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on R

N is proved by using variational methods, and the new result
does not require usual compactness conditions. A cut-off functional
is utilized to obtain the bounded Palais–Smale sequences.
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1. Introduction

In this paper, we consider the positive solutions to the following nonlinear Kirchhoff type problem

(
a + λ

∫

RN

|∇u|2 + λb

∫

RN

u2
)

[−�u + bu] = f (u), in R
N , (1.1)

where N � 3, and a, b are positive constants, λ � 0 is a parameter. Kirchhoff type problem on
a bounded domain Ω ⊂ R

N

⎧⎪⎨
⎪⎩

−
(

a + b

∫
Ω

|∇u|2
)

�u = f (u), in Ω,

u = 0, on ∂Ω

(1.2)
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has been studied by many authors, for example [2,4–6,8,12,13,19,20]. Many solvability conditions
with f near zero and infinity for problem (1.2) have been considered, such as the superlinear
case [12]; and asymptotical linear case [16]. In addition, the following growth condition on f is often
assumed:

(f) f (t)t � 4F (t) for |t| large, where F (t) = ∫ t
0 f (s)ds,

which assures the boundedness of any (PS) or Cerami sequence. Indeed the condition (f) may appear
in different forms as follows:

(f0) there exists θ � 1 such that θG(t) � G(st) for all t ∈ R and s ∈ [0,1], where G(t) = f (t) − 4F (t)
(see [16]);

(f1) lim|t|→∞[ f (t)t − 4F (t)] = ∞ (see [19]); or
(f2) lim|t|→∞ G(t) = ∞ and there exists σ > max{1, N/2} such that | f (t)|σ � C G(t)|t|σ for |t| large

(see [12]).

In the above papers, each of the conditions (f0)–(f2) implies that condition (f) holds. On the other
hand, the condition (f) is sufficient to show the boundedness of any (PS) or Cerami sequence, which
has been proved in [18].

There are few papers considering Kirchhoff type problems on R
N except [18]. In [18], the author

studied the problem

−
(

a + b

∫

RN

|∇u|2
)

�u + V (x)u = f (u), x ∈R
N .

The existence of nontrivial solutions was proved in [18] under the condition (f) and

(V) V ∈ C(RN ,R), infx∈RN V (x) > 0 and for each M > 0, meas {x ∈R
N : V (x) � M} < ∞;

(H1) f ∈ C(R+,R+) and | f (t)| � C(|t| + |t|p−1) for all t ∈ R+ = [0,∞) and some p ∈ (2,2∗), where
2∗ = 2N/(N − 2) for N � 3;

(H2) limt→0
f (t)

t = 0;

(f3) limt→∞ F (t)
t4 = ∞.

In this paper, we prove the existence of positive solutions of (1.1) without the condition (f)
(or (f0)–(f2)), and we use a cut-off functional to obtain bounded (PS) sequences. We assume the
following weaker condition:

(H3) limt→∞ f (t)
t = ∞.

Our main result is as follows:

Theorem 1.1. Assume that N � 3, and a, b are positive constants, λ � 0 is a parameter. If the conditions (H1),
(H2) and (H3) hold, then there exists λ0 > 0 such that for any λ ∈ [0, λ0), (1.1) has at least one positive
solution.

Theorem 1.1 appears to be the first existence result for Eq. (1.1). We also remark that the condi-
tion (H3) is weaker than the ones in the above mentioned papers, in which lim|t|→∞ f (t)/t3 = ∞ or
a constant (which implies (H3)) was assumed. Since the result in Theorem 1.1 holds for λ = 0, then
we have the following corollary regarding the well-known semilinear equation.

Corollary 1.2. Assume that N � 3, and b is a positive constant. If the conditions (H1), (H2) and (H3) hold,
then the problem
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−�u + bu = f (u), in R
N (1.3)

has at least one positive solution.

Note that the existence result like the one in Corollary 1.2 has been obtained by many authors, for
example, [1,3,10,11,14]. Hence our result in Theorem 1.1 can be regarded as an extension of the clas-
sical result for the semilinear equation (1.3) to the case of the nonlinear Kirchhoff type problem (1.1).
On the other hand, it is not clear whether the result in Theorem 1.1 still holds for large λ > 0. In
our result, the choice of λ0 depends on the nonlinearity f , constants N , a and b, Sobolev embedding
constant, several test functions and constants used in the proof.

We recall some preliminaries and prove some lemmas in Section 2, and we give the proof of
Theorem 1.1 in Section 3.

2. Preliminaries

Let H1(RN ) be the usual Sobolev space equipped with the inner product and norm

(u, v) =
∫

RN

[∇u · ∇v + buv], ‖u‖ = (u, u)1/2.

We denote by | · |q the usual Lq(RN ) norm. Then we have that H1(RN ) ↪→ Lq(RN ) continuously for
q ∈ [2,2∗]. Let H = H1

r (RN ) be the subspace of H1(RN ) containing only the radial functions. Then
H ↪→ Lq(RN ) compactly for q ∈ (2,2∗) [17, Corollary 1.26, p. 18]. In this paper, we consider positive
solutions to (1.1), then we assume that f (t) = 0 for t < 0.

Define a functional Jλ on the space H by

Jλ(u) = 1

2
a‖u‖2 + 1

4
λ‖u‖4 −

∫

RN

F (u), u ∈ H .

Then we have from (H1) that Jλ is well defined on H and is of C1 for all λ � 0, and

(
J ′
λ(u), v

) = a(u, v) + λ‖u‖2(u, v) −
∫

RN

f (u)v, u, v ∈ H .

It is standard to verify that the weak solutions of (1.1) correspond to the critical points of the func-
tional Jλ .

To overcome the difficulty of finding bounded Palais–Smale sequences for the associated func-
tional Jλ , following [7,9], we use a cut-off function ψ ∈ C∞(R+,R) satisfying

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ(t) = 1, t ∈ [0,1],
0 � ψ(t) � 1, t ∈ (1,2),

ψ(t) = 0, t ∈ [2,∞),∥∥ψ ′∥∥∞ � 2,

and study the following modified functional J T
λ : H → R defined by

J T
λ (u) = 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4 −

∫

RN

F (u), u ∈ H,
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where for every T > 0,

hT (u) = ψ

(‖u‖2

T 2

)
.

With this penalization, for T > 0 sufficiently large and for λ sufficiently small, we are able to find a
critical point u of J T

λ such that ‖u‖ � T and so u is also a critical point of Jλ . We recall the following
result. The “monotonicity trick” at the core of this theorem was invented by Struwe (see [15]).

Theorem 2.1. (See [6].) Let (X,‖ · ‖) be a Banach space and I ⊂ R+ an interval. Consider the family of C1

functionals on X

Jμ(u) = A(u) − μB(u), μ ∈ I,

with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞ and such that Jμ(0) = 0.
For any μ ∈ I we set

Γμ = {
γ ∈ C

([0,1], X
)
: γ (0) = 0, Jμ

(
γ (1)

)
< 0

}
.

If for every μ ∈ I the set Γμ is nonempty and

cμ = inf
γ ∈Γμ

max
t∈[0,1] Jμ

(
γ (t)

)
> 0,

then for almost every μ ∈ I there is a sequence {un} ⊂ X such that

(i) {un} is bounded;
(ii) Jμ(un) → cμ;

(iii) J ′
μ(un) → 0 in the dual X−1 of X .

In our case, X = H ,

A(u) = 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4, B(u) =

∫

RN

F (u).

So the perturbed functional which we study is

J T
λ,μ(u) = 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4 − μ

∫

RN

F (u),

and

((
J T
λ,μ

)′
(u), v

) = a(u, v) + λhT (u)‖u‖2(u, v) + λ

2T 2
ψ ′

(‖u‖2

T 2

)
‖u‖4(u, v) − μ

∫

RN

f (u)v. (2.1)

The following Lemmas 2.2–2.4 imply that J T
λ,μ satisfies the conditions of Theorem 2.1.

Lemma 2.2. Γμ 
= ∅ for all μ ∈ I = [δ,1], where δ ∈ (0,1) is a positive constant.
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Proof. We choose φ ∈ C∞
0 (RN ) with φ � 0,‖φ‖ = 1 and supp(φ) ⊂ B(0, R) for some R > 0. By (H3),

we have that for any C1 > 0 with C1δ
∫

B(0,R)
φ2 > a/2, there exists C2 > 0 such that

F (t) � C1|t|2 − C2, t ∈R+. (2.2)

Then for t2 > 2T 2,

J T
λ,μ(tφ) = 1

2
at2‖φ‖2 + 1

4
λψ

(
t2‖φ‖2

T 2

)
t4‖φ‖4 − μ

∫

RN

F (tφ)

= 1

2
at2 − μ

∫

RN

F (tφ)

� 1

2
at2 − δC1t2

∫
B(0,R)

φ2 + C3.

Then we can choose t > 0 large such that J T
λ,μ(tφ) < 0. The proof is completed. �

Lemma 2.3. There exists a constant c > 0 such that cμ � c > 0 for all μ ∈ I .

Proof. For any u ∈ H and μ ∈ I , using (H1) and (H2), for ε ∈ (0,a/2), we have

J T
λ,μ(u) � 1

2
a‖u‖2 + 1

4
λhT (u)‖u‖4 −

∫

RN

(
1

2
εbu2 + Cε|u|p

)

� 1

4
a‖u‖2 − Cε

∫

RN

|u|p.

By Sobolev’s embedding theorem, we conclude that there exists ρ > 0 such that J T
λ,μ(u) > 0 for any

μ ∈ I and u ∈ H with 0 < ‖u‖ � ρ . In particular, for ‖u‖ = ρ , we have J T
λ,μ(u) � c > 0. Fix μ ∈ I and

γ ∈ Γμ . By the definition of Γμ,‖γ (1)‖ > ρ . By continuity, we deduce that there exists tγ ∈ (0,1)

such that ‖γ (tγ )‖ = ρ . Therefore, for any μ ∈ I ,

cμ � inf
γ ∈Γμ

J T
λ,μ

(
γ (tγ )

)
� c > 0.

The proof is completed. �
Lemma 2.4. For any μ ∈ I and 8λT 2 < a, each bounded Palais–Smale sequence of the functional J T

λ,μ admits
a convergent subsequence.

Proof. Let μ ∈ I and {un} be a bounded (PS) sequence of J T
λ,μ , namely

{un} and
{

J T
λ,μ(un)

}
are bounded,

(
J T
λ,μ

)′
(un) → 0 in H ′,
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where H ′ is the dual space of H . Subject to a subsequence, we can assume that there exists u ∈ H
such that

un ⇀ u in H,

un → u in Lp(
R

N)
,

un → u a.e. in R
N .

By (H1) and (H2), for any ε ∈ (0,a/2), there exists Cε > 0 such that

∣∣ f (t)
∣∣ � bε|t| + Cε|t|p−1, t ∈R, (2.3)

hence,

∣∣∣∣
∫

RN

f (un)(un − u)

∣∣∣∣ �
∫

RN

∣∣ f (un)
∣∣|un − u|

� bε|un|2|un − u|2 + Cε

∫

RN

|un|p−1|un − u|

� εC‖un‖‖un − u‖ + Cε|un|p−1
p |un − u|p .

It follows that

∫

RN

f (un)(un − u) → 0.

Thus,

0 ← ((
J T
λ,μ

)′
(un), un − u

) = a(un, un − u) + λhT (un)‖un‖2(un, un − u)

+ λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4(un, un − u) − μ

∫

RN

f (un)(un − u)

=
(

a + λhT (un)‖un‖2 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4

)
(un, un − u) + o(1),

and then

(
a + λhT (un)‖un‖2 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4

)
(un, un − u) → 0.

Since |ψ ′( ‖un‖2

T 2 )‖un‖4| � 8T 4 and 8λT 2 < a, ‖un‖ → ‖u‖. This together with un ⇀ u shows that
un → u in H . The proof is completed. �
Lemma 2.5. Let 8λT 2 < a. For almost every μ ∈ I , there exists uμ ∈ H \ {0} such that ( J T

λ,μ)′(uμ) = 0 and

J T
λ,μ(uμ) = cμ .
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Proof. By Theorem 2.1, for almost every μ ∈ I , there exists a bounded sequence {uμ
n } ⊂ H such that

J T
λ,μ

(
uμ

n
) → cμ,

(
J T
λ,μ

)′(
uμ

n
) → 0.

By Lemma 2.4, we can suppose that there exists uμ ∈ H such that uμ
n → uμ in H , then the assertion

follows from Lemma 2.3. �
According to Lemma 2.5, there exist sequences {μn} ⊂ I with μn → 1− and {un} ⊂ H as n → ∞

such that

J T
λ,μn

(un) = cμn ,
(

J T
λ,μn

)′
(un) = 0.

The Pohozaev identity is important for many problems. In this paper, we also use this identity to
obtain ‖un‖ � T . In fact we have the next lemma.

Lemma 2.6. Let 8λT 2 < a and N � 3. If u ∈ H is a weak solution of

(
a + λhT (u)‖u‖2 + λ

2T 2
ψ ′

(‖u‖2

T 2

)
‖u‖4

)
(−�u + bu) = μ f (u), in x ∈R

N , (2.4)

then the following Pohozaev type identity holds

(
N − 2

2

∫

RN

|∇u|2 + Nb

2

∫

RN

u2
)(

a + λhT (u)‖u‖2 + λ

2T 2
ψ ′

(‖u‖2

T 2

)
‖u‖4

)
= μN

∫

RN

F (u). (2.5)

Proof. Since u ∈ H is a weak solution of (2.4), by standard regularity results, u ∈ H2
loc(R

N ) ∩ H1(RN ).
Let

g(u) = μ f (u)

a + λhT (u)‖u‖2 + λ

2T 2 ψ ′( ‖u‖2

T 2 )‖u‖4
− bu.

Then u ∈ H is also a solution of

−�u = g(u).

By [17, Corollary B.4, p. 138],

N − 2

2

∫

RN

|∇u|2 = N

∫

RN

G(u),

where G(t) = ∫ t
0 g(s)ds. Then the conclusion holds. �

The following lemma shows that ‖un‖ � T which is the key for this paper.

Lemma 2.7. Let un be a critical point of J T
λ,μn

at level cμn . Then for T > 0 sufficiently large, there exists

λ0 = λ0(T ) with 8λ0T 2 < a such that for any λ ∈ [0, λ0), subject to a subsequence, ‖un‖ � T for all n ∈N.
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Proof. We argue by contradiction. Firstly, since ( J T
λ,μn

)′(un) = 0, by (2.5), un satisfies the following
Pohozaev identity

(
N − 2

2

∫

RN

|∇un|2 + Nb

2

∫

RN

u2
n

)(
a + λhT (un)‖un‖2 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4

)

= μn N

∫

RN

F (un). (2.6)

By using J T
λ,μn

(un) = cμn , we have that

1

2
aN‖un‖2 + 1

4
λNhT (un)‖un‖2 − μn N

∫

RN

F (un) = cμn N. (2.7)

Therefore, by (2.6) and (2.7), we can obtain that

1

2
a

∫

RN

|∇un|2 �
(

a + λhT (un)‖un‖2 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖4

) ∫

RN

|∇un|2

= cμn N + 1

4
λNhT (un)‖un‖4 + λN

4T 2
ψ ′

(‖un‖2

T 2

)
‖un‖6. (2.8)

We estimate the right hand side of (2.8). By the min–max definition of the mountain pass level,
Lemma 2.2 and (2.2), we have

cμn � max
t

J T
λ,μn

(tφ)

� max
t

{
1

2
at2 − μn

∫

RN

F (tφ)

}
+ max

t

1

4
λψ

(
t2

T 2

)
t4

� max
t

{
1

2
at2 − δC1t2

∫
B(0,R)

φ2 + C3

}
+ max

t

1

4
λψ

(
t2

T 2

)
t4

= C3 + A1(T ).

If t2 � 2T 2, then ψ( t2

T 2 ) = 0. Thus, we have that

A1(T ) � λT 4.

We have also that

1

4
λNhT (un)‖un‖4 � λNT 4,

λN

4T 2

∣∣∣∣ψ ′
(‖un‖2

T 2

)∣∣∣∣‖un‖6 � 4λNT 4.
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Then we have

1

2
a

∫

RN

|∇un|2 � NC3 + 6λNT 4.

On the other hand, by (2.1) and (2.3), we have that

a‖un‖2 + λhT (un)‖un‖4 + λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖6 = μn

∫

RN

f (un)un � bε|un|22 + Cε|un|2∗
2∗ .

So

(a − ε)‖un‖2 � Cε|un|2∗
2∗ − λ

2T 2
ψ ′

(‖un‖2

T 2

)
‖un‖6

� C4|∇un|2∗
2 + 8λT 4

� C5
(
NC3 + 6λNT 4)2∗/2 + 8λT 4.

We suppose by contradiction that there exists no subsequence of {un} which is uniformly bounded
by T . Then we can assume that ‖un‖ > T , n ∈ N. Then

T 2 < ‖un‖2 � C6
(
NC3 + 6λNT 4)2∗/2 + C7λT 4,

which is not true for T large and 8λT 4 < a. So by setting λ0 < a/(8T 4), we obtain the conclusion. �
Remark 2.8. In Lemma 2.7, the choice of λ0 depends on the nonlinearity f , constants N , a and b,
Sobolev embedding constant γ2∗ , several test functions and constants used in the proof. So it is
difficult to give explicitly the value of λ0. However, for the special case f (t) = at2, we can choose
φ and δ in Lemma 2.2 to satisfy δ

∫
B(0,5)

φ2 > 1/4. Similarly we can choose C1 = 2a, C2 = 32a/3,

C3 = 32a/3|B(0,5)| in Lemma 2.2, where |B(0,5)| is the volume of B(0,5) in R
N . Moreover, we

choose ε = a/2 in Lemma 2.7, then Cε = a(2/b)1/(2∗−3) . Hence, we can compute a lower bound of λ0
to be

λ0 = a

32[(2/b)1/(2∗−3)γ2∗(2/a)2∗/2(32aN/3|B(0,5)| + a)2∗/2 + 1]2
,

where γ2∗ is the embedding constant in the embedding inequality (
∫
RN |∇u|2)2∗/2 � γ2∗

∫
RN |u|2∗

for
all u ∈ D1,2(RN ). So the existence result in Theorem 1.1 holds for any λ ∈ [0, λ0) for this special
case.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let T , λ0 be defined as in Lemma 2.7, and let un be a critical point for J T
λ,μn

at level cμn . Then from Lemma 2.7 we may assume that

‖un‖ � T .
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So

J T
λ,μn

(un) = 1

2
a‖un‖2 + 1

4
λ‖un‖4 − μn

∫

RN

F (un).

Since μn → 1, we can show that {un} is a (PS) sequence of Jλ . Indeed, the boundedness of {un}
implies that { Jλ(un)} is bounded. Also

(
J ′
λ(un), v

) = ((
J T
λ,μn

)′
(un), v

) + (μn − 1)

∫

RN

f (un)v, v ∈ H .

Thus J ′
λ(un) → 0, and then {un} is a bounded (PS) sequence of Jλ . By Lemma 2.4, {un} has a conver-

gent subsequence. We may assume that un → u. Consequently, J ′
λ(u) = 0. According to Lemma 2.3,

we have that Jλ(u) = limn→∞ Jλ(un) = limn→∞ J T
λ,μn

(un) � c > 0 and u is a positive solution by the
condition (H1). The proof is completed. �
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