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Abstract We study the effect of migration between coupled populations, or patches,
on the stability properties of multistrain disease dynamics. The epidemic model used
in this work displays a Hopf bifurcation to oscillations in a single, well-mixed pop-
ulation. It is shown numerically that migration between two non-identical patches
stabilizes the endemic steady state, delaying the onset of large amplitude outbreaks
and reducing the total number of infections. This result is motivated by analyzing
generic Hopf bifurcations with different frequencies and with diffusive coupling be-
tween them. Stabilization of the steady state is again seen, indicating that our ob-
servation in the full multistrain model is based on qualitative characteristics of the
dynamics rather than on details of the disease model.

Keywords Dengue · Metapopulation models

1 Introduction

In this work we study the stability of a multistrain disease model in two coupled
populations. Multistrain diseases are diseases with multiple coexisting strains, such
as influenza (Andreasen et al. 1997), HIV (Hu et al. 1996), and dengue (Fergu-
son et al. 1999b). We consider two kinds of strain interactions: cross immunity and
antibody-dependent enhancement. When the disease infects an individual, his or her
immune system creates serotype-specific antibodies, which will protect the individ-
ual against that serotype.1 However, there is evidence that antibodies also give some

1The term “strain” indicates a genetic variant of the virus, while the term “serotype” indicates a group
of viruses that triggers an identical immune response. Although there is some genetic variation within the
serotypes of dengue, we will use the terms interchangeably in this work to refer to the subtypes of the virus
that the immune system recognizes as distinct.
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cross-protection to the other serotypes (Halstead 2007). This reduced susceptibility
to the other serotypes is temporary. When the temporary cross immunity wanes, het-
erologous secondary infections are possible. Low level antibodies developed from
primary infections are believed to form complexes with the virus so that more cells
are infected, and viral load is increased (Vaughn et al. 2000). This effect is called
antibody-dependent enhancement (ADE), and it has been observed in vitro in dis-
eases such as Ebola (Takada et al. 2003) and dengue (Halstead and O’Rourke 1977).
Throughout this work we make the hypothesis that ADE increases the infectious-
ness of secondary infective cases due to the higher viral load (Cummings et al. 2005;
Schwartz et al. 2005). Alternative views of ADE as an increase in mortality associ-
ated with secondary infectives can be considered (Kawaguchi et al. 2003). We focus
in this paper on the multistrain disease dengue, which is believed to exhibit both
temporary cross immunity and antibody-dependent enhancement (Halstead 2007).

Dengue is a subtropical mosquito-borne disease that exhibits up to four serotypes.
It is widespread in tropical regions of southeast Asia, Africa, and the Americas, in-
fecting an estimated 50 to 100 million people every year (World Health Organization
Website 2006). Primary infections are sometimes asymptomatic, while secondary in-
fections are more severe, with about 5% of secondary infections leading to dengue
hemorrhagic fever (DHF) or dengue shock syndrome (DSS), the potentially fatal
forms of the disease (World Health Organization Website 2006).

An effective vaccine against dengue is very difficult to achieve. Because of ADE,
infection with an unvaccinated strain following a single-strain vaccination could lead
to the more severe symptoms associated with secondary infections (Halstead and
Deen 2002). Therefore, an effective vaccine must protect against all four serotypes
simultaneously. A recent theoretical study on a 2 strains system (Billings et al. 2008)
has shown that eradication of dengue using only single-strain vaccines is unlikely.
Because a tetravalent vaccine is not immediately forthcoming, deepening our under-
standing of the dynamics of dengue in more realistic models is of great importance.

The dynamics of dengue in a single, well-mixed population has been studied
in several recent publications, including but not limited to Ferguson et al. (1999a),
Schwartz et al. (2005), Cummings et al. (2005), Wearing and Rohani (2006), Bianco
et al. (2009). ADE and cross immunity have been shown to play a fundamental role in
mathematical models for the spreading of dengue, causing instability, desynchroniza-
tion of serotypes, and chaotic outbreaks (Schwartz et al. 2005; Cummings et al. 2005;
Bianco et al. 2009). However, real populations may be spatially heterogeneous. To
gain further insight into the wide spectrum of possible dengue dynamics, we re-
lax the assumption of a well-mixed population. The division of a population into
spatially distinct patches simulates the potentially heterogeneous environment in
which the disease spreads. Spatial heterogeneity has been invoked in the past to ac-
count for the persistent character of some infectious diseases (Lloyd and May 1996;
Hagenaars et al. 2004) and to explain in-phase and out-of-phase dynamics of diseases
(He and Stone 2003). A multipatch model with age structure has been used to explain
bi- and tri-annual oscillations in the spread of measles (Bolker and Grenfell 1995).

Human mobility patterns have a significant influence on the spreading of infec-
tious disease. We will assume here that the coupling between patches is via mi-
gration, movement of individuals from one patch into another (as in Liebovitch
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and Schwartz 2004; Ruan et al. 2006; Sattenspiel and Dietz 1995; Grais et al.
2003). An alternative coupling strategy is mass action coupling, in which suscep-
tibles in one patch are assumed to interact with infectives in another patch, intro-
ducing nonlinear coupling terms (Bolker and Grenfell 1995; Lloyd and May 1996;
Rohani et al. 1999). Stochastic coupling can be modeled (see Keeling and Rohani
2002 and references therein, and Colizza and Vespignani 2008).

The purpose of this work is to analyze the stability of a model for multistrain
diseases with interacting strains, using dengue as an example, in a system of two
coupled patches. Since chaotic outbreaks are likely to produce a higher number of
infected individuals, understanding the stability properties may play an important
role in public health. The case of non-identical parameters in the two patches will be
of particular interest, as this serves as a model for spatial heterogeneity. The paper is
divided as follows. In Sect. 2 we introduce the epidemic model. Section 3 summarizes
the bifurcation structure for a single patch. In Sect. 4 we present numerical results for
bifurcations in two coupled patches. Section 5 motivates these results via analysis of
a simple, lower dimensional model, and Sect. 6 concludes.

2 Model

We use a compartmental model for multistrain disease spread with cross immunity
and antibody-dependent enhancement, previously studied in a single, well-mixed
population (Bianco et al. 2009). In this model, individuals can develop a primary
infection with any of the serotypes. Immediately after recovering, the individual ex-
periences a period of temporary partial cross immunity to all other serotypes. When
the cross immunity wears off, immunity to the primary infecting strain is retained, but
the individual can develop a secondary infection with a different serotype. Infectious-
ness of the secondary infectives is increased due to antibody-dependent enhancement.
After the secondary infection, complete immunity to all serotypes is assumed. A flow
diagram for the single patch model with two serotypes is shown in Fig. 1 for sim-
plicity, but we present results here for all four serotypes. We extend the model to
two spatially distinct patches, which are coupled by linear migration terms. For two
patches (indexed by q) and n strains (n arbitrary), the model is as follows:

dsq

dt
= μq − βqsq

n∑

i=1

(
xq,i + φ

∑

j �=i

xq,j i

)
− μqsq − νsq + νsq ′ (1)

dxq,i

dt
= βqsq

(
xq,i + φ

∑

j �=i

xq,j i

)
− σxq,i − μqxq,i − νxq,i + νxq ′,i (2)

dcq,i

dt
= σxq,i − βq(1 − ε)cq,i

∑

j �=i

(
xq,j + φ

∑

k �=j

xq,kj

)
− θcq,i − μqcq,i

− νcq,i + νcq ′,i (3)

drq,i

dt
= θcq,i − βqrq,i

∑

j �=i

(
xq,j + φ

∑

k �=j

xq,kj

)
− μqrq,i − νrq,i + νrq ′,i (4)
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dxq,ij

dt
= βqrq,i

(
xq,j + φ

∑

k �=j

xq,kj

)
+ βq(1 − ε)cq,i

(
xq,j + φ

∑

k �=j

xq,kj

)
− σxq,ij

− μqxq,ij − νxq,ij + νxq ′,ij (5)

where the variables are sq , the fraction of susceptibles in patch q; xq,i , the fraction
of primary infectives with strain i in patch q; cq,i , the fraction of individuals in patch
q with partial cross immunity to strain i; rq,i , the fraction of individuals in patch q

that are recovered from a primary infection with strain i and no longer have cross
immunity to the other strains; and xq,ij , the fraction of individuals in patch q recov-
ered from strain i and currently infected with strain j . The parameters are the number
of strains n, the contact rate in patch q βq , the recovery rate σ , the ADE factor φ,
the strength of cross immunity ε, the rate θ for cross immunity to wear off, the birth
and mortality rate in patch q μq , and the migration rate between patches ν. A list of
parameters appears in Table 1.

For clarity, we describe in detail the terms appearing in (5) describing the time evo-
lution of the secondary infectives xq,ij . These are individuals who were previously
infected with strain i and are currently infected with strain j . Individuals recovered
from an infection with i and no longer retaining cross immunity (rq,i ) can become
infected by any infective with strain j . We use mass action contact between infec-
tives and non-invectives, contributing a term βqrq,i (xq,j + φ

∑
k �=j xq,kj ) (where the

secondary infectives have enhanced contagion given by the ADE factor φ). Cross
immune individuals cq,i become infected with a reduced probability (1 − ε). Linear
terms −σxq,ij and −μqxq,ij appear as secondary infectives recover with rate σ or
are lost to natural death with rate μq . Finally, individuals are exchanged between
patches q and q ′ with rate ν, yielding migration terms −νxq,ij + νxq ′,ij .

For simplicity, the birth and death rates in a patch are set equal to each other
so that the total population of each patch is constant. The model of (1)–(5) allows
for one reinfection. Tertiary infections are not considered (Nisalak et al. 2003). The
parameter ε determines how susceptible the cross immune compartments ci are to

Fig. 1 Flow diagram for single patch model with 2 serotypes (Bianco et al. 2009). Note the reduction of
susceptibility to a secondary infection through the cross immunity factor (1 − ε) and the enhancement of
secondary infectiousness due to the ADE factor φ. Mortality terms for each compartment are not included
in the diagram for ease of reading
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Table 1 Parameters used in the model

Parameter Value Reference

μ, birth and death rate, years−1 ∼0.02 Ferguson et al. (1999b)

β, transmission coefficient, years−1 ∼200 Ferguson et al. (1999b)

σ , recovery rate, years−1 50 Rigau-Perez et al. (1998)

θ , rate to leave the cross 2 Wearing and Rohani (2006)

immune compartment, years−1

φ, ADE factor ≥1 Schwartz et al. (2005)

ε, strength of cross immunity 0–1 Bianco et al. (2009)

ν, migration rate, years−1 0–0.05 –

n, number of strains 4 –

a secondary infection, where ε = 0 means no cross immunity (the infection rate is
identical for compartments ci and ri ) and ε = 1 confers complete cross immunity
(cross immunes are immune to a secondary infection for an average time θ−1). We
allow ε to take any value between 0 and 1. The ADE factor φ is the enhancement
in the infectiousness of secondary infectives. φ = 1 means that secondary infectives
are as infectious as primary infectives, while φ = 2 means that secondary infectives
are twice as infectious as primary, and so forth. In contrast to Aguiar and Stollen-
werk (2007), we will not consider values of φ smaller than 1. The migration rate
from patch q to q ′, and from patch q ′ to q , is ν. For simplicity, we assume that all
individuals migrate with equal probability, independent of their infection status. This
assumption may be relaxed in a future study. The migration rate is assumed to be
slow compared to the infection spread. For convenience, we put it on the same order
as the birth/death rate. We assume that the social parameters, which are the contact
rate βq and birth/death rate μq , may vary between patches, while the epidemic para-
meters are the same in all regions. Because the social parameters depend on human
factors (and in the case of the contact rate also include mosquito levels, which are
weather-dependent), these parameters are the most likely to be different in adjacent
regions. We use parameter values compatible with dengue fever, which are summa-
rized in Table 1. Our contact rate β corresponds to a reproductive rate of infection
R0 of 3.2 − 4.8, which is consistent with previous estimates (Ferguson et al. 1999b;
Nagao and Koelle 2008).

3 Single Patch Bifurcation Structure

A similar model to the one of (1)–(5) has recently been used to analyze the dy-
namics of dengue fever in a single well-mixed population (Bianco et al. 2009).
The ADE φ and cross immunity strength ε were varied as bifurcation parame-
ters. In the absence of cross immunity (ε = 0), ADE alone generates instabil-
ity, desynchronization, and ultimately chaotic outbreaks (Cummings et al. 2005;
Schwartz et al. 2005). A Hopf bifurcation is observed for a critical value of the ADE
factor φ, above which oscillatory solutions are obtained. Weak cross immunity stabi-
lizes the system, while strong cross immunity triggers instability and chaos even in
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Fig. 2 Single patch behavior in the absence of cross immunity: (a) ADE value φ where the Hopf bifur-
cation occurs versus contact rate β . (b) Period of the periodic orbit versus β for φ = 1.903. ε = 0, ν = 0,
μ = 0.02, and other parameters as in Table 1

the absence of ADE (Bianco et al. 2009). In the latter case, destabilization occurs via
a Hopf bifurcation for a critical value of the cross immunity strength ε. At the bifur-
cation, three identical complex pairs of eigenvalues of the Jacobian simultaneously
become unstable. Although Bianco et al. (2009) discusses the full two parameter bi-
furcation structure (in ε and φ), we will consider the cross immunity and ADE effects
separately in the present work.

Figure 2a shows the bifurcation behavior of the single patch model with no cross
immunity as the contact rate β is varied. The bifurcation structure was computed
using a continuation routine (Doedel et al. 1997). The ADE value at which the bifur-
cation occurs increases slightly as β increases, and the dependence is approximately
linear. The period of the periodic orbit, shown in Fig. 2b for a fixed ADE value,
also varies with β . (Note that multistrain models with ADE can display subcritical
Hopf bifurcations, Billings et al. 2007, so the periodic orbit shown in Fig. 2b exists
throughout the range of β values shown.) Similarly, varying the contact rate β in the
absence of ADE affects the location of the Hopf bifurcation in cross immunity ε and
its characteristic frequency of oscillation. Likewise, varying the other social parame-
ter, the birth rate μ, affects the location and frequency of the Hopf bifurcations in φ

and ε (data not shown).

4 Coupled Patches

We next examine the effect of coupling between distinct regions on the dynamics pre-
viously observed in the single patch model. In particular, we consider how migration
between non-identical patches affects the stability of the steady state. We investigate
the dynamics of the coupled systems by numerically integrating (1)–(5) and by track-
ing the bifurcations using a continuation routine (Doedel et al. 1997). As mentioned
in the previous section, the model has a Hopf bifurcation at critical values of the
bifurcation parameters φ, the ADE factor, and ε, the cross immunity strength. We
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Fig. 3 Critical values of the parameters (a) ε and (b) φ at which the Hopf bifurcation occurs for coupled
patches, as a function of the contact rate in patch 1, for two values of the migration rate, ν = 0.02 (solid
black) and ν = 0.05 (dashed gray). The contact rate in patch 2 is fixed at β2 = 200. In (a), φ = 1 (no
ADE). In (b), ε = 0 (no cross immunity). μ1 = μ2 = 0.02 and other parameters are as in Table 1

study the effect of coupling and asymmetry on the stability by observing their effect
on the location of the Hopf bifurcations. We consider cross immunity and ADE sep-
arately; that is, we analyze the system either with ADE and no cross immunity or
with cross immunity and no ADE. Including both cross immunity and ADE together
leads to qualitatively similar behavior to that reported here, at least locally when the
asymmetry is not too large.

We proceed by fixing the patch-specific parameters in patch 2 and varying a social
parameter (β1 or μ1) in patch 1 to observe the effect of increasing asymmetry on
the dynamics. As previously mentioned, changing the social parameters modifies the
natural frequency of the system. For each value of asymmetry, we look for the critical
points at which the coupled system loses stability. We also consider several migration
rates ν.

The effect of asymmetry in the contact rate is shown in Figs. 3(a) and 3(b) for two
migration rates, namely ν = 0.02 (black) and ν = 0.05 (gray). The value of the critical
parameter ε (Fig. 3(a)) or φ (Fig. 3(b)) at which the Hopf bifurcation occurs is plotted
against the varying contact rate. The symmetric case is at the bottom of the curve. We
see that two identical patches have the same bifurcation point as a single, well-mixed
population even when migration is present (cf. Fig. 2a). However, a striking differ-
ence in the dynamics appears when we make the two patches weakly asymmetric.
The values of φ and ε at which the Hopf bifurcation occurs are dramatically different
from the symmetric case. The steady state stability persists well into the parameter
regime where a single patch would display chaotic oscillations (Billings et al. 2007;
Bianco et al. 2009). The location of the single patch Hopf point does not depend
strongly on β , and decreasing the contact rate is actually destabilizing (Fig. 2a), so
the stabilization observed here is clearly a result of the coupling between asymmetric
systems. Slightly increasing the migration rate (from ν = 0.02 to ν = 0.05 in Fig. 3)
further increases the stability of the system.
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Fig. 4 Critical values of the parameters (a) ε and (b) φ at which the Hopf bifurcation occurs for coupled
patches, as a function of the birth/death rate in patch 1, for ν = 0.02. The birth/death rate in patch 2 is
fixed at μ2 = 0.02. In (a), φ = 1 (no ADE). In (b), ε = 0 (no cross immunity). β1 = β2 = 200 and other
parameters are as in Table 1

Similar results are obtained if the asymmetry occurs in the other social parameter,
the birth rate, as depicted in Fig. 4. Again, for asymmetric patches either stronger
cross immunity or stronger ADE is needed to destabilize the steady state through a
Hopf bifurcation.

5 Analytical Motivation

We now motivate the results of the preceding section using a simple lower dimen-
sional model and show that the qualitative features depend only on the bifurcation
structure and characteristic frequencies rather than on details of the epidemic model.
In this section we study the general behavior of two coupled systems, each displaying
a Hopf bifurcation, but with different characteristic frequencies.

The generic form for a Hopf bifurcation is the following, in polar coordinates
(Strogatz 2001):

ṙ = αr − r3

θ̇ = ω
(6)

A Hopf bifurcation occurs at α = 0, where periodic oscillations with frequency ω

are observed. We now couple two systems of the sort in (6), each with a potentially
different frequency ωq , via linear migration terms with migration rate ν. To lowest
order (not displaying cubic terms), the coupled system in cartesian coordinates is

ẋ1 = αx1 − ω1y1 − νx1 + νx2

ẏ1 = αy1 + ω1x1 − νy1 + νy2

ẋ2 = αx2 − ω2y2 − νx2 + νx1

ẏ2 = αy2 + ω2x2 − νy2 + νy1

(7)
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Stability is determined by evaluating the Jacobian of (7) at the steady state
(x1, y1, x2, y2) = 0. At the Hopf bifurcation, the real part of the largest eigenvalue
crosses zero, with nonzero imaginary part. The roots of the characteristic polynomial
f (λ) of the Jacobian are the eigenvalues {λ}. The four eigenvalues are

λ1/2 = α − ν + 1

2

√
4ν2 − 2

(
ω2

1 + ω2
2

) ± 2(ω1 + ω2)
√

(ω1 − ω2)2 − 4ν2 (8)

λ3/4 = α − ν − 1

2

√
4ν2 − 2

(
ω2

1 + ω2
2

) ± 2(ω1 + ω2)
√

(ω1 − ω2)2 − 4ν2 (9)

but it is not easy to see from these expressions where the Hopf bifurcation occurs.
Instead, we solve directly for the critical value of α at the Hopf point.

At a Hopf bifurcation, a pair of eigenvalues has zero real part. Thus to obtain the
Hopf point, we can set λ = ib, where b is real. If ib is an eigenvalue, we require
f (ib) = 0, so

R
[
f (ib)

] = 0 (10)

and

I
[
f (ib)

] = 0 (11)

If α �= ν, (11) has nonzero roots b = ± 1
2

√
4α2 − 8αν + 2ω2

1 + 2ω2
2. When this b

is substituted into (10), we obtain four potential roots for α at the Hopf point. Two
are complex, which is unphysical and can be ignored. The one corresponding to the
Hopf bifurcation is αc = ν − 1

2

√
4ν2 − (ω1 − ω2)2. (The fourth root is larger and

corresponds to loss of stability of the second pair of eigenvalues.) This αc is real and
thus gives the Hopf point location when |ω1 − ω2| ≤ 2ν. When ω1 − ω2 �= 0 and
ν > 0, αc is positive, indicating stabilization due to the asymmetry and coupling.

When α = ν, (11) is always satisfied. In that case, we must turn to (10) to de-
termine b. Equation (10) has four roots, b = ± 1

2 (ω1 + ω2) ± 1
2

√
(ω1 − ω2)2 − 4ν2.

By our assumption, b must be real, and this occurs when |ω1 − ω2| ≥ 2ν, which is
precisely the case not covered by the above result. Thus when |ω1 − ω2| ≥ 2ν, the
Hopf point is at αc = ν.

Summarizing, the Hopf bifurcation occurs at

αc =
{

ν − 1
2

√
4ν2 − (ω1 − ω2)2 for |ω1 − ω2| < 2ν

ν for |ω1 − ω2| ≥ 2ν
(12)

In Fig. 5 we show the location of the Hopf bifurcation given by (12) as a function of
the asymmetry between the two systems for ν = 0.05. Comparison with Figs. 3 and 4
shows the qualitative agreement of the theoretical results for the lower dimensional
system with the full multistrain system. Increasing the migration rate ν increases the
value of the bifurcation parameter to which the Hopf point saturates, as in Fig. 3.
It is also worth noticing that, in the case of identical frequencies ω1 = ω2, the Hopf
bifurcation occurs at αc = 0, the location in the absence of coupling. This is consistent
with the numerical results for the multistrain system in the case of symmetric patches.
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Fig. 5 Critical values of the parameter αc at which the Hopf bifurcation occurs for the coupled generic
Hopf bifurcations, as a function of the frequency ω1. Here the parameter ω2 has been kept fixed at ω2 = 4.
ν = 0.05

6 Conclusions and Discussion

We have studied the endemic steady state stability properties for a multistrain epi-
demic model on two migration-coupled patches. Interactions between strains in the
model were governed by temporary partial cross immunity and antibody-dependent
enhancement. In the absence of coupling, the system displayed Hopf bifurcations in
two epidemic parameters. Coupling between patches with non-identical parameters,
which gave them non-identical characteristic frequencies of oscillation, was shown to
shift the Hopf bifurcations, stabilizing the steady state. This behavior was observed
for the Hopf bifurcation obtained by sweeping the cross immunity in the absence of
ADE and the bifurcation obtained by sweeping the ADE in the absence of cross im-
munity. It occurred for asymmetry in either of our two social parameters, the birth
rate and the contact rate.

To motivate this result, we diffusively coupled two low dimensional Hopf bifurca-
tions with different characteristic frequencies and analyzed the stability of the steady
state. We again saw that coupling between asymmetric systems led to stabilization.
This indicates that the stabilization in the epidemic model is a result of the underlying
dynamics, rather than the details of the model. We suggest that the stabilization may
occur as a result of the two different coupled frequencies generating oscillations that
tend to cancel each other because of phase differences. This topic will be studied in
more detail in a future work.

Bifurcations from steady state to oscillatory behavior can be associated with an
increased number of infection cases, particularly if chaotic oscillations occur, as in
previous dengue models (Billings et al. 2007; Bianco et al. 2009). Our results sug-
gest that if control strategies in one region are able to generate enough asymmetry,
this could lead to a stabilization of the outbreaks, which would have a positive ef-
fect on adjacent regions. Asymmetry could be generated in the effective contact rate
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by mosquito control, which could include reducing mosquito breeding sites (Slosek
1986), or through new genetic controls which are under development (Barbazan et al.
2008). Asymmetry in the birth rate could be generated by lowering the effective birth
rate through vaccination of new susceptibles once a vaccine is available. However,
because the bifurcation point saturates rather than increasing indefinitely as asym-
metry increases, such a strategy would be successful only if the epidemic parameters
in the real system are moderately close to the bifurcation. (Extreme asymmetry may
even be destabilizing, so this strategy works best locally when the asymmetry is not
too strong.) Real systems exhibiting oscillatory behavior may already be well into an
unstable region of parameters. For such systems, our suggested control strategy may
not apply since asymmetry between adjacent regions is already likely, thus reducing
that impact that an increase in the asymmetry could have. On the other hand, in the
case of dengue fever a recent study (Cummings et al. 2009) has highlighted a decreas-
ing trend in both the force of infection and birth and death rates in the population of
Thailand during a time span of about 30 years. This phenomenon could potentially
drive the system closer to the bifurcation point and make it more amenable to con-
trol.

In addition, the role of seasonality in exciting oscillations should not be ignored.
Seasonal variations in the contact rate have been included in previous dengue models
(Schwartz et al. 2005). The interplay of seasonality and coupling is a topic for future
study.

The results of the present work may also be useful in estimation of the parameter
values for ADE and cross immunity. ADE especially is difficult to measure in vivo
and must be estimated by other means. Since recent publications have suggested that
epidemiological data from Thailand show chaotic outbreaks (Schwartz et al. 2005),
and given the certainty of human migration and asymmetry between adjacent re-
gions of the country, it is possible that the actual parameter values for ADE and cross
immunity are higher than the ones estimated by studying a single, well-mixed popu-
lation.

Finally, the work discussed here shows a potential effect of human movement be-
tween heterogeneous regions. As spatial effects are further studied in epidemic mod-
els, it remains to be seen how this phenomenon will extend to more complicated spa-
tial geometries, including more patches and perhaps non-symmetric coupling terms.
This work represents a first step towards understanding the role of migration and
spatial heterogeneity in dynamical properties of dengue observed in epidemiological
data, such as traveling waves of infection in Thailand (Cummings et al. 2004). Fur-
thermore, because the migration-induced stabilization depends only on the existence
of a Hopf bifurcation in the model, it is expected that the stabilization will be observed
in other population models that also contain Hopf bifurcations (e.g., Fussmann et al.
2000; Greenhalgh et al. 2004).
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