Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission

David R. Thompson
Linda R. Brown
David Crisp
D. Chris Benner
William & Mary, dcbenn@wm.edu
V. Malathy Devi
William & Mary, mdvenk@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
Atmospheric validation of high accuracy CO₂ absorption coefficients for the OCO-2 mission

David R. Thompson a,*, D. Chris Benner b, Linda R. Brown a, David Crisp a, V. Malathy Devi b, Yibo Jiang a, Vijay Natraj a, Fabiano Oyafuso a, Keeyoon Sung a, Debra Wunch c, Rebecca Castan˜o a, Charles E. Miller a

a Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr. Pasadena, CA 91109, USA
b Department of Physics, The College of William and Mary, Box 8795, Williamsburg, VA 23187, USA
c California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA

Article info
Article history:
Received 13 March 2012
Received in revised form 25 May 2012
Accepted 29 May 2012
Available online 12 June 2012

Keywords:
Fourier transform spectroscopy
Infrared CO₂ spectroscopy
Atmospheric CO₂ retrievals
Line shapes
Line mixing
Speed dependence

Abstract
We describe atmospheric validation of 1.61 μm and 2.06 μm CO₂ absorption coefficient databases for use by the Orbiting Carbon Observatory (OCO-2). The OCO-2 mission will collect the measurements needed to estimate column-averaged CO₂ dry air mole fraction within 1 ppm accuracy without the region- or airmass-dependent biases that would significantly degrade efforts to understand carbon sources and sinks on a global scale. To accomplish this, the forward radiative transfer model used to generate synthetic atmospheric spectra for retrievals must achieve unprecedented spectroscopic fidelity within the short wave infrared CO₂ bands sampled by the sensors. The failure of Voigt line shapes and conventional line mixing formulations for such objectives has motivated significant revisions to line shape models used to generate the gas absorption cross sections for the OCO-2 forward model. In this paper, we test line mixing and speed dependent line shapes combined with improved experimental line parameters. We evaluate pre-computed absorption coefficients in the two spectral regions of CO₂ absorption using high resolution FT-IR laboratory spectra, atmospheric spectra from the Total Carbon Column Observing Network (TCCON), and medium resolution soundings from the space-based Greenhouse Gases Observing Satellite (GOSAT).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Our current understanding of the atmospheric carbon cycle relies mainly on combining CO₂ measurements from ground sensor networks with transport models to inform flux inversions [1–3]. Space-based measurements of CO₂ can make significant contributions by observing areas that ground-based instruments cannot access, such as the open ocean or deep rain forest. More importantly, high precision data can expand the spatial and temporal coverage to reveal regional sources and sinks [3–7]. This will be critical for assessing the extent and variability of these fluxes as well as their sensitivity to future climate change.

Recent advances in space based remote sensing observations of CO₂ and other greenhouse gases hold promise for global monitoring efforts [8–12]. Measurements of the absorption of reflected sunlight by CO₂ can provide estimates of the column averaged CO₂ dry air mole fraction, X_CO₂, which are sensitive to CO₂ variations near the surface where most sources and sinks are located. The Japanese Greenhouse gases Observing SATellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were the first two satellites specifically designed to exploit this approach. GOSAT was successfully launched in January
2009 and has been routinely collecting CO₂ and methane observations over the sunlit hemisphere of the globe since April 2009 [13–15]. OCO was lost in February 2009 when its launch vehicle malfunctioned and failed to reach orbit. A replacement called OCO-2 is currently under development in preparation for a late 2014 launch.

Precise XCO₂ measurements are needed because surface sources and sinks of CO₂ produce small spatial and temporal variations in this quantity [4]. While the atmospheric CO₂ mixing ratio can vary by as much as 8% near the ground, these perturbations decay rapidly with height such that XCO₂ variations rarely exceed 2% on regional scales. Existing data show that XCO₂ variations are usually no larger than 0.3% on regional scales, and that these variations have representative spatial scales that range from 100 km over continents to 1000 km over the ocean. Resolving the most important regional fluxes necessitates accuracy to within 0.25% (1 ppm) [4].

To meet these precision requirements, the GOSAT and OCO-2 instruments acquire high resolution spectra in three spectral ranges: two for estimating CO₂ abundance using rovibrational absorption bands at 1.61 μm and 2.06 μm, and one for simultaneous measurement of the O₂ A band at 0.76 μm to determine photon path length and surface pressure [16]. The OCO-2 retrieval algorithm [16,17] uses a forward radiative transfer model to simulate an observed spectrum for a given atmospheric state. An inverse model, based on optimal estimation [17], then uses the differences between the observed and simulated spectrum to modify the state properties and improve the fit [8–10]. Because a 0.25% variation in the CO₂ column abundance produces spectral variations that are much smaller than this, both high precision measurements and a high fidelity forward model are needed. The forward model must account for all physical phenomena that contribute to the atmospheric spectrum such as absorption, gas and aerosol scattering, surface reflectance, surface pressure, and the atmospheric temperature and water vapor profiles [12,16].

Only a small fraction of the uncertainty budget remains for uncertainties in CO₂ and O₂ spectroscopy [4,18]. Consequently evaluation and refinement of the retrieval spectroscopic models has been an important part of the OCO-2 preparatory effort. To validate the spectroscopic molecular line parameters used in the forward model, we must demonstrate a radiometric accuracy of 0.1% on laboratory spectra which approaches the peak-to-peak errors of the best fits. Systematic errors are of particular concern since they introduce regional biases that imitate sources and sinks [4,19].

This paper focuses on the pressing challenge of CO₂ absorption at 1.61 μm and 2.06 μm. Ground-based studies report inconsistencies in the CO₂ total columns retrieved using these two spectral regions and attribute systematic errors to the basic line parameters (such as line intensities and Voigt pressure broadening coefficients) [12,16,20,21,26]. At the same time, laboratory studies demonstrate that the choice of molecular line shape impacts the retrieved line parameters. In addition to Lorentz broadening, one must consider the combined effects of Line Mixing (LM), speed dependence and narrowing [18,22–24]. The best line shape choice is still uncertain, but profiles which model line mixing and speed dependence provide superior fits to CO₂ lab data [23] while line mixing improves atmospheric retrievals [25]. Non-Voigt line shapes also provide more physically plausible values for related line parameters [24].

Several groups have used new LM models for infrared remote sensing of CO₂. LM was introduced into the Atmospheric Infrared Sounder (AIRS) retrieval algorithm for 14 μm spectral soundings [26], and demonstrated in Fourier Transform Spectrometers on balloon and aircraft platforms [27]. New LM models have significantly improved fits to upward-looking atmospheric spectra in the OCO-2 bands [28,29]. However the best fits still show persistent structured residuals at 2.06 μm [25]. Speed dependent line shapes remain virtually unused in atmospheric retrievals due to their computational complexity and the lack of standardized software, atmospheric, and laboratory evaluation benchmarks. Some combination of the non-Voigt line shapes is needed to achieve the radiometric accuracy required for OCO-2.

This work describes the first atmospheric tests of CO₂ absorption cross sections derived from new laboratory studies that combine LM parameters [30] with a speed dependent line shape profile [31–33]. First we apply the proposed database to high-resolution laboratory spectra acquired under homogeneous conditions with controlled gas abundances, temperature, and illumination. We then perform atmospheric retrievals of XCO₂, with solar observations from the Total Carbon Column Observing Network (TCCON) [20,21,34]. These upward-looking spectra are a conceptual bridge between the laboratory and orbital retrieval scenarios. They are simpler than the downward-looking case due to improved SNR, the lack of significant optical path length biases associated with scattering, and direct sensing of atmospheric conditions at the surface. The path lengths reveal weak CO₂ lines to a degree unattainable under typical laboratory conditions, providing an independent validation of the new line parameters. Finally, we test orbital soundings using the OCO-2 retrieval algorithm. We consider a representative set of GOSAT orbits with hundreds of soundings acquired by the TANSO-FTS instrument [12]. The GOSAT tests use the full OCO-2 Level 2 retrieval algorithm and the associated challenges of aerosol scattering, surface reflectance, and lower SNR [16]. These demonstrate non-Voigt line shapes in an atmospheric retrieval process capable of meeting strict throughput requirements for OCO-2, which is expected to yield approximately 10⁵ cloud-free soundings each day.

2. Absorption coefficient models

The new cross sections are based on a multispectrum parameter fitting procedure that combines dozens of laboratory spectra in a least-squares optimization. Low pressure spectra provide intensities and line positions, while higher pressure scans characterize line mixing, self- and air-broadened half widths. We refer the interested reader to a description by Benner et al. [35] and supporting texts by Vittu [33] and Predoi-Cross et al. [31]. We will review the most important aspects here.
2.1. Line Mixing

Line Mixing (LM) is a broad topic for which Hartmann et al. provide a comprehensive review [36]. Our specific formulation follows Predoi-Cross et al. and Levy et al. [37,38]. We express the combined absorption from a spectrum of interacting Lorentz lines as a function \(I(\omega) \) of frequency \(\omega \):

\[
I(\omega) = \frac{1}{\pi} \text{Im}[X_i^T (1 - \omega_0 - iW)^{-1} \rho X_i] \quad \text{for} \quad X_i = \sqrt{S_j}/\rho_j \tag{1}
\]

Here \(I \) is the identity matrix and \(\omega_0 \) is a diagonal matrix of zero-pressure line positions. The diagonal matrix \(\rho \) holds relative populations for lower energy states, and \(X \) is a vector with an element for each line \(j \) given by intensity \(S_j \) and the number density \(\rho_j \). The relaxation matrix \(W \) determines the strength of coupling between interacting pairs of lines [36]. Diagonal elements of \(W \) have real and imaginary parts representing Lorentz half widths \(\omega \) and pressure shifts \(\delta \):

\[
W_{jj} = \omega_j - i\delta_j \tag{2}
\]

Off-diagonal elements describe mixing between different transitions. These are proportional to pressure, and have the same units as the Lorentz half width. We compute a matrix element \(W_{jk} \) by summing contributions \(W_{jkr} \) for each broadening gas \(r \) in proportion to volume mixing ratio \(\chi_r \):

\[
W_{jk} = \sum_r \chi_r W_{jkr}(T_0) \frac{T_0}{T} m_{jr} \tag{3}
\]

Temperature dependence exponents \(m \) are relative to a reference temperature \(T_0 \) (296 K). The off-diagonal relaxation matrix elements satisfy a detailed balance relationship:

\[
W_{kj} = \sum_r \chi_r \left(\frac{\rho_{kr}}{\rho_{jr}} \right) W_{jkr}(T_0) \frac{T_0}{T} m_{jr} \tag{4}
\]

These elements are interdependent with Lorentz widths and pressure shifts, so it is important to retrieve all parameters simultaneously.

Evaluating Eq. (1) requires a matrix inversion for each spectral point. Following Pine [39], we transform Eq. (1) into a more convenient representation using generalized line parameters [39]. We diagonalize the matrix \(\omega_0 + iW \) using:

\[
A^{-1}(\omega_0 + iW)A = \Lambda \tag{5}
\]

The columns of \(A \) are normalized eigenvectors whose eigenvalues correspond to entries in the diagonal matrix \(\Lambda \). We further define:

\[
\zeta_j = \text{Re}(X^T A) \text{Re}(A^{-1} \rho X)_j \tag{6}
\]

\[
\eta_j = \text{Im}(X^T A) \text{Re}(A^{-1} \rho X)_j \tag{7}
\]

Eq. (1) is then equivalent to the following expression [38,39]:

\[
I(\omega) = \frac{1}{\pi} \sum_{j=1}^{N} \zeta_j \text{Im}[A_{j}] + \eta_j(\omega - \text{Re}[A_j]) \tag{8}
\]

This has the same form as a Rosenkranz first-order LM approximation:

\[
I_{R}(\omega) = \frac{1}{\pi} \sum_{j=1}^{N} \frac{\zeta_j + \eta_j(\omega - \text{Re}[A_j])}{\omega^2 + (\omega - \text{Re}[A_j])^2} \tag{9}
\]

Consequently we can evaluate Eq. (1) using a sum of Lorentz profiles with first-order line mixing. These “pseudo-profiles” use the following generalized parameters: the intensity \(S_j \) becomes \(\zeta_j \), the first order line mixing parameter \(Y \) times the line intensity \(S_j \) becomes \(\eta_j \), the line spectral position \(\omega_0 \) becomes \(\text{Re}[A_j] \), and the Lorentz half width \(\omega \) becomes \(\text{Im}[A_j] \). The resulting absorption cross sections are mathematically equivalent to the complete spectrum of mixed Lorentz lines [39]. In principle, many lines are coupled and the magnitude of the mixing effect decreases smoothly with increasing separation [40]. In practice the limited number of laboratory spectra do not provide enough constraints to fit all the terms in the full relaxation matrix \(W \). Instead, we desire a constrained parameterization with appropriate flexibility for our atmospheric application. The OCO-2 approach fits all tridiagonal matrix terms, explicitly modeling interaction between neighbor lines of P- and R-branches [30]. The tridiagonal relaxation matrix uses immediate neighbor coefficients to approximate the influence of the more distant lines. The carbon dioxide lines in these bands are spaced widely enough that the approximation is effective for atmospheric pressures and temperatures. We set these parameters directly with simultaneous fits of multiple lab spectra, holding all other off-diagonal relaxation matrix elements to zero [23,30].

2.2. Speed dependent line shapes

Here we extend Eq. (8), which describes a mixed Lorentz profile, to incorporate Doppler broadening and speed dependence effects. A speed dependent profile [31,32] refines the Lorentz contribution by accounting for various speeds at the time of collision. Specifically, it is the convolution of Doppler and Lorentz profiles integrated over possible collision speeds. While there is no consensus on the best physical model or line shape for NIR CO₂ spectra, profiles using a quadratic speed dependence have been shown to fit laboratory data better than a standard Voigt model [24]. One can compute a speed dependent line shape using a combination of two Voigt profiles [32] or, as in this work, by numerical integration. We employ a quadratic speed dependence relationship first introduced in [41], detailed in Vitcu [33] and further elaborated by Benner et al. [30]. Like the complex Voigt profile, the speed dependent Voigt \(V_{L}(\omega) \) has real and imaginary parts:

\[
V_{L}(\omega) = K_{L}(\omega) + iL_{L}(\omega) \tag{10}
\]

We parameterize each collisionally isolated line, \(j \), using the Lorentz half width, \(\omega \), spectral line position, \(\omega_0 \), and a Dicke narrowing parameter, \(H \). Convolving Lorentz and Doppler profiles and integrating over velocity [42], we have

\[
K_{L}(\omega) = \frac{2}{\pi} \int_{-\infty}^{\infty} ve^{-v^2} \tan^{-1}(Q_{L}(v,\omega)) \ dv \tag{11}
\]
retrieval performance with a small ad hoc absorption. We found that we could improve atmospheric include CIA, but continuum-level effects may still arise in atmosphere [28]. Our basic parameterization does not laboratory data the CO$_2$ Doppler width is close to the FTS both alter the line shape in similar ways, and distinguishing set to zero because narrowing and speed dependence can

We substitute the generalized Lorentz line parameters defined in Section 2.1 into this expression in order to capture the combined effects of speed dependence, Doppler broadening and line mixing.

In this work the Dicke narrowing parameter H_I is always set to zero because narrowing and speed dependence can both alter the line shape in similar ways, and distinguishing the two effects requires very high spectral resolution. In the laboratory data the CO$_2$ Doppler width is close to the FTS Instrument Line Shape. Consequently, in the spectra where Dicke narrowing is most active, each narrow line provides a single point measurement with only enough information to retrieve position and intensity. Other ways to estimate Dicke narrowing include computing H_I directly from the gas diffusion constant or retrieving it from measurements with higher spectral resolution.

2.3. Continuum effects

Apart from LM effects, previous researchers have raised the possibility that Collision Induced Absorption (CIA) could play a role in NIR rovibrational transitions for CO$_2$ [25]. Recent results by Lamouroux et al. [28] provide an upper limit on CIA for NIR CO$_2$ that would be negligible in the atmosphere [28]. Our basic parameterization does not include CIA, but continuum-level effects may still arise in atmosphere due to solar lines or unmodeled atmospheric absorption. We found that we could improve atmospheric retrieval performance with a small ad hoc continuum absorption. We generate the pressure continuum with a pair of Gaussian distributions centered at 4853.5 and 4789 cm$^{-1}$, with respective widths 10 and 8 cm$^{-1}$ and peak intensities of 2×10^{-24} and 4.2×10^{-25} cm$^{-1}$ (molecule cm$^{-2}$). These parameters were determined by empirical modification to improve fits to atmospheric spectra. This modification is directly proportional to pressure, though a “pressure squared” correction yields similar results. In general, atmospheric tests do not yet provide strong evidence to show if this is caused by physical atmospheric effects, modeling error, or a computational artifact.

2.4. Table computation

The OCO-2 mission will produce approximately 10^5 cloud-free soundings per day. To satisfy retrieval data throughput requirements we perform all cross section computations in advance. This is particularly important for computationally intensive LM calculations having many pairwise interactions between lines. We cache the absorption coefficients in a lookup table (ABSCO table) indexed by pressure and temperature. The tests that follow use a spectral grid spacing of 0.002 cm$^{-1}$. We record cross sections at 70 pressures evenly spaced at 1 kilometer altitude increments. The 17 temperature levels lie on an evenly spaced grid centered at the mean vertical temperature profile for historical GOSAT retrieval footprints, as given by the European Centre for Medium-Range Weather Forecasts (ECMWF). This provides coverage over all physically reasonable atmospheric conditions. At runtime, a linear interpolation provides cross sections.

Table 1 summarizes our spectroscopic data sources for the proposed databases. A modified version of the multispectrum nonlinear least squares fitting technique of Benner et al. [30] computes the main isotopologue for CO$_2$ lines near 4850 and 6200 cm$^{-1}$ using a speed dependent line profile. As mentioned previously, these parameters originate from a least squares multispectrum retrieval process described in [35] with laboratory results reported in [23,30].

Fig. 1 shows a typical fit of the 2.06 μm CO$_2$ band to a laboratory spectrum from the JPL Bruker FTIR instrument [46]. Here, a low pressure HCl cell in line with the main cell was used to characterize the instrumental line shape and provide an absolute frequency calibration. This spectrum contributed to the multispectrum fitting procedure. The subsequent cross section tables reproduce a good quality fit, which provides confidence in the calculation. Peak residuals near 0.1% may be related to line shape, and approach the limits of laboratory accuracies achievable with this parameterization. The residuals are expressed in terms of the maximum transmission level. The right panel gives an expanded view of the residual structure near 4824.5 cm$^{-1}$.

Fig. 2 shows a 1.61 μm spectrum not incorporated into the Devi et al. fits [23]. This is a more challenging case, since transmittance is computed without modifying line parameters to fit the experimental data. Only the volume mixing ratio is optimized, and it converges to a value within 2% of the recorded estimate. Peak residuals are a small fraction of a percent, and the retrieved CO$_2$ volume mixing ratio is within the uncertainty in laboratory conditions.

3. Atmospheric evaluation and results

3.1. The TCCON uploading FTIR network

TCCON is a global network of upward-looking FTIR spectrometers that measures transmittance along a direct

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2.06 μm CO</th>
<th>1.61 μm CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensities</td>
<td>Benner [30]</td>
<td>Predict [43]</td>
</tr>
<tr>
<td>Air-widths</td>
<td>Benner [30]</td>
<td>Predict [43], Devi [23]</td>
</tr>
<tr>
<td>Line shapes isotopologues</td>
<td>SD+LM, Toth [44], Rothman [45] (text)</td>
<td>SD+LM, Rothman [45] (text)</td>
</tr>
<tr>
<td>Speed dependence</td>
<td>Benner [30]</td>
<td>Devi [23]</td>
</tr>
<tr>
<td>Continuum</td>
<td>n/a</td>
<td>(See text)</td>
</tr>
<tr>
<td>Collisional narrowing</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Each station tracks the sun across a range of airmasses and seasons. These instruments have important advantages for our evaluation. Their high spectral resolution of 0.014 cm$^{-1}$ is a stringent test of line shape subtleties. Their SNR is approximately 5000, an order of magnitude better than OCO-2. Viewing the solar disk center directly allows them to neglect atmospheric scattering effects, and the atmospheric conditions are constrained by sensors at the surface and occasional aircraft column measurements. They are true atmospheric measurements and observe phenomena that it is not feasible to measure in the lab experiments.

Here we evaluate performance on upward-looking atmospheric FTS spectra from a TCCON site in Park Falls, Wisconsin. We choose an initial dataset of 140 spectra from 22 December 2004 that has already been used in previous spectroscopic studies [25]. The soundings comprise a diverse dataset with varying SNR and airmasses ranging from less than 3 to over 12. Conditions at the ground site were very cold (−20 °C) and dry; this minimizes confounding effects.
such as H₂O broadening of CO₂ and drawdown from photosynthesis. The measured surface pressure ranged from 964 hPa to 967 hPa, with a standard deviation of just 0.7 hPa. It is likely that X_CO₂ did not change significantly during the day.

The upward-looking retrievals use a variant of the OCO-2 Level 2 algorithm with an a priori atmospheric model based on pressure and temperature profiles for that locale and day from the National Centers for Environmental Prediction (NCEP). These data are re-gridded into 70 atmospheric levels. A raytracing algorithm uses an oblate spheroid globe model to compute the path distance through each layer. It feeds into a radiative transfer code by Spurr [47] which performs computations of direct beam attenuation and refractive effects to simulate the observed spectrum. The retrieval rescales the entire vertical refractive effects to simulate the observed spectrum. The retrieval performs computations of direct beam attenuation and refractive effects to simulate the observed spectrum. Consequently the total absorption cross sections of the two bands are scaled for mutual consistency and agreement with a priori atmospheric predictions from ECMWF profiles. This results in a further scaling factor of 0.99388 applied to the 2.06 μm band and 1.00539 to the 1.61 μm band.

We compare the proposed spectroscopic database against a benchmark standard from Lamouroux et al. [28]. The Lamouroux et al. [28] database differs in two ways: it uses a standard Voigt line shape, and computes LM using an alternative parametric form of the relaxation matrix. This parametric form is based on the Energy Corrected Sudden (ECS) model [48]. The ECS model relates all off-diagonal terms through a power law with four temperature- and perturber-dependent free parameters. A subsequent renormalization procedure guarantees consistency of the final result with detailed balance and the known diagonal elements. This contrasts with the proposed OCO-2 approach that uses nearest neighbor line mixing. Both databases use internally self-consistent parameters retrieved using the appropriate line shape assumptions. However we emphasize that the source data, line shape, and relaxation matrices all differ between the two alternatives so this comparison cannot attribute performance differences to a particular model choice. Instead, our test aims to characterize the empirical performance of these two state-of-the-art databases on atmospheric data. We will subsequently refer to the two methods as the benchmark and proposed approaches. We use these two alternative methods to compute cross sections for the P and R branches of the 1.61 μm and 2.06 μm bands. Isotopologue corrections are held constant between the two isotopologue’s abundance independently at runtime. The 6% enhancement has proven consistent across multiple soundings and path lengths.

During a combined retrieval with both the 1.61 μm and 2.06 μm CO₂ bands, any disagreement in band strengths can preclude convergence to an optimal fit because the two bands work against each other producing different values of X_CO₂. Consequently the total absorption cross sections of the two bands are scaled for mutual consistency and agreement with a priori atmospheric predictions from ECMWF profiles. This results in a further scaling factor of 0.99388 applied to the 2.06 μm band and 1.00539 to the 1.61 μm band.

We compare the proposed spectroscopic database against a benchmark standard from Lamouroux et al. [28]. The Lamouroux et al. [28] database differs in two ways: it uses a standard Voigt line shape, and computes LM using an alternative parametric form of the relaxation matrix. This parametric form is based on the Energy Corrected Sudden (ECS) model [48]. The ECS model relates all off-diagonal terms through a power law with four temperature- and perturber-dependent free parameters. A subsequent renormalization procedure guarantees consistency of the final result with detailed balance and the known diagonal elements. This contrasts with the proposed OCO-2 approach that uses nearest neighbor line mixing. Both databases use internally self-consistent parameters retrieved using the appropriate line shape assumptions. However we emphasize that the source data, line shape, and relaxation matrices all differ between the two alternatives so this comparison cannot attribute performance differences to a particular model choice. Instead, our test aims to characterize the empirical performance of these two state-of-the-art databases on atmospheric data. We will subsequently refer to the two methods as the benchmark and proposed approaches. We use these two alternative methods to compute cross sections for the P and R branches of the 1.61 μm and 2.06 μm bands. Isotopologue corrections are held constant between the two test scenarios, as are all other bands and absorbers.

Fig. 3 shows the residual of a typical 2.06 μm band sounding at 10 airmasses, shown as a percentage of...
maximum radiance. The red residual line shows the fit from the benchmark database, with structured residuals apparent in the P branch near 4840 cm\(^{-1}\) as noted in [25]. The proposed database improves this region. Several H\(_2\)O line residuals also appear; these are more difficult to address in this retrieval process due to differences between the actual column and the a priori atmospheric profile of H\(_2\)O mixing ratios. Fig. 4 shows a similar comparison of the 1.61 \(\mu\)m band. Here LM is less prominent, and performance improvements from the proposed database are more ambiguous.

Fig. 5 plots spectral residuals and \(X_{\text{CO}_2}\) for retrievals that use each band alone as well as a two band retrieval that fits both spectra simultaneously. The proposed database consistently improves the overall spectrum fit. The improvements are largest in the 2.06 \(\mu\)m band. Fig. 5 (Right) shows the retrieved \(X_{\text{CO}_2}\). Table 2 quantifies the airmass bias with the linear slope and correlation coefficients, and the Spearman \(\rho\) rank correlation coefficient for \(X_{\text{CO}_2}\) vs. airmass. The airmass bias improves somewhat (i.e. the slope magnitude is reduced) for each band taken alone as well as for the 2-band retrieval. Again, the largest benefit is for retrievals involving the 2.06 \(\mu\)m band.

3.2. Orbital retrievals with GOSAT

Prior to the OCO-2 launch, the team has worked directly with GOSAT data to refine the retrieval approach, and has benefited from partnership and generous support of the GOSAT and TANSO-FTS teams. The TANSO-FTS instrument offers 0.2 cm\(^{-1}\) spectral sampling, with resolution generally comparable to OCO-2. The GOSAT soundings introduce challenges of true space-based reflected sunlight measurements including pathlength uncertainties associated with scattering aerosols and the surface. Here we validate the new absorption cross sections using a selected sample of satellite data. Specifically, we provide

Fig. 4. TCCON spectral residual for a typical 10 airmass sounding in the 1.61 \(\mu\)m band from the Park Falls FTS station, 22 December 2004. The right panel shows detail of the fit at 6212.5 cm\(^{-1}\) (see text and Figs. 2 and 3).

Fig. 5. Performance comparison of the two spectroscopic databases on a TCCON dataset from Park Falls, Wisconsin, 22 December 2004. Left: Mean squared relative error of the modeled and measured spectra. Right: retrieved \(X_{\text{CO}_2}\) as a function of airmass.
reduction in mean speed dependent profile and new LM yields the largest bands of the three-band retrieval. The database with a reference in [29]. Collisional narrowing parameters are approximately 10 hPa [12]. This is likely related to O2 currently exhibits a systematic air pressure error of available, but are not used. The OCO-2 retrieval algorithm improvements at 1

generally corroborates the TCCON result. Fig. 7 shows that

comparison.

This plot shows reduced χ^2 values associated with both bands of the three-band retrieval. The database with a speed dependent profile and new LM yields the largest reduction in mean χ^2 value for the 2.06 μm band, which drops from 1.09 to 1.00. The change in 1.61 μm is consistent but the magnitude is much smaller. Dark lines show the ratio χ^2 score produced by the proposed parameters as a fraction of the benchmark score on the same sounding. We plot this distribution on the same axis but with horizontal values interpreted as a fractional ratio. The proposed parameters reduce the χ^2 values in the 1.61 μm band by about 8% with respect to the benchmark. In the 2.06 μm band, the proposed parameters reduce χ^2 by 11% with respect to the benchmark.

Finally we compare these GOSAT retrievals to coincident retrievals by the TCCON network. Here we use the daily mean value from the TCCON retrieval algorithm, called GFIT [34], as a reference standard. As noted previously, an upward-looking estimate is intrinsically more accurate than the GOSAT result. Moreover, the GFT TCCON retrievals have been extensively validated against in situ profiles provided by aircraft. It is not a perfect ground truth measurement since diurnal XCO2 variation would cause the GOSAT estimate to deviate from the TCCON daily mean even if both retrievals were perfect. The algorithms also share some potential sources of bias, such as their a priori atmospheric profiles. Despite these caveats, a separate retrieval algorithm is a valuable check on the orbital XCO2 accuracies.

We correct each XCO2 result by a constant factor to zero out mean bias against TCCON observations. Finally, we apply standard filtering rules from the OCO-2 Level 2 algorithm. These rules, detailed by Crisp et al. [12], are a series of exclusion criteria based on retrieval values such as χ^2, retrieved aerosol optical depth and surface pressure. These filters exclude data that is contaminated by clouds or other intermittent retrieval failures.

Fig. 9 plots the GOSAT retrievals against the TCCON standard using each of the spectroscopic databases. Table 4 quantifies the agreement. The overall yield (number of soundings passing the filter rules) increases by 5%, while the average scatter (absolute difference against the TCCON values) decreases from 1.5 to 1.39 ppm. A slight improvement in the linear correlation score is not significant for this dataset size. Overall however these performance scores are consistent with a slight comparative advantage to the new database.

4. Discussion

Benchmark results broadly agree with previous analysis of the TCCON dataset that finds persistent structured residuals in the 2.06 μm band [25]. The proposed model parameters further improve the spectrum fit, showing consistent benefits for multiple instruments and retrieval methods. These tests span a range of path length,
Fig. 6. Mean residuals in the 2.06 μm band for 425 GOSAT soundings covering a wide range of latitudes. As in Fig. 3, we compare the benchmark database of Lamouroux et al. [28] against the multispectrum retrieval of Benner et al. [30] using Speed Dependence with tridiagonal Line Mixing. The right panel shows a detailed view of the same mean residual.

Fig. 7. Spectral residuals, similar to Fig. 6 but for the 1.61 μm region. The retrieval itself used all three OCO-2 bands.

Fig. 8. Spectral residuals, showing the χ^2 values for both bands of the three-band retrieval. The mean χ^2 value drops from 1.09 to 1.00 in the 2.06 μm band after moving to the proposed database with a speed dependent line profile and tridiagonal mixing. The mean χ^2 also drops in the 1.61 μm band but the change is not as significant. Dark lines show the ratio of error scores (specifically, each sounding’s χ^2 using the proposed parameters as a fraction of the sounding’s χ^2 score using the benchmark parameters). These are plotted on the same axis, but horizontal values are interpreted as a fractional ratio. The mean ratio in the 1.61 μm band is 0.972 ($σ = 0.011$), and the ratio in the 2.06 μm band is 0.882 ($σ = 0.047$). The improvement is significant in both bands.
but its lack of alignment with known CIA continua may center could be related to broad continuum-level effects, such phenomena. An asymmetric structure at the band

trum fits used to derive line parameters do not yet resolve continuum absorption not included here. The multispec-
temperature dependence of line mixing, or sources of related to unmodeled effects such as Dicke narrowing,
beyond desired accuracy limits. These structures could be
achieve OCO-2 spectroscopic goals. First, systematic struc-
troscopy, to which non-Voigt line shapes are a first step.

Ultimately sub-percent retrieval accuracy for remote
improvements in converged processing pipeline, where they have produced similar improvements in converged \(\chi^2 \) goodness of fit values. Ultimately sub-percent retrieval accuracy for remote sensing demands significant refinement of existing spectroscopy, to which non-Voigt line shapes are a first step.

Despite these improvements the model does not fully achieve OCO-2 spectroscopic goals. First, systematic structures remain in 2.06 \(\mu \)m band retrievals at the 0.5% level, beyond desired accuracy limits. These structures could be related to unmodeled effects such as Dicke narrowing, temperature dependence of line mixing, or sources of continuum absorption not included here. The multispect-
trum fits used to derive line parameters do not yet resolve such phenomena. An asymmetric structure at the band center could be related to broad continuum-level effects, but its lack of alignment with known CIA continua [28] may

be more consistent with line shape or line mixing inaccuracies. Such spectroscopic residuals may contribute to an airmass dependence that remains even under the best atmospheric retrieval conditions (e.g. TCCON data collected on dry days). The “glint” mode of OCO-2 will enable high-SNR retrievals with very high airmasses, magnifying any airmass dependence in \(CO_2 \) spectroscopy.

The spectral fit improvements described here have done little to ameliorate this airmass dependence, which is consistent with other bottlenecks in the \(X_{CO_2} \) estimate beyond \(CO_2 \) line shape. Other contributors may include the solar spectrum model, atmospheric profile differences from the ECMWF prior, path-dependent differences in isotopic fractionation, and continuum-level absorption due to dimers or interferences. We cannot exclude these other effects, nor can we ignore line shape inaccuracies while systematic residuals remain.

5. Conclusions

We describe a direct retrieval of tridiagonal relaxation matrix elements and line shape parameters simultaneously, which significantly reduces the structured residuals seen at atmospheric optical depths. The best fits use a speed dependent line shape, which is consistent with laboratory results. While our comparison cannot conclusively attribute performance to a specific physical model or line shape, it underscores the influence of line shapes and line mixing parameterization on the retrieval. For OCO-2, attention to these factors is crucial to achieve the 1 ppm accuracies needed to identify sources and sinks on a global scale. The TCCON network of FTIR spectrometers provides invaluable validation because its high SNR and spectral resolution observations can use long optical path lengths to achieve a large range of opacities. Atmospheric spectra from both ground-based (upward-looking) and orbiting (downward-looking) sensors can validate the spectroscopy required for OCO-2 glint observations, provided the same molecular line profiles are applied in all cases.

The tests described here have implications for spectroscopic remote sensing in general. The atmospheric community has begun to employ some non-Voigt line shapes, such as the speed dependent Voigt for \(H_2O \) [53]. It has also considered line mixing for \(CO_2 \) [25]. It is generally acknowledged that reaching sub-1% accuracies in atmo-
spheric retrievals will require substantially improved laboratory results [54]. Future progress depends on correct understanding of molecular line shapes and having a consistent set of accurate line parameters.

Acknowledgments

We thank the OCO-2 ACOS Level 2 algorithm team including Annmarie Eldering, Vivienne Payne and Michael Gunson. We thank the members of the OCO-2 science team including Eli Mlawer and Iouli Gordon. We have also benefited from the counsel of Mitchio Okumura, Joseph Hodges, and David Long. GOSAT TANSO-FTS spectra were provided to the ACOS Team through a GOSAT Research Announcement (RA) agreement between the California

Table 4

Comparison of GOSAT soundings against coincident TCCON mean daily \(X_{CO_2} \) observations.

<table>
<thead>
<tr>
<th>Result</th>
<th>Benchmark</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful retrieval</td>
<td>279 (65.6%)</td>
<td>300 (70.6%)</td>
</tr>
<tr>
<td>(X_{CO_2}) scatter</td>
<td>1.50 ppm</td>
<td>1.39 ppm</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.767</td>
<td>0.781</td>
</tr>
</tbody>
</table>

Fig. 9. Comparison of \(X_{CO_2} \) retrievals from the GOSAT satellite with estimates by the Total Column Carbon Observing Network (TCCON).
Institute of Technology and the three parties, JAXA, NIES and the MOE. The European Centre for Medium-Range Weather Forecasts (ECMWF) provided meteorological data for initializing the retrievals. The Total Carbon Column Observing Network (TCCON) Archive, operated by the California Institute of Technology, supplied upward-looking measurements. U.S. funding for the Park Falls TCCON station comes from NASA’s Terrestrial Ecological Program, grant number NNX11AG01G. A portion of the research described was carried out at the Jet Propulsion Laboratory, California Institute of Technology and The College of William and Mary under contracts with the National Aeronautics and Space Administration. Copyright 2012, California Institute of Technology. All Rights Reserved. US Government support acknowledged.

References

[16] Rodgers R, Boulon C, Bonamy L, Hartmann JM. Temperature pressure and perturber dependencies of line-mixing effects in...

