

[W&M ScholarWorks](https://scholarworks.wm.edu/)

[Arts & Sciences Articles](https://scholarworks.wm.edu/aspubs) **Articles** [Arts and Sciences](https://scholarworks.wm.edu/as) Articles Arts and Sciences Arts and Sciences

2012

An enumeration of flags in finite vector spaces

Ryan C. Vinroot William & Mary, crvinroot@wm.edu

Follow this and additional works at: [https://scholarworks.wm.edu/aspubs](https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Vinroot, Ryan C., An enumeration of flags in finite vector spaces (2012). Electronic Journal of Combinatorics, 19(3). https://scholarworks.wm.edu/aspubs/1536

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

An enumeration of flags in finite vector spaces

C. Ryan Vinroot[∗]

Department of Mathematics College of William and Mary P. O. Box 8795 Williamsburg, VA 23187

vinroot@math.wm.edu

Submitted: Feb 2, 2012; Accepted: Jun 27, 2012; Published: Jul 12, 2012 Mathematics Subject Classifications: 05A19, 05A15, 05A30

Abstract

By counting flags in finite vector spaces, we obtain a q-multinomial analog of a recursion for q-binomial coefficients proved by Nijenhuis, Solow, and Wilf. We use the identity to give a combinatorial proof of a known recurrence for the generalized Galois numbers.

1 Introduction

For a parameter $q \neq 1$, and a positive integer n, let $(q)_n = (1 - q)(1 - q^2) \cdots (1 - q^n)$, and $(q)_0 = 1$. For non-negative integers n and k, with $n \geq k$, the q-binomial coefficient or Gaussian polynomial, denoted $\binom{n}{k}$ $\binom{n}{k}_q$, is defined as $\binom{n}{k}$ $\binom{n}{k}_q = \frac{(q)_n}{(q)_k (q)_n}$ $\frac{(q)_n}{(q)_k(q)_{n-k}}$.

The Rogers-Szegö polynomial in a single variable, denoted $H_n(t)$, is defined as

$$
H_n(t) = \sum_{k=0}^n \binom{n}{k}_q t^k.
$$

The Rogers-Szegö polynomials first appeared in papers of Rogers [\[16,](#page-9-0) [17\]](#page-9-1) which led up to the famous Rogers-Ramanujan identities, and later were independently studied by Szegö [\[19\]](#page-9-2). They are important in combinatorial number theory ([\[1,](#page-8-0) Ex. 3.3–3.9] and [\[5,](#page-8-1) Sec. 20]), symmetric function theory [\[20\]](#page-9-3), and are key examples of orthogonal polynomials [\[2\]](#page-8-2). They also have applications in mathematical physics [\[11,](#page-8-3) [13\]](#page-8-4).

The Rogers-Szegö polynomials satisfy the recursion (see $[1, p. 49]$ $[1, p. 49]$)

$$
H_{n+1}(t) = (1+t)H_n(t) + t(q^n - 1)H_{n-1}(t).
$$
\n(1.1)

[∗]Supported by NSF grant DMS-0854849.

THE ELECTRONIC JOURNAL OF COMBINATORICS $19(3)$ (2012), $\#P5$ 1

Letting $t = 1$, we have $H_n(1) = \sum_{k=0}^n {n \choose k}$ ${k \choose k}_q$, which, when q is the power of a prime, is the total number of subspaces of an *n*-dimensional vector space over a field with q elements. The numbers $G_n = H_n(1)$ are the Galois numbers, and from [\(1.1\)](#page-1-0), satisfy the recursion

$$
G_{n+1} = 2G_n + (q^n - 1)G_{n-1}.
$$
\n(1.2)

The Galois numbers were studied from the point of view of finite vector spaces by Goldman and Rota [\[6\]](#page-8-5), and have been studied extensively elsewhere, for example, in [\[15,](#page-9-4) [9\]](#page-8-6). In particular, Nijenhuis, Solow, and Wilf [\[15\]](#page-9-4) give a bijective proof of the recursion [\(1.2\)](#page-2-0) using finite vector spaces, by proving, for integers $n \geq k \geq 1$,

$$
\binom{n+1}{k}_q = \binom{n}{k}_q + \binom{n}{k-1}_q + (q^n - 1)\binom{n-1}{k-1}_q.
$$
\n(1.3)

For non-negative integers k_1, k_2, \ldots, k_m such that $k_1 + \cdots + k_m = n$, we define the q-multinomial coefficient of length m as

$$
\binom{n}{k_1, k_2, \dots, k_m}_q = \frac{(q)_n}{(q)_{k_1}(q)_{k_2} \cdots (q)_{k_m}},
$$

so that $\binom{n}{k}$ $\binom{n}{k}_q = \binom{n}{k,n}$ $\binom{n}{k,n-k}_q$. If <u>k</u> denotes the *m*-tuple (k_1,\ldots,k_m) , write the corresponding q-multinomial coefficient as $\binom{n}{k}$ $\binom{n}{k_1,\dots,k_m}_q = \binom{n}{\underline{k}}$ $\left(\frac{n}{k} \right)_q$. For a subset $J \subseteq \{1, \ldots, m\}$, let \underline{e}_J denote the *m*-tuple (e_1, \ldots, e_m) , where

$$
e_i = \begin{cases} 1 & \text{if } i \in J, \\ 0 & \text{if } i \notin J. \end{cases}
$$

For example, if $m = 3$, $J = \{1, 3\}$, and $\underline{k} = (k_1, k_2, k_3)$, then $\binom{n}{k-i}$ $\binom{n}{k-e_j}_q = \binom{n}{k_1-1,k_2}$ $_{k_1-1,k_2,k_3-1}$ _q. The main result of this paper, which is obtained in Section [2,](#page-3-0) Theorem [2.1,](#page-4-0) is a combinatorial proof through enumerating flags in finite vectors spaces of the following generalization of the identity [\(1.3\)](#page-2-1). For $m \ge 2$, and any $k_1, \ldots, k_m > 0$ such that $k_1 + \cdots + k_m = n + 1$, we have

$$
\binom{n+1}{k_1,\ldots,k_m}_q = \sum_{J \subseteq \{1,\ldots,m\},|J|>0} (-1)^{|J|-1} \frac{(q)_n}{(q)_{n-|J|+1}} \binom{n+1-|J|}{\underline{k}-\underline{e}_J}_q.
$$

In Section [3,](#page-6-0) we prove a recursion which generalizes [\(1.2\)](#page-2-0). In particular, the generalized Galois number $G_n^{(m)}$ is defined as

$$
G_n^{(m)} = \sum_{k_1 + \dots + k_m = n} {n \choose k_1, k_2, \dots, k_m}_q,
$$

which, in the case that q is the power of a prime, enumerates the total number of flags of length $m-1$ of an n-dimensional \mathbb{F}_q -vector space. Quite recently, the asymptotic statistics of these generalized Galois numbers have been studied by Bliem and Kousidis [\[3\]](#page-8-7) and Kousidis [\[12\]](#page-8-8).

Directly following from Theorem [2.1,](#page-4-0) we prove in Theorem [3.1](#page-7-0) that, for $n \geq m - 1$,

$$
G_{n+1}^{(m)}=\sum_{i=0}^{m-1}\binom{m}{i+1}(-1)^i\frac{(q)_n}{(q)_{n-i}}G_{n-i}^{(m)},
$$

which also follows from a known recurrence for the multivariate Rogers-Szegö polynomials.

2 Flags in finite vector spaces

In this section, let q be the power of a prime, and let \mathbb{F}_q denote a finite field with q elements. If V is an *n*-dimensional vector space over \mathbb{F}_q , then the *q*-binomial coefficient $\binom{n}{k}$ $\binom{n}{k}_q$ is the number of k-dimensional subspaces of V (see [\[10,](#page-8-9) Thm. 7.1] or [\[18,](#page-9-5) Prop. 1.3.18]). So, the Galois number

$$
G_n = H_n(1) = \sum_{k=0}^n \binom{n}{k}_q,
$$

is the total number of subspaces of an *n*-dimensional vector space over \mathbb{F}_q .

Now consider the q-multinomial coefficient in terms of vector spaces over \mathbb{F}_q . It follows from the definition of a q-multinomial coefficient and the fact that $\binom{n}{k}$ $\binom{n}{k}_q = \binom{n}{n-q}$ $\binom{n}{n-k}_q$ that we have

$$
\binom{n}{k_1, k_2, \dots, k_m}_q = \binom{n}{k_1}_q \binom{n-k_1}{k_2}_q \cdots \binom{n-k_1 - \dots - k_{m-2}}{k_{m-1}}_q
$$
\n
$$
= \binom{n}{n-k_1}_q \binom{n-k_1}{n-k_1-k_2}_q \cdots \binom{n-k_1 - \dots - k_{m-2}}{n-k_1 - \dots - k_{m-2} - k_{m-1}}_q.
$$

So, if V is an *n*-dimensional vector space over \mathbb{F}_q , the q-multinomial coefficient $\binom{n}{k}$ $\binom{n}{k_1,\dots,k_m}_q$ is equal to the number of ways to choose an $(n - k_1)$ -dimensional subspace W_1 of V , an $(n - k_1 - k_2)$ -dimensional subspace W_2 of W_1 , and so on, until finally we choose an $(n-k_1-\cdots-k_{m-1})$ -dimensional subspace W_{m-1} of some $(n-k_1-\cdots-k_{m-2})$ -dimensional subspace W_{m-2} (see also [\[14,](#page-8-10) Sec. 1.5]). That is,

$$
W_{m-1} \subseteq W_{m-2} \subseteq \cdots \subseteq W_2 \subseteq W_1
$$

is a flag of subspaces of V of length $m-1$, where dim $W_i = n - \sum_{j=1}^i k_j$.

We now turn to a bijective proof of the identity [\(1.3\)](#page-2-1), that for integers $n \geq k \geq 1$,

$$
\binom{n+1}{k}_q = \binom{n}{k}_q + \binom{n}{k-1}_q + (q^n - 1)\binom{n-1}{k-1}_q.
$$

While the bijective interpretation of this identity which we give now is different from the proof given by Nijenhuis, Solow, and Wilf in [\[15\]](#page-9-4), it is the interpretation which is most

helpful for the proof of our main result. Fix V to be an $(n + 1)$ -dimensional \mathbb{F}_q -vector space. There are $\binom{n+1}{k}$ $\binom{+1}{k}_q$ ways to choose a k-dimensional subspace W of V. Fix a basis $\{v_1, v_2, \ldots, v_{n+1}\}\$ of V. Any k-dimensional subspace W can be written as span (W', v) where W' is a $(k-1)$ -dimensional subspace of $V' = \text{span}(v_1, \ldots, v_n)$, for some v. We may choose W in three distinct ways. If $v \in V'$, then W is a subspace of V', for which there are $\binom{n}{k}$ $\binom{n}{k}_q$ choices. Call this a *type 1* subspace of V. If $v_{n+1} \in W$, then we may take $v = v_{n+1}$, and W is determined by W', for which there are $\binom{n}{k}$ $\binom{n}{k-1}_q$ choices. We call this a type 2 subspace of V. Finally, if both $W \not\subset V'$ and $v_{n+1} \not\in W$, then we call W a type 3 subspace of V , and it follows from (1.3) (and can be shown directly, as well) that there are $(q^n - 1)$ $\binom{n-1}{k-1}$ $_{k-1}^{n-1}$ _q choices for W.

We may now prove our main result.

Theorem 2.1. For $m \geq 2$, and any $k_1, \ldots, k_m > 0$ such that $k_1 + \cdots + k_m = n + 1$, we have

$$
\binom{n+1}{k_1,\ldots,k_m}_q = \sum_{J \subseteq \{1,\ldots,m\},|J|>0} (-1)^{|J|-1} \frac{(q)_n}{(q)_{n-|J|+1}} \binom{n+1-|J|}{\underline{k}-\underline{e}_J}_q
$$

Proof. Fix V to be an $(n + 1)$ -dimensional vector space over \mathbb{F}_q . Fix a basis of each subspace U of V, so that we may speak of subspaces of type 1, 2, or 3 of each subspace U with respect to this fixed basis. Consider a flag F of subspaces of $V = W_0, W_{m-1} \subset$ $\cdots \subset W_2 \subset W_1$, such that if we define k_i for $1 \leqslant i \leqslant m$ by $\sum_{j=1}^i k_j = n+1 - \dim W_i$, then each $k_i > 0$. The total number of such flags is $\binom{n+1}{k_1,\dots,k_n}$ $\binom{n+1}{k_1,\ldots,k_m}_q$. Consider now a labeling of such flags in the following way. Given a flag F as above, define

$$
r = \min\{1 \leq j \leq m \mid W_j \text{ is a type 1 subspace of } W_{j-1}\},
$$

and

$$
J = \{r\} \cup \{1 \leq j \leq r - 1 \mid W_j \text{ is a type 3 subspace of } W_{j-1}\}.
$$

Define the flag F to be a type J flag of V. That is, for any nonempty $J \subseteq \{1, \ldots, m\}$, we may speak of flags of type J of V . We shall prove that

$$
(-1)^{|J|-1} \frac{(q)_n}{(q)_{n-|J|+1}} \binom{n+1-|J|}{\underline{k}-\underline{e}_J}_q \tag{2.1}
$$

is the number of type J flags of length $m-1$ of the \mathbb{F}_q -space V. Once this claim is proven, we will have accounted for all $2^m - 1$ terms on the right-side of the desired result of Theorem [2.1,](#page-4-0) and all possible ways to choose our flag.

We prove the claim by induction on m, where the base case of $m = 2$ follows from [\(1.3\)](#page-2-1) and its interpretation in terms of subspaces of types 1, 2, and 3, as given above. We must consider each possible nonempty $J \subseteq \{1, \ldots, m\}$, and show that in each case, the quantity (2.1) counts the number of type J flags. So, consider a flag of subspaces $W_{m-1} \subset \cdots \subset W_2 \subset W_1$ of V, where dim $W_i = n + 1 - \sum_{j=1}^i k_j$.

First, if $J = \{1\}$, then the number of ways to choose W_1 to be a type 1 subspace of V of dimension $n+1-k_1$ is $\binom{n}{n+1}$ ${n \choose n+1-k_1}_q$, while the number of ways to choose the remaining length

 $m-2$ flag $W_{m-1} \subset \cdots \subset W_2$ of W_1 is exactly $\binom{n+1-k_1}{k_2 \cdots k_m}$ $\binom{n+1-k_1}{k_2,\ldots,k_m}_q$. Thus, the total number of ways to choose our flag of type J with $J = \{1\}$ is $\binom{n}{n+1}$ $\binom{n}{n+1-k_1}$ _q $\binom{n+1-k_1}{k_2,...,k_m}$ $\binom{n+1-k_1}{k_2,...,k_m}_q = \binom{n}{k_1-1,k_2}$ $\binom{n}{k_1-1,k_2,\dots,k_m}_q$, which is exactly the expression [\(2.1\)](#page-4-1) for $J = \{1\}$, as claimed. So, we now suppose $J \neq \{1\}$, so if r is the maximum element of J, we have $r > 1$. We consider the cases of whether $1 \in J$ or $1 \notin J$ separately.

Suppose that $1 \notin J$. Then, we must choose our flag so that W_1 is a type 2 subspace of V, of which there are $\binom{n}{n}$ $\binom{n}{n-k_1}_q$ such subspaces. Now, if we define $I = J-1 = \{j-1 \mid j \in J\},\$ so that $I \subset \{1, \ldots, m-1\}$ and $|I| = |J|$, we must choose the rest of our type J flag of V by choosing a type I flag of W_1 of length $m-2$. If we let $\underline{k}' = (k_2, \ldots, k_m)$, then by our induction hypothesis, the number of type I flags of length $m-2$ of the $(n+1-k_1)$ dimensional space W_1 is

$$
(-1)^{|I|-1} \frac{(q)_{n-k_1}}{(q)_{n-k_1-|I|+1}} {n+1-k_1-|I| \choose k'-e_I}.
$$

So, the total number of ways to choose the type J flag of length $m-1$ in V is

$$
\binom{n}{n-k_1}_{q}(-1)^{|I|-1}\frac{(q)_{n-k_1}}{(q)_{n-k_1-|I|+1}}\binom{n+1-k_1-|I|}{\underline{k}'-\underline{e}_I}_q.
$$

A direct computation yields

$$
\binom{n}{n-k_1}_{q}\frac{(q)_{n-k_1}}{(q)_{n-k_1-|I|+1}}=\frac{(q)_n}{(q)_{n-|I|+1}}\binom{n+1-|I|}{n-k_1-|I|+1}_{q},
$$

and further note that

$$
\binom{n+1-|I|}{n-k_1-|I|+1} {n+1-k_1-|I| \choose \underline{k}'-\underline{e}_I} = \binom{n+1-|J|}{\underline{k}-\underline{e}_J}_q,
$$

where $\underline{k} = (k_1, \ldots, k_m)$. Together, these give

$$
\binom{n}{n-k_1}_{q}(-1)^{|I|-1}\frac{(q)_{n-k_1}}{(q)_{n-k_1-|I|+1}}\binom{n+1-k_1-|I|}{\underline{k}'-\underline{e}_I}_q
$$

$$
=(-1)^{|J|-1}\frac{(q)_n}{(q)_{n-|J|+1}}\binom{n+1-|J|}{\underline{k}-\underline{e}_J}_q,
$$

giving the claim that when $1 \notin J$, the number of type J subspaces of length $m-1$ of V is given by (2.1) .

Finally, suppose that $1 \in J$, and $J \neq \{1\}$. So, we must choose our flag so that W_1 is a type 3 subspace of V, and there are $(q^n-1)\binom{n-1}{n-k}$ $_{n-k_1}^{n-1}$ _q such subspaces. If we let $I = (J-1) \setminus \{0\}$ (so that now $|J| = |I|+1$), then we must choose the rest of our flag as a type I flag of length $m-2$ of W_1 . Letting again $\underline{k}' = (k_2, \ldots, k_m)$, then by our induction hypothesis, the total number of flags of type J of length $m-1$ of V is given by

$$
(q^{n}-1)\binom{n-1}{n-k_{1}}_{q}(-1)^{|I|-1}\frac{(q)_{n-k_{1}}}{(q)_{n-k_{1}-|I|+1}}\binom{n+1-k_{1}-|I|}{\underline{k}'-\underline{e}_{I}}
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS $19(3)$ (2012), $\#P5$ 5 5

.

A computation gives

$$
(q^{n} - 1) {n-1 \choose n-k_1} \frac{(q)_{n-k_1}}{q(q)_{n-k_1-|I|+1}} = (-1) \frac{(q)_{n}}{(q)_{n-|I|}} {n-|I| \choose n-k_1-|I|+1} \Bigg),
$$

and also note

$$
\binom{n-|I|}{n-k_1-|I|+1} {n+1-k_1-|I| \choose \frac{k'-e_I}{\cdots} } = \binom{n+1-|J|}{\frac{k-e_J}{\cdots} }_{q'},
$$

where $\underline{k} = (k_1, \ldots, k_m)$, since $|I| = |J| - 1$. We finally obtain that

$$
(q^{n} - 1) {n-1 \choose n-k_1}_{q} (-1)^{|I|-1} \frac{(q)_{n-k_1}}{(q)_{n-k_1-|I|+1}} {n+1-k_1-|I| \choose k'-\underline{e}_I}_{q}
$$

=
$$
(-1)^{|J|-1} \frac{(q)_n}{(q)_{n-|J|+1}} {n+1-|J| \choose k-\underline{e}_J}_{q},
$$

is the the number of type J subspaces of length $m-1$ of V, as claimed.

3 Generalized Galois numbers

Define the homogeneous Rogers-Szegö polynomial in m variables for $m \geq 2$, denoted $\tilde{H}_n(t_1, t_2, \ldots, t_m)$, by

$$
\tilde{H}_n(t_1, t_2, \dots, t_m) = \sum_{k_1 + \dots + k_m = n} {n \choose k_1, \dots, k_m} t_1^{k_1} \cdots t_m^{k_m},
$$

and define the Rogers-Szegö polynomial in $m-1$ variables, denoted $H_n(t_1,\ldots,t_{m-1})$, by

$$
H_n(t_1,\ldots t_{m-1})=\tilde{H}(t_1,\ldots,t_{m-1},1).
$$

The homogeneous multivariate Rogers-Szegö polynomials were first defined by Rogers [\[16\]](#page-9-0) in terms of their generating function, and several of their properties are given by Fine [\[5,](#page-8-1) Section 21]. The definition of the multivariate Rogers-Szegö polynomial H_n is given by Andrews in [\[1,](#page-8-0) Chap. 3, Ex. 17], along with a generating function, although there is little other study of these polynomials elsewhere in the literature (however, there is a non-symmetric version of a bivariate Rogers-Szegö polynomial [\[4\]](#page-8-11)).

The multivariate Rogers-Szegö polynomials satisfy a recursion which generalizes (1.1) , although it seems not to be very well-known, as the only proof and reference to it that the author has found is in the physics literature, in papers of Hikami [\[7,](#page-8-12) [8\]](#page-8-13). For any finite set of variables X, let $e_i(X)$ denote the *i*th elementary symmetric polynomial in the variables X. Then the Rogers-Szegö polynomials in $m-1$ variables satisfy the following recursion:

$$
H_{n+1}(t_1,\ldots,t_{m-1}) = \sum_{i=0}^{m-1} \mathbf{e}_{i+1}(t_1,\ldots,t_{m-1},1)(-1)^i \frac{(q)_n}{(q)_{n-i}} H_{n-i}(t_1,\ldots,t_{m-1}).
$$
 (3.1)

THE ELECTRONIC JOURNAL OF COMBINATORICS $19(3)$ (2012), $\#P5$ 6

$$
\sqcup
$$

The sum of all q -multinomial coefficients of length m , or the generalized Galois number $G_n^{(m)}$, is then

$$
H_n(1,1,\ldots,1) = G_n^{(m)} = \sum_{k_1+\cdots+k_m=n} {n \choose k_1,\ldots,k_m}_q.
$$

From the discussion at the beginning of Section [2,](#page-3-0) when q is the power of a prime, $G_n^{(m)}$ is exactly the total number of flags of subspaces of length $m - 1$ in an n-dimensional \mathbb{F}_q -vector space.

Since the number of terms in the elementary symmetric polynomial $e_{i+1}(t_1, \ldots, t_{m-1}, 1)$ is $\binom{m}{i+1}$, then the following, our last result, follows directly from the formal identity [\(3.1\)](#page-6-1) proved by Hikami. However, we give a proof which follows directly from Theorem [2.1,](#page-4-0) and is thus a bijective proof through the enumeration of flags in a finite vector space.

Theorem 3.1. The generalized Galois numbers satisfy the recursion, for $n \geq m-1$,

$$
G_{n+1}^{(m)} = \sum_{i=0}^{m-1} {m \choose i+1} (-1)^i \frac{(q)_n}{(q)_{n-i}} G_{n-i}^{(m)}.
$$

Proof. For convenience, whenever any $k_i < 0$, we define the q-multinomial coefficient $\binom{n}{k}$ $\binom{n}{k_1,k_2,\dots,k_m}_q = 0$. Granting this, we have Theorem [2.1](#page-4-0) holds for all $k_i \geq 0$. We now begin with the definition of $G_{n+1}^{(m)}$ as the sum of all q-multinomial coefficients, and we directly apply Theorem [2.1](#page-4-0) to rewrite the sum, as follows:

$$
G_{n+1}^{(m)} = \sum_{k_1 + \dots + k_m = n+1} {n+1 \choose k_1, \dots, k_m}_{q}
$$

\n
$$
= \sum_{k_1 + \dots + k_m = n+1} \sum_{\substack{J \subseteq \{1, \dots, m\} \\ |J| > 0}} (-1)^{|J|-1} \frac{(q)_n}{(q)_{n-|J|+1}} {n+1-|J| \choose k - \underline{e}_J}_{q}
$$

\n
$$
= \sum_{\substack{J \subseteq \{1, \dots, m\} \\ |J| > 0}} \sum_{\substack{k = (k_1, \dots, k_m) \\ k_1 + \dots + k_m = n+1}} (-1)^{|J|-1} \frac{(q)_n}{(q)_{n-|J|+1}} {n+1-|J| \choose k - \underline{e}_J}_{q}
$$

\n
$$
= \sum_{i=0}^{m-1} \sum_{\substack{J \subseteq \{1, \dots, m\} \\ |J| = i+1}} \sum_{\substack{k = (k_1, \dots, k_m) \\ k_1 + \dots + k_m = n+1}} (-1)^i \frac{(q)_n}{(q)_{n-i}} {n-i \choose k - \underline{e}_J}_{q}
$$

\n
$$
= \sum_{i=0}^{m-1} {m \choose i+1} \sum_{\substack{k'_1 + \dots + k'_m = n-i \\ k' = (k'_1, \dots, k'_m)}} (-1)^i \frac{(q)_n}{(q)_{n-i}} {n-i \choose k'}_{q}
$$

\n
$$
= \sum_{i=0}^{m-1} {m \choose i+1} (-1)^i \frac{(q)_n}{(q)_{n-i}} G_{n-i}^{(m)},
$$

where the next-to-last equality follows from the fact that each index \underline{k}' may be obtained from an index <u>k</u> from any of the $\binom{m}{i+1}$ subsets *J* of size $i + 1$. \Box

THE ELECTRONIC JOURNAL OF COMBINATORICS $19(3)$ (2012), $\#P5$ 7

By a very similar argument, we may see that in fact the recursion for the multinomial Rogers-Szegö polynomials in (3.1) also follows from Theorem [2.1.](#page-4-0)

Acknowledgements

The author thanks George Andrews and Kent Morrison for very helpful comments, and the anonymous referee for very useful suggestions to improve this paper.

References

- [1] G. Andrews, The Theory of Partitions. Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, Mass.-London-Amsterdam, 1976.
- [2] R. Askey and J. Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., 54(319), 1985.
- [3] T. Bliem and S. Kousidis. The number of flags in finite vector spaces: asymptotic normality and Mahonian statistics. J. Algebraic Combin., to appear, [doi:10.1007/s10801-012-0373-1](http://dx.doi.org/10.1007/s10801-012-0373-1).
- [4] W. Y. C. Chen, H. L. Saad, and L. H. Sun. The bivariate Rogers-Szegö polynomials. J. Phys. A, 40(23):6071–6084, 2007.
- [5] N. J. Fine. Basic Hypergeometric Series and Applications. Mathematical Surveys and Monographs 27, American Mathematical Society, Providence, RI, 1988.
- [6] J. Goldman and G.-C. Rota. The number of subspaces of a vector space. In Recent Progress in Combinatorics (Proc. Third Waterloo Conf. on Combinatorics, 1968), pages 75–83. Academic Press, New York, 1969.
- [7] K. Hikami. Representations of motifs: new aspect of the Rogers-Szegö polynomials. J. Phys. Soc. Japan, 64(4):1047–1050, 1995.
- [8] K. Hikami. Representation of the Yangian invariant motif and the Macdonald polynomial. *J. Phys. A*, $30(7):2447-2456$, 1997.
- [9] S. Hitzemann and W. Hochstättler. On the combinatorics of Galois numbers. *Discrete* Math., 310(24):3551–3557, 2010.
- [10] V. Kac and P. Cheung. Quantum Calculus. Universitext, Springer-Verlag, New York, 2002.
- [11] H. Karabulut. Distributed Gaussian polynomials as q-oscillator eigenfunctions. J. Math. Phys., 47(1):013508, 2006.
- [12] S. Kousidis. Asymptotics of generalized Galois numbers via affine Kac-Moody algebras. *Proc. Amer. Math. Soc.*, to appear, $arXiv:1109.2546$.
- [13] A. J. Macfarlane. On q-analogues of the quantum harmonic oscillator and the quantum group $SU(2)_q$. J. Phys. A, 22(21):4581-4588, 1989.
- [14] K. Morrison. Integer sequences and matrices over finite fields. J. Integer Seq., 9(2):06.2.1, 2006.
- [15] A. Nijenhuis, A. E. Solow, and H. S. Wilf. Bijective methods in the theory of finite vector spaces. J. Combin. Theory Ser. A, 37(1):80–84, 1984.
- [16] L. J. Rogers. On a three-fold symmetry in the elements of Heine's series. Proc. London Math. Soc., 24:171–179, 1893.
- [17] L. J. Rogers. On the expansion of some infinite products. Proc. London Math. Soc., 24:337–352, 1893.
- [18] R. P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge, 1997.
- [19] G. Szegö. Ein Beitrag zur Theorie der Thetafunktionen. S. B. Preuss. Akad. Wiss. Phys.-Math. Kl., 242–252, 1926.
- [20] S. O. Warnaar. Rogers-Szegö polynomials and Hall-Littlewood symmetric functions. J. Algebra, 303(2):810–830, 2006.