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New physics and the proton radius problem

Carl E. Carlson and Benjamin C. Rislow

Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
(Received 28 June 2012; published 17 August 2012)

Background: The recent disagreement between the proton charge radius extracted from Lamb shift

measurements of muonic and electronic hydrogen invites speculation that new physics may be to blame.

Several proposals have been made for new particles that account for both the Lamb shift and the muon

anomalous moment discrepancies. Purpose:We explore the possibility that new particles’ couplings to the

muon can be fine-tuned to account for all experimental constraints. Method: We consider two fine-tuned

models, the first involving new particles with scalar and pseudoscalar couplings, and the second involving

new particles with vector and axial couplings. The couplings are constrained by the Lamb shift and muon

magnetic moment measurements while mass constraints are obtained by kaon decay rate data. Results: For

the scalar-pseudoscalar model, masses between 100 to 200 MeV are not allowed. For the vector model,

masses below about 200 MeVare not allowed. The strength of the couplings for both models approach that

of electrodynamics for particle masses of about 2 GeV. Conclusions: New physics with fine-tuned

couplings may be entertained as a possible explanation for the Lamb shift discrepancy.

DOI: 10.1103/PhysRevD.86.035013 PACS numbers: 12.60.Cn, 14.20.Dh

I. INTRODUCTION

The recent measurement of the muonic hydrogen Lamb
shift [1] yielded a proton charge radius 5� smaller than the
2006 Committee on Data for Science and Technology
(CODATA) value available at the time of its publication
[2], and 7� smaller than the 2010 CODATA update [3],
which incorporates the latest proton radius determinations
from electron scattering [4]. The data used in the CODATA
determinations is all electronic. A possible explanation
for the surprising muonic result is that overlooked standard
model processes or new physics are at present being
wrongly attributed to proton size effects. Assuming the
previous electronic measurements of the proton charge
radius are correct, alternative explanations must lower
the muonic Lamb shift by 310 �eV to match the experi-
mental result.

Several new physics proposals have been considered to
explain the discrepancy. Jaeckel and Roy [5], as part of a
larger investigation into deviations of Coulomb’s law,
determined that hidden photons that coupled equally to
electrons and muons could not explain the discrepancy as
they would actually cause the proton radius to appear
smaller in ordinary hydrogen. Tucker-Smith and Yavin
[6] developed two simple models in which either a new
scalar or vector particle couples to muons and protons. The
strength of the particle couplings was set by constraints
placed by the small discrepancy of the muon’s anomalous
magnetic moment. They showed that in first order of non-
relativistic perturbation theory, exchange particle masses
of order MeV could produce the observed Lamb shift,
albeit exchanges with masses this light run afoul of neutron
scattering data if the neutron and proton have similar
coupling. Barger et al. [7] also considered new scalar and
vector particles, but suggested it would be difficult for

them to satisfy additional constraints placed by �, J=c ,
�, and �-decays.
Batell et al. [8] revived the possibility that a hidden

photon could be responsible for the Lamb shift discrepancy
by requiring it to couple only to right-handed muons. This
boson also mixes with the photon so that the couplings
contained additional model dependence not seen in other
proposals. In order to account for the muon anomalous
moment constraint, they were forced to introduce and fine-
tune the mass of a new scalar particle. In a second paper
Barger et al. [9] noted that Batell et al.’s model does not
respect the constraint placed by K-decay [10] if the decay
of their hidden photon were invisible.
In this work we explore the possibility that fine-tuned

particle couplings, free from the phenomenological
demands of hidden photons, can satisfy muon anomalous
moment and K-decay as well as other constraints. We
consider two separate possibilities. The first contains two
new particles that interact with muons and protons through
fine-tuned scalar and pseudoscalar couplings, respectively.
The second contains two new particles that interact with
muons and protons through fine-tuned polar and axial
vector couplings, respectively.
Our evaluation of the particle mass and coupling

parameters proceeds as follows. We begin in Sec. II by
finding what coupling parameters are needed to obtain an
extra 310 �eV muonic hydrogen Lamb shift from the
exchange of an electrophobic spin-0 or spin-1 particle of
a given mass. In the nonrelativistic limit, pseudoscalar and
axial vector particles do not contribute significantly to this
shift and their couplings remain free parameters. Then in
Sec. III we confront our models with the constraint for the
muon anomalous magnetic moment. Polar vector and axial
vector exchange give opposite contributions to the mag-
netic moment, as do scalar and pseudoscalar exchanges, so
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cancellations can be arranged if the pseudoscalar and axial
couplings are tuned. We further consider in Sec. IV the
consequences for the decay of K’s to two or more unob-
served particles. This decay is possible as a radiative
correction to K ! �� if there is a coupling of a light
new particle to the muon, and strong experimental limits
are known. In Sec. V we make some final remarks.

II. LAMB SHIFT

For a case where there are scalar and pseudoscalar
particles coupled to a muon and proton,

LS ¼ �C�
S �

�c �c � � iC�
P’

�c ��5c � � Cp
S�

�c pc p

� iCp
P’

�c p�5c p; (1)

where � is a scalar and ’ is a pseudoscalar field. The
potential in the nonrelativistic limit is

VðrÞ ¼ �C�
S C

p
S

4�r
e�Mr; (2)

where M is the mass of the exchanged particle, �.
The pseudoscalar contributions are much smaller at low

momentum transfer. For the 2P-2S splitting in hydrogen
one gets an energy difference [6,11],

�Eð2S� 2PÞ ¼ �C�
S C

p
S

4�

M2ðmr�Þ3
2ðMþmr�Þ4

; (3)

where (for the muonic case) mr ¼ m�mp=ðm� þmpÞ.
The scalar coupling required to give an extra 310 �eV

to the muonic hydrogen 2S-2P Lamb shift, in the case
C
�
S ¼ Cp

S ¼ CS, is shown by the solid line in Fig. 1 as a

function of the exchanged mass, up to an exchanged mass
of 1000 MeV.

For the case of polar vector and axial vector particles
coupling to the muon and proton,

L V ¼ �C
�
V�

� �c ���c � � C
�
A’

� �c ����5c �

� Cp
V�

� �c p��c p � Cp
A’

� �c p���5c p; (4)

where �� is a polar vector and ’� is an axial vector field.
In the nonrelativistic limit the potential is similar to

Eq. (2), with vector couplings taking the place of the scalar
ones and opposite overall sign. The solid line in Fig. 2
displays the vector coupling strength as a function of the
exchanged mass.
As a side note, these results agree with the known weak

interaction or Z-boson exchange contribution to the Lamb
shift of a given nl state of hydrogen [12]

�EZ
nl ¼ ��ðZ�Þ3mr

�n3
8GFm

2
rffiffiffi

2
p

�

�
1

4
� sin2	W

�
2

l0; (5)

with the appropriate substitutions. (Just the vector part of
the Z interaction contributes; further M ! MZ,

Cp
S ! �C

�
S ! g

2 cos	W
gpV ¼ g

2 cos	W

�
1

2
� 2sin2	W

�
;

(6)

and GF=
ffiffiffi
2

p ¼ g2=ð8M2
Zcos

2	WÞ. The numerical result for
the n ¼ 2 levels is about a million times smaller than the
extra muonic Lamb shift, speaking to the fact that to get an
effect relevant to the Lamb shift problem with an exchange
particle mass in the 90 GeV range would require a coupling
much stronger than the weak coupling, even without the
(1=4� sin2	W) factors.
The exchange of a Higgs boson also cannot account for

the Lamb shift discrepancy. The energy shift due to a Higgs
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FIG. 1 (color online). The scalar and pseudoscalar couplings
needed to satisfy the experimental constraints. The scalar cou-
pling (solid line) is required to give an extra 310 �eV to the
muonic hydrogen 2S-2P Lamb shift. The dashed line is the
pseudoscalar coupling needed to satisfy the constraint placed
by the muon anomalous moment. We assume the two particle
masses are identical.
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FIG. 2 (color online). The polar and axial vector couplings
needed to satisfy the experimental constraints. The vector cou-
pling (solid line) is required to give an extra 310 �eV to the
muonic hydrogen 2S-2P Lamb shift. The dashed line is the axial
coupling needed to satisfy the constraint placed by the muon
anomalous moment. We assume the two particle masses are
identical.
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boson of mass 125 GeV is roughly eight orders of magni-
tude smaller than what is observed.

III. MUON MAGNETIC MOMENT

The muon anomalous moment is accurately measured.
The theory for the anomalous moment is also quite accu-
rate, with the bulk of the error coming from uncertainties
in hadronic contributions. There is a small but persistent
discrepancy between experiment and theory. In terms of
a� ¼ ðg� 2Þ�=2,
a�ðdataÞ ¼ ð116 592 089� 63Þ � 10�11 ½0:5 ppm�;
a�ðthy:Þ ¼ ð116 591 840� 59Þ � 10�11 ½0:5 ppm�;


a� ¼ ð249� 87Þ � 10�11 ½2:1 ppm� 0:7 ppm�:
(7)

The data is from Refs. [13,14] and the latest theory number
is from Ref. [15].

This discrepancy is four orders of magnitude, in frac-
tional terms, smaller than the one due to the Lamb shift.
Every particle that contributes to the Lamb shift also con-
tributes to the magnetic moment at the one-loop level, as in
Fig. 3. The contributions of the pseudoscalar and axial
vector, whose couplings are not constrained by the Lamb
shift, have opposite sign to those from the scalar and polar
vector, and can be tuned to respect this much smaller
discrepancy.

For scalar and pseudoscalar particles, we consider their
masses to be the same. The magnetic moment result is
known in the literature [16,17],


a� ¼ m2
�

8�2

Z 1

0
dz

C2
Sz

2ð2� zÞ � C2
Pz

3

z2m2
� þ ð1� zÞM2

¼ 1

8�2
½C2

SHSðrÞ � C2
PHPðrÞ�; (8)

where r ¼ M2=m2
�,

HSðrÞ ¼ 3� 2r

2
þ rðr� 3Þ

2
lnr� ðr� 1Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 4Þp

ln

� ffiffiffi
r

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
r� 4

p
2

�
(9)

and

HPðrÞ ¼ � 2rþ 1

2
þ rðr� 1Þ

2
lnr� r3=2ðr� 3Þffiffiffiffiffiffiffiffiffiffiffiffi

r� 4
p

� ln

� ffiffiffi
r

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
r� 4

p
2

�
: (10)

(The expressions continue nicely to r < 4.) Low and high
mass limits are


HS ¼
8><
>:

3
2 ; M � m�;

lnM
2

m2
�
� 7

6 ; M � m�;
(11)

and


HP ¼
8<
:

1
2 ; M � m�;

lnM
2

m2
�
� 11

6 ; M � m�:
(12)

Equation (8) can be rearranged to solve for ðC�
P Þ2. The

result is plotted as the dashed line in Fig. 1. One notices
that fine-tuning must be done to several significant figures
at higher masses.
For polar and axial couplings, we also only consider the

case where their masses are equal. Their contribution to the
muon’s magnetic moment is


a�¼ m2
�

4�2

Z 1

0

dz

z2m2
�þð1�zÞM2

�
�
C2
Vz

2ð1�zÞ�C2
A

�
zð1�zÞð4�zÞþ2m2

�

M2
z3
��

¼ 1

4�2
½C2

VHVðrÞ�C2
AHAðrÞ�: (13)

Here [16,17]

HVðrÞ ¼ 1� 2r

2
þ rðr� 2Þ

2
lnr� r1=2ðr2 � 4rþ 2Þffiffiffiffiffiffiffiffiffiffiffiffi

r� 4
p

� ln

� ffiffiffi
r

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
r� 4

p
2

�
; (14)

with limits

HVðrÞ ¼
8<
:

m2
�

3M2 ; M ! 1;

1
2 ; M ! 0;

(15)

and [16]

HAðrÞ ¼ 1

r
þ 2r� 5

2
� r2 � 4rþ 2

2
lnrþ ðr� 2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr� 4Þ

p
ln

� ffiffiffi
r

p þ ffiffiffiffiffiffiffiffiffiffiffiffi
r� 4

p
2

�
; (16)

with

HAðrÞ¼
8><
>:

5m2
�

3M2 ; M!1;

m2
�

M2� lnM
2

m2
�
� 5

2þ . . . ; M!0
: (17)
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FIG. 3. One-loop magnetic moment correction.
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Rearranging Eq. (13) allows for the evaluation of ðC�
A Þ2.

The result is plotted as the dashed line in Fig. 2.
More general combinations of S, P, V, and A are also

possible. Of note is the model of Ref. [8], which involves a
vector particle with extra parity-violating coupling to the
muon with (in our notation) fixed C

�
V and C

�
A that achieves

fine-tuning using a scalar, also with definite muonic cou-
pling, but with a tunable mass.

IV. K DECAY WITH UNOBSERVED NEUTRALS

If a light neutral particle couples to muons, the decay
K ! ��� is possible, Fig. 4. There has been an experi-
mental search for multibody decays K ! �X, where X
contains only neutral particles that are not photons [10].
The experiment searched for muons in the kinetic energy
range 60 to 100 MeV—for reference, the muon from
K ! �� has T� ¼ 152 MeV or E� ¼ 258 MeV—and

found a strong limit. To give the result with some precision,
the experimenters give their detector efficiency function
DðE�Þ, which is the relative efficiency to detect an energy

E� muon compared to a 258 MeV muon, and which is zero

outside the stated limits and smoothly varying in between.
For a given decay spectrum d�ðK ! �XÞ=dE�, the

experimental limit is quoted as [10]

1

�ðK ! ��Þ
Z d�ðK ! �XÞ

dE�

DðE�ÞdE� < 2� 10�6:

(18)

The simple K�2 decay rate is

�ðK ! ��Þ ¼ G2
Ff

2
KV

2
us

4�m3
K

m2
�ðm2

K �m2
�Þ2; (19)

where the kaon decay constant is defined from

h0j �u��ð1� �5Þsj0i ¼
ffiffiffi
2

p
fKk�: (20)

Generically, a three body decay is given by

�ðK ! ���Þ ¼ 1

64�3mK

Z
dE�dE�

X
spins

jMj2; (21)

with integration limits

m� � E� � m2
K þm2

� �m2
�

2mK

; (22)

and

(
max

min

)
E� ¼ m2

K þm2
� �m2

� � 2mKE�

2ðmK � E� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
� �m2

�

q
Þ
: (23)

The matrix element for the decay into a muon,
neutrino, and particle with both scalar and pseudoscalar
couplings is

MS;P ¼ GFfKVus

Q2 �m2
�

�uðlÞ½ðC�
S � iC�

P ÞQ2

þm�ðC�
S þ iC

�
P Þ6k�ð1� �5ÞvðqÞ; (24)

where Q2 ¼ ðk� qÞ2 ¼ m2
K � 2mKE�.

The matrix element squared and summed is

X
spins

jMS;Pj2 ¼ 4G2
Ff

2
KV

2
us

ðQ2 �m2
�Þ2

fðC�2
S þ C

�2
P Þ

� ½2mKE�Q
2ðQ2 �m2

�Þ � ðQ4 �m2
�m

2
KÞ

� ðQ2 þm2
� �m2

�Þ� þ 2ðC�2
S � C

�2
P Þ

�m2
�Q

2ðm2
K �Q2Þg: (25)

We evaluate the left-hand side of Eq. (18) using our
constrained C

�
S and C

�
P couplings for a given scalar or

pseudoscalar massm�. We note that neither the anomalous

moment nor the square of the matrix element contain terms
with both C

�
S and C

�
P . Thus, a model with two equal mass

scalar and pseudoscalar particles is indistinguishable from
one which has only a single particle with both scalar and
pseudoscalar couplings.
Comparison of our calculated experimental-efficiency-

weighted decay rate to the experimental limit is shown
in Fig. 5. A range of scalar masses from about 100 to
200 MeV is not allowed. For other masses, the couplings
are not excluded.
The matrix element for the decay into a muon, neutrino,

and a particle with both polar and axial vector couplings is,
using C

�
R;L ¼ C

�
V � C

�
A ,

MV;A¼GFfKVus

Q2�m2
�

"� �uðlÞ��½C�
LQ

2þm�C
�
R 6k�ð1��5ÞvðqÞ;

(26)

where "� is the polarization vector of the new particle. This
leads to

FIG. 4. Kaon decay with an extra neutral scalar, �, either
scalar or pseudoscalar.
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d�ðK ! ��VÞ
dE�dE�

¼ �ðK ! ��Þ
4�2m2

�ðm2
K �m2

�Þ2
m2

K

ðQ2 �m2
�Þ2

f4C�2
R m2

�m
2
KE�E� � 12C�

RC
�
Lm

2
�mKQ

2E�

þ ½C�2
L Q4 � C�2

R m2
�m

2
K�ðm2

K þm2
V �m2

� � 2mKEVÞ þ 1

m2
V

ðm2
K �m2

V �m2
� � 2mKEvÞ

� ½4C�2
R m2

�m
2
KEVE� þ ðC�2

L Q4 � C�2
R m2

�m
2
KÞðm2

K �m2
V þm2

� � 2mKE�Þ�g: (27)

We note that this matrix element squared contains terms
with C

�
VC

�
A . Hence, one must distinguish the case of two

particles of equal mass from one parity-violating particle
with polar and axial couplings. The anomalous moment
has no cross terms, so both the one and two particle cases
contain the same couplings. However, in the decay process,
the parity-violating case has the possibility of destructive
interference.

The results for both cases are shown in Fig. 6, using
couplings obtained from the fine-tuning of the muon
anomalous moment. For the one particle case, we show
results for C�

V and C�
A having the same sign. Masses below

about 160 MeV are not allowed for this scenario. For two
particles with equal masses, the disallowed region extends
to about 210 MeV. All higher masses are allowed.

V. CLOSING COMMENTS

Exotic, in the sense of presently undiscovered, particles
that couple to muons and hadrons but not electrons could
be responsible for an extra energy shift in muonic hydro-
gen, and thereby, reconcile the muonic and electronic

proton radius measurements. However, for exotic explan-
ations to work, there are requirements to be met, a number
of which have been discussed already.
So far we have not confronted all the additional con-

straints placed by neutron scattering and meson decays

mentioned in Ref. [7]. To note some of these briefly, there

are decay constraints following from searches for unknown

particles in� or J=c decays. These are potentially serious.

However, they do not apply if there is no coupling to

heavier quarks. Hence, a new force or new particle that

spoofs a smaller proton radius in muonic hydrogen should

couple only, or almost only, to second generation leptons

and first generation hadrons. In particular, there can be

coupling to muons but not electrons and to first generation

quarks but not b or c quarks.
Further noted in Ref. [7], neutron scattering constraints

only limit models with very light new particle masses
(under 5 MeV), other muonic atom energy splittings give
bounds already below ones discussed, the � ! �V decay
where V is a massive vector only impacts an mV mass
range that is already excluded, and the limits from
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FIG. 5 (color online). Mass limits on scalar and pseudoscalar
particles due to constraints placed by K ! �X searches. The
solid curve is the full result, accounting for the experimental
efficiency, obtained through satisfying the Lamb shift and mag-
netic moment criteria. The contributions of the scalar (dashed
curve) and pseudoscalar (dash-dotted curve) couplings are
indicated separately. The experimental limit is the horizontal
line, and the shaded region is allowed.
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FIG. 6 (color online). Mass limits on polar and axial vector
particles due to constraints placed by K ! �X searches. The
solid curve is the result for a single particle with both polar and
axial vector couplings, accounting for the experimental effi-
ciency, with couplings obtained through satisfying the Lamb
shift and magnetic moment criteria. The dashed curve is the
result for separate polar and axial vector particles with equal
masses. The experimental limit is the horizontal line, and the
shaded region is allowed.
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non-observance of the decay � ! VV is not serious formV

below m�=2 given the results in Figs. 1 and 2.

Fine-tuning is needed to evade constraints from the
muon magnetic moment measurements. Tuning is possible
because polar vector and axial vector exchanges give
opposite sign contributions to ðg� 2Þ�, and the same is

true of scalar and pseudoscalar exchanges. The need for
fine-tuning has the additional effect that once a vector (or
scalar) exchange contributing to the Lamb shift requires a
further axial (or pseudoscalar) exchange in ðg� 2Þ�, the
axial vector (or pseudoscalar) will then potentially contrib-
ute to other processes, adding for example to the rate that
needs to be evaded in a decay process.

In models where the new physics proton and muon
couplings have similar magnitudes, K-decay constraints
must be avoided by having the new particle mass above
at least 150 MeV for the polar vector-axial vector equal
mass case, or by having mass low, below 100 MeVor high,
above 180 MeV, in the scalar-pseudoscalar case.

Relatively new, much from the past year, are limits
arising from searches for dark photons, which are massive
vector particles that couple to charged particles at a
reduced rate. The combination of KLOE [18], APEX
[19], Mainz A1 [20], and BABAR [21] limit a new vector
coupling to below about a few� 10�3 of the normal
photon coupling for the mV mass range 60 to above

500 MeV, and below 10�3 over part of that range. This is
relevant to eliminating proposed theories where the mag-
nitudes of the electron and proton couplings are the same
or similar. Then to give a muonic hydrogen energy suffi-
cient to spoof the proton radius result would require a
muon coupling so large as to violate the K-decay bound
by more than an order of magnitude, at least in the mass
range 60 to 310 MeV (where the phase space for the
relevant experiment runs out).
Our present work should be viewed as a proof of concept

rather than a completed model. For successful exotic ex-
planations of the proton radius problem, there are require-
ments of coupling only to targeted leptons and hadrons,
of fine-tuning the muon couplings, and of restricted mass
ranges to avoid conflict with unobserved decays. While
these requirements may seem difficult, there is still a
window of possibility for new physics explanations of
the proton radius problem. One would like an ab initio
new physics theory that works for this problem, and the
restrictions given here may be a help in finding one.
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