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ABUNDANCE AND EXPLOITATION RATE OF THE BLUE CRAB
(CALLINECTES SAPIDUS) IN CHESAPEAKE BAY

A. F. Sharov, J. H. Vølstad, G. R. Davis, B. K. Davis,
R. N. Lipcius and M. M. Montane

A B S T R A C T

We estimated absolute abundance of the blue crab stock in Chesapeake Bay during winter
from stratified random surveys conducted baywide from 1990 to 1999, using the swept-area
method. We estimated catching efficiency of the survey gear from multiple depletion exper-
iments to correct for temporal and vessel/area differences in catchability. The survey was
conducted during the winter, when crabs are dormant and ‘‘buried’’ in the bottom. Analysis
of crab carapace width (CW) frequency distributions revealed two size modes: CW less or
equal 60 mm and CW greater than 60 mm, corresponding to age-0 (recruits) and age-11
(one year and older), respectively. Absolute density of blue crab recruits varied from 10 to
55 crabs per 1,000 m2 across years (95 million to 540 million baywide), with no significant
trends over time. Abundance of age-11 crabs declined significantly from 35 to 38 crabs per
1,000 m2 in 1990–1991 (342 million to 371 million crabs baywide) to 8.3 in 1999 (82 million
crabs baywide). A stronger decline in the number of males indicates that males were exploited
more intensively than females. A three-year moving average of spawning stock abundance
(age-11 females) declined twofold from the early to the late 1990s. The absolute abundance
of the blue crab population in Chesapeake Bay varied from 241 million to 867 million. Over-
wintering mortality was usually less than 2%, but substantially higher mortality occurred in
1994 (7.3%) and 1996 (11.9%). High correlation between January water temperature and the
percentage of dead crabs provides strong evidence of the adverse effect of cold winter on
survival of crabs. Large crabs were affected most by cold winter temperatures. We estimated
exploitation rates for the commercial fishery by comparing abundance with total landings.
The estimated exploitation rates varied from 40% to 52% from 1990 to 1998 and increased
to a record high of 70% in 1999. Fishing mortality rates varied from 0.6 to 0.9 year21 in
most years and were above the level providing maximum yield per recruit (Fmax 5 0.64
year21) in nearly all years. The record fishing mortality in 1999 (F1999 5 1.6 year21) exceeded
the overfishing threshold (F10% 5 1.0 year21). Despite evidence of growth overfishing, the
blue crab population supported large harvests throughout the 1990s. Increase of fishing mor-
tality above the F10% in 1999, indicates that the population was overfished and is at risk of
recruitment overfishing if fishing mortality remains at this level.

The blue crab (Callinectes sapidus) is distributed from Nova Scotia throughout
the East and Gulf coasts of the United States, and into the West Indies. Com-
mercial and recreational fisheries for this species exist in many states, including
New Jersey, Delaware, and the Carolinas. The largest fishery for the blue crab,
both today and historically, is on Chesapeake Bay in the states of Maryland and
Virginia. In 1998, the dockside value of these states commercial crab fisheries
exceeded $70 million, more than the value of the harvest of any other Bay species.
Blue crab provides a livelihood for many in the region and offers recreational
opportunities for many more. The overall economic contribution of commercial
and recreational crabbing is estimated to be in the hundreds of millions of dollars.
Despite some fluctuations, blue crab commercial landings have increased sub-
stantially since the 1930s (Fig. 1). Historically, the economic importance of the
blue crab commercial fishery increased as other commercially exploited species,
such as oysters and striped bass, declined (Rothschild et al., 1994; Richards and
Rago, 1999). Blue crab harvests remained consistently high through the 1980s
and early 1990s. However, after a record harvest in 1993, commercial landings
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Figure 1. Hardshell blue crab landings in Chesapeake Bay in 1930–1999. Source: VA—1930–1972,
National Marine Fisheries Service (NMFS); 1973–1995, Virginia Marine Resources Commission
(VMRC); MD—1930–1979, NMFS; 1980–1995, Maryland DNR. Note: reporting system has been
changed in 1980 in Maryland and in 1993 in Virginia. These changes are believed to have impacted
(i.e., increase) estimates of landings (Miller and Houde, 1998).

and catch per unit effort decreased. The steady increase in fishing effort required
to maintain large catches has raised concern that the blue crab population cannot
sustain this level of exploitation and eventually may collapse.

The need for data to manage the blue crab stock effectively led to the devel-
opment of a baywide winter dredge survey. Regional data on blue crab relative
abundance were available from Maryland’s trawl survey (Uphoff, 1998) and crab
pot survey at Calvert Cliffs (Abbe and Stagg, 1996) and Virginia trawl survey
(Lipcius and Van Engel, 1990; Rugolo et al., 1998). These surveys, however, had
limited spatial coverage.

This paper describes the principles of the design and analyses of the winter
dredge survey and presents the results of ten years of winter sampling of the blue
crab population of the Chesapeake Bay. We report on trends in blue crab abun-
dance by size/age and sex groups and present estimates of population exploitation
rates and fishing mortality over time. We assess the current status of the population
by comparing our estimates with several biological reference points proposed for
use in the management of the blue crab population.

MATERIAL AND METHODS

THE WINTER DREDGE SURVEY.—A stratified random dredge survey for blue crab in Chesapeake Bay
has been conducted between December and March each year since 1989/1990. In the following, each
survey year will be referred to by the latter year of the sampling season (i.e., 1990). A crab dredge
is employed in the survey to sample the crab population during winter, while crabs are dormant and
buried in the sediment (Rothschild et al., 1992; Zhang and Ault, 1995). The primary objectives of the
annual survey are: (1) to describe the size and sex composition of the baywide population, (2) to
develop accurate estimates of baywide blue crab abundance, and (3) to estimate exploitation and
fishing mortality and evaluate the status of the stock annually.
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Table 1. Winter dredge survey design and total effort, 1990–1999.

Survey
year Survey design

Sampling
area, km2

Number of
stations

1990 Stratified random, 25 geographic strata 7,940 9041

1991 Stratified random, 22 geographic strata 7,940 8771

1992 Stratified random, 3 geographic strata,
2 sediment sub-strata

11,057 9361

1993 Stratified random with proportional to
strata area station allocation, 3 geo-
graphic strata

10,140 964

1994–1999 Stratified random with proportional to
strata area station allocation, 3 geo-
graphic strata

9,812 1,248–1,500

1 Two tows were made at each station.

Between 877 and 1,500 stations have been sampled each year since 1990 (Table 1) in waters deeper
than 1.5 m (areas shallower than 1.5 m were not accessible to the boats used in the survey). The
sampling program evolved from a pilot survey conducted during the winter of 1989 (Rothschild et
al., 1992). The spatial coverage, stratification, and allocation of stations to strata varied before the
design was standardized in 1994 (Table 1). In 1990 and 1991 the Bay was divided into 25 and 22
strata respectively; most of the rivers and major parts of the bay formed separate strata. Since 1992,
three fixed geographic strata have been employed: (1) the Upper Bay and rivers, (2) the Middle Bay,
and (3) the Lower Bay (Fig. 2). Stratum 1 represents mostly shallow waters with low salinity (0–10
ppt), where the winter population is dominated by young-of-year crabs and adult males. Stratum 3
has higher levels of salinity (25–35 ppt), deeper waters and is inhabited primarily by mature females
in winter. Stratum 2 is an intermediate area.

The use of a small number of strata is often advantageous for marine resource surveys when the
total sample size is fixed (Pennington, 1996; Pennington and Strømme, 1998). In 1992, each of the
three geographic strata was divided into two substrata, with low (0–80%) and high (81–100%) gravel
content, respectively (Rothschild et al., 1992). Survey results indicated that substratification by sedi-
ment type produced only marginal gains in precision (Vølstad et al., 1994). The sediment stratification
was problematic because no accurate map of sediment distribution across the Chesapeake Bay exists;
the size of each substratum was estimated from sediment samples. The sediment distribution may vary
over time because of currents and tidal effects and can also vary along the length of a standard haul.
For such reasons, the exact areas of the sediment substrata cannot be obtained from available data.
The use of inaccurate substrata areas (weights) introduces a bias in estimates of mean and total
abundance (see Cochran, 1977: 117); therefore substratification was discontinued in 1993. After elim-
inating the sediment sampling, less time was spent at each survey station, and the average number of
stations sampled per day increased. Eliminating the laboratory processing of sediment samples also
reduced the cost of the survey.

Since 1993, the number of sites in each geographic stratum has been proportional to the area of
that stratum. Two replicate tows were conducted at each station from 1990 until 1992. For this period
we used the average of the replicate tows to calculate crab density at each station. Rothschild et al.
(1992) and Vølstad et al. (1994) demonstrated that catches from replicate tows within stations were
correlated (r2 varied between 0.5 and 0.7 across years), and thus the extra tow at each station only
resulted in a marginal increase in precision as compared to single tows. For a fixed survey cost, it is
therefore more effective to take single tows and use the time saved to increase the number of stations
(Pennington and Vølstad, 1994). For a correlation of 0.6, for example, 125 independent tows yield
density estimates with approximately the same precision as 200 tows from 100 random stations. Only
one haul was taken at each station during and after 1994, resulting in an increase of more than 25%
in the number of stations that could be sampled per day, therefore increasing the precision for fixed
survey cost. Figure 3 shows location of sampling stations in winter 1997 as an example of the sampling
intensity and spatial coverage of the survey.

FIELD METHODS.—At each station, a 1.83-m wide Virginia crab dredge was towed along the bottom
for one minute at a speed of 5.4 km per hour (3 knots). The dredge liner was composed of either
galvanized poultry wire, nylon, or polyethylene mesh. Galvanized poultry liner was used in stratum
1 (Upper Bay) and stratum 2 (Middle Bay) from 1990 to 1994, when it was replaced with nylon. The
polyethylene mesh has been used in stratum 3 (Lower Bay) since 1990. The dredge, with a 1.3-cm
liner, retains crabs with a carapace width (CW) larger than 15 mm (Cargo, 1954; Sulkin and Miller,
1975) and occasionally catches smaller crabs. The distance of each haul was determined by LORAN-
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Figure 2. Strata design, used in the winter dredge survey since 1993. Stratum 1—Upper Bay and
rivers, Stratum 2—Middle Bay, Stratum 3—Lower Virginia Bay.

C (1989–1995) or Differential Global Positioning System (1996–1999) readings of latitude/longitude
at the start and end of each haul; the area swept was estimated by multiplying the towing distance
with the dredge width (1.83 m). Depth at the start and end of each haul, water temperature, and salinity
were recorded at each station. All crabs in the catch were measured to the nearest mm from point to
point, weighed to nearest 0.1 g, and their sex and maturity stage determined.

DEPLETION EXPERIMENTS.—Since 1992, each vessel participating in the winter dredge survey has
conducted depletion experiments to estimate the dredge’s catching efficiency (Zhang et al., 1993;
Vølstad et al., 2000). The efficiency experiments generally were conducted at a random subset of
survey stations with medium to high crab density. Each experiment consisted of up to ten depletions
of a 100-m by 5.5-m area (three dredge widths) in Maryland or a 100-m by 9-m area (five dredge
widths) in Virginia, marked by buoys. Dredge tows were made in a random order. The experiment
ended if two consecutive tows did not catch crabs.

ESTIMATING CATCHING EFFICIENCY TO CALIBRATE SWEPT-AREA ESTIMATES.—An exponential model
was used to estimate the gear efficiency, or catchability coefficient (q), for each experiment (Seber,
1973; Vølstad et al., 2000):

yi 5 q(1 2 q)i21P0e (1)
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Figure 3. Location of sampling sites in 1997 blue crab winter dredge survey in Chesapeake Bay.

where yi is the number of crabs caught in the ith coverage, P0 is the number of crabs present in the
experimental area, and e is a random error. This model is linearized by a loge transformation:

loge(yi) 5 loge(q) 1 {loge(1 2 q)}(i 2 1) 1 loge(P0) 1 loge(e) (2)

and the parameters are estimated using linear regression. The catchability coefficient is then estimated
from the slope {loge(1 2 q)}, after re-transformation following the method of Finney (1941).

The distribution of crabs is typically patchy, and the mean density is sensitive to relatively few
large catches. We estimated a weighted mean catchability coefficient for vessel j in year k as

c qijk ijkq̄ 5 (3)Ojk Cjk

where cijk 5 cumulative number of crabs caught in the ith experiment by vessel j in year k, qijk is the
estimated catchability coefficient, and Cj,k is the total number of crabs caught in n experiments by
vessel j in year k. Because the number of experiments per vessel was small (#10), mean catchability
and its standard error were calculated using a jackknife estimator (Efron and Tibshirani, 1994).

TESTING FOR YEAR AND VESSEL EFFECTS IN CATCHING EFFICIENCY.—The catchability coefficients
estimated from 203 depletion experiments were analyzed using a two-way unbalanced ANOVA (GLM
procedure, SAS Institute, 1989) to determine temporal or vessel/area related differences in catchability.
The model was specified as:

qijkn 5 m 1 Vj 1 Tk 1 Ln 1 VjTk 1 e (4)

where qijkn is the catchability estimate for the ith experiment involving the jth vessel with dredge liner
Ln in the kth year, Vj (j 5 1, 2, 3, 4) is a vessel/area effect, Tk (k 5 1, . . . , 10) is a year effect, Ln (n
5 1, 2, 3) is a liner effect, VjTk is an interaction between vessel/area and year, and e is random error.
To account for the potential effect of the number of crabs at the experimental site on the estimate of
catchability coefficient, the number of crabs caught in each depletion experiment was included as a
covariate in the model.

ESTIMATING DENSITY AND ABUNDANCE.—Let xhijk denote the catch per area swept (numbers per m2)
at station i in stratum h by vessel j in year k, and let q̄jk denote the dredge catching efficiency for
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vessel j in year k estimated from equation (3). For each survey, the absolute number of crabs per m2

at station i in stratum h is estimated as

xhijky 5 (5)hi qjk

and the mean density of crabs in stratum h for year k is estimated by

nh,k1
ȳ 5 y (6)Oh,k i,h,kn i51h,k

with variance

nh,k

2(y 2 ȳ )O hi,k h,k
i51var(ȳ ) 5 (7)h,k n (n 2 1)h,k h,k

where nh,k is the number of hauls in stratum h in year k. The stratified mean density for the entire
survey area in year k is estimated by

Lk

ȳ 5 W ȳ (8)Ost,k h,k h,k
h51

with variance

Lk

2var(ȳ ) 5 W var(ȳ ) (9)Ost,k h h,k
h51

where Lk is the number of strata in year k, and Wh is the proportion of the total survey area in stratum
h. The absolute abundance (total number of crabs) in the Chesapeake Bay for year k is estimated by
extrapolating the mean density for that year to the entire area A,

tk 5 A 3 ȳst,k (10)

and the variance of the total abundance estimate is estimated by

var(tk) 5 A2 var(ȳst,k) (11)

We assume that the estimated mean density (eqs. 5–9) in any year is representative for the entire
distribution area for blue crabs in the Chesapeake Bay, although the surveys did not provide complete
coverage. Shallow waters (depth , 1.5 m) that constitute about 10% of the total bay area, were
sampled with a limited number of stations in 1992 and 1993 using a small modified dredge. Density
estimates derived from shallow waters were not significantly different than those derived for the area
deeper than 1.5 m (Rothschild et al., 1992). Absolute abundance was estimated by expanding crab
density for every year to the total bay area, estimated at 9,812 km2 by GIS.

TESTING FOR TRENDS.—We followed Hirsch et al. (1982) and used the Kendall test for trend in
abundance over the n sampling occasions (10 years in this analysis). Let xj and xk be estimated absolute
abundance in years j and k, respectively. The Kendall test statistic S is defined as

n21 n

S 5 sgn(x 2 x ) (12)O O j k
k51 j5k11

where

1 if u . 0


sgn(u) 5 0 if u 5 0

21 if u , 0

Under null hypothesis the mean and variance of S is

E[S] 5 0 Var[S] 5 n(n 2 1)(2n 1 5) 2 t(t 2 1)(2t 1 5)/18O
t

where t is the number of x’s involved in a given tie, and St denotes the summation of all ties. A
negative value of S represents a negative trend in abundance over the ten years analyzed. Kendall’s S
has an approximate normal distribution for n 5 10 (Hirsch et al., 1982); therefore, the test for trends
is based on the standard normal test statistic Z, computed as



549SHAROV ET AL.: ABUNDANCE AND EXPLOITATION RATE OF THE BLUE CRAB IN CHESAPEAKE BAY

 S 2 1
if S . 0

1/2(Var[S])
Z 5 0 if S 5 0 (13)

S 1 1 if S , 0
1/2(Var[S])

In a two-sided test for trend, the null hypothesis can not be rejected if zZz # za/2, with a being the
significance level of the test.

ESTIMATING EXPLOITATION AND FISHING MORTALITY RATES.—An estimator of exploitation rate U of
the Chesapeake Bay blue crab population is

C
U 5 (14)

N

where C is the total annual catch in numbers and N is number of crabs available to the fishery,
estimated as the absolute abundance of crabs in winter preceding spring through fall fishing season
(Ricker, 1975). Total catch in numbers was estimated from catch in weight data assuming an average
individual weight 150 g (Knotts, 1989), which corresponds to mean CW 5 147 mm. We derived
fishing mortality estimates iteratively by using Baranov’s catch equation (Ricker, 1975):

F
2(F1M)U 5 (1 2 e ) (15)

F 1 M

where F is instantaneous fishing mortality, and M is natural mortality. Natural mortality was assumed
to be equal to 0.375 year21 following Rugolo et al. (1998).

OVERWINTERING MORTALITY.—Since 1996, a subset of sites from the random survey performed in
December and January, were resampled in February and again in March to measure overwintering
mortality. In 1996, 59 sites were selected for mortality sampling, and in 1997 sampling was expanded
to 150 sites, all in Maryland’s portion of the Bay. The same design was used in 1998 and 1999.
Repetitive sampling indicated that the percentage of dead crabs increases towards the end of winter;
therefore, for the period before 1996, March samples from the random survey were used to develop
a time series of mortality estimates.

A regression analysis was conducted to explore a relationship between crab mortality and water
temperature. Lowest bottom temperature typically occurs in February. Although bottom temperature
data were not available for the entire time period, we found that mean bottom temperatures in February
and mean surface temperatures in January were highly correlated (r2 5 0.91, P 5 0.004). We regressed
January surface temperature with the percentage of dead crabs collected during March from 1990
through 1998 to determine if there was a significant relationship between mortality and temperature.

RESULTS

CARAPACE WIDTH FREQUENCY.—The frequency distribution of carapace width
had a characteristic bimodal shape for all years of sampling (Fig. 4). The first
mode (CW # 60 mm) corresponded to young-of-year (age-0) crabs hatched dur-
ing the preceding summer. The second mode (CW . 60 mm) represented crabs
one year old and older. Although the population of blue crabs consist of at least
three year-classes (Van Engel, 1958) and possibly six to eight (Fischler, 1965;
Rugolo et al., 1998), only age-0 can be separated from older crabs based on the
distribution of carapace width. Therefore, we estimated relative and absolute
abundance for age-0 and age-11 categories only, with further subdivision of
age-11 by sex.

RELATIVE DENSITY.—Relative density of the overwintering population of blue
crab from 1990 to 1999 (defined as the stratified mean number of crabs per 1,000
m2 swept by the dredge, uncorrected for gear catchability) was estimated using
methods consistent with the stratification scheme applied each year. Relative den-
sity of age-0 crabs fluctuated about sevenfold from a low of 1.6 in 1992 to a high
of 12.2 in 1997, with an average of 6.2 crabs per 1,000 m2 (Fig. 5a). Two strong
year classes (1995 and 1996) were observed in 1996 and 1997 sampling seasons.
These cohorts appeared to be two to three times more abundant than recruitment
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Figure 4. Carapace-width frequency distribution of the blue crab population in Chesapeake Bay in
winter 1995.

in other years. Neither of the two observations, however, was followed by an
increase in density of age-11 crabs during the following winter, as expected.
Age-0 crabs were usually more abundant than age-11 crabs. The total age-11
index of relative density averaged 4.3 crabs per 1,000 m2 for both sexes combined.
Unlike the juveniles, the relative density of age-11 crabs decreased substantially,
more than threefold from 6.6 per 1,000 m2 in 1990 to 1.8 per 1,000 m2 in 1999
(Fig. 5b). The relative density of all size and sex groups combined did not show
any specific long-term trend, but rather appeared to have a cyclical component
(Fig. 5c). The relative density for all crabs fluctuated from 6.0 to 15.6 crabs per
1,000 m2 with an overall mean across years of 10.5 crabs per 1,000 m2. A com-
parison of relative density of all crab age/size groups combined (Fig. 5c) with
the plot for age-0 crabs (Fig. 5a) indicated that recruitment variation is the prin-
cipal component of the total density dynamics. When separated by sex, both males
and females showed a substantial decline; however, the decline was more pro-
found for males with highest density during earliest years (Fig. 6). The average
relative density of males dropped from 3.9 per 1,000 m2 in 1990 to 0.7 per 1,000
m2 in 1999. Age-11 females declined with notable interannual variability in den-
sity from 2.7 in 1990 to 1.0 in 1999. The ten-year average was 2.1 crabs per
1,000 m2 and the decline was not monotonous.

CATCHABILITY ESTIMATES.—Because the dredge used in the survey does not
catch all crabs in the area swept, an estimate of the catchability coefficient is
needed to obtain the ‘‘true’’ density of crabs in the area. There was substantial
variation in catchability estimates between years and boats (Table 2). This vari-
ation can be explained potentially by the effect of different factors, such as boat
characteristics, captain’s skills, dredge liner, bottom sediment, depth, and others.
Unfortunately, the detection of the boat and year effect in our study was compli-
cated by the fact that different boats and dredge liners were used at different time
intervals (Table 2). To alleviate this problem, we attempted to confine the data to
the shorter time period (1993–1996) when each of the three principal vessels was
used. A balanced ANOVA indicated a statistically significant vessel effect (P K
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Figure 5. Relative density of blue crabs (unadjusted for catchability) in 1990–1999. A—age-0, B—
age-11, C—total. Error bars represent 95% confidence intervals.

0.01), but the year effect was not statistically significant (P 5 0.233). An unbal-
anced ANOVA using all data (SAS; proc GLM) showed significant effects of
year (P K 0.01), boat (P K 0.01), and liner (P , 0.05), but no effect of crab
abundance at the experimental sites on estimates of catchability (P 5 0.358) or
boat–year interaction (P 5 0.156). Because of the conflicting results of the two
analyses regarding the year effect, it remains unclear whether year is indeed a
significant factor. Because we were unable to separate year and liner effects, we
used vessel-specific estimates of the catchability coefficient calculated as a mean
for each period when a certain liner was in use (Table 3).
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Figure 6. Relative density of age-11 blue crabs in 1990–1999 (unadjusted for catchability) separated
by sex. A—males, B—females. Error bars represent 95% confidence intervals.

Table 2. Jackknifed yearly estimates of catchability coefficients by year and vessel (standard errors
presented in parentheses).

Vessel 1992 1993 1994 1995 1996 1997 1998 1999 2000

F/V ERIN KAY

F/V BRI-STEFF

F/V LONI

CAROL II
R/V BAY EAGLE

0.17
(0.02)
0.18

(0.05)
0.20

(0.09)
—

0.18
(0.01)
0.15

(0.03)
0.15

(0.03)
—

0.16
(0.04)
0.14

(0.03)
0.28

(0.04)
—

0.06
(0.03)
0.23

(0.04)
0.17

(0.03)
—

0.08
(0.06)
0.19

(0.16)
0.31

(0.09)
—

0.15
(0.04)

—

0.42
(0.03)

—

—

—

0.42
(0.03)
0.22

(0.08)

—

—

0.15
(0.03)
0.06

(0.03)

—

—

0.24
(0.03)
0.29

(0.03)

ABSOLUTE DENSITY AND ABUNDANCE.—Absolute density of age-0 crabs, esti-
mated as mean relative abundance corrected for catchability (eq. 8), varied from
9.7 to 55 crabs per 1,000 m2. Corresponding absolute abundance, estimated by
extrapolating the absolute density to the entire baywide distribution area (eq. 10),
varied from 95 million to 540 million with a periodic pattern (Fig. 7a). No sig-
nificant trend was detected for age-0 crabs (Z 5 20.18). The density of age-11
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Table 3. Vessel specific catchability coefficients calculated as mean for the time period when the
same dredge liner was in use. Superscripts indicate the type of the liner: c—chicken wire, n—nylon,
p—polyethylene.

Vessel 1990–1991 1992–1994 1995–1996 1997 1998–1999

F/V ERIN KAY

F/V BRI-STEFF

F/V LONI CAROL II
R/V BAY EAGLE

0.13p

0.16c

—
—

0.13p

0.16c

0.20c

—

0.13p

0.21n

0.29n

—

0.13p

—
0.29n

—

—
—

0.29n

0.19p

declined between 1990–1991 (35 to 38 crabs per 1,000 m2) and 1999 (8.3 crabs
per 1,000 m2) (Fig. 7b). Absolute abundance declined from a range of 342 to 371
million crabs in 1990 and 1991 to 82 million crabs in 1999. The dynamics of
total crab density (age-0 and age-11 combined) was clearly driven by recruitment
(Fig. 7c), with no significant trend in abundance over time (Z 5 1.61, 95% con-
fidence level). Estimated absolute abundance of the Chesapeake Bay blue crab
population for 1990 through 1999 fluctuated extensively from 241 million to 867
million. The 95% confidence intervals accounting for variance of the estimator
of average density were relatively small. Within the age-11 class, males declined
about fivefold between 1990 and 1999; females declined only two-fold (Fig. 8).
The absolute abundance of males declined substantially more (from 213 million
to 31 million crabs) than that of females (from 145–185 million between 1990
and 1993 to 51 million in 1999). The negative trends were significant for both
males (Z 5 22.33) and females (Z 5 21.97) at 95% significance level. At the
beginning of the time series, age-11 males were more abundant than females,
but that ratio was reversed in later years, when the densities and absolute abun-
dance of females was greater (Fig. 8). Average density of age-11 females may
serve as a proxy of spawning stock index because age-11 includes mostly mature
females. Those that are immature at the time of the winter dredge survey are
likely to mature during the next summer. The absolute density of spawning stock
varied by four-fold with a maximum of 19 crabs per 1,000 m2 in 1992 and a
minimum of 5 crabs per 1,000 m2 in 1999. A three-year moving average declined
twofold from 15.8 in 1990–1992 to 8.2 crabs per 1,000 m2 in 1995–1999. Cor-
responding absolute abundance of the spawning stock fluctuated between 51 mil-
lion and 185 million crabs. The amplitude of variation in crab abundance was
about threefold for total number of crabs and fivefold for recruitment.

EXPLOITATION AND FISHING MORTALITY RATES.—Age-11 abundance typically
was near the estimated number of crabs landed and was less than the landings
during three years out of ten (Fig. 9). If the number of crabs available to the
fishery (N) is estimated based on age-11, the corresponding exploitation rates
(eq. 14) are close to or exceed 100%. When N is based on total abundance (age-0
and age-11), the estimated exploitation rates range from a low of 0.39 in 1990
and 1993 to a high of 0.70 in 1999 (Fig. 10). With the exception of 1999, however,
the annual commercial exploitation rates varied in a narrow range between 0.4
and 0.5 (the overall mean 0.47). There was a significant increase in exploitation
rate in 1999. These estimates are conservative because they account for com-
mercial landings only. The number of crabs in the recreational harvest might
contribute significantly to the total removals, but the effect of recreational harvest
could not be quantified because of lack of information. Corresponding fishing
mortality of the blue crab population fluctuated from 0.7 to 1.15 year21 between
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Figure 7. Absolute density of blue crabs (adjusted for catchability) in 1990–1999. A—age-0, B—
age-11, C—total. Error bars represent 95% confidence intervals.

1990 and 1998 with an average of 0.94, but increased significantly to 1.6 year21

in 1999 (Fig. 11).
OVER-WINTERING MORTALITY.—The percent of dead crabs in repetitive sampling

increased with every round of sampling from January to March (Table 4), indi-
cating that sampling in March allows us estimate cumulative over-wintering mor-
tality for interannual comparisons. In seven out of ten years less than two percent
of crabs were dead in March sample (Table 5). More significant mortality of crabs
occurred in 1994 (7.3%), the record high occurred in 1996 (11.9%). Large crabs
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Figure 8. Absolute density of age-11 blue crabs (adjusted for catchability) separated by sex. A—
males, B—females. Error bars represent 95% confidence intervals.

(CW . 120 mm) suffered significantly higher mortality than smaller crabs. For
example, 56.5% of large crabs were dead in March 1996 compared to 6.1% for
age-0. When March mortality was regressed against January surface water tem-
perature for the time series, temperature was significantly associated with mor-
tality of both age-0 (r2 5 0.50, P 5 0.05) and large crabs (r2 5 0.59, P 5 0.026).

DISCUSSION

The baywide winter dredge survey, conducted from 1990 to 1999, allowed us
to identify trends in absolute abundance and characterize size and sex composition
of the Chesapeake Bay blue crab population. Estimates of the catchability coef-
ficient from depletion experiments combined with the data on relative abundance
collected using a stratified random survey permitted an assessment of the absolute
population abundance of the blue crab in Chesapeake Bay. The procedures de-
veloped set the stage for interannual comparisons of crab abundance and enabled
us to assess the effects of fishing.

Analysis of the survey data revealed that the total abundance of the blue crab
population (CW . 15 mm) fluctuated between 240 million and 870 million crabs
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Figure 9. Commercial catch in numbers (closed circles), absolute abundance of 11 age group
(squares) and total population of blue crabs with carapace width .15 mm (triangles).

Figure 10. Commercial fishery exploitation rate of blue crab population in Chesapeake Bay estimated
by comparing winter dredge survey absolute abundance estimates with commercial landings in num-
bers.

in a pattern best described as periodic. Comparing the dynamics of total popu-
lation abundance with the dynamics of age-0 crabs indicated that the former was
mostly driven by recruits, which constituted more than 50% of the population.
Visual inspection of age-0 abundance dynamics also suggested a periodic com-
ponent (Fig. 7). Such periodicity in recruitment abundance can be caused either
by environmental forcing or by the presence of a strong compensatory stock-
recruitment relationship (Ricker, 1954). For example, Kriksunov et al. (1992)
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Figure 11. Blue crab population fishing mortality rate in Chesapeake Bay in 1990–1999 in relation
to biological reference points F0.1, Fmed, F10%. (F1

10% is estimated by Rugolo et al. (1998), F2
10% estimated

by Miller and Houde (1998).

Table 4. Percent of dead crabs by size and month found in repeatedly sampled stations in 1996.

Month

Crab size in carapace width (CW)

CW # 60 60 , CW # 120 CW . 120 mm Total

January
February
March

0.3
3.76
6.08

0
13.89
30.16

9.47
20.21
56.45

1.04
6.09

11.89

showed that fish populations can exhibit periodic auto-oscillations predetermined
by life history parameters. At present we cannot identify a single environmental
factor of cyclical nature that would affect blue crab recruitment. On the other
hand, the idea of a density-dependent stock-recruitment relationship has been
explored in several studies. Tang (1985) fitted Ricker’s stock recruitment model
to the Chesapeake Bay blue crab data, incorporating several abiotic factors into
the model. Attempts to fit Ricker’s stock-recruitment model and arguments in
favor of the model were also reported for the blue crab in the Virgina’s portion
of the Chesapeake Bay (Lipcius and Van Engel, 1990) and Maryland’s portion of
the Chesapeake Bay (Uphoff, 1998). The fits of the model, however, were gen-
erally poor, probably because of low precision of the spawning stock and recruit-
ment estimates. Although the winter dredge survey produces relatively precise
estimates because of the baywide coverage and intensive sampling, we could not
detect any significant relationship between spawning biomass and recruitment
based on the current time series. Accumulating additional data in the future will
be critical to verify the existence of the periodic component and determine its
nature.

A trend in the amplitude of variation in abundance may serve as an indicator
of negative changes in population status. The fivefold range of variation in the
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Table 5. Annual mortality of blue crabs by size category and mean January surface water temperature.

Year
Temperature

8C

Crab size in carapace width (CW)

CW # 60 60 , CW # 120 CW . 120 mm Total

1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

1.88
4.16
4.05
4.32
2.06
4.61
0.92
2.69
3.5
3.12

0.1
0.3
0
0
2.8
0.7
6.1
0
0
0

1.0
1.3
0
1.6
5.2
1.1

30.2
3.8
2.6
2.1

11.1
4.5

14.3
3.4

26.1
4.9

56.5
4.96
2.07
7.1

1.9
1.4
2.0
1.7
7.3
1.7

11.9
0.74
1.31
1.8

abundance of age-0 blue crab observed in the winter dredge survey is consistent
with the recruitment variation reported for trawl data collected during spring
through fall from 1954 through 1989 in Virginia’s (Lipcius and Van Engel, 1990)
and Maryland’s (1978 to 1996) portions of the bay (Uphoff, 1998; Rugolo et al.,
1998). Both Maryland’s and Virginia’s trawl surveys covered periods of high and
low catches and presumably a wide range of population abundance; therefore,
they provided an estimate of the typical range of variation in blue crab recruit-
ment. There has been no apparent increase in the range of recruitment variation
of the blue crab during the 1990s as compared to the period from 1954 through
1996. Absence of a declining trend in recruitment abundance and stability of the
range of its variation suggests that there were no signs of recruitment overfishing
during the 1990s.

At the same time, there are some warning trends in the dynamics of the adult
component of the population. Survey results indicated a significant decline of
age-11 crabs from 1990 to 1999. This age group is considered to be the principal
component of the exploitable stock. The decline is probably the result of an
increase in natural mortality, fishery exploitation or both, because there was no
apparent diminishing trend in recruitment. A more pronounced decline in male
abundance (about threefold for three-year moving average) than for females
(about twofold for three-year moving average) most likely indicates higher ex-
ploitation rates for males than females. Male blue crabs are traditionally more
valued, and landings of male crabs usually exceed those for females. In some
years the male/female ratio in Maryland harvest was 1.8 to 2.5 (Speir et al., 1994).
Our observations corroborate the decline in abundance of male crabs in a long-
term crab pot study at Calvert Cliffs reported by Abbe and Stagg (1996). The
observed decline of the adult component of the stock and increase in fishing effort
(Rugolo et al., 1998) supports concern about potential overfishing of the blue crab
population.

Spawning stock abundance (age-11 females) also declined substantially; the
average value for the second half of the 1990s was twice as low as in the first
half of the 1990s. This decline may pose a significant risk of reduction in the
reproductive potential of the population which could result in recruitment over-
fishing and subsequent collapse of the population. However, reduction in spawn-
ing stock abundance does not seem to have adversely affected recruitment during
the 1990s. In fact, the two strongest year classes were produced by moderate
spawning stocks in 1995 and 1996. Despite the decline in abundance, the spawn-
ing stock seemed to be able to produce sufficient recruits during the 1990s. This
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suggests that the spawning stock biomass did not fall below the critical value
associated with recruitment failure.

Traditionally, the absolute abundance and biomass of mature females is a major
concern when evaluating the reproductive potential of a population. Recent studies
by Hines et al. (2003) demonstrated that a decline in the abundance of male blue
crabs, especially large males, may result in a deficit of sperm transferred to fe-
males during copulation. Significant reduction of sperm stored by females in sper-
matheca can cause a substantial reduction in egg production that would be fol-
lowed by a decline in recruitment. In view of these findings, a significant decline
of mature male abundance during the 1990s may cause a decline in egg production
by the population. This seems to be a unique example of male deficiency as a
limiting factor in reproductive success and sustainability of the exploited popu-
lation.

Although fishing is considered to be one of the principal factors affecting blue
crab abundance (Rugolo et al., 1998), some abiotic factors significantly affect
blue crab population dynamics. For example, Pearson (1948) and Tagatz (1969)
indicated that unusually hot summers or cold winters could be a threat to blue
crabs. The possibility of significant over-wintering mortality was suggested for
blue crabs in Delaware Bay (Kahn et al., 1998) and Chesapeake Bay (Uphoff,
1998). For the first time in the Chesapeake Bay area we were able to quantify
the over-wintering mortality rate and demonstrate its cumulative nature. Estimates
of over-wintering mortality during the 1990s indicated that the percentage of dead
crabs was usually low (less than 2% in most years), but relatively high percentages
of large dead crabs in 1994 (26%) and 1996 (56%) indicated substantial over-
wintering mortality of blue crabs. High correlation of water temperature with the
percentage of dead crabs provides strong evidence of the adverse effect of a cold
winter on survival of crabs in general and large crabs in particular. Apparently in
years with significant over-wintering mortality, an adjustment of the total abun-
dance estimate for the loss due to over-wintering mortality could improve esti-
mates of the exploitable stock size before the beginning of the new fishing season
and forecasted landings.

Absolute population abundance is one of the most desirable pieces of infor-
mation for fisheries management. The most accurate and precise estimates of mean
number of crabs per area swept will provide only a relative abundance index
unless they are corrected for gear efficiency (Zhang and Ault, 1995; Vølstad et
al., 2000). We cannot overstate the importance of obtaining precise estimates of
the catchability coefficient for estimating absolute abundance from a random sur-
vey. Not only a reliable catchability coefficient needed to estimate absolute abun-
dance, but also to provide unbiased estimates of trends in population dynamics.
For example, catchability-corrected absolute density of age 11 crabs (Fig. 7b)
showed a steeper declining trend than uncorrected values (Fig. 5b). Further direct
evidence of the importance of correcting for gear efficiency is the significantly
higher correlation between landings and the absolute density (r2 5 0.68, Fig. 12a)
compared to the correlation between landings and relative density (r2 5 0.41, Fig.
12b). High correlation between landings and catchability-corrected absolute den-
sity of crabs leads us to conclude that both characteristics are good measures of
the stock size and this relationship can be used as a predictive model. Estimates
of relative abundance can be used to describe trends only if the catchability co-
efficient of the sampling gear remains constant through time. Because the dredge
used in our survey is relatively inefficient (catchability coefficient varied from 0.1
to 0.3), even small changes in the catchability coefficient will have a very large
effect on the absolute abundance estimate. For example, a change of catchability
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Figure 12. Relationship between blue crab commercial harvest and baywide population density un-
corrected for gear catchability (A) and corrected for catchability (B).

from 0.2 to 0.1 will double an absolute abundance estimate. When the catchability
coefficient depends on a sampling year, vessel, or dredge liner, as in our study, it
is strongly recommended to conduct depletion experiments annually to calibrate
survey results. Although we cannot eliminate a ‘‘year effect’’ in catchability, we
can reduce variation in catchability estimates by maintaining consistency in the
survey procedure (i.e. use the same boat and dredge liner throughout the time
series). When a sufficient number of depletion experiments are conducted each
year at randomly selected sites that are representative of the sampled area by each
vessel participating in the survey, unbiased and precise estimates of catchability
can be obtained (Vølstad et al., 2000).

A series of estimates of absolute abundance combined with the landings data
provided an opportunity to determine both exploitation and fishing mortality rates
for the blue crab population. Exploitation and fishing mortality rates strongly
depend on the age or size at which crabs enter the fishery. Until recently it was
assumed that blue crabs reach minimum legal size (CW 5 127 mm) by their third
summer (Van Engel, 1958), or approximately at age two (Rothschild et al., 1992).
In previous analyses of blue crab population dynamics three age classes were
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assumed to be present in the overwintering population: age-0 or recruits of CW
less than 60 mm, age 1 of CW between 60 and 120 mm, and age 2 (or 21) with
CW greater than 120 mm (Rothschild et al., 1992; Rugolo et al., 1998). It was
assumed that only crabs that are age 1 and older at the time of the survey would
contribute to the fishery during the following fishing season. Our comparison of
absolute abundance of crabs age 1 and older with total catch showed that the
number of crabs removed by the fishery was close to or exceeded the estimated
absolute abundance of age-11 crabs in the Chesapeake Bay (Fig. 9), which seems
to be unreasonable. To explain this inconsistency, one should assume either that
we underestimated the number of age-11 crabs, or that small crabs grow faster
than assumed, and that crabs classified as age-0 class during winter survey are
recruited to the summer/fall fishery. We believe that it is unlikely that we sub-
stantially under-estimated the number of age-11 crabs in the survey area because
a stratified random survey produces unbiased estimates, and the high sampling
intensity of our survey resulted in highly precise abundance estimates. A possible
source of underestimation is the extension of the average catch-per-unit area to
the shallow waters (,1.5 m) that were not sampled consistently. If the actual
density of age-11 crabs in waters shallower than 1.5 m was greater than the
baywide average, we underestimated age-11 abundance in shallow waters; how-
ever, this area is only about ten percent of the Chesapeake Bay. A limited number
of stations sampled in shallow waters in 1991–1992 using a small modified dredge
produced estimates of the average density of age-11 crabs that were not signifi-
cantly different than those for the area deeper than 1.5 m (Rothschild et al., 1992);
consequently, if we underestimated age-11 absolute abundance, the underesti-
mation probably was small. Recreational landings of blue crab were not consid-
ered in this comparison because accurate estimates of historic recreational catches
were not available. Stagg et al. (1992) indicated, however, that the recreational
fishery could contribute substantially to the total removals. Recreational surveys
conducted by National Marine Fisheries Service (NMFS) and Maryland Depart-
ment of Natural Resources (MDNR) in 1983, 1988, and 1990 estimated yearly
recreational catches in Maryland only as 18.7, 9.6, and 5.0 thousand tons respec-
tively, which corresponds to 79%, 50% and 26% of commercial harvest (Stagg
et al., 1992). If recreational landings were added to the total removals, estimates
of the total catch would certainly exceed the exploitable population of blue crab.
More reasonable estimates of exploitation rate were obtained when we compared
landings with total abundance composed of both age-0 and age-11 crabs. This
suggests that crabs identified as age-0 in winter can reach minimum legal size of
127 mm CW during the following summer and recruit to the fishery within the
same season. Past and recent studies of blue crab growth in both the natural
environment and the laboratory provide growing evidence that blue crabs can
grow to harvestable size by their second summer. Van Engel (1958, 1987) noted
that crabs hatched during late May and June (prior to the peak of spawning
season) become legal adults (127 mm CW) or larger by August of the following
year in Chesapeake Bay. Eldridge and Waltz (1977) showed that on southern
sounds of South Carolina males recruited to the fishery in September or October.
Archambault et al. (1990) observed a similar growth rate at Charleston Harbor.
Rothschild and Sharov (1997) simulated blue crab growth, using information on
growth per molt and intermolt period reported by Churchill (1919), Gray and
Newcombe (1938), Newcombe et al. (1949), Tagatz (1968), and Leffler (1972),
Fitz and Weighert (1991), Rothschild et al. (1992) and found that crabs of 30 to
60 mm CW in winter can reach minimal legal size by August of the same year.
A recent study of blue crab growth in experimental ponds also indicated that



562 BULLETIN OF MARINE SCIENCE, VOL. 72, NO. 2, 2003

small crabs that are classified as age-0 in winter can grow to minimum legal size
and more by the end of the following summer (Se-Jong et al., 1999; D. Secor,
Chesapeake Biological Laboratory, unpubl. data). In addition, our analysis indi-
cated that the correlation between landings and the total crab abundance (r2 5
0.68) during winter was better than the correlation between landings and age-11
abundance (r2 5 0.58). This lends additional support to the suggestion that age-0
crabs recruit to the fishery the following summer. Given the structure of the blue
crab fishery (i.e., large number of participants and wide coverage of the Bay area
by fishing gears), we expect a strong relationship between crab abundance and
catch. This suggests that winter estimates of blue crab absolute abundance can be
used successfully to forecast summer catch, provided that fishing effort remains
stable or that changes in effort can be predicted.

When the total abundance of the blue crab population was used to calculate
the exploitation rate, we found that the commercial fishery removed about half
of the population with exploitation rates fluctuating between 45% and 55% be-
tween 1990 and 1998 and a corresponding range of fishing mortality of 0.6–0.9
year21. Our estimates of exploitation rates for 1990 through 1998 were similar to
those reported by Rugolo et al. (1998) for blue crab in Chesapeake Bay for 1960
through 1995. Rugolo et al. (1998) used Hoenig’s (1987) method, which estimates
total mortality based on mean carapace width of crabs in the population. It appears
that exploitation rates for the blue crab population from 1990 through 1998 were
relatively stable and similar to the rates experienced by the population during the
past 30 years, when the stock proved to be sustainable. Estimated exploitation
rates probably are robust because two independent studies employing different
techniques reached similar conclusions. The exploitation rate increased substan-
tially to 70% in 1999 with a very high corresponding fishing mortality of 1.6
year21. To determine whether these increases will lead to overfishing, current
fishing mortality rates must be compared with a reference point that defines the
limit beyond which overfishing occurs. Several reference points have been con-
sidered for use in managing blue crab fishery, such as the fishing mortality level
that produces the maximum yield per recruit (Fmax), the fishing mortality that
corresponds to the point on the yield-per-recruit curve that has a slope of 10% of
the slope of the curve at the point of origin (F0.1), and the fishing mortality rate
that reduces the spawning stock biomass to a certain percent of the virgin stock
(e.g., F10%; Rugolo et al., 1998; Miller and Houde, 1998). Rugolo et al. (1998)
estimated F0.1 5 0.36 and Fmax 5 0.64, whereas F10% was estimated as 1.21 year21.
Miller and Houde (1998) found F10% to range from 0.88 to 1.22 with a mean of
1.08 year21, depending on the maturity schedule. The Bi-state Blue Crab Advisory
Committee recently selected the F10% value as a threshold fishing mortality rate
for the Chesapeake Bay blue crab stock (Anonymous, 2001). The fishing mortality
rate estimated from the winter dredge survey data exceeded Fmax in most years
from 1990 through 1999, indicating growth overfishing (Fig. 11). Rugolo et al.
(1998) determined that fishing mortality rates have varied principally between 0.8
and 1.0 year21 since1956. These rates of fishing mortality exceeded Fmax, but were
below F10%. The history of the fishery, therefore, has demonstrated that the blue
crab population can sustain long-term exploitation with a fishing mortality rate in
the range of 0.8–1.0 year21. Fishing mortality exceeded the F10% estimates of both
Rugolo et al. (1998) and Miller and Houde (1998) in 1999, indicating that pop-
ulation overfishing occurred in that year. If our estimates of fishing mortality are
accurate, and if fishing pressure remains high, the blue crab population’s ability
to replace itself may be undermined. This is especially critical, given the com-
pensatory nature of the blue crab fishery, when the exploitation rate and fishing
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mortality are inversely related to the population abundance (Lipcius and Montane,
2001). Rugolo et al. (1998) noted that the blue crab fishery is severely overcap-
italized in terms of fishing effort; therefore, there is growing risk of collapse if
the fishing effort remains very high, while the population size is declining. For
conservative management, the fishing mortality rate has to be maintained below
the overfishing threshold. A long-term goal should be set to reduce the effort to
the level corresponding to a target fishing mortality (e.g., Fmax) that is sufficiently
lower than the overfishing threshold. Continuing the winter dredge survey is crit-
ically important because it will assure effective monitoring of trends in population
abundance and size/sex structure and allow managers act appropriately in a timely
matter to maintain the blue crab population at a sustainable level.
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