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a b s t r a c t

The problem of identifying those simple, undirected graphs with n vertices and k edges
that have the smallest minimum eigenvalue of the adjacency matrix is considered.
Several general properties of the minimizing graphs are described. These strongly suggest
bipartition, to the extent possible for the number of edges. In the bipartite case, the precise
structure of the minimizing graphs is given for a number of infinite classes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Among simple, undirected graphs on n vertices with k edges, we are interested in identifying the graph (or, in some
cases, graphs) having the smallest minimum eigenvalue for the usual adjacency matrix. Our initial interest was due to
a connection with invincibly positive semi-definite matrices, which are defined as positive semidefinite (PSD) matrices
that remain PSD after changing any symmetrically placed pairs of off-diagonal entries to 0 [7]; such matrices arise in
semi-definite programming. The problem studied is also interesting from an algebraic graph theory, taxonomy point of
view.

The question of bounding λmin(G) – the least eigenvalue of a graph G – has a long history, and here are some of its
milestones:

λmin(G) ≥ −
√
MaxCut (see [6])

λmin(G) ≥ −


n2

4


(see [4])

λmin(G) ≥ −
√
k (see [11])

whereMaxCut is the maximum size of a bipartite subgraph of G. Tight relations between the least eigenvalue of a graph and
its MaxCut are described in [12]. The main result of [12] is a new approximation algorithm for MaxCut , which can be seen
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as an analogue of Cheeger’s inequality [1] for the smallest eigenvalue of the adjacency matrix of a d-regular graph
2(1 − |λmin(G)|) ≥ β(G) ≥

1
2
(1 − |λmin(G)|),

where

β(G) = min
y∈{−1,0,1}V


i,j

|yi + yj|

2d

i

|yi|
.

First we focus on the structure of minimizing graphs in the general case. Let A(G) (or simply A) be the adjacency matrix
of a simple, undirected graph G. Thus, A is a symmetric (0, 1)-matrix with zero diagonal. Since our adjacency matrix A is a
symmetric, real matrix, all its eigenvalues are real and can be ordered increasingly

λmin(A) = λn(A) ≤ λn−1(A) ≤ · · · ≤ λ2(A) ≤ λ1(A) = λmax(A),

where λmax is the largest eigenvalue (Perron root or index) of graph G. Since
n

i=1 λi = 0 (and we do not consider graphs
without edges), someof these are negative, and some are positive. Thus,λmax(A) is greater than 0, andλmin(A), the eigenvalue
of interest to us, is less than 0. (Since λmax(A) is the spectral radius, it is greater than themost negative eigenvalue, therefore
λmin(A) + λmax(A) ≥ 0, with equality for bipartite graphs.)

Let Gn,k be the collection of simple undirected graphs with n vertices and k edges; let also an,k = {A(G) : G ∈ Gn,k}. We
are interested in minA∈an,k λmin(A) and in the subset of Gn,k on which this minimum is attained.

Since in the next section we show that our problem leads to the question of the largest singular value among a class of
(0, 1)-matrices, now we recall the singular value decomposition and a related definition.

Let Mm,n (Mm,n(R), resp). be the set of all m-by-n complex (real, resp.) matrices, let Mm,n({0, 1}) be the set of all m-by-
n (0, 1)-matrices, and abbreviateMn,n to Mn.

Theorem 1 ([9], p. 144). Let A ∈ Mm,n be given, and let q = min{m, n}. There are unitary matrices V ∈ Mm and W ∈ Mn
such that A = VΣW ∗, where Σ is a matrix in Mm,n whose entries σi,j are 0 when i ≠ j and satisfy σ1,1 ≥ · · · ≥ σq,q ≥ 0. If
A ∈ Mm,n(R), then V and W may be taken to be real orthogonal matrices.

Definition 1 ([9], p. 146). Let A ∈ Mm,n, and let q = min{m, n}. Given the singular value decomposition guaranteed by
Theorem 1, let σi(A) denote σi,i. The values σ1(A), . . . , σq(A) are the singular values of A, and σ1 is called the largest singular
value of A. The number of positive singular values of A is equal to the rank of A. The columns of the unitary matrixW are the
right singular vectors of A; the columns of V are the left singular vectors of A.

The largest singular value of A is the spectral norm of A.
In [2], graph modifications are used to show that a graph in Gn,k with smallest least eigenvalue (a minimizing graph) is

either bipartite or a join of two threshold graphs. This can be seen as follows.
For G ∈ Gn,k, λmin(A(G)) satisfies ([10], p. 176):

min
x∈Rn:xT x=1

xTA(G)x = λmin(A(G)).

Let y be a minimizing vector, i.e. λmin(A(G)) = yTA(G)y. We henceforth suppose without loss of generality that the vertices
of G are labeled so that

y1 ≤ · · · ≤ yn.

Since A(G) ≥ 0 (entry-wise) and λmin(A(G)) < 0, if all entries of y are nonnegative (or nonpositive), the equality
A(G)y = λmin(A(G))y could not hold. Hence y includes at least one negative entry and at least one positive entry, i.e. y1 < 0
and yn > 0. This means that there is a subscript p with 0 < p < n such that yi < 0 for all i ≤ p and yi ≥ 0 for i > p. Thus, y
may be partitioned as

y =


y(1)

y(2)


,

with y(1) < 0, y(2)
≥ 0, and y(1)

∈ Rp, y(2)
∈ Rn−p. Similarly, partition A as

A =


A1,1 A1,2

AT
1,2 A2,2


,

with A1,1 ∈ Mp(R) and A2,2 ∈ Mn−p(R). All matrix and vector inequalities are to be interpreted entry-wise.
Since A ≥ 0 and y achieves minxT x=1 x

TAx, if G were a minimizing graph in Gn,k, then either A1,1 and A2,2 would be 0
matrices (i.e., G is bipartite) or all entries of A1,2 would be 1, since

yTAy = y(1)TA1,1y(1)
+ y(2)TA2,2y(2)

+ 2y(1)TA1,2y(2) (1)
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and the first two terms consist entirely of nonnegative summands. Otherwise, symmetrically placed entries equal to 1 in
A1,1 or A2,2 could be shifted to A1,2 and AT

1,2 to produce anothermatrix A′
∈ an,k whose quadratic form, evaluated at y, would

give a smaller value than λmin(A), contradicting the minimality of λmin(A).
Here we consider just the bipartite graphs in Gn,k; these have adjacency matrices of the form

0 A1,2

AT
1,2 0


,

where A1,2 is a p-by-q (0, 1)-matrix with p + q = n and k entries equal to 1. We shall see that when the least eigenvalue
is smallest (that is, when the index is maximal) A1,2 may be taken to be a normalized, left-justified matrix; such a matrix is
called a stepwise matrix in [5]. For connected bipartite graphs with maximal index, this property of A1,2 was established in
[2, Theorem 2.1]. We conjecture that if G is a bipartite minimizing graph, then A1,2 has rank 1 or 2 (Conjecture 1). We prove
several results (Theorems 8–10 and 13, 14, Corollary 15) to support this conjecture by considering the singular values of A1,2.
The results provide various conditions on A1,2 ensuring that the index of G is not maximal; a special case was treated in [3].

2. Minimization of the smallest eigenvalue

Themain goal of this section is to show that a minimizing graph G is either bipartite or has a spanning complete bipartite
subgraph. In the non-bipartite case, we give information about the structure of the minimizing graphs.

Theorem 2. A minimizing graph G is either bipartite or has a spanning complete bipartite subgraph. In the bipartite case only,
some vertices could be isolated. In the non-bipartite case, any edges not in the spanning complete bipartite subgraph correspond
to the smallest positive products of eigenvector components.

Proof. The first claim was shown in the introduction. Moreover, if A1,2 in (1) is all-1, then any 1 in A1,1 (or A2,2) must lie in
such entry of A1,1 (or A2,2) that y(1)TA1,1y(1) (or y(2)TA2,2y(2)) is minimal. If every entry of A1,1 is 0 except for two entries ai,j
and aj,i equal to 1, where i, j ∈ 1, . . . , p, then y(1)TA1,1y(1)

= 2yiyj. Therefore any 1 in A1,1 must be placed in such position
(i, j) of A1,1 that mini,j yiyj is attained. It is easy to see that if there are more 1’s in A1,1, then any 1 must lie in a place that
gives the smallest sum of products of components from y(1). The case of A2,2 is similar. �

Of course, when G is bipartite, it is a particular choice from among (possibly) many bipartite graphs in Gn,k.
Let Bn,k be the subset of Gn,k consisting of bipartite graphs. The set Bn,k is nonempty if and only if k ≤

n2
4 . If G ∈ Bn,k,

then A(G), with vertices labeled according to the bipartition, appears as

A =


A1,1 A1,2

AT
1,2 A2,2


, (2)

with A1,1 and A2,2 being all-0. Suppose, without loss of generality, that A1,2 is p-by-q, with q ≤ p and p + q = n, and let

σ1(A1,2), . . . , σq(A1,2)

be the singular values of A1,2. The (possibly) nonzero eigenvalues of A are then

−σ1(A1,2), −σ2(A1,2), . . . ,−σq(A1,2), σq(A1,2), . . . , σ2(A1,2), σ1(A1,2),

in numerical order, so that λmin(A(G)) = −σ1(A1,2) and |λmin(A(G))| = λmax(A(G)). Moreover, an eigenvector y
corresponding to λmin(A) is composed of left and right singular vectors y(1) and y(2) of A1,2, properly signed. Hence using
the Perron–Frobenius Theorem ([8], p. 329) we can suppose that y(1) < 0 and y(2)

≥ 0; by proper labeling of the vertices,
our bipartition of A is consistent with the earlier −/+ partition of y.

We conclude that to minimize λmin(A) within Bn,k, it suffices to maximize the largest singular value of a p-by-q (with
p + q = n) (0, 1)-matrix with k entries equal to 1. Our minimizing bipartite graph is, then, a graph whose adjacency matrix
is in the form (2), where A1,2 maximizes σ1 among (0, 1)-matrices with k entries equal to 1 whose numbers of rows and
columns sum to n. Such matrices we call, for short,maximizing matrices.

3. Singular value maximization in (0, 1)-matrices

At the beginning of this section we show that if there is a rank-1 matrix among the p-by-q (0, 1)-matrices with k entries
equal to 1, then it has the greatest largest singular value. Next we introduce the definition of a normalized, left-justified
matrix and show that if there is no rank-1 matrix among the p-by-q (0, 1)-matrices with k entries equal to 1, then the
matrix maximizing the largest singular value is, up to permutation equivalence, a normalized, left-justified matrix.

Let Sp,q,k = {C ∈ Mp,q({0, 1}) : eTpCeq = k}, where ep and eq denote the all-1 vectors in Rp and Rq, respectively, and
p+q=n Sp,q,k = Sn,k. We will often think of a matrix in Sp,q,k with a 0 row or column as having such lines deleted; the new

matrix C ′
∈ Mp′,q′({0, 1}) with p′

≤ p and q′
≤ q has the same singular values as C , and we may view it as an element of

Sn,k without difficulty.



C.R. Johnson, A. Sawikowska / Discrete Mathematics 312 (2012) 2272–2285 2275

Our interest here is to describe the matrices in Sp,q,k for which the largest singular value σ1 is a maximum. Let

mp,q,k = max
C∈Sp,q,k

σ1(C) and mn,k = max
C∈Sn,k

σ1(C).

Finally, let Mp,q,k denote the subset of Sp,q,k of matrices for which mp,q,k is attained and Mn,k denote the subset of Sn,k of
matrices for whichmn,k is attained.

Since the singular values are unitary equivalence invariant ([10], p. 296), we have the following lemma.

Lemma 3. If P is a p-by-p permutationmatrix and Q is a q-by-q permutationmatrix, then C ∈ Mp,q,k if and only if PCQ ∈ Mp,q,k.

Proof. Since mp,q,k = maxC∈Sp,q,k σ1(C), σ 2
1 (C) = λmax(CCT ), and (PCQ )(PCQ )T = P(CCT )PT we have C ∈ Mp,q,k if and only

if PCQ ∈ Mp,q,k. �

Note that a (0, 1)-matrix C with k entries equal to 1 is a rank-1 matrix if and only if all its entries equal to 1 occur in
a p′-by-q′ submatrix for which k = p′q′. In this case, σ1(C) is the only nonzero singular value of C and, since the sum of
squares of all singular values of C is k, i.e. σ1(C)2 = k, we obtain σ1(C) =

√
k. No other matrix with k entries equal to 1 and

of rank greater than 1 has greater σ1. We conclude the following.

Lemma 4. If there is a rank-1 matrix in Sp,q,k, then mp,q,k =
√
k and Mp,q,k consists of all rank-1matrices in Sp,q,k.

The next lemma follows directly from the previous lemma.

Lemma 5. If there is a rank-1 matrix in Sn,k, then mn,k =
√
k and Mn,k consists of all rank-1 matrices in Sn,k.

Observe that there is a rank-1 matrix in Sn,k if and only if k factors into a product of integers whose sum is at most n. For
example, this condition does not hold for n = 5 and k = 5. Thus, we have to consider all cases for which the construction
of a rank-1 matrix is impossible.

Among the permutation equivalences of C there is (at least) one matrix in which the row or column sums are in
nonincreasing order. We call such a representative of the permutation equivalence class of C row-normalized or column-
normalized. Of course, both normalizations may occur simultaneously, in which case we call the matrix normalized. We call
a (0, 1)-matrix left-justified if all 1’s (if any) in each row are to the left of all 0’s. Note that a left-justified, row-normalized
matrix is normalized, but a normalized matrix may not be left-justified. Therefore, a normalized, left-justified (0, 1)-matrix
is amatrixwith all 1’s in each row to the left of all 0’s andwith all 1’s in each column above all 0’s. Observe that a normalized,
left-justified (0, 1)-matrix appears ‘‘upper-left triangular’’, and it may have some rows repeated.

We call the number of 1’s in the i-th row of C the content of the i-th row. We may now prove the following key lemma.

Lemma 6. For each p, q, k, with k ≤ pq, Mp,q,k contains a normalized, left-justified matrix.

Proof. Suppose that C ∈ Mp,q,k. Without loss of generality we may assume C is normalized. Suppose that Ĉ ∈ Mp,q,k is
the left justification of C (move all 1’s to the left in each row). The matrix Ĉ remains normalized. Note that Ĉ ĈT is an
irreducible matrix and that by inspection of matrix multiplication, Ĉ ĈT

≥ CCT
≥ 0. By the Perron–Frobenius theory this

implies σ1(Ĉ) ≥ σ1(C). Among normalized matrices, equality occurs only for C = Ĉ . �

4. The role of a single additional rowmatrix

We call a matrix in Sp,q,k, whose first p − 1 rows have content q and whose last row has content strictly between 0 and
q, a single additional row matrix or SARM. Such a matrix appears as

1 · · · · · · · · · · · · 1
...

...
1 · · · · · · · · · · · · 1
1 · · · 1 0 · · · 0

 .

It is easy to see that if Sp,q,k for p + q ≤ n contains no rank-1 matrix, it must contain a SARM. We have been led to the
following conjecture.

Conjecture 1. The value of mp,q,k (mn,k) is always attained by either a rank-1matrix, or by a SARM. The latter occurs only when
there is no rank-1matrix in Sp,q,k (Sn,k).

The intuition is strong that the maximum singular value should be attained by a matrix having low rank, thus that when
a rank-1 matrix is not possible, a rank-2 matrix should attain the maximum. We have found, though, that this intuition is
not easy to confirm, in general. We can determine the maximizer among SARM’s and show that a SARM is maximal among
rank-2 matrices, which we do next. Then, we give a number of situations in which our conjecture is correct.
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First consider a normalized, left-justified (0, 1)-matrix of rank 2, i.e. of the following form:

C =


Jp1q1 Jp1q2
Jp2q1 0p2q2


(3)

with p = p1 + p2, q = q1 + q2, and p2, q2 ≥ 2. Because C has p1p2q1q2 nonzero 2-by-2 minors, each with determinant 1 in
absolute value, a simple calculation shows that the largest eigenvalue of CCT

σ 2
1 (C) = λmax(CCT ) =

k +

k2 − 4p1p2q1q2

2
. (4)

Let S be a matrix with the same number of columns (and, possibly, fewer rows) as in C , obtained from C by moving all 1’s
such that only one row has 1’s and 0’s. The matrix S is a SARM of the following form

S =


Jp′

1q
′
1

Jp′
1q

′
2

eTq′
1

0T
q′
2


(5)

with q′

1 + q′

2 = q and p′

1 + p′

2 ≤ p. According to (4) we have

σ 2
1 (S) = λmax(SST ) =

k +

k2 − 4p′

1q
′

1q
′

2

2
. (6)

In other words, when divided by the appropriate power of λ, the characteristic polynomial of SST has the form:

λ2
− kλ + p′

1q
′

1q
′

2,

in which k is the number of 1’s in S.
Recall that C is of the form (3). We define the disparity D(C) of C to be the product of the number of 1’s in its upper right

block and the number of 1’s in its lower left block.
Therefore, the largest singular value of S can be written in the form

σ 2
1 (S) = λmax(SST ) =

k +

k2 − 4D(S)
2

. (7)

Our goal is to show that there is always an S such that σ1(S) is greater than or equal to σ1(C), with equality if and only if
C = S.

First, we show which SARM’s, among all possible SARM’s for the given n and k, have the greatest largest singular value.

Theorem 7. Suppose that Sn,k has no rank-1matrix. A SARM in Sn,k has the maximum largest singular value among all possible
SARM’s in Sn,k if and only if it has minimum disparity.

Proof. From (7) we see that the smaller D(S) is, the larger is

k2 − 4D(S) and the larger is σ1(S). Thus, among SARM’s σ1(S)

is decreasing in D(S), and the maximum σ1(S) occurs for the smallest D(S). �

Now we show that if C is rank-2 matrix and is not a SARM, then there is either a rank-1 matrix or a SARM in the same
Sn,k as C with greater largest singular value than σ1(C).

The following familiar fact will be employed several times in the proof.

Fact 1. If 0 < a′
≤ a ≤ b ≤ b′, then a + b = a′

+ b′ implies a′b′
≤ ab.

Theorem 8. If C ∈ Sp,q,k satisfies rank(C) = 2with p+q = n, and C is not a SARM, then there is an S ∈ Sp′,q′,k, with p′
+q′

≤ n
that is either a rank-1matrix or a SARM, such that σ1(C) < σ1(S).

Proof. Suppose that C ∈ Sp,q,k satisfies rank(C) = 2 with p + q = n, and C is not a SARM. According to Lemma 4 if there
exists a rank-1 matrix S in Sn,k, then it has the greatest singular value among matrices in Sn,k and hence σ1(C) < σ1(S).

Otherwise, there is in Sn,k a p′-by-q′ matrix S, with p′
+q′

≤ n, that is a SARM.Without loss of generality, wemay suppose
that C is of the form

C =


Jp1q1 Jp1q2
Jp2q1 0p2q2


=


C11 C12
C21 0


with p = p1 +p2, q = q1 +q2, and p2, q2 ≥ 2. Via transposition, without loss of generality wemay assume that p2q1 ≤ p1q2.
We move 1’s from the block C21 to the 0 block, one row at a time, starting at the bottom, until we achieve S of the form

S =


Jp′

1q
′
1

Jp′
1q

′
2

eq′
1

0q′
2


=


S11 S12
S21 0


with p′

2 = 1. The matrix S consists of k 1’s and σ1(C) < σ1(S) if and only if p1p2q1q2 > p′

1q
′

1q
′

2, by formulas (4) and (6).
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Consider five exhaustive possibilities for q1, q2, q′

1, q
′

2’:
Case 1. q′

1 < q1 ≤ q2.
Case 2. q1 ≤ q2 and q1 ≤ q′

1.
Case 3. q′

1 ≤ q2 < q1.
Case 4. q2 < q′

1 < q1.
Case 5. q2 < q1 ≤ q′

1.
Of course, p′

1 ≥ p1.
In Case 2 and Case 5, the blocks S12 and S21 together contain no more 1’s than did C12 and C21, while S12 contains fewer

1’s than did C12. Application of Fact 1 shows that the desired inequality holds.
In Cases 1 and Case 3 we have p′

1 < p1p2, because p′

1 < p′

1 + p′

2 ≤ p1 + p2 ≤ p1p2. Since q′

1 < q1 ≤ q2 in Case 1 and
q′

1 ≤ q2 < q1 in Case 3 and q′

1 + q′

2 = q1 + q2, Fact 1, again, implies that q′

1q
′

2 ≤ q1q2, which gives the desired inequality in
these cases as well.

In Case 4, if p′

1q
′

1 ≥ p1q1, then the blocks S12 and S21 together contain no more 1’s than have C12 and C21. Since S21 has
fewer 1’s than C21 (which has nomore than C12), Fact 1 again gives the desired inequality. It is easy to see that if p′

1q
′

1 < p1q1,
then p1q1

p′
1q

′
1

> 1. But, since the number of 0’s in S (q′

2) is not greater than in C (p2q2), we have p2q2
q′
2

≥ 1. Together, these imply
p1q1p2q2
p′
1q

′
1q

′
2

> 1, which is the desired inequality completing the proof. �

5. The bled matrix as a tool

To address our Conjecture 1 by ruling out (0, 1)-matrices of rank greater than 2, we use a ‘‘bled matrix’’ B and show that
it gives us the lower bound for the largest singular of the given normalized, left-justified (0, 1)-matrix. Next we show that
for any rank-2 (0, 1)-matrix that is not a SARM, there is either a rank-1 matrix or a SARM that has greater largest singular
value than the largest singular value of a given (0, 1)-matrix.

First, we define a process of ‘‘bleeding’’ a matrix, and then we use singular value inequalities involving bled matrices to
show that if A is a matrix of rank more than 2 of a certain form, then there is a SARM with a greater largest singular value.

Given C = (cij) ∈ Mp,q, let Bi(C) be the matrix in Mp,q that agrees with C in rows 1, 2, . . . , i − 1, i + 1, . . . , p, while the
i-th row sum of Bi(C) is the same as that of C , and all entries in row i of Bi(C) are equal. Thus every entry in the i-th row of C
is replaced by the average entry in row i. This averaging process we call ‘‘bleeding’’ a matrix. If we bleed every row of C we
obtain the (fully) bled matrix

B = B(C) = B1(B2(. . . Bp(C)) . . .).

A bled matrix necessarily has rank 1, and its largest singular value is easy to calculate:

σ1(B) =

 p
i=1

1q
q

j=1

cij


2
 1

2

.

For our purposes, we need only consider fully bled matrices obtained from normalized, left-justified (0, 1)-matrices by
bleeding each of its rows. Note that the permuting that produces row normalization commutes with bleeding and that left
justification does not change the result of bleeding.

The following theorem gives a lower bound for the largest singular value of matrix C .

Theorem 9. If C ∈ Sp,q,k is a normalized, left-justified matrix that is not rank-1 and B(C) is its bled matrix, then σ1(C) >
σ1(B(C)).
Proof. Let C ∈ Sp,q,k be a normalized, left-justified matrix of the form

C =


Jp1q1 Jp1q2 Jp1q3 · · · Jp1qn
Jp2q1 Jp2q2 · · · Jp2qn−1 O
Jp3q1 · · · Jp3qn−2 O O

... . .
.

O O O
Jpnq1 O O O O

 . (8)

Let B = B(C) be the bled matrix of C of the following form

B =


Jp1q1 Jp1q2 Jp1q3 · · · Jp1qn

v1Jp2q1 v1Jp2q2 v1Jp2q3 · · · v1Jp2qn
v2Jp3q1 v2Jp3q2 v2Jp3q3 · · · v2Jp3qn

...
...

vn−1Jpnq1 vn−1Jpnq2 vn−1Jpnq3 · · · vn−1Jpnqn

 ,

in which vi =
q1+···+qn−i

q .
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Since σ1(C)2 = λmax(CCT ) and σ1(B)2 = λmax(BBT ), we focus on the structure of CCT and BBT . Observe that

CCT
=



qJp1p1
n−1
l=1

qlJp1p2
n−2
l=1

qlJp1p3 · · · q1Jp1pn

n−1
l=1

qlJp2p1
n−1
l=1

qlJp2p2
n−2
l=1

qlJp2p3 · · · q1Jp2pn

n−2
l=1

qlJp3p1
n−2
l=1

qlJp3p2
n−2
l=1

qlJp3p3 · · · q1Jp3pn

...
...

q1Jpnp1 q1Jpnp2 q1Jpnp3 · · · q1Jpnpn


(9)

and

BBT
=



qJp1p1
n−1
l=1

qlJp1p2
n−2
l=1

qlJp1p3 · · · q1Jp1pn

n−1
l=1

qlJp2p1 qv2
1 Jp2p2 qv1v2Jp2p3 · · · qv1vn−1Jp2pn

n−2
l=1

qlJp3p1 qv1v2Jp3p2 qv2
2 Jp3p3 · · · qv2vn−1Jp3pn

...
...

q1Jpnp1 qv1vn−1Jpnp2 qv1vn−2q1Jpnp3 · · · qv2
n Jpnpn


.

Let CCT and BBT be matrices with pi-by-pj blocks Cij and Bij, respectively, where i, j ∈ 1, . . . , n. Since the first blocks in
bothmatrices are equal, i.e. C11 = B11, we focus on the other blocks of thosematrices. Observe that all entries in block Cij are
the same and all entries in block Bij are the same. Let cij be one of the entries in block Cij in CCT and bij be one of the entries
in block Bij in BBT . We have

cij =

n+1−min{i,j}
l=1

ql and bij = qvivj =
1
q

n+1−i
l=1

ql
n+1−j
l=1

ql.

Since q =
n

l=1 ql, we have

bij ≤

n+1−i
l=1

ql
n+1−j
l=1

ql

n+1−max{i,j}
l=1

ql

= cij.

Therefore we have BBT
≥ CCT

≥ 0. Of course all entries in BBT are not the same as in CCT , and hence BBT
≠ CCT . It is easy

to see that BBT is an irreducible matrix. Therefore ρ(BBT ) > ρ(CCT ), which implies σ1(B) > σ1(C). �

The biggest advantage of a bled matrix is that it is rank-1 matrix and is simpler to analyze than the original matrix.

6. (0, 1)-matrices of rank greater than 2

In the next theorem we consider (0, 1)-matrices of rank greater than 2. We show that depending on the rank and the
number of 1’s in the last row of the SARM considered, the SARM has a greater largest singular value than the given (0,
1)-matrix has.

Theorem 10. Let T be an r-by-r normalized, left-justified matrix with (r − i + 1) 1’s in its i-th row. Suppose that C ∈ Sp,r,k
satisfies p + r = n, and that C includes all rows from T , together with repetitions. Suppose that an S ∈ Sp′,q,k is a SARM, with
p′

+ r ≤ n and with t 1’s in the last row. If

σ 2
2 (T ) + · · · + σ 2

r (T ) > t

1 −

2t
n


, (10)

then σ1(C) < σ1(S).
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Proof. Suppose that C , S, and T are matrices satisfying the hypothesis of our theorem and (10) holds. For a p-by-qmatrix C ,
without loss of generality, let p ≥ q, so q ≤

n
2 . Let B = B(S) be a bled matrix of S of the form

B =


1 · · · 1
...

...
1 · · · 1
t
q

· · ·
t
q

 .

By Horn and Johnson [10], for any matrix C ∈ Mp,q

tr(CCT ) = σ 2
1 (C) + · · · + σ 2

min{p,q}(C). (11)

Note that since

SST =


q · · · q t
...

...
q · · · q t
t · · · t t

 and BBT
=


q · · · q t
...

...
q · · · q t

t · · · t
t2

q

 ,

the difference between the sum of all squared singular values of S and squared the largest singular of B is

p
i=1

σ 2
i (S) − σ 2

1 (B) = tr(SST ) − tr(BBT ) = t

1 −

t
q


. (12)

Since S is rank-2 matrix, by (11) we have

σ 2
1 (S) + σ 2

2 (S) = k. (13)

Since B is rank-1 matrix, by (11) and (12) we have

σ 2
1 (B) = k − t


1 −

t
q


. (14)

From Theorem 9 we conclude that

σ 2
1 (B) < σ 2

1 (S).

Using this inequality and (14), we have

σ 2
1 (S) > k − t


1 −

t
q


.

According to this inequality and (13) we obtain

σ 2
2 (S) < t


1 −

t
q


,

and since q ≤
n
2 we get

σ 2
2 (S) < t


1 −

2t
n


.

Since tr(CCT ) = tr(SST ) = k, (11) implies we have

σ 2
1 (C) + σ 2

2 (C) + · · · + σ 2
q (C) = σ 2

1 (S) + σ 2
2 (S).

Therefore, to show that σ 2
1 (C) < σ 2

1 (S) it suffices to show that

σ 2
2 (S) < σ 2

2 (C) + · · · + σ 2
q (C).

Since T is a submatrix of C obtained by deleting (p − r) rows, we have from Interlacing Theorem ([10], p. 419), that

σ 2
2 (C) + · · · + σ 2

q (C) ≥ σ 2
2 (T ) + · · · + σ 2

r (T ),
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and it is enough to show that

σ 2
2 (T ) + · · · + σ 2

r (T ) > t

1 −

2t
n


,

which is implied by the assumption of our theorem. �

7. The main results

In this section we show that the SARM has a greater largest singular value than a certain (0, 1)-matrix of rank greater
than 2 and with all rows different, and a (0, 1)-matrix with repeated rows, where the number of repeated rows depends on
rank. We obtain similar results for matrices under some conditions depending on rank and the number of 1’s in a SARM,
that we want to compare to our (0, 1)-matrix.

To show our main results about σ1(C) for the remaining matrices C in Mp,q({0, 1}), we need to focus on the elementary
symmetric functions of CCT (see [10], p. 41).

Lemma 11. If C ∈ Sp,q,k is normalized and left-justified matrix with exactly r different rows of contents c1, . . . , cr indexed in
decreasing order with pi the number of repetitions of rows of content ci, i = 1, . . . , r, then the characteristic polynomial of CCT

has the form:

λp−r(λr
− kλr−1

+ E2λr−2
− E3λr−3

+ · · · ± Er),

in which the Et are the t-th elementary symmetric functions of CCT , which are of the form

Et =


1≤i1<···<it≤r

cit pit
t−1
j=1

(cij − cij+1)pij , 2 ≤ t ≤ r.

Proof. If C ∈ Sp,q,k is normalized and left-justified matrix with exactly r different rows of contents c1, . . . , cr indexed in
decreasing order with pi the number of repetitions of rows of content ci, i = 1, . . . , r , then

CCT
=


c1Jp1p1 c2Jp1p2 · · · cr Jp1pn
c2Jp2p1 c2Jp2p2 · · · cr Jp2pn

...
...

cr Jpnp1 cr Jpnp2 · · · cr Jpnpn

 (15)

and the characteristic polynomial of CCT is of the form:

λp−r(λr
− kλr−1

+ E2λr−2
− E3λr−3

+ · · · ± Er),

in which the Et are the t-th elementary symmetric functions of CCT .
Recall (see [10], p. 42) that Et is the sum of all t-by-t principal minors of CCT . A principal minor consisting of t rows of t

different content types i1, . . . , it with 1 ≤ i1 < · · · < it ≤ r is equal to cit
t−1

j=1 (cij − cij+1), and every such minor repeats
pij · pij+1 · . . . · pit times, and minors involving repeated content types are 0. Therefore we have

Et =


1≤i1<···<it≤r

cit pit
t−1
j=1

(cij − cij+1)pij

for 2 ≤ t ≤ r , as asserted. �

In case t = r , the nonzero r-by-r principal minors of CCT must contain one row of each content type, and we have the
following special case of Lemma 11.

Corollary 12. Under the hypothesis of the preceding lemma,

Er = cr
r−1
i=1

(ci − ci+1) ·

r
j=1

pj.

Observe that the disparity of a rank-2matrix C is E2. Now, we consider a matrix C of rank greater than 2 such that its row
contents increase by 1 with each successive row.

Theorem 13. Suppose that C ∈ Sr,q,k satisfies rank(C) = r ≥ 3 and r + q = n, with i-th row of content a− i, where a ∈ N and
a ≥ r + 1. There exists S ∈ Sp′,q′,k, with p′

+ q′
≤ n, that is either a rank-1matrix or a SARM, such that σ1(C) < σ1(S).
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Proof. Suppose that C ∈ Sr,q,k satisfies rank(C) = r ≥ 3 and r + q = n, with i-th row of content a− i, a ∈ N and a ≥ r + 1.
Let b = a − r − 1. Then,

k = (b + 1) + (b + 2) + · · · + (b + r) =
(2b + 1 + r)r

2
.

If r is odd, then

k =
(2b + 1 + r)

2
· r = k1 · k2, k1 + k2 =

(2b + 1 + r)
2

+ r = b +
3
2
r +

1
2

< 2r + b ≤ n

and the k1-by-k2 rank-1 matrix can be constructed; thus there exists S such that σ1(C) < σ1(S).
If r is even and b ≤

r
2 − 1, then k =

r
2 · (2b + 1 + r) and

k1 + k2 =
r
2

+ (2b + 1 + r) =
3
2
r + 2b + 1 ≤ 2r + b ≤ n.

It follows that the k1-by-k2 rank-1 matrix can be constructed, and thus there exists S such that σ1(C) < σ1(S).
Observe that for even r and b > r

2 − 1 the rank-1 matrix may not exist.
Suppose that k = rd+ t , with t > 0. We show that there exists a (d+ 1)-by-r SARM S ∈ Sp′,q′,k with t 1’s in the last row

(t < r), such that σ1(S) > σ1(C). Since d + 1 ≤ p it is easy to see that (d + 1) + r ≤ n.
Let B = B(S) be the bled matrix of S, i.e.

B =


Jdr
t
r
eTr


.

By Theorem 9, we have σ1(S) > σ1(B). Moreover, since B is a rank-1 matrix, σ1(B) = tr(BBT ) and

BBT
=

rJdd ted

teTd
t2

r


.

Since k = rd + t , we have tr(BBT ) = rd +
t2
r = k −

t(r−t)
r . Suppose, for purpose of contradiction, that

λmax(CCT ) ≥ k −
t(r − t)

r
= λmax(BBT ). (16)

Without loss of generality let C be normalized and left-justified (see Lemma6). Since C is of rank r , Er = λ1(CCT )·. . .·λr(CCT )
and tr(CCT ) = k, and under the assumption (16) an upper bound for Er is obtained when all the eigenvalues (except the
largest one) are t(r−t)

r(r−1) , we have

Er ≤


k −

t(r − t)
r


t(r − t)
r(r − 1)

r−1

. (17)

Consider the function f (t) =
t(r−t)
r(r−1) , which appears in (17). It is easy to see that the function f (t) achieves a maximum value

fmax(
r
2 ) =

r
4(r−1) for t =

r
2 . Therefore, from inequality (17) it follows that

Er ≤ k


r
4(r − 1)

r−1

. (18)

Let c1, . . . , cr indexed in decreasing order be the contents of rows of C . By Corollary 12, since the product
r−1

i=1 (ci − ci+1) is
an integer, we have

Er = cr
r−1
i=1

(ci − ci+1) ≥ cr = b + 1.

Now we prove that

b + 1 >


r

4(r − 1)

r−1

k, r ≥ 3. (19)

Since k =
(2b+1+r)r

2 , the above inequality is equivalent to

b


1 − r


r

4(r − 1)

r−1


+ 1 >
r(r + 1)

2


r

4(r − 1)

r−1

.
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Under the assumption b ≥
r
2 − 1, it suffices to show that

r
4(r − 1)

r−1

(2r − 1) < 1.

It is easy to see that
r

4(r − 1)

r−1

(2r − 1) =
2r − 1
4r−1

·
1 −

1
r

1 −
1
r

r . (20)

Let e be the base of the natural logarithm. Since r ≥ 3, the right side of equality (20) is smaller than

(2r − 1)
e4r−1

.

It is obvious that
(2r − 1)
e4r−1

< 1

for r ≥ 3. Hence,

Er >


r

4(r − 1)

r−1

k,

which contradicts (18), and we obtain the desired result. �

The next theorem applies to matrices C ∈ Sp,q,k with ‘‘large’’ numbers of columns, i.e. at least (2r − 1) columns, when
r = rank(C). Thematrices consideredmay have repeated row contents, but the contents must increase bymore than 1with
each successive row. The number of rows or columns in the constructed SARM still depends on the rank of C .

Theorem 14. Suppose that C ∈ Sp,q,k satisfies rank(C) = r ≥ 3 and p + q = n, with rows of contents c1 > · · · > cr , such that
ci − ci+1 > 1 for i = 1, . . . , r − 1. Let pi be the number of repetitions of rows of content ci,

r
i=1 pi = p. If there exists an index i

such that pi ≠ 1, then suppose that m satisfies cmpm = maxi cipi and that not all of: m = 1, pi = 1 for i > 1, and cr = 1 occur.
Then there exists:

(1) a rank-1matrix S ∈ Sp′,q′,k, with p′
+ q′

≤ n, such that σ1(C) < σ1(S)
or

(2) if there exists s, such that s + ⌈
k
s ⌉ ≤ n and s < 4(r−1)

r−1√2r−1
, then there exists a SARM S ∈ Sb,s,k, with b + s ≤ n, such that

σ1(C) < σ1(S).

Proof. Suppose that C ∈ Sp,q,k satisfies rank(C) = r ≥ 3 and p + q = n, with rows of contents c1 > · · · > cr , such that
ci − ci+1 > 1 for i = 1, . . . , r − 1. Let pi be the number of repetitions of rows of content ci,

r
i=1 pi = p.

If the existence of a rank-1 matrix S is possible, than Lemma 4 implies σ1(C) < σ1(S).
First observe that if s = r , then s < 4(r−1)

r−1√2r−1
, since it is equivalent to

r
4(r − 1)

r−1

(2r − 1) < 1.

By the proof of preceding theorem,

(2r − 1)
e4r−1

< 1

for r ≥ 3, where e is the base of the natural logarithm.
If there exists an index i such that pi ≠ 1, then suppose there exist distinct s and r such that s+⌈

k
s ⌉ ≤ n and s < 4(r−1)

r−1√2r−1
.

Suppose that k = sd + t with t > 0. We show that there exists a (d + 1)-by-s SARM S ∈ Sb,s,k with t 1’s in the last row
(t < s), such that σ1(S) > σ1(C). Observe that s + (d + 1) ≤ n, because d + 1 = ⌈

k
s ⌉.

Since we may assume s = r , if pi = 1 for 1 ≤ i ≤ r − 1, then the conditions for s in our theorem hold for any matrix and
(d + 1) + r ≤ n (where d + 1 ≤ p), and s < 4(r−1)

r−1√2r−1
.

Let B = B(S) be the bled matrix of S, i.e.

B =


Jds
t
s
eTs


.
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By Theorem 9, σ1(S) > σ1(B). Moreover, since B has rank 1, σ1(B) = tr(BBT ) and

BBT
=

sJdd ted

teTd
t2

s

 .

Since k = sd + t , we have tr(BBT ) = sd +
t2
s = k −

t(s−t)
s . Suppose, for purpose of contradiction, that

λmax(CCT ) ≥ k −
t(s − t)

s
= λmax(BBT ). (21)

Without loss of generality let C be normalized and left-justified (see Lemma 6). Note that since C is of rank r , i.e. it has r
nonzero eigenvalues, Er = λ1(CCT ) · . . . · λr(CCT ) and tr(CCT ) = k. Under the assumption (21) an upper bound for Er is
obtained when all the eigenvalues (except the largest one) are t(s−t)

s(r−1) . Therefore

Er ≤


k −

t(s − t)
s


t(s − t)
s(r − 1)

r−1

. (22)

Consider the function f (t) =
t(s−t)
s(r−1) , which appears in (22). It is easy to see that f (t) achieves a maximum value fmax(

s
2 ) =

s
4(r−1) for t =

s
2 . Therefore, from inequality (22) it follows that

Er ≤ k


s
4(r − 1)

r−1

. (23)

Let c1, . . . , cr indexed in decreasing order be contents of rows of C , pi be the number of repetitions of rows of content ci. Let
h =

crpr
k , note that 0 < h < 1.

First, suppose that

h >


s

4(r − 1)

r−1

.

By Corollary 12, since the product
r−1

i=1 (ci − ci+1) ·
r−1

j=1 pj is an integer, we have

Er = cr
r−1
i=1

(ci − ci+1) ·

r
j=1

pj ≥ crpr = hk > k


s
4(r − 1)

r−1

.

Contradiction with (23) implies the claimed result.
Now, suppose that

h ≤


s

4(r − 1)

r−1

and ci − ci+1 > 1 for i = 1, . . . , r − 1.
If there exists an index i such that pi ≠ 1, then supposem is such that cmpm = maxi cipi and not all of:m = 1, pi = 1 for

i > 1, and cr = 1 occur. Observe that
r−1
i=1

(ci − ci+1) ≥

r−1
i=1

(ci − ci+1) = c1 − cr

and hence

Er = cr
r−1
i=1

(ci − ci+1) ·

r
j=1

pj ≥ (c1 − cr)cr ·

r
j=1

pj ≥ c1pm ≥ cmpm > cmpm − crpr .

It is easy to see that
r

i=1 cipi = k, which implies
r−1

i=1 cipi = (1 − h)k. Now, one of the possible choices of cipi is
cipi =

1−h
r−1 k for 1 ≤ i ≤ r − 1. However, cmpm must be greater than the remaining cipi, i.e. cmpm > 1−h

r−1 k. Thus

cmpm − crpr >
1 − h
r − 1

k − hk =
1 − hr
r − 1

k

and

cmpm − crpr >
1 − r


s

4(r−1)

r−1

r − 1
k.
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Now, we prove that

1 − r


s
4(r−1)

r−1

r − 1
k >


s

4(r − 1)

r−1

k, r ≥ 3.

Observe that the above inequality is equivalent to
s

4(r − 1)

r−1

(2r − 1) < 1,

which holds for r ≥ 3 by the assumption s < 4(r−1)
r−1√2r−1

(or if s = r).
Hence,

Er >


s

4(r − 1)

r−1

k

which contradicts (23), and we conclude that σ1(C) < σ1(S). �

Corollary 15. Suppose that C ∈ Sr,q,k satisfies rank(C) = r ≥ 3 and p + q = n, with rows of contents c1 > · · · > cr such that
ci − ci+1 > 1 for i = 1, . . . , r − 1. Then, there exists a rank-1 matrix S ∈ Sp′,q′,k with p′

+ q′
≤ n or a SARM S ∈ Sb,r,k with

b + r ≤ n, such that σ1(C) < σ1(S).

The above corollary applies to (0, 1)-matrices such that for any two rows, the row contents differ by at least 2. In
Theorem 14 are also allowed matrices with a ‘‘small’’ number of repeated rows (or columns).

Let C be a matrix satisfying the hypothesis of Theorem 14. Let s be such that s ≠ r , s + ⌈
k
s ⌉ ≤ n, and s < 4(r−1)

r−1√2r−1
.

For r = 4 we can construct a SARM with s ≤ 6 rows,
for r = 5 we can construct a SARM with s ≤ 9 rows,
for r = 100 we can construct a SARM with s ≤ 375 rows.
Thus, if C is a matrix of rank 100 and there exists s with s ≤ 375 such that s + ⌈

k
s ⌉ ≤ n, then there is a rank-1 matrix or

a SARM whose largest singular value beats that of C . It implies that if C has no more than 375 rows, then there is a rank-1
matrix or a SARM with the largest singular value greater then the largest singular value of C .

We have generated many examples that show, for example, limitations of our methods. However, we are always able to
produce a winning SARM, when there is no rank-1 matrix, consistent with our conjecture.

Let n = 16, k = 49, and

C =



1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0 0

 .

Since C is a matrix of rank 4, we first construct a SARM S with four rows or four column, having 49 nonzero positions, such
that the sum of its numbers of rows and columns is smaller than or equal to 16. Observe that this is impossible, because to
obtain 49 nonzero positions, the matrix S must be a 4-by-13 matrix, so that the sum of its rows and columns exceeds 16.
Using Theorem 14, we construct a SARM S with five rows having 49 nonzero positions, and it can be of the following form

S =


1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0

 .

Here the sum of the numbers of rows and columns is 15, which is smaller than n. A calculations yields:

6.5944 = σ1(C) < σ1(S) = 6.9465.

8. Graph-theoretic interpretation of the results

Here we describe the structure of the minimizing graphs for some particular bipartite graphs. We introduce the notion
of a nearly complete bipartite graph and indicate when the graph that minimizes the smallest eigenvalue of its adjacency
matrix is a complete bipartite graph or a nearly complete bipartite graph. To ensure the existence of a bipartite graph, we
assume k ≤

n2
4 .
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Definition 2. A graph G is a nearly complete bipartite graph if it is obtained from a complete bipartite graph by deleting some
edges incident to a single vertex.

Note that the degree of the special vertex is the number of 1’s in the last row of a SARM S ∈ Sp,q,k; hence it is k−q(p−1).
Note that all theorems from Sections 3–7 can be interpreted graph-theoretically in the following way. If G ∈ Bn,k and its

adjacency matrix satisfies the conditions of one of the theorems from Sections 3–7, then there exists a complete bipartite
graph or a nearly complete bipartite graphwith the least eigenvalue of its adjacencymatrix smaller than the least eigenvalue
of the adjacency matrix of G. For example, our last theorem is immediate consequence of Corollary 15.

Theorem 16. If G is an n-vertex bipartite graph with k edges, such that the degrees of the vertices in one partite set differ by more
than 1, then there exists a complete bipartite graph or a nearly complete bipartite graph with the least eigenvalue of its adjacency
matrix smaller than the least eigenvalue of the adjacency matrix of G.
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