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Nonlinear boundary dynamics and chiral symmetry in holographic QCD

Dylan Albrecht,1 Joshua Erlich,1 and Ronald J. Wilcox2

1High Energy Theory Group, Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 4 January 2012; published 7 June 2012)

In a hard-wall model of holographic QCD, we find that nonlinear boundary dynamics are required in

order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking beyond leading

order in the pion fields. With the help of a field redefinition, we relate the requisite nonlinear boundary

conditions to a standard Sturm-Liouville system. Observables insensitive to the chiral limit receive only

small corrections in the improved description, and classical calculations in the hard-wall model remain

surprisingly accurate.

DOI: 10.1103/PhysRevD.85.114012 PACS numbers: 12.40.�y, 04.50.Cd, 12.39.Fe

I. INTRODUCTION

Holographic QCD is an extra-dimensional approach to
modeling hadronic physics at low energies [1–6]. Hadronic
resonances are interpreted as Kaluza-Klein (KK) modes of
five-dimensional (5D) fields with quantum numbers of the
corresponding QCD states. Motivated by the AdS/CFT
correspondence [7–9], in hard-wall models [2–6] the back-
ground is chosen to be a slice of Anti-de Sitter space
(AdS5) with metric

ds2 ¼ R2

z2
ð���dx

�dx� � dz2Þ; � � z � zm; (1.1)

where ��� is the Minkowski metric with mostly negative

signature in 3þ 1 dimensions, R is the Anti-de Sitter
(AdS) radius, and � provides a short-distance cutoff in
the model. The size of the extra dimension depends on
zm, which sets the Kaluza-Klein scale and is related holo-
graphically to the confining scale of QCD. Alternative
spacetime backgrounds have been motivated by D-brane
configurations in string theory which give rise to QCD-like
theories with chiral symmetry breaking and confinement,
as in the Sakai-Sugimoto model based on the D4-D8
system [10]. Non-normalizable (i.e. infinite-action) back-
grounds of fields act as sources of corresponding operators
in QCD, and normalizable (i.e. finite-action) backgrounds
determine the expectation values of those operators
[11,12]. The established AdS/CFT dictionary between
physics in 3þ 1 and 4þ 1 dimensions motivates a model
in which a complex scalar field in 4þ 1 dimensions, with
the quantum numbers of the quark bilinears qLi �qRj with

flavor labels i, j, fluctuates about a background configura-
tion related to the quark mass (the source of q �q) and chiral
condensate (the expectation value of q �q). We will review
this version of the hard-wall model in more detail in Sec. II.
As a demonstration of the pattern of chiral symmetry
breaking in the model, the Gell-Mann-Oakes-Renner
(GOR) relation for the pion mass was shown to be approxi-
mately satisfied [5,13],

m2
�f

2
� ¼ 2mq�; (1.2)

where m� and f� are the pion mass and decay constant
calculated from the model, andmq and � are parameters in

the scalar field background playing the role of the quark
mass and chiral condensate, respectively. The GOR
relation is also satisfied in an SU(3) extension of the
hard-wall model with an independent, strange quark mass
parameter [14].
Classical calculations in the hard-wall model have re-

produced a variety of QCD observables with surprising
accuracy, generally at the 10%–15% level [5,6]. The hard-
wall model fails at high energies [15] where the Kaluza-
Klein spectrum diverges from the Regge spectrum [16], a
problem partially corrected in the soft-wall model [17].
More surprisingly, it was discovered that pion condensa-
tion in the hard-wall model has qualitatively different
features from predictions of the chiral Lagrangian [18]. If
the isospin chemical potential increases beyond a critical
value, hadronic matter is expected to undergo a phase
transition to a state in which a linear combination of the
pion fields condenses [19–21]. In chiral perturbation theory
without unphysically large low-energy coefficients, the
pion condensation transition is second-order and ap-
proaches the Zel’dovich equation of state for stiff matter
smoothly across the phase boundary [22]. The pion con-
densation transition has been studied using other ap-
proaches including lattice QCD [23–26], with results in
agreement with chiral perturbation theory. However, in the
hard-wall model the transition from the hadronic phase to
the pion condensate phase was found to be first-order,
rapidly approaching the Zel’dovich equation of state across
the phase boundary. The holographic model takes as input
the pattern of chiral symmetry breaking, so disagreement
with lowest-order chiral perturbation theory is surprising.
Another more subtle puzzle related to chiral symmetry

lies in the form of the GOR relation when the chiral
condensate � is allowed to have a phase with respect to
the quark mass. As deduced from a linear-sigma model, the
quark mass and condensate are in phase, a fact related to
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the existence of an anomalous chiral U(1) symmetry.
However, beginning with the non-Abelian nonlinear-sigma
model we can ask what would happen if the parameter �
corresponding to hq �qiwere complex. In unpublished work,
it was found that the resulting GOR relation as derived in
the hard-wall model with complex � disagrees with the
analogous prediction of the chiral Lagrangian. In particu-
lar, in the hard-wall model the GOR relation takes the
form [27]

m2
�f

2
� log

�
�

��

�
¼ 2mqð�� ��Þ; (1.3)

while the corresponding prediction based on the chiral
Lagrangian and partial conservation of the axial current
(PCAC) is the same as Eq. (1.2) with � replaced by its real
part. It is the goal of this paper to reconcile these discrep-
ancies and restore consistency between holographic QCD
and chiral perturbation theory.

We will show that the incorrect structure of pion inter-
actions in the hard-wall model is a result of the choice of
boundary conditions imposed on the 5D fields. Care must
be taken in order that the boundary conditions respect the
symmetry breaking structure. The subtlety compared with
other extra-dimensional models is that here the background
of a bulk field not only spontaneously breaks the gauge
invariance in the bulk, but a non-normalizable term in the
background also explicitly breaks the gauge invariance. In
the hard-wall model the bulk gauge invariance is respon-
sible for the global chiral symmetry of the effective four-
dimensional (4D) theory, so it is important that the explicit
and spontaneous breaking be correctly accounted for at the
boundaries.

We will demonstrate that nonlinear boundary conditions
on the bulk scalar field, or else nonlinear boundary terms in
the action, may be consistently chosen so as to restore the
proper pattern of chiral symmetry breaking in the hard-
wall model. The nonlinear boundary dynamics we propose
are an alternative to the description in Ref. [28], which also
leads to acceptable symmetry structure (and also accom-
modates a bulk Chern-Simons term absent in the present
model). The nonlinear boundary conditions relate the 5D
�-model scalars to products of pseudoscalars �a�a,
ð�a�aÞ2, etc. In order to motivate these unusual boundary
conditions and to demonstrate their relation to a Sturm-
Liouville system, as required for consistency of the stan-
dard Kaluza-Klein decomposition of the fields and their
interactions, we reparametrize the 5D fields by a nonlinear
field redefinition. The reparametrization introduces a new
surface term (i.e. a total derivative) involving the pions in
the 5D action but replaces the nonlinear boundary condi-
tions with ordinary linear boundary conditions consistent
with the desired symmetry-breaking pattern. As opposed to
the boundary conditions proposed to describe multitrace
operators in the AdS/CFT correspondence [29,30], the
nonlinear boundary conditions in the hard-wall model arise

away from the boundary of AdS, at the infrared boundary
of the spacetime.
The modifications of the hard-wall model as described

in Ref. [5] required to restore the structure of chiral
symmetry breaking have a number of phenomenological
consequences. The GOR relation for the pion mass,
Eq. (1.2), is correctly normalized only after the quark
mass and chiral condensate are rescaled. This same rescal-
ing is consistent with the AdS/CFT correspondence, and is
a result of the modified boundary physics. The pion poten-
tial is modified so as to reconcile properties of the pion
condensation transition with predictions of chiral pertur-
bation theory. Most hadronic observables receive only
small corrections which vanish in the chiral limit, so the
hard-wall model remains surprisingly accurate in many of
its predictions for low-energy QCD observables.

II. REVIEW OF THE HARD-WALL MODEL

Following the conventions of Ref. [5], the hard-wall
model is defined by the 5D action

S ¼
Z

d5x
ffiffiffiffiffiffi
jgj

q
Tr

�
� 1

4g25

��
FðLÞ
MN

�
2 þ

�
FðRÞ
MN

�
2
�

þ jDMXj2 þ 3

R2
jXj2

�
; (2.1)

where FðLÞ ¼ FðLÞa�a=2 and FðRÞ ¼ FðRÞa�a=2 are field
strengths for the 5D SUð2ÞL � SUð2ÞR gauge fields; �a are
the three Pauli matrices; M;N 2 0; . . . ; 4 are Lorentz in-
dices contracted with the AdS5 metric from Eq. (1.1); and
X is a 2� 2matrix of complex scalar fields transforming in
the bifundamental representation of SUð2ÞL � SUð2ÞR. For
the calculations in this paper we work with R ¼ 1.
The equations of motion have a solution with vanishing

gauge fields and scalar field profile

X0ðzÞ ¼ 1

2
ð ~mqzþ �z3Þ1 � ~vðzÞ

2
1; (2.2)

where 1 is the 2� 2 identity matrix. The fields X have the
quantum numbers of the scalar quark bilinears, which are
the operators whose coefficients in the Lagrangian of the
3þ 1-dimensional theory are quark masses. We approxi-
mate isospin as unbroken, so that the up and down quarks
have equal mass. The term in the solution Eq. (2.2) pro-
portional to z is non-normalizable and is related by the
AdS/CFT dictionary to the quark mass, which explicitly
breaks the chiral symmetry; and the term in the solution
proportional to z3 is normalizable and related to the con-
densate hqL �qRi, which spontaneously breaks the chiral
symmetry [11,12].
The non-normalizable mode in the scalar field back-

ground explicitly breaks a bulk gauge invariance, but the
presence of this mode is equivalent to spontaneous break-
ing due to a heavy Higgs field localized on the ultraviolet
boundary (z ¼ �) in the decoupling limit. To see this, we
write the Higgs doublet ð�þ; �0Þ as a matrix,
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H ¼ �0 �þ

��� �0

 !
; (2.3)

which transforms in the bifundamental representation
of the chiral symmetry. In this form, the up and
down quark Yukawa couplings take the form LYuk ¼
�TrfHyqL �qR þ H:c:g. Replacing qL �qR with the 5D field
X, the localized Higgs field has boundary action

S � ¼
Z
z¼�

d4xTr

�
j@�Hj2 � VðHÞ þ �

�3
ðHXy þ XHyÞ

�
;

(2.4)

where VðHÞ is the Higgs potential exhibiting spontaneous
symmetry breaking. A similar coupling appears in bosonic
technicolor models [31,32]. The factor of 1=�3 in the last
term ensures the proper scaling with the field X near the
UV boundary. We impose Neumann boundary conditions
on X in the ultraviolet, modified by the presence of the
boundary term (2.4). Replacing the Higgs field H by its
vacuum expectation value hHi ¼ h�0i1, chosen real, the
equations of motion and boundary condition for X are
given by

@z

�
1

z3
@zX

�
� 1

z3
hX þ 3

z5
X ¼ 0; (2.5)

@zXj� ¼ ��hHi; (2.6)

where h � ���@�@�. Greek indices will always refer to

3þ 1 dimensions, and capital Latin indices will refer to
4þ 1 dimensions.

By identifying the diagonal quark massMq ¼ �hHi, the
boundary condition becomes @zXj� ¼ �Mq. Near the

boundary as � ! 0, the solution for X consistent with
this boundary condition takes the form X � �Mqz.

Thus, the coupling of X to a Higgs field localized at the
UV boundary gives rise to the appropriate non-
normalizable background solution for X, which justifies
the presence of the non-normalizable background and its
AdS/CFT interpretation as the source for the operator q �q.
However, the overall normalization of Mq in terms of the

physical quark mass depends on the normalization of the
field X. In Eq. (2.2) we have set Mq ¼ � ~mq=2. (Other

normalizations may better match QCD predictions for
correlators of products of scalar quark bilinears [33].)

The fluctuations of X, which contain scalars and pseu-
doscalars (pions), are typically decomposed as [5,6,34]

Xoldðx; zÞ ¼ ½12ð ~mqzþ �z3Þ1þ ~Sðx; zÞ� ~Uðx; zÞ; (2.7)

where ~S is a Hermitian matrix of scalars and ~U ¼
exp½i ~�aðx; zÞ�a� is unitary. Any matrix can be written as
a product of a Hermitian and a unitary matrix, and any
Hermitian matrix function of x and z can be written as the
term in parentheses in Eq. (2.7), so this ansatz is

completely general up to an overall phase which is relevant
for the chiral anomaly but which will not be discussed here.
The scalars and pseudoscalars decouple at quadratic

order in the action, so we temporarily limit our attention

to fluctuations with ~S ¼ 0. In order to simplify the discus-
sion we also temporarily decouple the vector fields by
taking g5 ¼ 0. We will include the gauge couplings in
Sec. V, but they are an added complication which is not
necessary to understand the main conclusions.
The lightest pion Kaluza-Klein mode, ~�ðx; zÞ ¼

~�aðx; zÞ�a=2 ¼ ~�aðxÞc ðzÞ�a=2, has action

S ¼
Z

d5xTr

�
~vðzÞ2
4z3

ð@� ~U@� ~Uy � @z ~U@z ~U
yÞ
�

¼
Z

d5xTr

�
~vðzÞ2
4z3

ð@� ~U@� ~Uy � 4c 0ðzÞ2 ~�ðxÞ2Þ
�
:

(2.8)

As explained in Ref. [5] and will also be explained in
Sec. III, the pion wave function is flat with c ðzÞ � 1
except near z ¼ �, so integrating over z yields the effective
4D action for the pions,

S eff ¼
Z

d4x
f2�
4

Trf@� ~U@� ~Uy � 4m2
� ~�

2g; (2.9)

where m2
� is determined by the equations of motion and

boundary conditions, and from the kinetic term we identify
the pion decay constant

f2� �
Z zm

�
dz�2z3 ¼ �2z4m

4
(2.10)

as � ! 0. The expression (2.10) for f� also follows from
an AdS/CFT calculation of the transverse part of the axial-
vector current-current correlator [18].

III. CHIRAL SYMMETRY BREAKING
IN THE HARD-WALL MODEL

The structure of the pion effective action (2.9) demon-
strates the discrepancy between the hard-wall model as
defined above and chiral perturbation theory. The pion
mass term in Eq. (2.9) does not include the higher-order
pion interactions required for the chiral symmetry to be
maintained when the quark mass matrix transforms in the
bifundamental representation under the chiral symmetry
(like a Higgs spurion). In the chiral Lagrangian the pion

mass term is proportional to TrðMqU
y þMy

qUÞ, which
displays the proper pattern of explicit and spontaneous
chiral symmetry breaking. Beyond quadratic order in the
pion fields, the hard-wall model as described above dis-
agrees with the chiral Lagrangian, leading to unusual pion
phenomenology inconsistent with chiral perturbation the-
ory. The absence of quartic terms in the pion potential in
this context was also noted in Ref. [35].
Restoration of the correct pattern of chiral symmetry

breaking may be achieved by modifying the boundary
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conditions in a nonlinear way which mixes the scalar

modes ~S and products of pseudoscalars ~�a ~�a, as we dis-
cuss below. It will be convenient to rescale the quark mass
parameter ~mq ¼ �2mq, so that the background profile of

the field X takes the form

X0ðzÞ ¼ �mqzþ �z3

2
� vðzÞ

2
1: (3.1)

We then consider a nonlinear redefinition of the 5D fields
as follows:

Xðx; zÞ ¼ �mqzþ ½�2z3 þ Sðx; zÞ�Uðx; zÞ; (3.2)

which is to be compared with Eq. (2.7). We write
Uðx; zÞ ¼ exp½i�aðx; zÞ�a�. Now the pseudoscalar fluctu-
ations in Uðx; zÞ multiply the term in the background
responsible for the spontaneous breaking of the chiral
symmetry, but not the term responsible for the explicit
breaking. We also add to the action a counterterm local-
ized in the UV,

S ct ¼ �
Z
�
d4x

jXj2
�4

; (3.3)

to cancel off the divergent term m2
q=�

2. The finite part of

this counterterm mq� has the consequence of modifying

the AdS/CFT calculation of hq �qi in terms of � such that
the normalization of mq and � in Eq. (3.1) is consistent

with the AdS/CFT correspondence. We note that this
normalization of mq and � agrees up to a sign with the

normalization of the tachyon background in a string-
motivated holographic QCD model in which chiral sym-
metry is broken by tachyon condensation [36].

With boundary conditions Sðx; �Þ ¼ �aðx; �Þ ¼
Sðx; zmÞ ¼ 0, and a Neumann condition on �a at zm, the
scalar and pseudoscalar modes again decouple at quadratic
order and the pion action takes the form

S ¼
Z

d5xTr

�
�2z3

4
ð@�U@�Uy � @zU@zU

yÞ
�

þ
Z

d4xTr

�
mq�

2
ðUþUyÞjzm

�
; (3.4)

where the last term is an IR-localized boundary term due to
a total derivative in the action, and we have discarded some
irrelevant constants. Although we focus in this paper on the
leading terms in the chiral Lagrangian, we note that at
higher-order there are two terms in the 5D Lagrangian
(with structure TrS2@zU@zU

y and TrS@zU@zU
y) which

could damage the chiral symmetry. We suggest that non-
linear modification of the boundary conditions may be
introduced to modify these terms, but we will not pursue
this issue further here. The field parametrization Eq. (3.2)
is an alternative to those of Refs. [28,37] which also lead to
an acceptable model, but with a nonlinear term at the UV
boundary z ¼ � rather than at the IR boundary z ¼ zm.
The Kaluza-Klein modes are solutions to the linearized

equations of motion, which follow from the quadratic part
of the action

S ¼
Z

d5x
�2z3

2
ð@��a@��a � @z�

a@z�
aÞ

�
Z

d4xmq�ð�a�aÞjzm ; (3.5)

where �aðx; zÞ ¼ �aðxÞc ðzÞ. The linearized bulk equation
of motion for the pion separates as follows:

@�@
��aðxÞ ¼ �m2

��
aðxÞ; @zðz3@zc Þ ¼ �m2

�z
3c :

(3.6)

The Neumann boundary condition in the IR is modified by
the boundary term in the action, with the result

@zc ðzÞjzm ¼ � 2mq

�z3m
c ðzmÞ: (3.7)

Note that the boundary conditions here are linear, and
the nonlinear boundary terms in the action are treated as
interactions. In this form, the pions are described by a
standard Sturm-Liouville system. The solutions are in
terms of Bessel functions and the normalizable solution
has the expansion

c ðzÞ ¼
�
1�m2

�z
2

8
þ higher order inm�z

�
: (3.8)

If m�zm � 1 then c ðzÞ � 1 in the entire interval �<
z < zm. Substituting the expansion of c ðzÞ into the bound-
ary condition Eq. (3.7), we find to leading order in mq,

m2
�

�2z4m
4

¼ 2mq�: (3.9)

Using Eq. (2.10), which is not affected by the field redefi-
nition, Eq. (3.9) is just the Gell-Mann-Oakes-Renner
relation

m2
�f

2
� ¼ 2mq�; (3.10)

justifying the interpretation of mq and � as the quark mass

and chiral condensate, respectively, up to a simultaneous
rescaling of mq and � as in Ref. [33]. Note that the quark

mass, and, in particular, the product mq� is rescaled from

the old parameter ~mq and even has a different sign. This

rescaling is required in order to obtain the correct normal-
ization in the GOR relation, but is also consistent with
the AdS/CFT interpretation of mq as the source for the

operator qL �qR whose expectation value is the chiral con-
densate. The condensate is obtained by varying the action
with respect to the source mq. Because of the additional

boundary term, which scales as mq, the quark mass needs

to be rescaled with respect to the chiral condensate as
above.
We now derive the 4D effective Lagrangian for

the redefined pions. Let us first focus on the z-derivative
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piece. Ignoring the higher KK modes and writing
U ¼ exp½i�aðxÞc ðzÞ�a�, we find

�
Z

d5xTr

�
�2z3

4
@zU@zU

y
�

¼ �
Z

d4x

�Z
dz

�2z3

2
c 0ðzÞ2

�
�aðxÞ�aðxÞ (3.11)

as before. Integrating by parts and using the equations of
motion and the boundary condition for c we find for the
second term in the bulk integral in Eq. (3.4),

S 	
Z

d4x

�Z
dzð�m2

��
2z3Þc ðzÞ2 þ 2mq�

�
1
2�

aðxÞ�aðxÞ:
(3.12)

Using the flatness of the c ðzÞ profile, the expression for f2�
in Eq. (2.10), and the GOR relation, the above expression
in brackets vanishes. Including the boundary term in
Eq. (3.4), the approximate 4D effective Lagrangian is
equivalent to the lowest-order chiral Lagrangian

S ¼
Z

d4xTr

�
f2�
4
@�U@�Uy þm2

�f
2
�

4
ðUþUyÞ

�
: (3.13)

Because of the modified boundary dynamics, the properties
of the pion condensate phase and other aspects of pion
physics now agree with the predictions of chiral perturba-
tion theory.

IV. NONLINEAR BOUNDARY CONDITIONS

The nonlinear reparametrization of the bulk field X in
Eq. (3.2) allows for independent linear boundary condi-
tions on the scalar and pseudoscalar modes while main-
taining the proper pattern of chiral symmetry breaking. In
terms of the original decomposition of X as per Eq. (2.7),
the boundary conditions required to maintain the pattern of
chiral symmetry mix the scalar and pseudoscalar fields in a
nonlinear way. To understand the structure of the nonlinear
boundary conditions we can expand the two field decom-
positions, Eqs. (2.7) and (3.2),

X ¼
�
1

2
ð ~mqzþ �z3Þ þ ~S

�
ð1þ 2i ~�� 2 ~�2 þ . . .Þ

¼ �mqzþ
�
�z3

2
þ S

�
ð1þ 2i�� 2�2 þ . . .Þ; (4.1)

where ~� ¼ ~�a�a=2, and similarly for �. Equating the
anti-Hermitian parts of the two descriptions gives, to qua-
dratic order in the fields

� ¼ ~�

�
1þ ~mq

�z2

�
þ 1

�z3
½ð~S ~��S�Þ þ ð ~� ~S��SÞ� þ . . .

¼ ~�

�
1þ ~mq

�z2

�
þ 1

�z3

��
~S ~��~S ~�

�
1þ ~mq

�z2

��
þ H:c:

�

þ . . .

¼ ~�

�
1þ ~mq

�z2

�
� ~mq

�2z5
ð~S ~�þ ~� ~SÞ þ . . . : (4.2)

Similarly, the Hermitian parts give

S ¼ ~S� ~mqz ~�
2 � �z3ð~�2 � �2Þ þ i½~Sð ~�� �Þ � H:c:�

þ . . .

¼ ~Sþ ~mqz ~�
2 � i

~mq

�z2
ð~S ~�� ~� ~SÞ þ . . . : (4.3)

These expressions have been left in terms of the old mass
parameter ~mq, which is equivalent to �2mq, and terms

higher-order in ~mq have been dropped.

In the new decomposition of the field X, the boundary
conditions consistent with the chiral symmetry breaking
structure are

Sðx; �Þ ¼ Sðx; zmÞ ¼ 0 ¼ �ðx; �Þ ¼ 0;

@z�ðx; zÞjzm ¼ ~mq

�z3m
�: (4.4)

In terms of the original decomposition of the field X, the
boundary conditions are

S ¼ 0 ! ~S ¼ � ~mqz ~�
2 þ . . . ; (4.5)

@z� ¼ ~mq

�z3
� ! @z ~� ¼ 3 ~mq

�z3
~�þ . . . ; (4.6)

where the ellipses include terms higher-order in the fields
and in ~mq, and terms that vanish when traced over.

For these boundary conditions to be physically accept-
able, the boundary variation of the action must vanish.
Expanding the action (2.1) with g5 ¼ 0 about the back-
ground as in Eq. (2.7), we obtain

S ¼
Z

d5xTr

�
1

z3
@�X@

�Xy � 1

z3
ð@z ~SÞ2 � ~v0ðzÞ

z3
@z ~S

� 1

z3

�
~v

2
þ ~S

�
2
@z ~U@z ~U

y þ 3

z5
ð~v ~Sþ~S2Þ

�
þ constant;

(4.7)

where ~vðzÞ ¼ ~mqzþ �z3 as in Eq. (2.2). The terms in

Eq. (4.7) with z-derivatives lead to boundary terms in the

variation of the action. Expanding to quadratic order in ~S
and ~�, we find for the boundary variation of S,
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	S ¼
Z
�;zm

d4xTr

��
� 2

z3
@z ~S� 1

z3
ð ~mq þ 3�z2Þ

�
	~S

�
�
2ð ~mqzþ �z3Þ2

z3
@z ~�

�
	 ~�

�
: (4.8)

To leading-order in ~mq and in the fields, using

	~S ¼ � ~mqzð~�	 ~�þ 	 ~� ~�Þ þ . . . (4.9)

from Eq. (4.5), we find that the boundary variation 	S
indeed vanishes to this order. The cancellation of boundary
variations in this nonlinear fashion is novel in the context
of extra-dimensional models, though it is reminiscent of
the mixed boundary conditions of certain Higgsless models
[38] in which the contributions to the boundary variation of
the action from different fields cancel one another.

In Kaluza-Klein theories an effective description of the
lightest modes is often derived by simply neglecting the
heavier modes and integrating the action over the extra
dimension. Indeed, that is how we derive the pion effective
action in this paper. However, consistency of this approach
relies on orthogonality and completeness relations depen-
dent on the Sturm-Liouville structure of the equations of
motion and boundary conditions. It is a mathematical
question which classes of systems of differential equations
with nonlinear boundary conditions satisfy the complete-
ness and orthogonality theorems of Sturm-Liouville sys-
tems. In holographic QCD we have seen that there is a
nonlinear field redefinition after which the boundary con-
ditions are of the linear Sturm-Liouville form. This justifies
the effective description obtained by including only the
lightest modes.

V. COUPLINGS TO VECTOR AND
AXIAL-VECTOR FIELDS

Having derived the chiral Lagrangian in the g5 ! 0
limit, we turn to the case of nonzero 5D gauge couplings
with dynamical gauge bosons representing the vector and
axial-vector mesons. Including the gauge fields, the action
takes the form of Eq. (2.1). The field X transforms as a
bifundamental under the gauge group SUð2ÞL � SUð2ÞR
and we will use the gauge fixing condition La

z ¼ Ra
z ¼ 0.

We will also be working mainly with the linear combina-
tions Aa

� ¼ ðLa
� � Ra

�Þ=2, the axial-vector field, and Va
� ¼

ðLa
� þ Ra

�Þ=2, the vector field. The normalization of these

combinations by a factor of 2 (rather than
ffiffiffi
2

p
) is so that

their kinetic terms are canonically normalized given the
unconventional normalization of the gauge fields in
Eq. (2.1).

We parameterize the fluctuations of the field X as in
Eq. (3.2). To leading-order the scalars and pseudoscalars
are decoupled, so we focus only on the pseudoscalars and
set S ¼ 0 for the present discussion. As in the previous
section, the boundary condition on the pion is modified as
in Eq. (3.7).

We will determine the pion decay constant as in
Refs. [5,6] by the residue of the axial current two-point
correlator at q2 ¼ 0. The AdS/CFT calculation of the
correlator is performed by taking two functional deriva-
tives, with respect to the source of the axial current opera-
tor, of the action evaluated on the classical solution to the
linearized equation of motion for the transverse part of Aa

�.

The resulting correlator is in terms of the bulk-to-boundary
propagator for Aa

�, which is a particular solution to the

transverse-projected linearized equation of motion. This
equation of motion for Aa

�ðq; zÞ? is�
@z

�
1

z
@zA

a
�

�
þ q2

z
Aa
� � v2g25

z3
Aa
�

�
?
¼ 0: (5.1)

If we have a solution to Eq. (5.1) of the form Aa
�ðq; zÞ ¼

Aðq; zÞAa
0�ðqÞ with boundary conditions @zAðq; zÞjzm ¼ 0

and Aðq; �Þ ¼ 1, then Aðq; zÞ is identified as the bulk-to-
boundary propagator and Aa

0�ðqÞ is the source for the axial
current. The AdS/CFT prediction for the pion decay con-
stant is then

f2� ¼ � 1

g25

@zAð0; zÞ
z

��������z¼�
: (5.2)

In order to study the pions we note that the pion fluctua-
tions identified in the field X mix with the longitudinal part
of the axial-vector field Aa

� ! @��
a, which has the same

quantum numbers. The pions will be identified as the
lowest-mode of this coupled system. Since we have in
mind a Kaluza-Klein decomposition of the fields and since,
for the purposes of deriving the low-energy theory, we are
only interested in the lowest-mode, we will make
the substitutions �aðx; zÞ ! �aðxÞc ðzÞ and �aðx; zÞ !
�aðxÞ�ðzÞ. The linearized equations of motion for c ðzÞ
and �ðzÞ are

v�� �z3c ¼ z3

vg25
@z

�
1

z
@z�

�
;

m2
�ðv�� �z3c Þ ¼ @zð�z3@zc Þ;

(5.3)

where the fields satisfy the boundary conditions
@z�ðzÞjzm ¼ �ð�Þ ¼ c ð�Þ ¼ 0 and Eq. (3.7).

A. Approximate analytic results

We can obtain an approximate solution to the equations
of motion, Eqs. (5.3), in the chiral limit in a similar fashion
to Ref. [5]. We find that the approximate solutions near the
� boundary are �ðzÞ ¼ 1� Að0; zÞ and c ðzÞ ¼ 0, while
those away from the � boundary are �ðzÞ ¼ 1� Að0; zÞ
and c ðzÞ � 1. Plugging the first equation of Eq. (5.3) into
the second, approximating vðzÞ � �z3, and integrating
once we arrive at

m2
�

�g25

�
1

z
@z�� 1

z
@z�j�

�
¼ �z3@zc : (5.4)
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Now if we evaluate this expression on the IR boundary,
using our approximate solution for �ðzÞ and recalling the
boundary conditions, we find

m2
�

�
� 1

g25

@zAð0; zÞ
z

���������

�
¼ 2mq�c ðzmÞ: (5.5)

By utilizing Eq. (5.2) and the fact that c ðzmÞ � 1, we have
once again derived the GOR relation.

The derivation of the chiral Lagrangian mass term is
similar to that of previous sections. The only contributions
come from the term proportional to @zU@zU

y and the
boundary term proportional to UþUy. In particular, we
have upon integration by parts,

S 	
Z

d4x

�Z
dz@zð�z3@zc Þc þ 2mq�c ðzmÞ2

�

� 1

2
�aðxÞ�aðxÞ þ

Z
d4xTr

�
mq�

2
ðUþUyÞjzm

�
:

(5.6)

If we make use of the equations of motion, Eq. (5.3), and
substitute our approximate solutions for � and c , we find
that the two terms in the square brackets cancel, to first-
order in mq. Thus, to this order in mq, we are left with the

mass term of the chiral Lagrangian

S 4D 	
Z

d4xTr

�
m2

�f
2
�

4
ðUþUyÞ

�
: (5.7)

B. Numerical results

We will now present a numerical analysis of the equa-
tions of motion, Eqs. (5.3). We choose a value � ¼
10�7 MeV for the UV cutoff, and determine the location
of the IR boundary to be zm ¼ 1=ð323 MeVÞ by setting the
rho mass to 776 MeV [5]. We take g5 ¼ 2� as in Ref. [5],

noting that the derivation of this assignment is unaffected
by our new choice for the form of the field Xðx; zÞ with
different background. With the values mq ¼ 2:36 MeV for

the quark mass and � ¼ ð333 MeVÞ3 for the condensate,
we have m� ¼ 140 MeV for the pion mass and f� ¼
92:0 MeV for the pion decay constant. The solutions for
c ðzÞ and �ðzÞ are plotted in Fig. 1, along with their
approximate solutions, namely c ðzÞ ¼ 1 and �ðzÞ ¼ 1�
Að0; zÞ. The functions c ðzÞ and �ðzÞ are normalized to
obtain a canonically normalized kinetic term in the low-
energy theory. The plotted numerical solutions illustrate
the extent to which the approximations of the previous
section are valid.
We would also like to understand numerically how

robust the GOR relation is in this model, with respect to

zm
z

0.2

0.4

0.6

0.8

1.0

z

(a)

zm
z

0.2

0.4

0.6

0.8

1.0

z

(b)

FIG. 1 (color online). Figures (a) and (b) display the numerical solutions to Eq. (5.3) for c ðzÞ and �ðzÞ, respectively. In both figures
there are two curves plotted: the blue curves are the numerical solutions and the red, dashed curves are the approximate solutions
(c ðzÞ ¼ 1) in Fig. (a) and (� ¼ ½1� Að0; zÞ�) in Fig. (b). These plots were made with mq ¼ 2:36 MeV and � ¼ ð333 MeVÞ3.

290 300 310 320 330 340 350 360
3

0.2

0.4

0.6

0.8

1.0

f 2 m2

2 mq

FIG. 2 (color online). The red, long-dashed line is a horizontal
line at 1. The blue dots are the values of the function
ðm2

�f
2
�Þ=ð2mq�Þ. For this plot, the quark mass is adjusted to

fix m� ¼ 140 MeV at each point.
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varying some of the parameters. In particular, fixing m� ¼
140 MeV (by adjustingmq for fixed values of �) we would

like to see what happens for different values of �. Varying
the condensate by sampling a discrete number of points
from ð290 MeVÞ3 to ð360 MeVÞ3, the pion decay constant
takes values ranging from 79 MeV to 102 MeV and the
quark mass goes from 2.52 MeV down to 2.21 MeV. In
Fig. 2, we plot the ratio ðm2

�f
2
�Þ=ð2mq�Þ for the above

specified range of values for the condensate. If the GOR
relation holds, the ratio should be approximately 1 and we
can see that the plot shows good agreement over the entire
region.

VI. CONSEQUENCES FOR HOLOGRAPHIC QCD

We check that the change of background does not ad-
versely affect some standard predictions of the hard-wall
model; that is, we will compare our predictions with those
of ‘‘Model A’’ in Ref. [5]. We might expect the modifica-
tions to be marginal because only the pion physics should
be sensitive to changes in mq, but we have also changed a

sign. Aside from the substitution ~mq ! �2mq, the deriva-

tions of the equations of motion for the gauge fields and of
the vector current correlators are unaffected by the new
form of the X-field. Since the expressions for the related
observables we compute are likewise unchanged, we refer
the reader to Ref. [5] for more detail. In the following, we
summarize the methods for obtaining the results. To cal-
culate the mass of the a1, we solve Eq. (5.1) for the
normalizable mode c a1ðzÞ with boundary conditions

c a1ð�Þ ¼ @zc a1ðzmÞ ¼ 0. The wave function c a1 is nor-

malized such that A�ðxÞ has a canonical kinetic term,

where A�ðx; zÞ ¼ c a1ðzÞA�ðxÞ. As derivable from the

two-point vector current correlator, we use the following
expression to calculate the decay constants in terms of the

profile in the extra dimension: F1=2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 00ð0Þ=g5

p
. And

finally, by looking at the terms cubic in the fields, coupling
V��, we make a prediction for g
��. All relevant cubic

terms are the following:

S 	 �abc
Z

d5xVb
�

�
1

zg25
@z@

��a@z�
c

þ 1

z3
@�ðv�a � �z3�aÞðv�c � �z3�cÞ

�
; (6.1)

where we have used the equations of motion for the vector
field to obtain this expression. In order to calculate the on
shell g
�� from the effective 4D theory, we integrate out

the extra dimension and identify g
�� as the coefficient of

�abc@��aðxÞ
b
�ðxÞ�cðxÞ, where 
b

� is the lowest-mode in

the vector field KK decomposition. Extracting this coeffi-
cient from Eq. (6.1) we find

g
�� ¼ g5
f2�

Z
dzc 
ðzÞ

�
1

zg25
ð@z�Þ2 þ 1

z3
ðv�� �z3c Þ2

�
;

(6.2)

where the z-integral of the expression in brackets is nor-
malized to f2�. The results are presented in Table I, and we
find that the new predictions have not changed significantly
compared to ‘‘Model A’’—they are still on the 10% level
with the exception of g
��.

VII. CONCLUSIONS

Holographic QCD models are surprisingly successful
in their predictions of low-energy QCD observables.
However, it was discovered in earlier work that the
pion condensation transition in one version of the hard-
wall model has qualitatively different features than the
predictions of chiral perturbation theory and other ap-
proaches. We have shown that this disagreement is due to
a boundary effect related to the explicit breaking of the
gauged chiral symmetry by the non-normalizable back-
ground of a 5D scalar field. To restore agreement with
the chiral Lagrangian we modified the boundary dynam-
ics, either by introducing nonlinear boundary conditions
on the fields, or by performing a nonlinear field redefi-
nition which induced an infrared boundary term in the
action. The field redefinition allowed us to relate the
system with nonlinear boundary conditions to a standard
Sturm-Liouville system which manifestly maintains the
proper symmetry structure, justifying the subsequent
Kaluza-Klein decomposition of the fields. The chirally
improved hard-wall model makes predictions for low-
energy QCD observables that agree with the original
model to within 1%–2%.
It would be useful to further explore the consequences

of the modified boundary physics with regard to pion
observables and to extend the analysis beyond leading-
order in chiral perturbation theory. It would also be
interesting to find additional applications of nonlinear

TABLE I. The predictions of the model as compared with
‘‘Model A’’ of Ref. [5] and experimental central values [5].
The results are based on fitting to m�, f�, and m
, leading to

the parameter choice mq ¼ 2:36 MeV, � ¼ ð333 MeVÞ3, and
zm ¼ 1=ð323 MeVÞ.

Observable

Measured

(MeV)

Model

(MeV)

Model A

(MeV) [5]

m� 140 140 140

m
 776 776 776

ma1 1230 1370 1360

f� 92.4 92.0 92.4

F1=2

 345 329 329

F1=2
a1 433 493 486

g
�� 6.03 4.44 4.48
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boundary conditions to extra-dimensional model build-
ing, for example, to Higgsless models and holographic
technicolor models. Finally, the necessity for nonlinear
boundary dynamics in the hard-wall model provides
motivation for further study of the mathematical problem
of differential equations with nonlinear boundary condi-
tions. In particular, it would be useful to classify those
systems of equations and boundary conditions that can

be related to a Sturm-Liouville system by a change of
variables.
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