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Abstract

By counting flags in finite vector spaces, we obtain a q-multinomial analog of a
recursion for q-binomial coefficients proved by Nijenhuis, Solow, and Wilf. We use
the identity to give a combinatorial proof of a known recurrence for the generalized
Galois numbers.

1 Introduction

For a parameter q 6= 1, and a positive integer n, let (q)n = (1 − q)(1 − q2) · · · (1 − qn),
and (q)0 = 1. For non-negative integers n and k, with n > k, the q-binomial coefficient

or Gaussian polynomial, denoted
(

n
k

)
q
, is defined as

(
n
k

)
q

= (q)n

(q)k(q)n−k
.

The Rogers-Szegö polynomial in a single variable, denoted Hn(t), is defined as

Hn(t) =
n∑

k=0

(
n

k

)
q

tk.

The Rogers-Szegö polynomials first appeared in papers of Rogers [16, 17] which led up to
the famous Rogers-Ramanujan identities, and later were independently studied by Szegö
[19]. They are important in combinatorial number theory ([1, Ex. 3.3–3.9] and [5, Sec.
20]), symmetric function theory [20], and are key examples of orthogonal polynomials [2].
They also have applications in mathematical physics [11, 13].

The Rogers-Szegö polynomials satisfy the recursion (see [1, p. 49])

Hn+1(t) = (1 + t)Hn(t) + t(qn − 1)Hn−1(t). (1.1)

∗Supported by NSF grant DMS-0854849.
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Letting t = 1, we have Hn(1) =
∑n

k=0

(
n
k

)
q
, which, when q is the power of a prime, is the

total number of subspaces of an n-dimensional vector space over a field with q elements.
The numbers Gn = Hn(1) are the Galois numbers, and from (1.1), satisfy the recursion

Gn+1 = 2Gn + (qn − 1)Gn−1. (1.2)

The Galois numbers were studied from the point of view of finite vector spaces by Goldman
and Rota [6], and have been studied extensively elsewhere, for example, in [15, 9]. In
particular, Nijenhuis, Solow, and Wilf [15] give a bijective proof of the recursion (1.2)
using finite vector spaces, by proving, for integers n > k > 1,(

n + 1

k

)
q

=

(
n

k

)
q

+

(
n

k − 1

)
q

+ (qn − 1)

(
n− 1

k − 1

)
q

. (1.3)

For non-negative integers k1, k2, . . . , km such that k1 + · · · + km = n, we define the
q-multinomial coefficient of length m as(

n

k1, k2, . . . , km

)
q

=
(q)n

(q)k1(q)k2 · · · (q)km

,

so that
(

n
k

)
q

=
(

n
k,n−k

)
q
. If k denotes the m-tuple (k1, . . . , km), write the corresponding

q-multinomial coefficient as
(

n
k1,...,km

)
q

=
(

n
k

)
q
. For a subset J ⊆ {1, . . . ,m}, let eJ denote

the m-tuple (e1, . . . , em), where

ei =

{
1 if i ∈ J ,
0 if i 6∈ J .

For example, if m = 3, J = {1, 3}, and k = (k1, k2, k3), then
(

n
k−eJ

)
q

=
(

n
k1−1,k2,k3−1

)
q
. The

main result of this paper, which is obtained in Section 2, Theorem 2.1, is a combinatorial
proof through enumerating flags in finite vectors spaces of the following generalization of
the identity (1.3). For m > 2, and any k1, . . . , km > 0 such that k1 + · · ·+ km = n + 1, we
have (

n + 1

k1, . . . , km

)
q

=
∑

J⊆{1,...,m},|J |>0

(−1)|J |−1 (q)n

(q)n−|J |+1

(
n + 1− |J |

k − eJ

)
q

.

In Section 3, we prove a recursion which generalizes (1.2). In particular, the generalized

Galois number G
(m)
n is defined as

G(m)
n =

∑
k1+···+km=n

(
n

k1, k2, . . . , km

)
q

,

which, in the case that q is the power of a prime, enumerates the total number of flags
of length m − 1 of an n-dimensional Fq-vector space. Quite recently, the asymptotic
statistics of these generalized Galois numbers have been studied by Bliem and Kousidis
[3] and Kousidis [12].

the electronic journal of combinatorics 19(3) (2012), #P5 2



Directly following from Theorem 2.1, we prove in Theorem 3.1 that, for n > m− 1,

G
(m)
n+1 =

m−1∑
i=0

(
m

i + 1

)
(−1)i (q)n

(q)n−i

G
(m)
n−i,

which also follows from a known recurrence for the multivariate Rogers-Szegö polynomials.

2 Flags in finite vector spaces

In this section, let q be the power of a prime, and let Fq denote a finite field with q
elements. If V is an n-dimensional vector space over Fq, then the q-binomial coefficient(

n
k

)
q

is the number of k-dimensional subspaces of V (see [10, Thm. 7.1] or [18, Prop.

1.3.18]). So, the Galois number

Gn = Hn(1) =
n∑

k=0

(
n

k

)
q

,

is the total number of subspaces of an n-dimensional vector space over Fq.
Now consider the q-multinomial coefficient in terms of vector spaces over Fq. It follows

from the definition of a q-multinomial coefficient and the fact that
(

n
k

)
q

=
(

n
n−k

)
q

that we

have(
n

k1, k2, . . . , km

)
q

=

(
n

k1

)
q

(
n− k1

k2

)
q

· · ·
(

n− k1 − · · · − km−2

km−1

)
q

=

(
n

n− k1

)
q

(
n− k1

n− k1 − k2

)
q

· · ·
(

n− k1 − · · · − km−2

n− k1 − · · · − km−2 − km−1

)
q

.

So, if V is an n-dimensional vector space over Fq, the q-multinomial coefficient
(

n
k1,...,km

)
q

is equal to the number of ways to choose an (n − k1)-dimensional subspace W1 of V ,
an (n − k1 − k2)-dimensional subspace W2 of W1, and so on, until finally we choose an
(n−k1−· · ·−km−1)-dimensional subspace Wm−1 of some (n−k1−· · ·−km−2)-dimensional
subspace Wm−2 (see also [14, Sec. 1.5]). That is,

Wm−1 ⊆ Wm−2 ⊆ · · · ⊆ W2 ⊆ W1

is a flag of subspaces of V of length m− 1, where dim Wi = n−
∑i

j=1 kj.
We now turn to a bijective proof of the identity (1.3), that for integers n > k > 1,(

n + 1

k

)
q

=

(
n

k

)
q

+

(
n

k − 1

)
q

+ (qn − 1)

(
n− 1

k − 1

)
q

.

While the bijective interpretation of this identity which we give now is different from the
proof given by Nijenhuis, Solow, and Wilf in [15], it is the interpretation which is most
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helpful for the proof of our main result. Fix V to be an (n + 1)-dimensional Fq-vector
space. There are

(
n+1

k

)
q

ways to choose a k-dimensional subspace W of V . Fix a basis

{v1, v2, . . . , vn+1} of V . Any k-dimensional subspace W can be written as span(W ′, v)
where W ′ is a (k − 1)-dimensional subspace of V ′ = span(v1, . . . , vn), for some v. We
may choose W in three distinct ways. If v ∈ V ′, then W is a subspace of V ′, for which
there are

(
n
k

)
q

choices. Call this a type 1 subspace of V . If vn+1 ∈ W , then we may take

v = vn+1, and W is determined by W ′, for which there are
(

n
k−1

)
q

choices. We call this a

type 2 subspace of V . Finally, if both W 6⊂ V ′ and vn+1 6∈ W , then we call W a type 3
subspace of V , and it follows from (1.3) (and can be shown directly, as well) that there
are (qn − 1)

(
n−1
k−1

)
q

choices for W .

We may now prove our main result.

Theorem 2.1. For m > 2, and any k1, . . . , km > 0 such that k1 + · · · + km = n + 1, we
have (

n + 1

k1, . . . , km

)
q

=
∑

J⊆{1,...,m},|J |>0

(−1)|J |−1 (q)n

(q)n−|J |+1

(
n + 1− |J |

k − eJ

)
q

Proof. Fix V to be an (n + 1)-dimensional vector space over Fq. Fix a basis of each
subspace U of V , so that we may speak of subspaces of type 1, 2, or 3 of each subspace
U with respect to this fixed basis. Consider a flag F of subspaces of V = W0, Wm−1 ⊂
· · · ⊂ W2 ⊂ W1, such that if we define ki for 1 6 i 6 m by

∑i
j=1 kj = n + 1 − dim Wi,

then each ki > 0. The total number of such flags is
(

n+1
k1,...,km

)
q
. Consider now a labeling of

such flags in the following way. Given a flag F as above, define

r = min{1 6 j 6 m | Wj is a type 1 subspace of Wj−1},

and
J = {r} ∪ {1 6 j 6 r − 1 | Wj is a type 3 subspace of Wj−1}.

Define the flag F to be a type J flag of V . That is, for any nonempty J ⊆ {1, . . . ,m}, we
may speak of flags of type J of V . We shall prove that

(−1)|J |−1 (q)n

(q)n−|J |+1

(
n + 1− |J |

k − eJ

)
q

(2.1)

is the number of type J flags of length m − 1 of the Fq-space V . Once this claim is
proven, we will have accounted for all 2m − 1 terms on the right-side of the desired result
of Theorem 2.1, and all possible ways to choose our flag.

We prove the claim by induction on m, where the base case of m = 2 follows from
(1.3) and its interpretation in terms of subspaces of types 1, 2, and 3, as given above.
We must consider each possible nonempty J ⊆ {1, . . . ,m}, and show that in each case,
the quantity (2.1) counts the number of type J flags. So, consider a flag of subspaces
Wm−1 ⊂ · · · ⊂ W2 ⊂ W1 of V , where dim Wi = n + 1−

∑i
j=1 kj.

First, if J = {1}, then the number of ways to choose W1 to be a type 1 subspace of V of
dimension n+1−k1 is

(
n

n+1−k1

)
q
, while the number of ways to choose the remaining length
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m− 2 flag Wm−1 ⊂ · · · ⊂ W2 of W1 is exactly
(

n+1−k1

k2,...,km

)
q
. Thus, the total number of ways

to choose our flag of type J with J = {1} is
(

n
n+1−k1

)
q

(
n+1−k1

k2,...,km

)
q

=
(

n
k1−1,k2,...,km

)
q
, which is

exactly the expression (2.1) for J = {1}, as claimed. So, we now suppose J 6= {1}, so if
r is the maximum element of J , we have r > 1. We consider the cases of whether 1 ∈ J
or 1 6∈ J separately.

Suppose that 1 6∈ J . Then, we must choose our flag so that W1 is a type 2 subspace of
V , of which there are

(
n

n−k1

)
q
such subspaces. Now, if we define I = J−1 = {j−1 | j ∈ J},

so that I ⊂ {1, . . . ,m − 1} and |I| = |J |, we must choose the rest of our type J flag of
V by choosing a type I flag of W1 of length m − 2. If we let k′ = (k2, . . . , km), then by
our induction hypothesis, the number of type I flags of length m− 2 of the (n + 1− k1)-
dimensional space W1 is

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(
n + 1− k1 − |I|

k′ − eI

)
q

.

So, the total number of ways to choose the type J flag of length m− 1 in V is(
n

n− k1

)
q

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(
n + 1− k1 − |I|

k′ − eI

)
q

.

A direct computation yields(
n

n− k1

)
q

(q)n−k1

(q)n−k1−|I|+1

=
(q)n

(q)n−|I|+1

(
n + 1− |I|

n− k1 − |I|+ 1

)
q

,

and further note that(
n + 1− |I|

n− k1 − |I|+ 1

)
q

(
n + 1− k1 − |I|

k′ − eI

)
q

=

(
n + 1− |J |

k − eJ

)
q

,

where k = (k1, . . . , km). Together, these give(
n

n− k1

)
q

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(
n + 1− k1 − |I|

k′ − eI

)
q

= (−1)|J |−1 (q)n

(q)n−|J |+1

(
n + 1− |J |

k − eJ

)
q

,

giving the claim that when 1 6∈ J , the number of type J subspaces of length m − 1 of V
is given by (2.1).

Finally, suppose that 1 ∈ J , and J 6= {1}. So, we must choose our flag so that
W1 is a type 3 subspace of V , and there are (qn − 1)

(
n−1
n−k1

)
q

such subspaces. If we let

I = (J − 1) \ {0} (so that now |J | = |I|+1), then we must choose the rest of our flag as a
type I flag of length m− 2 of W1. Letting again k′ = (k2, . . . , km), then by our induction
hypothesis, the total number of flags of type J of length m− 1 of V is given by

(qn − 1)

(
n− 1

n− k1

)
q

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(
n + 1− k1 − |I|

k′ − eI

)
q

.
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A computation gives

(qn − 1)

(
n− 1

n− k1

)
q

(q)n−k1

(q)n−k1−|I|+1

= (−1)
(q)n

(q)n−|I|

(
n− |I|

n− k1 − |I|+ 1

)
q

,

and also note (
n− |I|

n− k1 − |I|+ 1

)
q

(
n + 1− k1 − |I|

k′ − eI

)
q

=

(
n + 1− |J |

k − eJ

)
q

,

where k = (k1, . . . , km), since |I| = |J | − 1. We finally obtain that

(qn − 1)

(
n− 1

n− k1

)
q

(−1)|I|−1 (q)n−k1

(q)n−k1−|I|+1

(
n + 1− k1 − |I|

k′ − eI

)
q

= (−1)|J |−1 (q)n

(q)n−|J |+1

(
n + 1− |J |

k − eJ

)
q

,

is the the number of type J subspaces of length m− 1 of V , as claimed.

3 Generalized Galois numbers

Define the homogeneous Rogers-Szegö polynomial in m variables for m > 2, denoted
H̃n(t1, t2, . . . , tm), by

H̃n(t1, t2, . . . , tm) =
∑

k1+···+km=n

(
n

k1, . . . , km

)
q

tk1
1 · · · tkm

m ,

and define the Rogers-Szegö polynomial in m− 1 variables, denoted Hn(t1, . . . , tm−1), by

Hn(t1, . . . tm−1) = H̃(t1, . . . , tm−1, 1).

The homogeneous multivariate Rogers-Szegö polynomials were first defined by Rogers [16]
in terms of their generating function, and several of their properties are given by Fine
[5, Section 21]. The definition of the multivariate Rogers-Szegö polynomial Hn is given
by Andrews in [1, Chap. 3, Ex. 17], along with a generating function, although there
is little other study of these polynomials elsewhere in the literature (however, there is a
non-symmetric version of a bivariate Rogers-Szegö polynomial [4]).

The multivariate Rogers-Szegö polynomials satisfy a recursion which generalizes (1.1),
although it seems not to be very well-known, as the only proof and reference to it that the
author has found is in the physics literature, in papers of Hikami [7, 8]. For any finite set
of variables X, let ei(X) denote the ith elementary symmetric polynomial in the variables
X. Then the Rogers-Szegö polynomials in m− 1 variables satisfy the following recursion:

Hn+1(t1, . . . , tm−1) =
m−1∑
i=0

ei+1(t1, . . . , tm−1, 1)(−1)i (q)n

(q)n−i

Hn−i(t1, . . . , tm−1). (3.1)
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The sum of all q-multinomial coefficients of length m, or the generalized Galois number
G

(m)
n , is then

Hn(1, 1, . . . , 1) = G(m)
n =

∑
k1+···+km=n

(
n

k1, . . . , km

)
q

.

From the discussion at the beginning of Section 2, when q is the power of a prime, G
(m)
n

is exactly the total number of flags of subspaces of length m − 1 in an n-dimensional
Fq-vector space.

Since the number of terms in the elementary symmetric polynomial ei+1(t1, . . . , tm−1, 1)
is

(
m

i+1

)
, then the following, our last result, follows directly from the formal identity (3.1)

proved by Hikami. However, we give a proof which follows directly from Theorem 2.1,
and is thus a bijective proof through the enumeration of flags in a finite vector space.

Theorem 3.1. The generalized Galois numbers satisfy the recursion, for n > m− 1,

G
(m)
n+1 =

m−1∑
i=0

(
m

i + 1

)
(−1)i (q)n

(q)n−i

G
(m)
n−i.

Proof. For convenience, whenever any ki < 0, we define the q-multinomial coefficient(
n

k1,k2,...,km

)
q

= 0. Granting this, we have Theorem 2.1 holds for all ki > 0. We now begin

with the definition of G
(m)
n+1 as the sum of all q-multinomial coefficients, and we directly

apply Theorem 2.1 to rewrite the sum, as follows:

G
(m)
n+1 =

∑
k1+···km=n+1

(
n + 1

k1, . . . , km

)
q

=
∑

k1+···km=n+1

∑
J⊆{1,...,m}

|J|>0

(−1)|J |−1 (q)n

(q)n−|J |+1

(
n + 1− |J |

k − eJ

)
q

=
∑

J⊆{1,...m}
|J|>0

∑
k=(k1,...,km)

k1+···+km=n+1

(−1)|J |−1 (q)n

(q)n−|J |+1

(
n + 1− |J |

k − eJ

)
q

=
m−1∑
i=0

∑
J⊆{1,...,m}
|J|=i+1

∑
k=(k1,...,km)

k1+···+km=n+1

(−1)i (q)n

(q)n−i

(
n− i

k − eJ

)
q

=
m−1∑
i=0

(
m

i + 1

) ∑
k′1+···+k′m=n−i

k′=(k′1,...,k′m)

(−1)i (q)n

(q)n−i

(
n− i

k′

)
q

=
m−1∑
i=0

(
m

i + 1

)
(−1)i (q)n

(q)n−i

G
(m)
n−i,

where the next-to-last equality follows from the fact that each index k′ may be obtained
from an index k from any of the

(
m

i+1

)
subsets J of size i + 1.
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By a very similar argument, we may see that in fact the recursion for the multinomial
Rogers-Szegö polynomials in (3.1) also follows from Theorem 2.1.
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