Chapter II. In the formal experiments, the CUSO4 and NaPCP were dissolved 

in RMHRW to make two nominal concentrations for each (dissolved Cu: 0.8 and 1.0 

mg/L, NaPCP: 0.4 and 0.6 mg/L). The amphipods were exposed 20, 38, and 61 h to 

Q 1SO4 , and 20, 40, and 60 h to NaPCP. Both newly prepared and exposed water 

samples were collected for toxicant concentration and pH measurement. Samples for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

temperature and DO were taken periodically. After exposures, survivors were 

transferred to fresh RMHRW and their latent mortality observed every 3 to 6  h. The 

experiments ended when no more mortality was evident. Red maple leaf was provided 

throughout the experiment as food. Both NaPCP and CUSO4 experiments were done 

twice. In each experiment, 36 amphipods were used as control animals and maintained 

in toxicant-free water. They were transferred to appropriate wells the same way the 

treatment amphipods were transferred to ensure that the difference was not due to 

handling.

The nonparametric method log-rank test (SAS® procedure LIFETEST, SAS 

1999) was used initially to test whether there was any significant difference between the 

survivals of the replicates. The fully parametric, accelerated failure time model was then 

used to explore the effects o f exposure duration. Exposure concentration and duration 

were fit as continuous variables (SAS® procedure LIFEREG, SAS 1999):

In l, = / (  concentration) + g ( duration) + £ j ,  (3.1)

where Zi is the time-to-death during the post-exposure period,/  {concentration) and g 

(duration) are some functions of the former exposure concentration and duration, and £, 

is the error term.

2. Effect o f recovery time on mortality during a second exposure

The amphipods of 1 to 2 weeks old were sieved and acclimated in the RMHRW 

for 6  d before beginning the exposures to ensure enough acclimation to the 

experimental water. Several preliminary experiments were conducted to find the 

adequate exposure concentrations, durations, and recovery intervals. In the experiments,
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approximately 350 amphipods were exposed to nominal toxicant concentrations 

(dissolved Cu: 1.1 mg/L, NaPCP: 1.5 mg/L) for 12 h, when about 10% of the exposed 

animals were dead. No food was provided during the exposures. After that, all survivors 

were randomly assigned to different recovery time groups and allowed to recover.

Based on preliminary experimental results, 0, 24, 48, and 72 h for CuSCL, and 0, 4, 8, 

and 14 h for NaPCP, were chosen. Red maple leaves were provided during recovery. 

Immediately after those recovery times, the survivors were exposed to the toxicant 

solution with the same nominal concentration as the first exposure for another 12 h. 

Their mortalities were checked every 1 h or so. A t the beginning and end o f each 

experiment, two groups o f naive amphipods of the same age as treatment groups were 

set as reference animals and exposed to the same toxicant concentration for 12 h to 

establish the background level mortality. Because the mortality under identical exposure 

conditions could be different as amphipods age, these similar-age reference groups were 

used to check the potential confounding effect o f age. A ll the animals in the reference 

groups were handled the same way as those in the treatment groups to ensure the similar 

handling stress. Throughout the experiment, 36 amphipods were set as the control group 

and maintained in toxicant-free water. They were transferred to appropriate wells the 

same way treatment amphipods were transferred to ensure that the difference was not 

due to handling. Both NaPCP and CuSCL experiments were repeated three times.

In each experiment, the survival data for the two reference groups were first 

compared with nonparametric log-rank test to check whether there is significant 

difference in mortality (SAS® procedure LIFETEST, SAS 1999). I f  it resulted in
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insignificant difference, the reference data were combined and fit  to the accelerated 

failure time model (SAS® procedure LIFEREG, SAS 1999):

In tRi = aR + £r; (3.2)

where is the time-to-death o f the reference animals, aR is the intercept, and £Rj is the 

error term. Next, the time-to-death data o f amphipods with different recovery times 

were f it  to the follow ing model to quantify the effect o f recovery time:

In tji = a j + b j x  rtt + £-n (3.3)

where tn is the time-to-death o f the treatment animals, ax is the intercept, b-r is 

estimated coefficient, rt, is the recovery time, and £ t , is the error term. The / r , or tn can 

be fit  to a W eibull, exponential, log-logistic, or log-normal distribution; therefore, 

Akaike’s information criterion (AIC) was used to select the best o f these four candidate 

distributions. The predicted complete recovery time, the value o f rt\ at which 

mathematically the survival time o f the treatment group was equal to that o f the 

reference group at the specific reference mortality level, could be calculated by 

subtracting (3.2) from (3.3). The effect o f recovery time can be statistically tested with 

the coefficient by in (3.3).

C. Results

1. Water chemistry

The RMHRW for all solutions had an alkalinity o f 56 ± 2 mg/L as CaC0 3  (mean 

± standard deviation, n = 8 ) and a median pH o f 8.18 (range: 7.82 -  8.23, n = 14). The 

pH values, DO concentrations, and water temperatures during the experiments are 

summarized in Table 3-1. Tables 3-2 and 3-3 show the measured dissolved Cu and
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NaPCP concentrations. The toxicant concentrations for controls and water during the 

post exposure and recovery periods were below the method detection lim its (Cu: 7 pg/L, 

NaPCP: 0.15 mg/L).

2. Effect o f exposure duration on latent mortality

The raw mortality data o f all the exposure duration experiments are shown in 

Appendix 4 and 5. The total proportions o f amphipods dead during the exposures for 

each treatment group are shown in Table 3-4. Predictably, higher concentration and 

longer duration resulted in higher mortality during all exposures. The log-rank test 

showed no statistically significant difference between the duplicates for both toxicants 

(a=0.05); therefore, the data from the duplicates were pooled for the follow ing 

statistical analysis. The cumulative mortality o f amphipods at each observation time 

during the post exposure periods were plotted in Figure 3-1. The total latent mortality o f 

NaPCP experiments did not exceed 7%, as opposed to 20% to 60% for the CuSC>4 

experiments depending on concentration. The NaPCP latent mortality happened soon 

after the exposures ended, but that of CuSCL continued for longer than 40 h. This 

reinforced the conclusion reached in Chapter II about different latent m ortality effects 

o f CuSCL and NaPCP. I f  the latent mortality data were f it  to accelerated failure time 

models, natural log transformations o f duration and concentration were used because 

the associated AIC  values were smaller than those without transformation and they are 

the most frequently used metameters in the literature (Table 3-5). For both toxicants, a 

log-normal distribution proved to be the best. Only the coefficient o f In (concentration)
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o f C11SO4 was significantly different from zero (a=0.05). In all the experiments, the 

control mortalities were less than 5%.

3. Effect o f recovery time on mortality during a second exposure

The raw mortality data o f all the recovery time experiments are shown in 

Appendix 6  through Appendix 11. W ithin each experiment, the reference survivals 

showed no significant difference (log-rank test, a=0.05), indicating no detectable age 

effect on mortality. This allowed the combination o f the two reference group data 

within one experiment as background mortality o f the exposure. The average mortalities 

o f the reference groups were 7%, 11%, and 12% for 3 CUSO4 experiments and 18%, 

15%, and 5% for 3 NaPCP experiments. During the recovery periods, only a minimal 

number o f amphipods died for NaPCP but many died for CUSO4, again reinforcing the 

conclusion o f Chapter II.

The percent mortalities during the second exposures are plotted in Figure 3-2. 

Recovery o f the ability to resist the lethal effects through time was apparent fo r both 

toxicants. Longer recovery time resulted in less difference between the treatment and 

reference mortalities. Statistically, the mortalities with the shortest and second shortest 

recovery times were significantly different from the references, but those with longest 

recovery times were not (a=0.05, log-rank test; one exception was the 14 h recovery 

time group in the third NaPCP experiment, for which /;=(). 02). W eibull proved to be the 

best-fit model fo r the treatment groups o f all experiments. For the reference groups, the 

best-fit models were log-normal, except that W eibull has the lowest AIC for the second 

NaPCP experiment. Because the difference between the AICs o f log-normal (135.7) and
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W eibull (135.3) was small, I used a log-normal distribution as well. The coefficients of 

recovery time were significantly different from zero (a=0.05) (Table 3-6 and 3-7). The 

three complete recovery times for each toxicant were then averaged to calculate the 

mean complete recovery time and the associated standard deviation (CuSCL: 8 6  ± 9 h, 

NaPCP: 19 ± 8  h). The control mortalities were less than 5% in all experiments.

D. Discussion

1. Effect o f exposure duration on latent mortality

The pattern o f latent mortality is notionally related to the amount o f damage 

caused during exposure and the extent o f recovery after exposure ends. The recovery of 

the exposed organism can be quick for toxicants such as NaPCP, which appears to 

cause less cumulative damage than CuSCU. Therefore, the latent mortality can be low 

and relatively independent o f exposure concentration and duration. The results of 

NaPCP experiments o f this study demonstrated this point: minimal latent mortality 

occurred and neither concentration nor duration had any significant effect. In contrast, 

the recovery o f the exposed organism can be slow for toxicants such as CuSCL that 

notionally cause significant cumulative damage. The latent mortality can be high and 

related to the cumulative damage, which is a function o f both concentration and 

duration. (See Chapter II for detailed discussion o f concentration effects on latent 

mortality and the toxicological mechanisms for CUSO4 and NaPCP.) Pascoe and Shazili 

(1986) found longer cadmium exposure duration resulted in higher mortality after the 

exposure. Latent mortality o f beetles increased as the original diatomaceous earth 

exposure interval increased (Arthur 2001). The results o f the CUSO4 experiments
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showed significant effect o f concentration, with higher concentration resulting in higher 

latent mortality, and were consistent with the previous study (Chapter II). However, 

exposure duration effect was not significant. One explanation is that, although both 

concentration and duration do affect latent mortality, duration plays a less prominent 

role than concentration under the test conditions used here. The explanation can be 

furthered that the exposure duration-latent mortality curve is curvilinear. The selected 

durations fe ll in the range that the increase o f exposure duration resulted in a 

statistically insignificant increase o f latent mortality. Therefore, the duration effect can 

probably be ignored i f  predictions were being made w ithin this experimental range. 

Regardless, I speculate that the effects o f exposure duration on latent mortality might 

still need to be considered under other concentrations and durations.

2. Effect o f recovery time on mortality during a second exposure

Under some circumstances, provided enough time between pulses, the 

organisms can recover from the previous pulse through processes such as detoxification, 

elimination, and healing o f damaged tissue. Wang and Hanson (1985) suggested that the 

pulsed exposure toxicity was dependent on the time between pulses. Studies (Mancini 

1983, Wang and Hanson 1985, Clark et al. 1986, Kallander et al. 1997, Naddy and 

Klaine 2001) showed that with the same total exposure duration and enough recovery 

time, the multiple pulsed exposures were less toxic than continuous ones. However, in 

some cases, the effects were irreversible and recovery did not occur (Parson and 

Surgeoner 1991, Van der Hoeven and Gerritsen 1997, Naddy and Klaine 2001). To 

explain this, Naddy and Klaine (2001) suggested that the organisms accumulated an
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amount o f toxicant that exceeded the organism’s critical body burden, or the recovery 

period was not long enough. In this study, the mortalities of the groups w ith longest 

recovery times for both toxicants were not significantly different from the reference 

groups. This indicated that the amphipods could return to a state sim ilar to their original 

toxicant resistance state provided sufficient recovery time between pulses. Statistical 

analysis showed no significant difference between reference group mortalities o f the 

two toxicants (MINITAB® release 14.1, ANOVA, F=0.40, p=0.56). However, to 

recover to sim ilar background mortality levels (about 1 0 %), the complete recovery time 

for CuSC>4 was almost 5 times that o f NaPCP, suggesting a toxicant-dependent recovery 

process. Longer recovery time is needed for toxicants such as Q 1SO4 that notionally 

cause considerate cumulative tissue damage and have significant latent effects. The 

discussion can be furthered based on the results and discussion o f Chapter II. For 

toxicants that do not have significant concentration effects on latent mortality, the 

increased background mortality level associated with increasing the exposure 

concentration during the firs t exposure w ill not change the complete recovery time 

much. However, for toxicants that have significant concentration effects on latent 

mortality, the increase of background mortality level associated with increasing the 

exposure concentration w ill even prolong the complete recovery time.

Though the pulsed exposure issues have been addressed in several studies, none 

o f them fu lly  quantified the effect o f recovery time. W ith the accelerated failure time 

models in Table 3-6 and 3-7, one can predict the effect o f recovery time on time-to- 

death during the second exposure. Taking the firs t NaPCP experiment as example, 

Figure 3-3 shows that the time-to-death for a certain proportion o f animals to die during
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the second exposure can be predicted for any recovery time within the experimental 

range. Figure 3-4 shows the background time-to-death o f the reference group, and the 

observed and predicted times-to-death o f the treatment groups. For the specific 

background level mortality, the times-to-death during the second exposure increase with 

the recovery time, converge with that o f the reference group at the complete recovery 

time, and remain constant thereafter. Variables such as concentration can be added to 

the model i f  needed. It is realized that some tolerance mechanism could have been 

induced during the first exposure, e.g., production o f metallothionein or glutathione, and 

acclimation could have played roles in the process. Thus, the mortality o f the 

completely recovered animals could have been less than that o f the reference groups. 

The survival analysis method would be applicable to this case too.

3. The importance o f incorporating pulsed exposure scenarios into current toxicity 

tests

The need to include latent mortality and exposure duration into current 

ecotoxicology studies was discussed in Chapter II. The results o f this study reinforced 

the point that latent lethal effect should not be ignored, and more attention should be 

paid to assessing the effects o f variables affecting latent mortality. For NaPCP and 

sim ilar toxicants, relatively short times are needed for the organisms to recover to 

background levels o f resistance. Much longer times are required for CUSO4 and similar 

toxicants. Thus, under sim ilar exposure scenarios, the exposed field population would 

be more like ly to experience local extinction. Also, the episodic nature o f the 

contaminants in aquatic ecosystems warrants the incorporation o f pulsed exposure
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scenarios into current ecotoxicology framework. The nature o f the toxicant, recovery 

times between pulses, and previous exposure concentration and duration can affect the 

fate o f organisms during subsequent exposures. It is important to further characterize 

the effects o f these factors in order to better assess the consequences o f pulsed exposure.

E. Conclusion

The effects o f both exposure duration and recovery time during pulsed 

exposures were tested in this study. No significant effect of exposure duration on latent 

mortality was found but more powerful tests under other experimental conditions are 

warranted to fu lly  explore this issue fu lly . Significant effect of recovery time on 

mortality during a second exposure was found for both toxicants. For different toxicants 

that cause different cumulative damage, the complete recovery time needed was 

different. Environmental risk assessment involved with pulsed exposures should take 

these effects into consideration.
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Table 3-1. The pH values, dissolved oxygen (DO) concentrations, and water temperatures o f the CUSO4 and NaPCP exposure media 

for the exposure duration (ED) and recovery time (RT) experiments.

Experiment pH (median, range, n)
DO (mean ± standard 

deviation, mg/L, n)

Water Temp, (mean ± standard 

deviation, °C, n)

CuS04 8.10, 7 .95 -8 .21 ,24 7.4 ±0 .5 ,10 22.8 ±0.7, 10
ED

NaPCP 8.11,8 .02-8 .28,48 7.7 ±0.1, 20 23.3 ± 0.2, 20

CuS04 7.94, 7 .51 -8 .13 ,60 7.5 ±0.1, 30 23.1 ±0.4, 30
RT

NaPCP 8.14, 8 .09-8 .29, 60 7.6 ±0.1, 30 23.2 ±0.2, 30
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Table 3-2. The dissolved Cu and NaPCP concentrations for the exposure duration experiments. The concentrations o f the treatments 

with the same nominal concentration but different durations were averaged.

Experiment Toxicant concentration (mean ± standard deviation, mg/L)

Dissolved Cu 1 0.66 ± 0.07 0.82 ± 0 . 1 2

(n=8 ) 2 0.63 ± 0.06 0.83 ± 0.08

NaPCP 1 0.36 ± 0.06 0.62 ± 0.07

(«=15) 2 0.43 ± 0.01 0.68 ± 0.04
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Table 3-3. The dissolved Cu and NaPCP concentrations (mean ± standard deviation, mg/L) for the recovery time experiments. The 

concentrations for first exposures and second exposures with different recovery times were averaged separately.

F  2nd (1) 2nd (2) 2nd (3) 2nd (4)

1 0.94 ±0.12 0.93 ±0.10 0.92 ±0.05 0.89 ±0.04 0.87 ± 0.03
Dissolved

2 0.99 ±0.10 0.99 ±0.12 1.01 ±0.07 1.02 ±0.09 1.00 ±0.09
Cu (n=4)

3 1.01 ±0.09 1.02 ±0.10 1.02 ±0.11 1.05 ±0.12 1.04 ±0.13

1 1.54 ±0.05 1.47 ±0.04 1.45 ±0.06 1.45 ±0.02 1.45 ±0.03
NaPCP

2 1.51 ±0.07 1.43 ±0.05 1.49 ±0.05 1.46 ±0.02 1.47 ±0.04
(n=1 2 )

3 1.39 ±0.05 1.43 ±0.02 1.48 ±0.04 1.48 ±0.09 1.41 ±0.03
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Table 3-4. The percentages of amphipods dead (P) at the end o f exposures for the 

exposure duration experiments.

CuS04 Treatment P(% ) NaPCP Treatment P(% )

20 h 0.8 mg/L 5.0 20 h 0.4 mg/L 0 . 0

20 h 1.0 mg/L 16.7 20 h 0.6 mg/L 13.9

Replicate 38 h 0.8 mg/L 15.6 Replicate 40 h 0.4 mg/L 16.7

1 38 h 1.0 mg/L 66.7 1 40 h 0.6 mg/L 37.5

61 h 0.8 mg/L 48.0 60 h 0.4 mg/L 60.4

61 h 1.0 mg/L 77.5 60 h 0.6 mg/L 67.2

20 h 0.8 mg/L 7.5 20 h 0.4 mg/L 0 . 0

20 h 1.0 mg/L 16.7 20 h 0.6 mg/L 8 . 6

Replicate 38 h 0.8 mg/L 15.7 Replicate 40 h 0.4 mg/L 37.5

2 38 h 1.0 mg/L 58.3 2 40 h 0.6 mg/L 50.0

61 h 0.8 mg/L 54.0 60 h 0.4 mg/L 62.5

61 h 1.0 mg/L 75.0 60 h 0.6 mg/L 66.7
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Table 3-5. The best-fit accelerated failure time models and the associated distributions during the latent periods o f exposure duration 

experiments. The coefficients in  bold denote that they were not significantly different from zero.

Experiment Model Distribution

CuS04 lnT a=4.65-5.83xlnC b-0.46xlnD c+2.13xL d Log-normal

NaPCP lnr=22.26+1.87xlnC-2.32xlnD+4.73xL Log-normal

a r=time-to-death (h ),b C=concentration (m g/L),c D=duration (h ),d L varies w ith the proportion dead for which prediction is being 

made
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Table 3-6. The best-fit accelerated failure time models for the treatment (TRT) and reference (REF) groups, the associated 

distributions, and the calculated complete recovery time (complete RT) during the second exposures o f the CuSCE recovery time 

experiments.

Model Distribution Complete RT

1

TRT

REF

In 7 a = 2.58 + O.OlxRT b + 0.35xLc 

In 7=3 .73  + 0.83x7

W eibull

Log-normal
84 h

2

TRT

REF

In 7 =  2.62 + 0.01xR7 + 0.51x7 

In 7 =  3.21 +0.59x7

W eibull

Log-normal
96 h

3
TRT

REF

In 7 =  2.72 + O.OlxRT + 0.50x7 

In 7 =  2.88+ 0.34x7

W eibull

Log-normal
79 h

a T=time-to-death (h ),b RT= recovery time (h) , 0 7  varies w ith the proportion dead for which prediction is being made
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Table 3-7. The best-lit accelerated failure time models for the treatment (TRT) and reference (REF) groups, the associated 

distributions, and the calculated complete recovery time (complete RT) during the second exposures o f the NaPCP recovery time 

experiments.

Model Distribution Complete RT

1

TRT

REF

In T a = 2.67 + O.OlxRTb + 0.78xLc 

In T =  3.40 +0.99xL

W eibull

Log-normal
16 h

2

TRT

REF

In T =  2.17 + 0A3xRT + O.llxL 

In T = 3.77 + 1.22xL

W eibull

Log-normal
13 h

3
TRT

REF

In T =  2.88 + O.OSxRT + 0.61 xL 

In T=5.05 + 1.56xL

W eibull

Log-normal
28 h

a T=time-to-death (h ),b RT=recovery time (h) , 0 L varies w ith the proportion dead for which prediction is being ma
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Figure 3-1. Cumulative proportions o f amphipods dead through time after the CUSO4 

and NaPCP exposure duration experiments. The lines within each graph indicate 

different exposure durations. The concentrations denoted are nominal toxicant 

concentrations (for measured concentrations, see Table 3-2). The sample sizes were 

indicated in the brackets.
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Figure 3-2. Cumulative proportions o f amphipods dead through time for CuS04and 

NaPCP recovery time experiments. The groups o f lines indicate treatments with 

different recovery times (RT) and reference (REF) groups. The sample sizes were 

indicated in the brackets.
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Figure 3-3. Taking the first NaPCP recovery time experiment as an example, the time- 

to-death for a certain proportion o f animals to die during a second exposure for any 

recovery time w ithin the experimental range can be predicted.
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Figure 3-4. The observed and predicted times-to-death o f the different recovery time 

groups, and the times-to-death o f the reference groups for the CuSC>4 and NaPCP 

recovery time experiments. The points at which the two lines converge are the predicted 

complete recovery times.
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CHAPTER IV . TEST THE UNDERLYING THEORY OF DOSE-RESPONSE 

MODEL W ITH SURVIVAL ANALYSIS METHODS

A. Introduction

In mammalian toxicology and ecotoxicology, dose-response curves are often 

sigmoid. The probit approach is most widely applied to fitting such data. The dose or 

concentration is log transformed and the corresponding proportion affected is probit 

transformed:

Probit (proportion affected) = A  x log (concentration) + B (4.1)

In 1933, Gaddum proposed to transform each proportion to its normal equivalent 

deviation (NED). The NED expresses a proportion responding in terms o f standard 

deviations from the mean o f a normal distribution (N: 0, 1). In 1934, Bliss (1935) 

proposed the division o f the interval between 0.01% and 99.99% into units o f normal 

deviation (probit) and modified the definition o f the probit by adding 5 to the NED to 

avoid negative numbers:

Probit = NED + 5 (4.2)

Thus, the probit analysis assumes a log-normal dose-response curve. Soon after a 

probit-based model was introduced into toxicology, Gaddum postulated the individual 

effective dose (IED) theory to explain the log-normal model: every individual has a 

characteristic tolerance for the toxicant and an individual w ill be affected only i f  its IED 

is exceeded. The IED is log-normally distributed w ithin a population (Bliss and Cattell
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1943). That is, i f  k is the intensity o f the toxicant exposure, and dP is the proportion o f 

the whole population consisting o f individuals whose tolerances lie between k and k+dk, 

and f (k)  is the normal density function, then the distribution o f tolerances can be 

expressed by

dP=f ( k ) d k  (4.3)

The proportion o f all individuals responding to a given dose, Ao (tolerances less than Ao) 

is

P = f " f a ) d A  (4.4)

A  common alternative dose-response transformation is based on a log-logistic 

model. Early supporters o f this model questioned the IED concept, favoring a stochastic 

explanation instead. Notably, Berkson (1951) did a re-challenge experiment that did not 

support the IED concept. Barometric chamber experiments were conducted twice in 

which pilots were subjected to high-altitude conditions and their all-or-none responses 

o f getting the “ bends” were noted. Many individuals who fainted during the first 

challenge did not faint the second time, and many who did not faint the firs t time did 

faint the second time. Berkson pointed out that individuals may vary from time to time 

in their response to chemicals and tried to explain dose-mortality curves in terms of 

chance alone.

Though the log-normal and sim ilar models have been repeatedly used to f it  

dose-response curves, there have been few careful testings of underlying mechanisms. 

The IED concept remains the only explanation presented in many publications for the 

log-normal model, e.g., Finney (1971). Only recently, Newman and McCloskey (2000) 

tested the hypothesis by exposing fish to benzocaine, PCP, or NaCl. They concluded
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that neither the IED nor stochastic hypothesis alone was the sole or dominant 

explanation for the log-normal model; determination o f the correct explanation is 

crucial to predicting consequences to populations after repeated or chronic exposures. 

Besides this, no other studies have been conducted. As w ill be seen in the discussion 

section o f this chapter, resolution o f this ambiguity is important in risk assessment 

involving pulsed exposures.

In this study, whether the IED theory is the dominant explanation for the probit 

model (or sim ilar models such as the log-logistic) for both CuS04 and NaPCP was 

further tested. Three groups o f amphipods were first exposed to lethal, sub-lethal, and 

zero concentrations of each toxicant, w ith enough recovery time between the two 

exposures. Then, all the survivors were exposed to lethal concentrations and their 

mortality functions during the second exposures compared with survival analysis 

method. The results were interpreted in terms o f relative dominance o f the two theories 

and the associated ecological relevance.

B. Methods

1. Exposure procedure

Amphipod culture and maintenance, toxicant solution preparation, exposure 

systems, and toxicant concentration measurement procedures were the same as those 

described in Chapter II and III. A fter several range-finding tests, the amphipods were 

randomly assigned to one o f the three treatments: lethal, sub-lethal, and reference 

(nominal concentrations: 1.0, 0.4, and 0.0 mg/L o f dissolved Cu; 1.4, 0.4, and 0.0 mg/L 

o f NaPCP). In CuSC>4 experiments, because o f the anticipated high latent mortality
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caused by Cu, the amphipods were exposed only until approximately 15% o f them died 

in the lethal group. In NaPCP experiments, the amphipods were exposed until about 

40% o f them died in the lethal group. A ll survivors were then transferred to water free 

o f toxicant and maintained for periods o f time (CUSO4 , 14 d; NaPCP, 10 d) that were 

considered sufficient to recover from the firs t exposures. During the recovery periods, 

the water was changed every other day. A fter that, all the survivors in the three 

treatments were transferred back to the toxicant solutions with nominal concentrations 

identical to those o f the first lethal exposures. The mortalities during the second 

exposures were observed about every hour. Food (red maple leaves and commercial 

rabbit food) was only provided during the recovery periods. During all experiments, 36 

amphipods were used as control animals and maintained in toxicant-free water. For the 

second lethal exposures o f CUSO4 experiments, the solutions were renewed every 1 2  h 

or so to compensate for any surface sorption o f Cu. Both exposed and newly prepared 

water samples were collected for concentration measurement. Because previous 

experiments showed minimal loss o f NaPCP during the exposures, the NaPCP solutions 

were not renewed and water samples were collected at the beginning and end o f the 

exposures only. The exposure experiments o f both toxicants were repeated twice.

2. Data analysis

The time-to-death data from the second lethal exposure for the three treatments 

were analyzed w ith the nonparametric, product lim it method (SAS® Procedure 

LIFETEST, SAS 1999). A  log-rank test was used to test whether there was any 

significant difference among the three mortality curves.
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3. The expected results under the two hypotheses

According to the IED hypothesis, the IED o f an individual is an intrinsic 

characteristic o f that individual and the relative position of the individual’ s IED w ithin a 

population o f IED values is constant. Under the experimental design here, the IED o f an 

amphipod can be interpreted as £ (exposure concentration x exposure duration) until it 

dies. The two hypothetical plots assuming a log-normal survival distribution in Figure 

4-1 illustrate the mortality curves o f the three treatments during the second exposure 

under the IED and stochastic theories, respectively. Suppose that the lethal, sub-lethal, 

and reference exposures result in 50%, 5%, and 0% mortality (including latent 

mortality). The IED distributions o f the amphipods in the sub-lethal and reference 

groups w ill not change because few animals died. Therefore, their cumulative mortality 

curves should be sim ilar during the second exposure because they reflect essentially the 

same population. (The assumption is made in this example o f no induction o f any 

detoxifying or sequestration mechanisms.) The surviving animals in the lethal group all 

have IED values greater than the mean o f the log-normally distributed pdf o f the IED 

(IED5o). From the beginning o f the second exposure until 50% mortality occurs in the 

reference group, no individual w ill die in the lethal group because all o f them have IED 

values greater than the IED50. The sensitive individuals were eliminated during the firs t 

exposure. A fter that, more and more amphipods’ IED w ill be exceeded through time. 

The animals in the three groups w ill die w ith sim ilar patterns and rates. I f  there were no 

change o f population resistance to the toxicant (i.e., induced tolerance) in the lethal and 

sub-lethal groups after the firs t exposure, the three curves should approach 100%
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mortality at approximately the same time. One assumption here is that i f  there were any 

resistance change because o f age, only the IED 50 o f the population would change, not 

the relative position o f each amphipod’s IED. Therefore, Figure 4-1 would s till apply.

In contrast, stochastic theory predicts no difference among the three mortality 

curves during the second exposure because the surviving amphipods o f the lethal group 

should have no difference in resistance to the toxicant with those o f the sub-lethal and 

reference groups.

C. Results

Two CuSC>4 and NaPCP experiments were conducted in the spring o f 2004 and 

the mortality curves are shown in Appendix 14. However, the amphipods in the control 

groups had unusually high mortality (>15%) in some o f the experiments, and the 

mortalities during the second exposures were much faster than the first lethal exposures 

under sim ilar conditions. Therefore, the experimental results were judged to be 

unreliable. The possible confounding factor was the contamination by some bacteria in 

the container o f deionized water used to make the RMHRW. The container was cleaned 

thoroughly and all experiments were redone in the fa ll o f 2004.

The alkalinity and pH o f RMHRW were w ithin the normal range. The pH, DO 

concentration, and water temperature during the experiments are summarized in Table 

4-1. The measured toxicant concentrations are shown in Table 4-2.

For the two CuS04 experiments, no animals died in the reference and sub-lethal 

groups after the first exposures (at 13.5 and 13 h, respectively), but 12% and 10% 

mortalities occurred in the lethal groups. During the 14 d recovery periods, the
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additional mortalities were 39% (51 % total) and 32% (42% total) in the lethal groups, 

21% and 7% in the sub-lethal groups, and 2% and 5% in the reference groups. These 

results reinforced the conclusion of Chapter II that CUSO4 exposure can cause 

significant latent mortality. The higher concentration and longer duration in the first 

experiment compared with those in the second experiment could explain its higher 

latent mortality. The time-to-death data during the second exposures are shown in 

Appendix 12. The cumulative proportions o f dead amphipods at each observation time 

during the second lethal exposures were plotted in Figure 4-2. V isually the shapes and 

trends o f the curves o f lethal, sub-lethal, and reference groups were similar to each other. 

Formal statistical analysis o f log-rank test results showed that there was no significant 

difference among these three curves in either experiment (a=0.05, Table 4-3). No 

amphipods died in the control group.

For the two NaPCP experiments, no animals died in the reference and sub-lethal 

groups after the first exposures (at 10 and 12 h, respectively). In the lethal groups, 39% 

and 42% o f animals died. During the recovery periods (10 d), the additional mortalities 

were 7% (46% total) and 10% (52% total) in the lethal groups, 2% and 2% in the sub- 

lethal groups, and 3% and 2% in the reference groups. These results reinforced the 

conclusion o f Chapter I I  that NaPCP exposure has modest levels o f latent mortality. The 

time-to-death data during the second exposures are shown in Appendix 13. Figure 4-3 

shows the cumulative proportions o f dead amphipods through time during the second 

lethal exposures. The mortality curves o f reference and sub-lethal groups are sim ilar to 

each other. Originally, the curves o f the lethal groups gradually diverged from the other 

two, indicating lower mortality rate. After about 15 hours of exposure, the lethal group
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mortality rates increased and the three curves converged at the end o f the exposures, at 

approximately 90% mortality. However, log-rank test revealed no significant difference 

among the three treatments in either experiment (a=0.05, Table 4-3). No amphipods 

died in the control group.

D. Discussion

1. The relative importance o f IED and stochastic theories in CUSO4 and NaPCP 

experiments

For CUSO4, neither the cumulative mortality curves nor the formal statistical 

tests showed any evidence o f significant difference among the 3 treatments. Because the 

amphipods were given 14 d to recover, it was assumed that during the second exposure 

there was no cumulative damage remaining from the firs t exposure in both the sub- 

lethal and lethal groups. There was no apparent evidence o f induced tolerance either. 

Therefore, the stochastic theory is favored here as the dominant explanation.

For NaPCP, though the log-rank test showed no evidence o f significant 

difference, the shape o f the lethal group curve was visually different from the other two. 

To further test the hypothesis, the data for the second exposure for each experiment 

were divided into two parts. The first part included the data from the beginning o f the 

second exposure to 14 and 16 h, respectively. A t these two time points, the total 

proportions dead (including the mortality during and after the firs t exposure, and during 

the second exposure) in the reference groups were equal to the total proportion dead in 

the lethal groups from the beginning o f the firs t exposure until the end o f the recovery 

periods. A ll the survivors after these two time points were censored. The second parts
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only included the mortality data o f the survivors from 14 and 16 h onward until the end 

o f the second exposures. Because there was no significant difference between the 

mortality o f the reference and sub-lethal groups, the data were combined to gain more 

statistical power and compared with the lethal groups. Figure 4-4 and 4-5 show the 

cumulative mortalities through time after dividing the data. The log-rank test was 

applied to these two parts separately. For the firs t parts, both the mortality curves and 

log-rank test show borderline significant difference between the mortality o f the two 

groups (Table 4-3 and Figure 4-4, a 0.05). For the second part, neither the curves nor 

log-rank test show any evidence o f significant difference (Table 4-3 and Figure 4-5, 

a  0.05).

Based on the experimental results o f Chapter II, the latent effect o f NaPCP was 

insignificant: the minimal amount o f latent mortality stopped shortly after exposure 

ended. Based on the half-lives o f PCP and its conjugate in H. azteca o f 3.6 and 9.1 h 

(Nuutinen et al. 2003), after 10 d (240 h) depuration, no more than 0.000001% o f the 

accumulated PCP and its conjugate remained in the amphipod body, far less than the 

notionally defined complete depuration in toxicology (0.8%) (Medinsky and Klaassen 

1996). Therefore, the statement can be made that the firs t NaPCP exposures had no 

demonstrable effect on the second exposure mortality: the animals appeared to have 

recovered completely. In addition, all three curves in Figure 4-3 approached 100% 

mortality at approximately the same time and the shapes of the sub-lethal and reference 

curves were similar, indicating no significant tolerance induction either. Therefore, the 

most plausible explanation is that the IED theory might have played some role in the 

exposures. However, relative large proportions o f animals (25%-30%) died during the
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first part in the lethal group, indicating that stochastic processes played a dominant role. 

Such a process could be a mixture o f these two components.

Many studies showed that under acute toxicant exposures, the times-to-death 

were different for organisms with different genetic qualities (e.g., Duan et al. 2001), 

suggesting the intrinsic qualities may have played important roles, which favored the 

IED theory. Pena-Llopis et al. (2003) proposed an intermediate hypothesis between IED 

and stochastic theories: the tolerance to organophosphate dichlorvos o f European eel 

(Anguilla anguilla L.) depends on maintaining and increasing the hepatic glutathione 

redox status. Regardless, our study showed that under the concentrations used in the 

experiments, the relative domination o f IED versus stochasticity fo r CUSO4 and NaPCP 

was different. This could be a result o f the toxicological mechanisms o f different 

toxicants as described in Chapter II. Also, Heagler et al. (1993) and Newman and 

McCloskey (2000) suggested that, at low toxicant concentrations, the innate differences 

among individuals could more manifest and the IED model may dominate during the 

exposure. A t high concentrations, the stochastic model may become the dominant one.

2. Ecological relevance

The lethal response o f a population to a toxicant could be a combination o f both 

the IED and stochasticity models. The relative contributions o f the two may be different 

for different toxicants, organisms, and exposure concentrations. The significance o f 

these experimental results can be found in their application to pulsed exposures in the 

field. Suppose a fish population was exposed to a toxicant periodically with 

concentrations equal to its 96 h LC50 and durations o f 96 h, and there are sufficient
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recovery times between pulses. The prediction from the stochasticity theory is that 

every pulse w ill result in 50% mortality and the population size w ill be 100%—50%— 

25%— 12.5% o f the original size under a series o f such pulses. On the other hand, 

according to the IED theory, the animals w ith lower IEDs w ill be culled away during 

the firs t pulse and all the survivors have higher IEDs. No or only few fish w ill die 

during the subsequent pulses. The change o f the fish population size should be 100%— 

50%—50%—50%. Therefore, the same population under the identical exposure 

scenario w ill have a higher possibility o f becoming locally extinct i f  the stochastic 

hypothesis was true than i f  the IED hypothesis was. The discussion can be extended to 

pulsed exposures with the nature (concentration, duration, or both) o f the pulse 

changing through time. Under the IED theory, the pulse resulting in highest percent 

mortality o f the population w ill be the one that determines how much the population 

w ill be affected eventually during these multiple exposures. The other pulses with lower 

intensities w ill not matter that much because all the survivors o f the highest-intensity 

pulse have higher IEDs and w ill not die during subsequent lower-intensity pulses. In 

contrast, every pulse counts under stochastic theory. Predicting which model to apply is 

crucial to ecological risk assessment and environmental regulations concerning with 

pulsed exposure problems.

E. Conclusion

In this study, the hypothesis was rejected that the IED theory is the dominant 

explanation for the dose-response model for both CuS04 and NaPCP. Under the 

specific concentrations and durations used, stochastic processes were dominant for
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CuS04. Both stochasticity and IED might be relevant for NaPCP, but stochasticity 

seemed to dominate the dynamics. Further experiments under different experimental 

conditions (e.g., concentrations or toxicants) are required to determine whether there 

any relationship between the relative contributions o f the two.
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Table 4-1. The pH values, dissolved oxygen (DO) concentrations, and water temperatures o f the CUSO4 and NaPCP exposure media.

CUSO4 1 st experiment CUSO4 2nd experiment NaPCP 1st experiment NaPCP 2nd experiment

pH

(median, range, n)
8.03,7.89-8.13, 12 7.93 ,7 .90-8 .14, 12 8.17, 8 .14-8.21, 16 8.16, 8 .13-8 .19, 16

DO (mean ± standard 

deviation, n= 10, mg/L)
7.6 ±0.2 7.6 ± 0.3 7.5 ±0.1 7.5 ±0.2

Water Temp, (mean ± 

standard deviation, n=10, °C)
23.4 ± 0.2 23.1 ±0.3 23.7 ±0.7 23.2 ±0.2
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Table 4-2. Concentrations o f dissolved Cu and NaPCP during the sub-lethal, firs t lethal, and second lethal exposures. For the two 

CuSC>4 experiments, the solutions were renewed every 12 h or so. For NaPCP exposures, the solutions were not changed and water 

samples were collected at the beginnings and ends o f the exposures.

Toxicant concentrations (mg/L, mean ± standard 

deviation, n)

Experiment No. Sub-lethal Lethal (first)
Lethal

(second)

Dissolved 1 0.36±0.02 (2) 0.88±0.06 (2) 0.95±0.04 (12)

Cu 2 0.34±0.01 (2) 0.84±0.01 (2) 0.87±0.05 (12)

NaPCP
1 0.32±0.01 (2) 1.36±0.01 (2) 1.39±0.09 (2)

2 0.40±0.12 (2) 1.37+0.06 (2) 1.49±0.10 (2)
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Table 4-3. The p  values o f log-rank test for the m ortality data o f the reference, sub-lethal, and lethal treatments during the second 

exposures for CuSCE and NaPCP experiments. The p  values o f the two NaPCP experiments when analyzed firs t and second parts of 

the data separately are also shown.

Experiment NaPCP
CuS04

No. A ll first Part second Part

1 0.26 0.24 0.03 0.90

2 0.33 0.81 0.06 0.27
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Figure 4-1. Plots o f cumulative mortality o f the hypothetical reference, lethal, and sub- 

lethal groups under IED (top panel) and stochastic (bottom panel) theory. Arrows 

indicate that, i f  50% o f the organisms died in the reference and sub-lethal groups, those 

in lethal group would begin to die.
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Figure 4-2. Cumulative mortalities through time during the second lethal exposures for 

the two CUSO4 experiments. The sample sizes (n) are shown in the brackets.
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Figure 4-3. Cumulative proportion mortalities through time during the second lethal 

exposures for the two NaPCP experiments. The sample sizes (n) are shown in the 

brackets.
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Experiment 1
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Figure 4-4. Cumulative mortalities through time during the first part o f the second lethal 

NaPCP exposures. The data were divided into 2 parts at 14 h and 16 h for the two 

experiments.
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Figure 4-5. Cumulative mortalities through time during the second part o f the second 

lethal NaPCP exposures. The data were divided into 2 parts at 14 h and 16 h for the two 

experiments.
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CHAPTER V. SUMMARY AND CONCLUSION

The current widely used LC50 method in ecotoxicology has many advantages, 

such as being fast and simple to perform, and insensitive to violations o f statistical 

assumptions. It is very useful in predicting point source contamination and comparing 

relative toxicities o f different chemicals or one chemical under different conditions, 

e.g., to determine which form is the most toxic species o f a metal.

Despite its many advantages, the LC50 method has serious shortcomings that 

cannot be ignored. This is especially true when considering environmental problems 

associated with varying exposure duration, concentration, and frequency. In my 

dissertation, survival analysis methods were applied to avoid these shortcomings while 

addressing issues associated with pulsed exposures. The amphipod, H. azteca, was used 

as the model organism, and CuS04 and NaPCP as model toxicants.

The exposure duration effect is often considered peripherally in the conventional 

LC50 approach. By applying a different experimental design and analyzing data with 

survival models, not only exposure duration but also concentration were effectively 

incorporated into the model and their effects on mortality quantified. Survival analysis 

methods better predict lethal effects than does the conventional LC50 method.

Researchers have been focused on mortality during exposure while what 

happens after the exposure ends is often ignored. This study brought up the concepts of 

complete LC50 and latent mortality. For certain toxicants, significant differences exist
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between the conventional LC50 and complete LC50, and the latent mortality could be 

important relative to the fate o f a population.

Among the variables that could affect mortality during pulsed exposures that 

frequently occur in the field, the effect o f previous pulse duration on latent mortality 

and recovery time between pulses on mortality during the second pulse were addressed 

quantitatively. W ithin the exposure ranges used, the study did not find any significant 

effect o f duration on latent mortality. However, the effect might s till need to be 

considered under other exposure situations. For both toxicants, there were significant 

effects o f recovery time on mortality during the second pulse. The toxicant modes of 

action also played important roles in how long the organisms took to recover to near 

their original resistant state. Survival analysis permits more effective prediction o f lethal 

effects from pulsed exposure than the conventional method.

Although IED theory is cited by many as the underlying theory o f dose-response 

models, especially the probit model, few rigorous testings o f it have been conducted. In 

this study, by applying survival analysis experimental design and models, the 

hypothesis that the IED theory is the dominant explanation for the survival distribution 

model fo r both CuS04 and NaPCP was rejected. This conclusion is important in 

predicting the fate o f a population under pulsed exposures.
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APPENDIX 1

Chemical components needed to prepare 1 L  o f reformulated moderately hard 
reconstituted water (RMHRW) and the expected alkalinity and pH ranges.

Chemical Name Amount
CaS0 4 -H2 0 0.050 g

CaCl2 0.050 g
M gS04 0.030 g

NaHC03 0.096 g
KC1 0.004 g

A lkalin ity 50-70 mg/L CaCCh 
pH_______________7.6-8.2
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APPENDIX 2

a. The times-to-death o f amphipods during the 1st CuS04 latent mortality experiment.

Time-to-death (hour)
Treatment Total # 0 5 9 12 16 20 24 28 32 36 40 44 48

0.2 48 0 0 0 0 0 0 0 0 0 0 0 0 1
0.3 48 0 0 0 0 0 0 0 0 0 0 0 2 3
0.4 48 0 0 0 0 0 1 2 3 3 3 4 6 10
0.6 48 0 0 0 0 0 1 2 5 7 7 10 12 19

Treatment Total # 52 56 61 66
Time-to-death (hour) 

70 77 84 91 95 101 109 112
0.2 48 1 1 1 2 2 2 3 4 4 4 5 5
0.3 48 3 4 4 5 6 8 10 11 11 11 11 11
0.4 48 11 11 13 14 14 14 17 17 18 18 21 21
0.6 48 20 20 24 27 28 31 32 34 36 37 37 37

b. The times-to-death o f amphipods during the 2nd CuS04 latent m ortality experiment.

Treatment Total# 0 6 10 12 16
Time-to-death (hour) 

20 24 28 32 36 40 44 48
0.2 48 0 0 0 0 0 1 1 1 1 1 1 1 2
0.3 48 0 0 0 0 0 1 1 1 2 2 3 4 6
0.4 48 0 0 1 1 1 3 4 4 5 6 8 8 9
0.6 48 0 0 0 0 1 5 9 10 12 16 17 19 23
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APPENDIX 3

a. The times-to-death o f amphipods during the 1st NaPCP latent m ortality experiment.

Time-to-death (hour)
Treatment Total # 0 4 8 12 16 20 24 28 32 36 40

0.2 48 0 0 0 0 0 0 0 1 2 4 5
0.3 48 0 0 0 0 0 1 1 3 3 4 6
0.5 48 0 0 0 1 2 2 3 8 11 12 15
0.8 48 0 2 3 4 7 8 10 11 13 16 22

Time-to-death (hour)
Treatment Total # 44 48 52 56 60 64 69 72 74 79 85

0.2 48 6 7 8 8 8 8 8 9 9 9 9
0.3 48 9 12 14 16 16 16 16 16 16 16 16
0.5 48 17 22 24 25 25 25 25 26 26 26 26
0.8 48 28 37 38 38 38 38 38 38 38 38 38

b. The times-to-death o f amphipods during the 2nd NaPCP latent mortality experiment.

Time-to-death (hour)
Treatment Total # 0 4 8 12 14 18 21 23 28 32 36

0.2 48 0 0 0 0 0 0 0 0 0 0 0
0.3 48 0 0 0 0 0 0 0 0 2 4 7
0.5 48 0 0 0 0 0 0 1 4 10 14 14
0.8 48 0 0 1 4 6 13 17 20 27 28 30
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Treatment Total# 40 44 48 52
Time-to-death (hour) 

56 60 64 70 76 82 85
0.2 48 1 2 3 3 3 3 3 3 3 3 3
0.3 48 9 11 11 12 13 14 14 14 14 14 14
0.5 48 14 17 21 22 23 23 24 24 24 24 24
0.8 48 33 35 40 40 40 40 40 41 41 41 41

c. The times-to-death o f amphipods during the 3rd NaPCP latent m ortality experiment.

Treatment Total# 0 5 9
Time-to-death (hour)

12 15 18 21 24 28 32 36
0.2 48 0 0 0 0 0 0 0 0 0 0 0
0.3 48 0 0 0 0 0 0 0 1 2 2 4
0.5 48 0 0 0 0 0 0 2 2 2 5 5
0.8 48 0 0 1 1 4 6 8 8 9 9 16

Time-to-death (hour)
Treatment Total # 39 42 45 48 53 59 63 68 74 82 85

0.2 48 0 1 1 2 3 3 3 3 3 3 3
0.3 48 6 6 9 9 9 9 9 9 9 9 9
0.5 48 6 9 10 13 13 13 13 13 13 13 13
0.8 48 19 22 24 28 28 28 28 29 29 29 30
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APPENDIX 4

The times-to-death o f amphipods in the C11SO4 exposure duration experiment

a. Exposure duration=61 hour, measured Cu concentration=0.656 mg/L, total amphipod=51.

Time-to-death (hour) 0 1 2 3 4 5 7 8 10 13
Number Died 0 0 1 2 4 5 6 6 6 8

Time-to-death (hour) 18 21.5 23 25 26.5 28.5 30.5 33.5 35.5 39.5
Number Died 10 11 11 11 13 15 15 15 15 16

Time-to-death (hour) 43.5 46.5 49.5 52 54.5 57.5 61.5 66.5 71
Number Died 16 16 16 17 17 17 17 17 17

b. Exposure duration=38 hour, measured Cu concentration=0.656 mg/L, total amphipod=54.

Time-to-death (hour) 
Number Died

0
0

1
0

2.5
1

3.5
1

4.5
1

6.5
2

7.5
3

9.5
4

12.5
5

Time-to-death (hour) 17.5 21 22.5 24.5 26 28 30 33 35
Number Died 5 5 5 6 6 7 8 11 11

Time-to-death (hour) 39 42 46 49 51.5 54 57 61 66 70.5
Number Died 11 12 14 15 15 15 15 15 16 17
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c. Exposure duration=20 hour, measured Cu concentration=0.656 mg/L, total amphipod=38.

Time-to-death (hour) 0 1 3 4 6 7 9  12 17
Number Died 0 0 0 0 1  1 1 2 3

Time-to-death (hour) 20.5 22 24 25.5 27.5 29.5 32.5 34.5 38.5
Number Died 4 4 5 5 5 5 5 5 5

Time-to-death (hour) 42.5 45.5 48.5 51 53.5 56.5 60.5 65.5 70
Number Died 5 5 6 6 6 6 6 7 8

d. Exposure duration=61 hour, measured Cu concentration=0.632 mg/L, total amphipod=46.

Time-to-death (hour) 0 1 2 3 4 5 7 8 10 13
Number Died 0 0 2 4 5 5 5 5 5 7

Time-to-death (hour) 18 21.5 23 25 26.5 28.5 30.5 33.5 35.5 39.5
Number Died 8 9 9 9 9 10 10 12 12 12

Time-to-death (hour) 43.5 46.5 49.5 52 54.5 57.5 61.5 66.5 71
Number Died 12 12 12 12 12 13 13 13 13
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e. Exposure duration=38 hour, measured Cu concentration=0.632 mg/L, total amphipod=53.

Time-to-death (hour) 0 1 2.5 3.5 4.5 6.5 7.5 9.5 12.5
Number Died 0 0 0 1 1 2 4 4 5

Time-to-death (hour) 17.5 21 22.5 24.5 26 28 30 33 35
Number Died 6 6 6 7 8 9 10 10 10

Time-to-death (hour) 39 42 46 49 51.5 54 57 61 66 70.5
Number Died 10 11 11 11 13 13 13 13 14 14

f. Exposure duration=20 hour, measured Cu concentration=0.632 mg/L, total amphipod=37.

Time-to-death (hour) 0 1 3 4 6 7 9 12 17
Number Died 0 0 1 1 1 1 1 2 3

Time-to-death (hour) 
Number Died

20.5
4

22
4

24
5

25.5
7

27.5
7

29.5
7

32.5
8

34.5
8

38.5
8

Time-to-death (hour) 
Number Died

42.5
8

45.5
8

48.5
8

51
8

53.5
8

56.5
8

60.5
8

65.5
8

70
8
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g. Exposure duration=61 hour, measured Cu concentration=0.816 mg/L, total amphipod=27.

Time-to death (hour) 1 2 4 5 6 7 10 11 13
Number Died 1 1 2 4 5 5 7 7 9

Time-to death (hour) 18 24 26 28 30 32 33.5 36.5
Number Died 10 10 11 12 12 12 12 12

Time-to death (hour) 44 50 53 55 58 60 65 71 73
Number Died 13 13 14 14 14 14 14 14 14

h. Exposure duration=38 hour, measured Cu concentration=0.816 mg/L, total amphipod=20.

Time-to death (hour) 1 2 4 5 6 7 10 11
Number Died 0 1 2 2 3 4 6 7

Time-to death (hour) 13 18 24 26 28 30 32 33.5 36.5
Number Died 8 8 9 9 10 10 10 10 10

Time-to death (hour) 44 50 53 55 58 60 65 71 73
Number Died 10 10 10 10 10 10 11 11 11
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i. Exposure duration=20 hour, measured Cu concentration=0.816 mg/L, total amphipod=25.

Time-to death (hour) 1 2 3 4 6 11 17 19
Number Died 0 1 2 3 4 7 9  10

Time-to death (hour) 21 23 25 26.5 29.5 38 44 47
NumberDied 10 11 11 11 11 11 12 12

Time-to death (hour) 49 52 54 59 65 67 73
NumberDied 12 12 12 13 13 13 13

j. Exposure duration=61 hour, measured Cu concentration^. 834 mg/L, total amphipod=30.

Time-to death (hour) 1 2 4 5 6 7 10 11 13
Number Died 1 1 3 4 6 6 9 9 9

Time-to death (hour) 18 24 26 28 30 32 33.5 36.5 44
Number Died 10 10 10 10 11 11 11 11 12

Time-to death (hour) 50 53 55 58 60 65 71 73
Number Died 12 14 14 14 14 14 14 14
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k. Exposure duration=38 hour, measured Cu concentration=0.834 mg/L, total amphipod=25.

Time-to death (hour) 1 2 4 5 6 7 10 11
Number Died 0 1  2 2 4 4 8 8

Time-to death (hour) 13 18 24 26 28 30 32 33.5 36.5
NumberDied 9 10 13 14 15 15 15 15 15

Time-to death (hour) 44 50 53 55 58 60 65 71 73
NumberDied 15 15 16 16 16 16 16 16 16

1. Exposure duration=20 hour, measured Cu concentration=0.834 mg/L, total amphipod=25.

Time-to death (hour) 1 2 3 4 6 11 17 19
Number Died 0 1 2 2 4 6 8 10

Time-to death (hour) 21 23 25 26.5 29.5 38 44 47
Number Died 10 10 11 11 11 11 11 11

Time-to death (hour) 49 52 54 59 65 67 73
Number Died 11 13 13 13 13 13 13
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APPENDIX 5

The times-to-death o f amphipods in the NaPCP exposure duration experiment

a. Exposure duration=20 hour, measured NaPCP concentration^.363 mg/L, total amphipod=36.

Time-to death (hour) 0 4 8 12 19 24 30 35 46 54 60
Number Died 0 0 0 0 0 0 1  1 1 1 1

b. Exposure duration=40 hour, measured NaPCP concentration=0.363 mg/L, total amphipod=40.

Time-to death (hour) 0 4 8 12 19 24 30 35 46 54 60
Number Died 0 1 1 1 1 1 1 1 1 1 1

c. Exposure duration=60 hour, measured NaPCP concentration=0.363 mg/L, total amphipod=19.

Time-to death (hour) 0 4 8 12 19 24 30 35 46 54 60
Number Died 0 1 1 1 1 1 1 1 1 1 1

d. Exposure duration=20 hour, measured NaPCP concentration=0.431 mg/L, total amphipod=25.

Time-to death (hour) 0 3 4 6 10 14 18 20 22 40 50 60
Number Died 0 0 0 1 1 1 1 1 1 1 1 1
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e. Exposure duration=40 hour, measured NaPCP concentration=0.431 mg/L, total amphipod=30.

Time-to death (hour) 0 4 7 10 12 20 30 40 60
Number Died 0 2 2 3 3 3 3 3 3

f. Exposure duration=60 hour, measured NaPCP concentration=0.431 mg/L, total amphipod=18.

Time-to death (hour) 0 4 8 12 18 20 26 29 40 50 60
Number Died 0 0 0 0 1 1 1 1 1 1 1

g. Exposure duration=20 hour, measured NaPCP concentration=0.623 mg/L, total amphipod=31.

Time-to death (hour) 0 4 8 12 19 24 30 35 46 54 60
Number Died 0 0 0 0 0 0 0 0 0 0 0

h. Exposure duration=40 hour, measured NaPCP concentration=0.623 mg/L, total amphipod=30.

Time-to death (hour) 0 4 8 12 19 24 30 35 46 54 60
Number Died 0 0 0 0 0 0 0 0 0 0 0

i. Exposure duration=60 hour, measured NaPCP concentration^.623 mg/L, total amphipod=25.

Time-to death (hour) 0 4 8 12 19 24 30 35 46 54 60
Number Died 0 1 1 1 1 1 1 1 1 1 1
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j. Exposure duration=20 hour, measured NaPCP concentration=0.677 mg/L, total amphipod=32.

Time-to death (hour) 0 3 4 6 10 14 18 20 22 40 50 60
Number Died 0 0 0 0 0 0 0 0 0 0 0 0

k. Exposure duration=40 hour, measured NaPCP concentration^.677 mg/L, total amphipod=24.

Time-to death (hour) 0 4 7 10 12 20 30 40 60
Number Died 0 1  1 2 2 2 2 2 2

1. Exposure duration=60 hour, measured NaPCP concentration^). 67 7 mg/L, total amphipod=20.

Time-to death (hour) 0 4 8 12 18 20 26 29 40 50 60
Number Died 0 0 0 1 1 1 1 1 1 1 1
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APPENDIX 6. The times-to-death o f amphipods during the 1st CUSO4 pulsed exposure experiment.

 a. RT=0 hour, total amphipod=54________________________________
Time-to death (hour) 0 1 2 3.5 4.5 5.5 6.5 7.5 9 10 10.5 11 11.5 12

NumberDied 0 1 1 1 3 5 6  9 13 18 22 24 26 27

___________________________________b. RT=24 hour, total amphipod=67_______________________________
Time-to death (hour) 0 1.5 3 4 5 6 7 8 9 10 11 12

NumberDied 0 0 1 2 4 6  10 11 14 19 22 25

 c. RT=48 hour, total amphipod= 6 8 ________________________________
Time-to death (hour) 0 3 3.5 4 5 6 7 8 9 9.5 10 10.5 11 11.5 12

NumberDied 0 0 1 1 1 3 3 4 5 6 6 7 8  10 11

___________________________________ d. RT=72 hour, total amphipod=74_______________________________
Time-to death (hour) 0 4.5 5 6 7 8 9.5 10.5 11 12

Number Died 0 0 0 1  1 2 3 3 4 5

e. Reference 1, n=59
Time-to death (hour) 0 1.5 4 5 6 7 8 9 10 11 12

Number Died 0 0 0 1 1 3 3 5 5 5 5

f. Reference 2, n=61
Time-to death (hour) 0 3 4.5 5 6 7 8 8.5 9.5 10.5 12

Number Died 0 0 0 0 0 0 0 1 2 2 3
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APPENDIX 7. The times-to-death o f amphipods during the 2nd CuS04 pulsed exposure experiment.

a. RT=0 hour, total amphipod=46
Time-to death (hour) 0 0.5 1 2 3 4.5 5.5 6.5 7.5 9 10 11 12

Number Died 0 1 3 5 5 8 11 12 15 16 19 21 25

b. RT==24 hour, total amphipod=54
Time-to death (hour) 0 1 1.5 2.5 3.5 5 6.5 7.5 8 9.5 10 10.5 11.5 12

Number Died 0 0 1 1 2 3 7 7 8 11 13 14 17 20

c. RT-=48 hour, total amphipod=52
Time-to death (hour) 0 3 4 5 6.5 7.5 8 8.5 9 10 11 12

Number Died 0 0 0 1 4 6 6 6 7 8 9 12

d. RT-72 hour, total amphipod=55
Time-to death (hour) 0 3.5 4.5 5.5 7 8 9.5 10 11 12

Number Died 0 1 3 3 3 4 5 6 7 9

e. Reference 1, total amphipod=39
Time-to death (hour) 0 1 2 3 4 5 6 7 9.5 11 12

Number Died 0 0 0 0 0 0 1 3 3 4 5

f. Reference 2, total amphipod=42
Time-to death (hour) 0 4.5 5.5 7 8 9.5 11 12

Number Died 0 0 0 0 1 2 3 4
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APPENDIX 8 The times-to-death o f amphipods during the 3rd Q1SO4 pulsed exposure experiment.

a. RT=0 hour, total amphipod=59
Time-to death (hour) 0 1 2 2.5 3.5 4.5 5.5 7 8 9 10 11 12

Number Died 0 2 6 6 7 9 10 12 15 18 22 23 26

b. RT=24 hour, total amphipod=52
Time-to death (hour) 0 1 2 3.5 4.5 5 6.5 7.5 9 10 11 12

Number Died 0 1 1 2 2 4 5 7 10 13 16 19

c. RT=48 hour, total amphipod=53
Time-to death (hour) 0 3.5 4.5 5.5 6.5 7.5 8.5 10 10.5 11.5 12

Number Died 0 0 2 3 4 5 6 7 8 10 12

d. RT=72 hour, total amphipod=60
Time-to death (hour) 

Number Died
0 3.5 5 6 7 7.5
0 0 0 1 2 2

9.5
4

11 12
5 8

e. Reference 1, total amphipod=46
Time-to death (hour) 0 1 2 3 4 5 6 6.5 7.5 9 10 11 12

Number Died 0 0 0 0 0 0 0 0 1 3 5 5 7

f. Reference 2, total amphipod=45
Time-to death (hour) 0 4.5 5.5 7 8 9.5 10 10.5 11 12

Number Died 0 0 0 0 0 0 1  2 4 4
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APPENDIX 9. The times-to-death o f amphipods during the 1st NaPCP pulsed exposure experiment

a. RT=0 hour, total amphipod=53

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 2 3 4 6 7 8 8 10 10 14 14 15

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 16 18 18 19 19 19 22 24 27 28 30 32

b. RT=4 hour, total amphipod=60

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 1 2 4 5 6 7 8 9 11 12 13

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 14 15 16 16 18 19 19 19 20 20 23 23

c. RT=8 hour, total amphipod=55

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 1 2 2 3 6 6 7 8 8 10 11

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 11 12 12 12 12 12 13 14 14 15 15 15
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d. RT=14 hour, total amphipod=66

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 2 2 2 2 4 8 8 8 8

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 9 9 9 10 10 11 12 13 14 14 15 15

e. Reference 1, total amphipod=80

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 1 1 2  2 2 2 3 3 5

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 6 8 9 9 10 10 12 12 14 14 15 15

f. Reference 2, total amphipod=79

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 0 0 0 1 1 1 2 3 4

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 6 7 8 9 9 9 11 12 12 12 13 13
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APPENDIX 10. The times-to-death of amphipods during the 2nd NaPCP pulsed exposure experiment

a. RT=0 hour, total amphipod=60

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 3 5 6 10 13 16 16 21 23 25 26 31

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 32 33 35 38 41 41 44 44 45 45 46 46

b. RT=4 hour, total amphipod=44

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 1 2 3 4 4 5 7 7 7 9 10 11

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 12 13 14 14 14 16 17 18 19 19 20 22

c. RT=8 hour, total amphipod=42

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 1 2 3 3 4 4 5 5 5 5 6

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 7 7 7 7 7 7 8 9 10 10 10 10



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

d. RT =14 hour, total amphipod=46

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 1 1 1 1 2 2 2 2 2

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 2 3 3 4 5 5 6 7 7 8 9 9

e. Reference 1, total amphipod=68

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 1 1 3  3 3 3 3 4 4 4

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 5 6 6 6 6 7 7 8 9 9 10 12

f. Reference 2, total amphipod=67

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 0 0 0 1 1 1 1 3 4

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 4 4 4 5 5 5 5 5 6 8 8 8
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APPENDIX 11. The times-to-death o f amphipods during the 3rd NaPCP pulsed exposure experiment

a. RT=0 hour, total amphipod=67

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 1 1 2 2 3 3 3 5 6 8 8 10

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 12 13 15 17 18 20 22 23 24 24 26 27

b. RT=4 hour, total amphipod=73

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 1 2 2 4 4 5 7 7 8 8 10

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 11 12 13 13 14 16 16 18 19 22 22 24

c. RT=8 hour, total amphipod=65

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 1 2  2 3 5 5 6 6 6

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 6 6 7 7 7 8 9 10 11 11 13 13
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d. RT=14 hour, total amphipod=73

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 0 1 1 2 2 2 2 3 3

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 3 4 4 4 5 6 7 8 9 10 10 11

g- Reference 1, total amphipod=57

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 0 0 1 1 1 1 1 1 1

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 1 1 1 2 2 2 2 4 4 4 4 4

h. Reference 2, total amphipod=64

Time-to death (hour) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number Died 0 0 0 0 0 0 0 1 1 1 1 1 2

Time-to death (hour) 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Number Died 2 2 2 2 2 2 2 2 2 2 2 2
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APPENDIX 12

a. The times-to-death o f amphipods during the 1st IED vs. stochastic CuSCE experiment.

Time-to-death (hour)
Treatment Total # 0 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Reference 62 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 4 5
Sub-lethal 48 0 0 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4

Lethal 59 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2

Treatment Total # 12.5 13 13.5 14 14.5 15
Time-to-death (hour)

15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.;
Reference 62 6 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 10
Sub-lethal 48 6 6 7 9 9 9 9 10 12 12 13 13 13 13 13 14 15

Lethal 59 3 4 5 5 5 5 5 6 7 8 8 8 8 8 8 8 8

Treatment Total # 21 22 22.5 23 23.5 24
Time-to-death (hour)

24.5 25 25.5 26 26.5 27 27.5 28 29 30 31
Reference 62 12 12 12 14 16 16 16 16 18 18 18 18 20 21 24 26 27
Sub-lethal 48 16 18 18 18 18 18 18 18 18 18 18 19 19 20 22 23 25

Lethal 59 9 9 10 10 11 11 11 11 11 11 12 12 14 14 17 19 20
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Time-to-death (hour)
Treatment Total# 32 33 34 35 36 37 38 39 40 41 42 43 45 47
Reference 62 29 30 30 31 33 35 35 36 36 37 37 37 39 40
Sub-lethal 48 26 26 26 26 27 28 28 29 30 31 32 32 34 36

Lethal 59 20 21 23 25 27 28 29 30 31 31 31 31 34 34

Time-to-death (hour)
Treatment Total # 48 48.5 51 52 53 54 55 56 58 59 62 64 66 70
Reference 62 42 44 44 45 46 46 47 48 48 51 53 54 56 56
Sub-lethal 48 36 36 37 38 38 38 39 39 39 40 40 42 43 43

Lethal 59 35 35 39 39 39 40 40 42 43 44 45 47 49 50

b. The times-to-death o f amphipods during the 2nd IED vs. stochastic CuSCL experiment.

Time-to-death (hour)
Treatment Total# 0 5 8 9 10 11 12 13 14 15 16 17 18 19
Reference 61 0 0 0 1 2 2 2 2 2 3 3 4 5 5
sub-lethal 56 0 0 0 0 0 0 0 0 0 0 0 1 2 2

Lethal 70 0 0 0 0 0 1 1 1 1 3 5 5 5 5

Time-to-death (hour)
Treatment Total# 19.5 20 21.5 23 24 25 27 29 31 33 35 36 37 38
Reference 61 7 7 8 12 12 13 15 17 19 22 24 26 27 29
sub-lethal 56 2 3 3 4 6 7 9 12 13 15 16 19 20 21

Lethal 70 7 9 11 13 13 14 16 19 21 24 25 27 28 31
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Treatment Total# 39 40 41 42 43
Time-to-death (hour) 
46 47 48 49 52 56 59 60 61

Reference 61 29 31 33 33 33 35 36 37 38 40 44 45 46 47
sub-lethal 56 21 22 23 24 24 28 30 30 30 33 35 36 36 36

Lethal 70 31 31 31 32 33 35 35 36 37 38 41 45 45 45

Treatment Total# 62.5 64.5 65.5
Time-to-death (hour) 

66.5 67.5 70.5 72.5 76 80 83 85
Reference 61 48 48 48 48 48 49 50 51 53 55 55
sub-lethal 56 37 39 39 39 39 41 41 44 46 48 49

Lethal 70 47 47 47 48 48 49 49 52 54 57 58
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APPENDIX 13

a. The times-to-death of amphipods during the 1st IED vs. stochastic NaPCP experiment.

Time-to-death (hour)
Treatment Total # 0 1 2 3 3.5 4 4.5 5 5.5 6 6.5 7
Reference 58 0 0 1 1 2 3 4 4 5 6 7 7
Sub-lethal 59 0 0 1 1 2 5 6 7 7 7 8 9

Lethal 65 0 0 0 1 2 2 2 3 3 3 4 5

Time-to-death (hour)
Treatment Total# 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13
Reference 58 8 8 10 13 15 16 16 17 17 19 22 23
Sub-lethal 59 11 12 14 16 17 18 19 21 21 23 25 26

Lethal 65 8 10 10 12 12 13 14 14 15 15 15 16

Time-to-death (hour)
Treatment Total # 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19
Reference 58 24 25 27 30 31 33 33 33 35 35 36 36
Sub-lethal 59 26 28 30 31 33 34 34 34 35 37 38 38

Lethal 65 17 17 17 17 20 20 20 22 26 27 28 30

Time-to-death (hour)
Treatment Total # 19.5 20 20.5 21 21.5 22 22.5 23 23.5 24 24.5 25
Reference 58 37 39 40 40 44 44 44 45 45 45 45 47
Sub-lethal 59 39 40 41 43 43 43 45 45 45 45 47 47

Lethal 65 32 32 34 36 39 39 40 40 41 41 45 47



Reproduced 
with 

perm
ission 

of the 
copyright owner. 

Further reproduction 
prohibited 

without perm
ission.

Treatment Total# 25.5 26 26.5 27
Time-to-death (hour) 

27.5 28 28.5 29 29.5 30 30.5 31
Reference 58 47 47 47 49 49 50 51 51 51 51 51 52
Sub-lethal 59 48 48 48 49 49 50 50 51 52 52 54 55

Lethal 65 47 49 49 52 53 53 54 55 56 57 58 59

b. The times-to-death o f amphipods during the 2nd IED vs. stochastic NaPCP experiment.

Time-to-death (hour)
Treatment Total # 0 1 2 3 3.5 4 4.5 5 5.5 6 6.5
Reference 63 0 0 0 1 1 1 3 3 3 3 5
Sub-lethal 59 0 0 0 0 0 0 0 1 2 3 3

Lethal 58 0 0 0 0 0 1 2 2 2 3 4

Time-to-death (hour)
Treatment Total# 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
Reference 63 6 6 7 8 10 10 10 12 15 15 16
Sub-lethal 59 4 5 7 8 9 11 14 16 16 19 20

Lethal 58 5 5 5 5 6 6 6 7 7 7 8

Time-to-death (hour)
Treatment Total# 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5
Reference 63 17 19 20 23 24 27 29 29 31 33 34
Sub-lethal 59 20 21 23 23 24 27 28 29 29 31 32

Lethal 58 8 9 11 12 13 13 15 19 20 22 22
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Treatment Total # 18 18.5 19 19.5
Time-to-death (hour) 

20 20.5 21 21.5 22 22.5 23
Reference 63 37 39 39 41 43 43 44 44 46 47 49
Sub-lethal 59 33 35 38 38 40 40 41 42 45 47 50

Lethal 58 25 28 32 34 38 41 42 43 43 45 46

Treatment Total # 23.5 24 24.5 25
Time-to-death (hour) 

25.5 26 26.5 27 27.5 28 28.£
Reference 63 50 52 53 53 54 55 55 56 57 58 58
Sub-lethal 59 50 51 51 52 54 54 54 55 55 55 55

Lethal 58 47 47 50 51 52 52 52 52 53 53 53
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APPENDIX 14

The cumulative mortality curves for the four IED vs stochastic experiments. They were 
confounded possibly by the bacteria contamination in RMHRW.
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