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a b s t r a c t

We describe atmospheric validation of 1:61 mm and 2:06 mm CO2 absorption coefficient

databases for use by the Orbiting Carbon Observatory (OCO-2). The OCO-2 mission will

collect the measurements needed to estimate column-averaged CO2 dry air mole

fraction within 1 ppm accuracy without the region- or airmass-dependent biases that

would significantly degrade efforts to understand carbon sources and sinks on a global

scale. To accomplish this, the forward radiative transfer model used to generate

synthetic atmospheric spectra for retrievals must achieve unprecedented spectroscopic

fidelity within the short wave infrared CO2 bands sampled by the sensors. The failure of

Voigt line shapes and conventional line mixing formulations for such objectives has

motivated significant revisions to line shape models used to generate the gas absorption

cross sections for the OCO-2 forward model. In this paper, we test line mixing and speed

dependent line shapes combined with improved experimental line parameters. We

evaluate pre-computed absorption coefficients in the two spectral regions of CO2

absorbtion using high resolution FT-IR laboratory spectra, atmospheric spectra from

the Total Carbon Column Observing Network (TCCON), and medium resolution sound-

ings from the space-based Greenhouse Gases Observing Satellite (GOSAT).

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Our current understanding of the atmospheric carbon
cycle relies mainly on combining CO2 measurements from
ground sensor networks with transport models to inform
flux inversions [1–3]. Space-based measurements of CO2

can make significant contributions by observing areas that
ground-based instruments cannot access, such as the open
ocean or deep rain forest. More importantly, high precision
data can expand the spatial and temporal coverage to reveal

regional sources and sinks [3–7]. This will be critical for
assessing the extent and variability of these fluxes as well as
their sensitivity to future climate change.

Recent advances in space based remote sensing obser-
vations of CO2 and other greenhouse gases hold promise
for global monitoring efforts [8–12]. Measurements of the
absorption of reflected sunlight by CO2 can provide
estimates of the column averaged CO2 dry air mole
fraction, XCO2, which are sensitive to CO2 variations near
the surface where most sources and sinks are located. The
Japanese Greenhouse gases Observing SATellite (GOSAT)
and the NASA Orbiting Carbon Observatory (OCO) were
the first two satellites specifically designed to exploit this
approach. GOSAT was successfully launched in January
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2009 and has been routinely collecting CO2 and methane
observations over the sunlit hemisphere of the globe since
April 2009 [13–15]. OCO was lost in February 2009 when
its launch vehicle malfunctioned and failed to reach orbit.
A replacement called OCO-2 is currently under develop-
ment in preparation for a late 2014 launch.

Precise XCO2 measurements are needed because sur-
face sources and sinks of CO2 produce small spatial and
temporal variations in this quantity [4]. While the atmo-
spheric CO2 mixing ratio can vary by as much as 8% near
the ground, these perturbations decay rapidly with height
such that XCO2 variations rarely exceed 2% on regional
scales. Existing data show that XCO2 variations are usually
no larger than 0.3% on regional scales, and that these
variations have representative spatial scales that range
from 100 km over continents to 1000 km over the ocean.
Resolving the most important regional fluxes necessitates
accuracy to within 0:25% (1 ppm) [4].

To meet these precision requirements, the GOSAT and
OCO-2 instruments acquire high resolution spectra in
three spectral ranges: two for estimating CO2 abundance
using rovibrational absorption bands at 1:61 mm and
2:06 mm, and one for simultaneous measurement of the
O2 A band at 0:76 mm to determine photon path length
and surface pressure [16]. The OCO-2 retrieval algorithm
[16,17] uses a forward radiative transfer model to simu-
late an observed spectrum for a given atmospheric state.
An inverse model, based on optimal estimation [17], then
uses the differences between the observed and simulated
spectrum to modify the state properties and improve the
fit [8–10]. Because a 0.25% variation in the CO2 column
abundance produces spectral variations that are much
smaller than this, both high precision measurements and
a high fidelity forward model are needed. The forward
model must account for all physical phenomena that
contribute to the atmospheric spectrum such as absorp-
tion, gas and aerosol scattering, surface reflectance, sur-
face pressure, and the atmospheric temperature and
water vapor profiles [12,16].

Only a small fraction of the uncertainty budget
remains for uncertainties in CO2 and O2 spectroscopy
[4,18]. Consequently evaluation and refinement of the
retrieval spectroscopic models has been an important part
of the OCO-2 preparatory effort. To validate the spectro-
scopic molecular line parameters used in the forward
model, we must demonstrate a radiometric accuracy of
0.1% on laboratory spectra which approaches the peak-to-
peak errors of the best fits. Systematic errors are of
particular concern since they introduce regional biases
that imitate sources and sinks [4,19].

This paper focuses on the pressing challenge of CO2

absorption at 1:61 mm and 2:06 mm. Ground-based studies
report inconsistencies in the CO2 total columns retrieved
using these two spectral regions and attribute systematic
errors to the basic line parameters (such as line intensities
and Voigt pressure broadening coefficients) [12,16,20,21]. At
the same time, laboratory studies demonstrate that the
choice of molecular line shape impacts the retrieved line
parameters. In addition to Lorentz broadening, one must
consider the combined effects of Line Mixing (LM), speed
dependence and narrowing [18,22–24]. The best line shape

choice is still uncertain, but profiles which model line
mixing and speed dependence provide superior fits to CO2

lab data [23] while line mixing improves atmospheric
retrievals [25]. Non-Voigt line shapes also provide more
physically plausible values for related line parameters [24].

Several groups have used new LM models for infrared
remote sensing of CO2. LM was introduced into the Atmo-
spheric Infrared Sounder (AIRS) retrieval algorithm for
14 mm spectral soundings [26], and demonstrated in Four-
ier Transform Spectrometers on balloon and aircraft plat-
forms [27]. New LM models have significantly improved
fits to upward-looking atmospheric spectra in the OCO-2
bands [28,29]. However the best fits still show persistent
structured residuals at 2:06 mm [25]. Speed dependent line
shapes remain virtually unused in atmospheric retrievals
due to their computational complexity and the lack of
standardized software, atmospheric, and laboratory eva-
luation benchmarks. Some combination of the non-Voigt
line shapes is needed to achieve the radiometric accuracy
required for OCO-2.

This work describes the first atmospheric tests of CO2

absorption cross sections derived from new laboratory
studies that combine LM parameters [30] with a speed
dependent line shape profile [31–33]. First we apply the
proposed database to high-resolution laboratory spectra
acquired under homogeneous conditions with controlled
gas abundances, temperature, and illumination. We then
perform atmospheric retrievals of XCO2

with solar observa-
tions from the Total Carbon Column Observing Network
(TCCON) [20,21,34]. These upward-looking spectra are a
conceptual bridge between the laboratory and orbital
retrieval scenarios. They are simpler than the downward-
looking case due to improved SNR, the lack of significant
optical path length biases associated with scattering, and
direct sensing of atmospheric conditions at the surface. The
path lengths reveal weak CO2 lines to a degree unattainable
under typical laboratory conditions, providing an indepen-
dent validation of the new line parameters. Finally, we test
orbital soundings using the OCO-2 retrieval algorithm. We
consider a representative set of GOSAT orbits with hundreds
of soundings acquired by the TANSO-FTS instrument [12].
The GOSAT tests use the full OCO-2 Level 2 retrieval
algorithm and the associated challenges of aerosol scatter-
ing, surface reflectance, and lower SNR [16]. These demon-
strate non-Voigt line shapes in an atmospheric retrieval
process capable of meeting strict throughput requirements
for OCO-2, which is expected to yield approximately 105

cloud-free soundings each day.

2. Absorption coefficient models

The new cross sections are based on a multispectrum
parameter fitting procedure that combines dozens of
laboratory spectra in a least-squares optimization. Low
pressure spectra provide intensities and line positions,
while higher pressure scans characterize line mixing, self-
and air-broadened half widths. We refer the interested
reader to a description by Benner et al. [35] and support-
ing texts by Vitcu [33] and Predoi-Cross et al. [31]. We
will review the most important aspects here.

D.R. Thompson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 2265–22762266



2.1. Line Mixing

Line Mixing (LM) is a broad topic for which Hartmann
et al. provide a comprehensive review [36]. Our specific
formulation follows Predoi-Cross et al. and Levy et al.
[37,38]. We express the combined absorption from a
spectrum of interacting Lorentz lines as a function IðoÞ
of frequency o:

IðoÞ ¼ 1

p
Im½XT

ð1o�o0�iWÞ�1rX� for Xj ¼

ffiffiffiffiffiffiffiffiffiffiffi
Sj=rj

q
ð1Þ

Here 1 is the identity matrix and o0 is a diagonal matrix
of zero-pressure line positions. The diagonal matrix r
holds relative populations for lower energy states, and X
is a vector with an element for each line j given by
intensity Sj and the number density rj. The relaxation

matrix W determines the strength of coupling between
interacting pairs of lines [36]. Diagonal elements of W

have real and imaginary parts representing Lorentz half
widths aL and pressure shifts d:

Wjj ¼ aLj�idj ð2Þ

Off-diagonal elements describe mixing between different
transitions. These are proportional to pressure, and have
the same units as the Lorentz half width. We compute a
matrix element Wjk by summing contributions Wjkr for
each broadening gas r in proportion to volume mixing
ratio wr:

Wjk ¼
X

r

wrWjkrðT0Þ
T0

T

� �mjkr

ð3Þ

Temperature dependence exponents m are relative to a
reference temperature T0 (296 K). The off-diagonal relaxa-
tion matrix elements satisfy a detailed balance relation-
ship:

Wkj ¼
X

r

wr

rkr

rjr

 !
WjkrðT0Þ

T0

T

� �mjkr

ð4Þ

These elements are interdependent with Lorentz widths
and pressure shifts, so it is important to retrieve all para-
meters simultaneously.

Evaluating Eq. (1) requires a matrix inversion for each
spectral point. Following Pine [39], we transform Eq. (1)
into a more convenient representation using generalized

line parameters [39]. We diagonalize the matrix o0þ iW

using:

A�1
ðo0þ iWÞA¼L ð5Þ

The columns of A are normalized eigenvectors whose
eigenvalues correspond to entries in the diagonal matrix
L. We further define:

xj ¼ Re½ðXT AÞjðA
�1rXÞj� ð6Þ

Zj ¼ Im½ðXT AÞjðA
�1rXÞj� ð7Þ

Eq. (1) is then equivalent to the following expression
[38,39]:

IðoÞ ¼ 1

p
XN

j ¼ 1

xjIm½Ljj�þZjðo�Re½Ljj�Þ

Im½Ljj�
2þðo�Re½Ljj�Þ

2
ð8Þ

This has the same form as a Rosenkranz first-order LM
approximation:

IRðoÞ ¼
1

p
XN

j ¼ 1

Sj

aLj
þYðo�o0jÞ

a2
Lj
þðo�o0jÞ

2

2
4

3
5 ð9Þ

Consequently we can evaluate Eq. (1) using a sum of
Lorentz profiles with first-order line mixing. These
‘‘pseudo-profiles’’ use the following generalized para-
meters: the intensity Sj becomes xj, the first order line
mixing parameter Y times the line intensity Sj becomes Zj,
the line spectral position o0j becomes Re½Ljj�, and the
Lorentz half width aLj

becomes Im½Ljj�. The resulting
absorption cross sections are mathematically equivalent
to the complete spectrum of mixed Lorentz lines [39].
In principle, many lines are coupled and the magnitude of
the mixing effect decreases smoothly with increasing
separation [40]. In practice the limited number of labora-
tory spectra do not provide enough constraints to fit all
the terms in the full relaxation matrix W. Instead, we
desire a constrained parameterization with appropriate
flexibility for our atmospheric application. The OCO-2
approach fits all tridiagonal matrix terms, explicitly model-
ing interaction between neighbor lines of P- and R-branches
[30]. The tridiagonal relaxation matrix uses immediate
neighbor coefficients to approximate the influence of the
more distant lines. The carbon dioxide lines in these bands
are spaced widely enough that the approximation is effec-
tive for atmospheric pressures and temperatures. We set
these parameters directly with simultaneous fits of multiple
lab spectra, holding all other off-diagonal relaxation matrix
elements to zero [23,30].

2.2. Speed dependent line shapes

Here we extend Eq. (8), which describes a mixed Lorentz
profile, to incorporate Doppler broadening and speed
dependence effects. A speed dependent profile [31,32]
refines the Lorentz contribution by accounting for various
speeds at the time of collision. Specifically, it is the con-
volution of Doppler and Lorentz profiles integrated over
possible collision speeds. While there is no consensus on the
best physical model or line shape for NIR CO2 spectra,
profiles using a quadratic speed dependence have been
shown to fit laboratory data better than a standard Voigt
model [24]. One can compute a speed dependent line shape
using a combination of two Voigt profiles [32] or, as in this
work, by numerical integration. We employ a quadratic
speed dependence relationship first introduced in [41],
detailed in Vitcu [33] and further elaborated by Benner
et al. [30]. Like the complex Voigt profile, the speed
dependent Voigt VsðoÞ has real and imaginary parts:

VsðoÞ ¼ KsðoÞþ iLsðoÞ ð10Þ

We parameterize each collisionally isolated line, j, using the
Lorentz half width, aLj, spectral line position, o0j, a speed
dependence parameter, sj, and a Dicke narrowing para-
meter, Hj. Convolving Lorentz and Doppler profiles and
integrating over velocity [42], we have

KsðoÞ ¼
2

p

Z 1
�1

ve�v2

tan�1ðQsðv,oÞÞ dv ð11Þ
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LsðoÞ ¼
1

p

Z 1
�1

ve�v2

lnð1þQsðv,oÞ2Þ dv ð12Þ

where aD is the Doppler half width and Qsðv,oÞ is given by

Qsðv,oÞ ¼
o�o0jþvaD

aLj½1þsjðv2�1:5Þ�þHj
ð13Þ

We substitute the generalized Lorentz line parameters
defined in Section 2.1 into this expression in order to
capture the combined effects of speed dependence, Doppler
broadening and line mixing.

In this work the Dicke narrowing parameter Hj is always
set to zero because narrowing and speed dependence can
both alter the line shape in similar ways, and distinguishing
the two effects requires very high spectral resolution. In the
laboratory data the CO2 Doppler width is close to the FTS
Instrument Line Shape. Consequently, in the spectra where
Dicke narrowing is most active, each narrow line provides a
single point measurement with only enough information to
retrieve position and intensity. Other ways to estimate
Dicke narrowing include computing Hj directly from the
gas diffusion constant or retrieving it from measurements
with higher spectral resolution.

2.3. Continuum effects

Apart from LM effects, previous researchers have raised
the possibility that Collision Induced Absorption (CIA) could
play a role in NIR rovibrational transitions for CO2 [25].
Recent results by Lamouroux et al. [28] provide an upper
limit on CIA for NIR CO2 that would be negligible in the
atmosphere [28]. Our basic parameterization does not
include CIA, but continuum-level effects may still arise in
atmosphere due to solar lines or unmodeled atmospheric
absorption. We found that we could improve atmospheric
retrieval performance with a small ad hoc continuum
absorption. We generate the pressure continuum with a
pair of Gaussian distributions centered at 4853.5 and
4789 cm�1, with respective widths 10 and 8 cm�1 and
peak intensities of 2:1� 10�24 and 4:2� 10�25 cm�1/
(molecule cm�2). These parameters were determined by
empirical modification to improve fits to atmospheric
spectra. This modification is directly proportional to pres-
sure, though a ‘‘pressure squared’’ correction yields similar
results. In general, atmospheric tests do not yet provide
strong evidence to show if this is caused by physical atmo-
spheric effects, modeling error, or a computational artifact.

2.4. Table computation

The OCO-2 mission will produce approximately 105

cloud-free soundings per day. To satisfy retrieval data
throughput requirements we perform all cross section
computations in advance. This is particularly important for
computationally intensive LM calculations having many
pairwise interactions between lines. We cache the absorp-
tion coefficients in a lookup table (ABSCO table) indexed by
pressure and temperature. The tests that follow use a
spectral grid spacing of 0.002 cm�1. We record cross sec-
tions at 70 pressures evenly spaced at 1 kilometer altitude
increments. The 17 temperature levels lie on an evenly

spaced grid centered at the mean vertical temperature
profile for historical GOSAT retrieval footprints, as given
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF). This provides coverage over all physically
reasonable atmospheric conditions. At runtime, a linear
interpolation provides cross sections.

Table 1 summarizes our spectroscopic data sources for
the proposed databases. A modified version of the multi-
spectrum nonlinear least squares fitting technique of Benner
et al. [30] computes the main isotopologue for CO2 lines
near 4850 and 6200 cm�1 using a speed dependent line
profile. As mentioned previously, these parameters originate
from a least squares multispectrum retrieval process
described in [35] with laboratory results reported in [23,30].

Fig. 1 shows a typical fit of the 2:06 mm CO2 band to a
laboratory spectrum from the JPL Bruker FTS instrument
[46]. Here, a low pressure HCl cell in line with the main cell
was used to characterize the instrumental line shape and
provide an absolute frequency calibration. This spectrum
contributed to the multispectrum fitting procedure. The
subsequent cross section tables reproduce a good quality
fit, which provides confidence in the calculation. Peak
residuals near 0.1% may be related to line shape, and
approach the limits of laboratory accuracies achievable with
this parameterization. The residuals are expressed in terms
of the maximum transmission level. The right panel gives an
expanded view of the residual structure near 4824.5 cm�1.
Fig. 2 shows a 1:61 mm spectrum not incorporated into the
Devi et al. fits [23]. This is a more challenging case, since
transmittance is computed without modifying line para-
meters to fit the experimental data. Only the volume mixing
ratio is optimized, and it converges to a value within 2% of
the recorded estimate. Peak residuals are a small fraction of
a percent, and the retrieved CO2 volume mixing ratio is
within the uncertainty in laboratory conditions.

3. Atmospheric evaluation and results

3.1. The TCCON uplooking FTS network

TCCON is a global network of upward-looking FTS
spectrometers that measures transmittance along a direct

Table 1
Parameter sources for the proposed CO2 spectroscopic line list. Note:

only first authors are shown.

Parameter 2:06 mm CO 1:61 mm CO

Positions Benner [30] Devi [23]

Intensities Benner [30] Devi [23]

Air-widths Benner [30] Predoi-Cross [43]

Air-shifts Benner [30] Predoi [43], Devi

[23]

Air-width T
dependence

Benner [30] from Predoi

[43]

Predoi[43]

Line shapes SDþLM SDþLM

Isotopologues Toth [44], Rothman [45]

(text)

Rothman [45]

(text)

Air LM Benner [30] Devi [23]

Speed dependence Benner [30] Devi [23]

Continuum n/a (See text)

Collisional
narrowing

n/a n/a

D.R. Thompson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 2265–22762268



solar path. Each station tracks the sun across a range of
airmasses and seasons. These instruments have important
advantages for our evaluation. Their high spectral resolution
of 0.014 cm�1 is a stringent test of line shape subtleties.
Their SNR is approximately 5000, an order of magnitude
better than OCO-2. Viewing the solar disk center directly
allows them to neglect atmospheric scattering effects, and
the atmospheric conditions are constrained by sensors at
the surface and occasional aircraft column measurements.
They are true atmospheric measurements and observe

phenomena that it is not feasible to measure in the lab
experiments.

Here we evaluate performance on upward-looking atmo-
spheric FTS spectra from a TCCON site in Park Falls, Wis-
consin. We choose an initial dataset of 140 spectra from 22
December 2004 that has already been used in previous
spectroscopic studies [25]. The soundings comprise a diverse
dataset with varying SNR and airmasses ranging from less
than 3 to over 12. Conditions at the ground site were very
cold (�20 1C) and dry; this minimizes confounding effects

Fig. 1. Modeling an air-broadened CO2 laboratory spectrum at 2:06 mm (wavenumber¼cm�1) by applying line parameters for a speed dependent profile

with line mixing from [30]. The upper panel shows the residuals obtained for the scan in the lower panel. The plot at right is an expanded view for a

spectral range centered at 4842.5 cm�1, and the red dashed lines mark the 0.1% radiometric accuracy target. The lab spectrum was recorded at

0.00444 cm�1 resolution (optical path difference 112.5 cm) using a multipass absorption cell set at 29.30 m optical path length. The total gas pressure

was 599.8 Torr at 296.1 K with 4.95% being 12C-enriched 16O12C16O. (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)

Fig. 2. Modeling an air-broadened CO2 laboratory spectrum at 1:61 mm (wavenumber¼cm�1) by applying line parameters for a Speed Dependent profile

with Line Mixing from [23,30]. The right plot shows an expanded view at 6212.5 cm�1, and the red dashed lines mark the 0.1% radiometric accuracy

target. Spectral resolution: 0.00667 cm�1 (optical path difference 75.0 cm); Optical path length: 32.54 m; Total gas pressure: 742.1 Torr at 295.3 K with

9.03% being 12C-enriched 16O12C16O. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this

article.)

D.R. Thompson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 2265–2276 2269



such as H2O broadening of CO2 and drawdown from photo-
synthesis. The measured surface pressure ranged from
964 hPa to 967 hPa, with a standard deviation of just
0.7 hPa. It is likely that XCO2

did not change significantly
during the day.

The upward-looking retrievals use a variant of the OCO-2
Level 2 algorithm with an a priori atmospheric model based
on pressure and temperature profiles for that locale and day
from the National Centers for Environmental Prediction
(NCEP). These data are re-gridded into 70 atmospheric
levels. A raytracing algorithm uses an oblate spheroid globe
model to compute the path distance through each layer. It
feeds into a radiative transfer code by Spurr [47] which
performs computations of direct beam attenuation and
refractive effects to simulate the observed spectrum. The
retrieval rescales the entire vertical a priori abundance
profile by a single scalar value that is treated as a free
parameter. One can use this scaling factor, along with air
pressure and water vapor abundances, to estimate the dry
air column averaged mixing ratio of CO2. Separate profile
scaling factors are retrieved simultaneously for CH4 and H2O
concentrations and atmospheric temperature. The retrieval
fits these scalar parameters and the linear continuum to the
measured spectrum. We also account for solar lines in this
region. Our CO2 absorption calculation uses the pre-com-
puted cross sections without any online modifications to the
individual line parameters or mixing.

We have found that isotopologue abundances in atmo-
spheric retrievals have a slight but consistent offset from the
laboratory-derived values. As compensation, we assume
abundance ratios with an additional 6% enhancement of
the 16O12C18O isotopologue relative to the HITRAN standard.
This is an expedient compromise since the computational
constraints of OCO-2 retrievals prevent fitting each isoto-
pologue’s abundance independently at runtime. The 6%
enhancement has proven consistent across multiple sound-
ings and path lengths.

During a combined retrieval with both the 1:61 mm and
2:06 mm CO2 bands, any disagreement in band strengths
can preclude convergence to an optimal fit because the two
bands work against each other producing different values of
XCO2

. Consequently the total absorption cross sections of the
two bands are scaled for mutual consistency and agreement
with a priori atmospheric predictions from EMCWF profiles.
This results in a further scaling factor of 0.99388 applied to
the 2:06 mm band and 1.00539 to the 1:61 mm band.

We compare the proposed spectroscopic database against
a benchmark standard from Lamouroux et al. [28]. The
Lamouroux et al. [28] database differs in two ways: it uses
a standard Voigt line shape, and computes LM using an
alternative parametric form of the relaxation matrix. This
parametric form is based on the Energy Corrected Sudden
(ECS) model [48]. The ECS model relates all off-diagonal
terms through a power law with four temperature- and
perturber-dependent free parameters. A subsequent renor-
malization procedure guarantees consistency of the final
result with detailed balance and the known diagonal ele-
ments. This contrasts with the proposed OCO-2 approach
that uses nearest neighbor line mixing. Both databases use
internally self-consistent parameters retrieved using the
appropriate line shape assumptions. However we emphasize
that the source data, line shape, and relaxation matrices all
differ between the two alternatives so this comparison
cannot attribute performance differences to a particular
model choice. Instead, our test aims to characterize the
empirical performance of these two state-of-the-art data-
bases on atmospheric data. We will subsequently refer to the
two methods as the benchmark and proposed approaches. We
use these two alternative methods to compute cross sections
for the P and R branches of the 1:61 mm and 2:06 mm bands.
Isotopologue corrections are held constant between the two
test scenarios, as are all other bands and absorbers.

Fig. 3 shows the residual of a typical 2:06 mm band
sounding at 10 airmasses, shown as a percentage of

Fig. 3. Modeling a 10 airmass atmospheric spectrum at 2:06 mm. The spectrum is a ground-based sounding recorded at 0.014 cm�1 resolution with the

TCCON Park Falls FTS station, 22 December 2004. The residuals in red are from the benchmark Line Mixing software and line list from Lamouroux et al.

[28], while the residuals in blue are for the present proposed software and database (applied in Fig. 1) from Benner et al. [30] which combines a speed

dependent profile and tridiagonal line mixing. (For interpretation of the references to color in this figure caption, the reader is referred to the web version

of this article.)
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maximum radiance. The red residual line shows the fit
from the benchmark database, with structured residuals
apparent in the P branch near 4840 cm�1 as noted in [25].
The proposed database improves this region. Several H2O
line residuals also appear; these are more difficult to
address in this retrieval process due to differences
between the actual column and the a priori atmospheric
profile of H2O mixing ratios. Fig. 4 shows a similar
comparison of the 1:61 mm band. Here LM is less promi-
nent, and performance improvements from the proposed
database are more ambiguous.

Fig. 5 plots spectral residuals and XCO2
for retrievals

that use each band alone as well as a two band retrieval
that fits both spectra simultaneously. The proposed data-
base consistently improves the overall spectrum fit. The
improvements are largest in the 2:06 mm band. Fig. 5
(Right) shows the retrieved XCO2

. Table 2 quantifies the
airmass bias with the linear slope and correlation coeffi-
cients, and the Spearman r rank correlation coefficient for

XCO2
vs. airmass. The airmass bias improves somewhat

(i.e. the slope magnitude is reduced) for each band taken
alone as well as for the 2-band retrieval. Again, the largest
benefit is for retrievals involving the 2:06 mm band.

3.2. Orbital retrievals with GOSAT

Prior to the OCO-2 launch, the team has worked
directly with GOSAT data to refine the retrieval approach,
and has benefited from partnership and generous support
of the GOSAT and TANSO-FTS teams. The TANSO-FTS
instrument offers 0.2 cm�1 spectral sampling, with reso-
lution generally comparable to OCO-2. The GOSAT sound-
ings introduce challenges of true space-based reflected
sunlight measurements including pathlength uncertain-
ties associated with scattering aerosols and the surface.
Here we validate the new absorption cross sections using
a selected sample of satellite data. Specifically, we provide

Fig. 4. TCCON spectral residual for a typical 10 airmass sounding in the 1:61 mm band from the Park Falls FTS station, 22 December 2004. The right panel

shows detail of the fit at 6212.5 cm�1 (see text and Figs. 2 and 3).

Fig. 5. Performance comparison of the two spectroscopic databases on a TCCON dataset from Park Falls, Wisconsin, 22 December 2004. Left: Mean

squared relative error of the modeled and measured spectra. Right: retrieved XCO2
as a function of airmass.

D.R. Thompson et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 2265–2276 2271



retrieval results from a larger dataset consist of GOSAT
soundings coincident with the TCCON ground stations,
amounting to 425 spectra from orbits spanning multiple
years, continents, and latitudes. These tests utilize the
three-band OCO-2 algorithm which performs a simulta-
neous retrieval using both 1:61 mm and 2:06 mm regions.

The O2 spectroscopy is held constant in this experi-
ment but we provide details here for completeness
(Table 3). Our O2 absorption line parameters are based
on the 2008 HITRAN database detailed by Rothman et al.
[45]. Robichaud et al. [49,50] provide line positions and
pressure-induced shifts, line intensities, air broadening
and self-broadening parameters. One exception between
ABSCO line parameters and those of the HITRAN 2008
are the strong lines of the R branch, for which custom
pressure-induced shifts were provided by coauthor
Brown. We use O2 LM coefficients from the calculations
referenced in [29]. Collisional narrowing parameters are
available, but are not used. The OCO-2 retrieval algorithm
currently exhibits a systematic air pressure error of
approximately 10 hPa [12]. This is likely related to O2

spectroscopy though retrieval or instrument effects may
also play a role. As in [51,12], we rescale cross sections by
a compensatory factor of 1.025 to remove the mean air
pressure bias. This factor was derived from a larger
representative dataset and applied to all retrievals in this
comparison.

Fig. 6 shows the mean spectral residual, e.g. the
average error combining all soundings. The 2:06 mm band
generally corroborates the TCCON result. Fig. 7 shows that
improvements at 1:61 mm are more ambiguous. Fig. 8
compares the goodness of fit scores from each sounding.
This plot shows reduced w2 values associated with both
bands of the three-band retrieval. The database with a
speed dependent profile and new LM yields the largest
reduction in mean w2 value for the 2:06 mm band, which

drops from 1.09 to 1.00. The change in 1:61 mm is
consistent but the magnitude is much smaller. Dark lines
show the ratio w2 score produced by the proposed para-
meters as a fraction of the benchmark score on the same
sounding. We plot this distribution on the same axis but
with horizontal values interpreted as a fractional ratio.
The proposed parameters reduce the w2 values in the
1:61 mm band by about 8% with respect to the benchmark.
In the 2:06 mm band, the proposed parameters reduce w2

by 11% with respect to the benchmark.
Finally we compare these GOSAT retrievals to coincident

retrievals by the TCCON network. Here we use the daily
mean value from the TCCON retrieval algorithm, called GFIT
[34], as a reference standard. As noted previously, an
upward-looking estimate is intrinsically more accurate than
the GOSAT result. Moreover, the GFIT TCCON retrievals have
been extensively validated against in situ profiles provided
by aircraft. It is not a perfect ground truth measurement
since diurnal XCO2

variation would cause the GOSAT esti-
mate to deviate from the TCCON daily mean even if both
retrievals were perfect. The algorithms also share some
potential sources of bias, such as their a priori atmospheric
profiles. Despite these caveats, a separate retrieval algo-
rithm is a valuable check on the orbital XCO2

accuracies.
We correct each XCO2

result by a constant factor to zero
out mean bias against TCCON observations. Finally, we
apply standard filtering rules from the OCO-2 Level 2
algorithm. These rules, detailed by Crisp et al. [12], are a
series of exclusion criteria based on retrieval values such
as w2, retrieved aerosol optical depth and surface pres-
sure. These filters exclude data that is contaminated by
clouds or other intermittent retrieval failures.

Fig. 9 plots the GOSAT retrievals against the TCCON
standard using each of the spectroscopic databases.
Table 4 quantifies the agreement. The overall yield (num-
ber of soundings passing the filter rules) increases by 5%,
while the average scatter (absolute difference against the
TCCON values) decreases from 1.5 to 1.39 ppm. A slight
improvement in the linear correlation score is not sig-
nificant for this dataset size. Overall however these
performance scores are consistent with a slight compara-
tive advantage to the new database.

4. Discussion

Benchmark results broadly agree with previous analy-
sis of the TCCON dataset that finds persistent structured
residuals in the 2:06 mm band [25]. The proposed model
parameters further improve the spectrum fit, showing
consistent benefits for multiple instruments and retrieval
methods. These tests span a range of path length,

Table 2
Park Falls 22 December 2004 – retrieved XCO2

values vs. airmass, comparing the reference benchmark and proposed line lists.

Result Both bands 2:06 mm 1:61 mm

Benchmark Proposed Benchmark Proposed Benchmark Proposed

Slope 0.355 0.219 0.468 0.376 0.131 �0.101

Corr 0.966 0.941 0.978 0.978 0.972 �0.651

q 0.980 0.962 0.987 0.983 0.738 �0.692

Table 3
Parameter sources used for the oxygen A band in GOSAT retrievals.

Parameter 0:76 mm O2

Positions Robichaud [49,50]

Intensities Robichaud [49,50] (see text)

Air-widths Robichaud [49]

Air-shifts Robichaud [49] (see text)

Air-width T dependence Brown [52]

Line shapes Voigt with Line Mixing

Isotopologues Rothman [45]

Air LM Tran [29]

Speed dependence n/a

Continuum CIA via Tran [29]

Collisional narrowing n/a
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Fig. 6. Mean residuals in the 2:06 mm band for 425 GOSAT soundings covering a wide range of latitudes. As in Fig. 3, we compare the benchmark database

of Lamouroux et al. [28] against the multispectrum retrieval of Benner et al. [30] using Speed Dependence with tridiagonal Line Mixing. The right panel

shows a detailed view of the same mean residual.

Fig. 7. Spectral residuals, similar to Fig. 6 but for the 1:61 mm region. The retrieval itself used all three OCO-2 bands.

Fig. 8. Spectral residuals, showing the w2 values for both bands of the three-band retrieval. The mean w2 value drops from 1.09 to 1.00 in the 2:06 mm band

after moving to the proposed database with a speed dependent line profile and tridiagonal mixing. The mean w2 also drops in the 1:61 mm band but the change

is not as significant. Dark lines show the ratio of error scores (specifically, each sounding’s w2 using the proposed parameters as a fraction of the sounding’s w2

score using the benchmark parameters). These are plotted on the same axis, but horizontal values are interpreted as a fractional ratio. The mean ratio in the

1:61 mm band is 0.972 (s¼ 0:011), and the ratio in the 2:06 mm band is 0.882 (s¼ 0:047). The improvement is significant in both bands.
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temperature, and atmospheric conditions as well as
different instrumental effects like saturation level, spec-
tral resolution, and signal to noise ratios. The new
database reduces spectral residuals while improving w2

goodness-of-fit. It increases the OCO-2 algorithm retrieval
yield, and improves agreement with third-party XCO2

estimates from a network of ground stations. On average,
the new GOSAT retrieval predictions differ by 0.234 ppm
which is a meaningful portion of the OCO-2 error budget.
Such tests favor the new database over the alternatives
currently available. Consequently the changes described
here have been incorporated into the standard OCO-2
processing pipeline, where they have produced similar
improvements in converged w2 goodness of fit values.
Ultimately sub-percent retrieval accuracy for remote
sensing demands significant refinement of existing spec-
troscopy, to which non-Voigt line shapes are a first step.

Despite these improvements the model does not fully
achieve OCO-2 spectroscopic goals. First, systematic struc-
tures remain in 2:06 mm band retrievals at the 0.5% level,
beyond desired accuracy limits. These structures could be
related to unmodeled effects such as Dicke narrowing,
temperature dependence of line mixing, or sources of
continuum absorption not included here. The multispec-
trum fits used to derive line parameters do not yet resolve
such phenomena. An asymmetric structure at the band
center could be related to broad continuum-level effects,
but its lack of alignment with known CIA continua [28] may

be more consistent with line shape or line mixing inaccura-
cies. Such spectroscopic residuals may contribute to an
airmass dependence that remains even under the best
atmospheric retrieval conditions (e.g. TCCON data collected
on dry days). The ‘‘glint’’ mode of OCO-2 will enable high-
SNR retrievals with very high airmasses, magnifying any
airmass dependence in CO2 spectroscopy.

The spectral fit improvements described here have done
little to ameliorate this airmass dependence, which is con-
sistent with other bottlenecks in the XCO2

estimate beyond
CO2 line shape. Other contributors may include the solar
spectrum model, atmospheric profile differences from the
ECMWF prior, path-dependent differences in isotopic frac-
tionation, and continuum-level absorption due to dimers or
interferences. We cannot exclude these other effects, nor can
we ignore line shape inaccuracies while systematic residuals
remain.

5. Conclusions

We describe a direct retrieval of tridiagonal relaxation
matrix elements and line shape parameters simultaneously,
which significantly reduces the structured residuals seen at
atmospheric optical depths. The best fits use a speed depen-
dent line shape, which is consistent with laboratory results.

While our comparison cannot conclusively attribute
performance to a specific physical model or line shape, it
underscores the influence of line shapes and line mixing
parameterization on the retrieval. For OCO-2, attention to
these factors is crucial to achieve the 1 ppm accuracies
needed to identify sources and sinks on a global scale. The
TCCON network of FTIR spectrometers provides invalu-
able validation because its high SNR and spectral resolu-
tion observations can use long optical path lengths to
achieve a large range of opacities. Atmospheric spectra
from both ground-based (upward-looking) and orbiting
(downward-looking) sensors can validate the spectro-
scopy required for OCO-2 glint observations, provided
the same molecular line profiles are applied in all cases.

The tests described here have implications for spectro-
scopic remote sensing in general. The atmospheric com-
munity has begun to employ some non-Voigt line shapes,
such as the speed dependent Voigt for H2O [53]. It has
also considered line mixing for CO2 [25]. It is generally
acknowledged that reaching sub-1% accuracies in atmo-
spheric retrievals will require substantially improved
laboratory results [54]. Future progress depends on cor-
rect understanding of molecular line shapes and having a
consistent set of accurate line parameters.
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