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For selfadjoint matrices in an indefinite inner product, possible

canonical forms are identified that arise when the matrix is sub-

jected to a selfadjoint generic rank one perturbation. Genericity

is understood in the sense of algebraic geometry. Special atten-

tion is paid to the perturbation behavior of the sign characteristic.

Typically, under such a perturbation, for every given eigenvalue,

the largest Jordan block of the eigenvalue is destroyed and (in

case the eigenvalue is real) all other Jordan blocks keep their sign

characteristic. The new eigenvalues, i.e. those eigenvalues of the

perturbed matrix that are not eigenvalues of the original matrix,

are typically simple, and in some cases information is provided

about their sign characteristic (if the new eigenvalue is real). The

main results are proved by using the well known canonical forms

of selfadjoint matrices in an indefinite inner product, a version of

the Brunovsky canonical form and general results concerning rank

one perturbations.
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Perturbation analysis

Generic perturbation

Rank one perturbation

1. Introduction

We consider matrices which are selfadjoint with respect to an indefinite inner product structure

given by a Hermitian invertible matrix.

Definition 1.1. LetH = H∗ bean invertibleHermitiann × n complexmatrix. Ann × n complexmatrix

A is called H-selfadjoint if HA = A∗H. Here X∗ denotes the conjugate transpose of the matrix X .

In this paper, we study the perturbation theory of the canonical forms, including the Jordan forms,

of such H-selfadjoint matrices. We focus on generic rank one perturbations which in turn are also H-

selfadjoint. Our main results derive the possible Jordan forms of the perturbed H-selfadjoint matrix,

depending on the canonical form associated with the original selfadjoint matrix and the indefinite

inner product. As the sign characteristic is an essential part of the canonical form, we also identify the

sign characteristic of the perturbed matrix.

The general perturbation analysis of eigenvalues of general square matrices under generic low

rank perturbations, in particular, for rank one perturbations, has been studied in [2,10,13,20,23,24].

Motivatedbynumerous applications, see e.g. [16,17,25], the eigenvalueperturbationanalysis of generic

structured rank one perturbations of matrices with various structures has been studied in [16]; the

sense in which “generic" is used is carefully presented in [16]. Here, we continue this line of investiga-

tion, and focus on H-selfadjoint matrices. In contrast to [16], where general eigenvalue perturbation

results were obtained and several classes of structured complex matrices were investigated, in this

paper the sign characteristic of H-selfadjoint matrices and its behavior under H-selfadjoint generic

rank one perturbation plays a key role. The analysis of the behavior of the sign characteristic under

perturbations is of particular importance in the context of perturbations that perturb a passive system

to a nearby non-passive system, because in this application eigenvalues have to be perturbed off the

imaginary axis by small norm perturbations, and whether this is possible or not strongly depends on

the sign characteristic, see [7,9,18].

Ourmain results are stated in Section 3; the rather long proof of Theorem 3.3 is relegated to Section

4. In Section 5 we investigate the sign characteristic attached to new real eigenvalues of the perturbed

matrix, namely those real eigenvalues that are not eigenvalues of the original matrix. Finally, our

conclusions are presented in the last section.

The following notation is used throughout the paper. C and R stand for the complex and real

field, respectively, andwe use F to denote eitherC orR. The real, imaginary parts of a complex number

λ will be denoted by Re(λ)= λ+λ
2

, Im(λ) = λ−λ̄
2i

, respectively.

The set of positive integers is denoted by N.Jm(λ) denotes an upper triangularm × m Jordan block

with eigenvalue λ and Rm stands for the m × m matrix with 1 on the leftbottom–topright diagonal

and zeros elsewhere, i.e.,

Jm(λ) =

⎡⎢⎢⎢⎢⎢⎣
λ 1 0

λ
. . .

. . . 1

0 λ

⎤⎥⎥⎥⎥⎥⎦ , Rm =

⎡⎢⎢⎢⎢⎢⎣
0 . . . 0 1
... q 0

0 q
...

1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎦ .

The kth standard basis vector of length n will be denoted by ek,n or in short ek if the length is clear

from the context. The spectrum of a matrix A ∈ F
n×n, i.e., the set of eigenvalues including possibly

nonreal eigenvalues of real matrices, is denoted by σ(A). An eigenvalue λ ∈ σ(A) is said to be simple if

the corresponding algebraic multiplicity is one, i.e., λ is a simple zero of the characteristic polynomial

of A.
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A block diagonal matrix with diagonal blocks X1, . . . , Xq (in that order) is denoted by X1 ⊕ X2 ⊕
· · · ⊕ Xq. We will also use the notation X⊕k for X ⊕ X ⊕ · · · ⊕ X (k times).

If vT = [v1, . . . , vn]T ∈ C
n then Toep(v) denotes the n × n upper triangular Toeplitz matrix

Toep(v) =

⎡⎢⎢⎢⎢⎢⎣
v1 v2 . . . vn

0 v1
. . .

...
...

. . .
. . . v2

0 . . . 0 v1

⎤⎥⎥⎥⎥⎥⎦ .

If M ⊆ F
m is a subspace, we denote by M⊥ the orthogonal complement of M with respect to the

standard Euclidean metric in F
m.

We say that a set W ⊆ R
n is algebraic if there exists a finite set of polynomials f1(x1, . . . , xn), . . . ,

fk(x1, . . . , xn) with real coefficients such that a vector [a1, . . . , an]T ∈ R
n belongs to W if and only if

fj(a1, . . . , an) = 0, j = 1, 2, . . . , k.

In particular, the empty set is algebraic and R
n is algebraic. We say that a setW ⊆ R

n is generic ifW is

not empty and the complement R
n \ W is contained in the union of finitelymany algebraic sets which

is not R
n.

2. Canonical form, partial Brunovsky form

In this section, we recall two known key theorems needed for the proofs of our main results. The

first is thewell-known canonical form forH-selfadjointmatrices, whereH is Hermitian and invertible;

see e.g. [7,9,14] for details.

Theorem 2.1. Let H ∈ C
n×n be Hermitian and invertible, and let A ∈ C

n×n be H-selfadjoint. Then there

exists an invertible matrix P ∈ C
n×n such that P−1AP and P∗HP are block diagonal matrices

P−1AP = A1 ⊕ A2, P∗HP = H1 ⊕ H2, (2.1)

where

(i)

A1 = A1,1 ⊕ · · · ⊕ A1,μ, H1 = H1,1 ⊕ · · · ⊕ H1,μ,

and

A1, j = Jnj,1(λj) ⊕ · · · ⊕ Jnj,pj
(λj), H1, j = σj,1Rnj,1 ⊕ · · · ⊕ σj,pj Rnj,pj

,

with nj,1, . . . , nj,pj ∈ N, nj,1 � · · · � nj,pj , and σj,1, . . . , σj,pj ∈ {+1,−1}, for j = 1, . . . ,μ and

λ1, . . . , λμ ∈ R being pairwise distinct;
(ii)

A2 = A2,1 ⊕ · · · ⊕ A2,ν , H2 = H2,1 ⊕ · · · ⊕ H2,ν ,

and

A2,j =
[Jmj,1

(τj) 0

0 Jmj,1
(τj)

∗
]

⊕ · · · ⊕
[Jmj,qj

(τj) 0

0 Jmj,qj
(τj)

∗
]
,

H2,j =
[

0 Imj,1

Imj,1
0

]
⊕ · · · ⊕

[
0 Imj,qj

Imj,qj
0

]
,

with mj,1, . . . , mj,qj ∈ N, mj,1 � · · · �mj,qj , and τj ∈ C with Im(τj) > 0 for j = 1, . . . , ν. Moreover,

τ1, . . . , τν are pairwise distinct.
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The form (2.1) is uniquely determined by the pair (A, H), up to a simultaneous permutation of diagonal

blocks in the right hand sides of (2.1).

The signs σj,1, . . . , σj,pj , j = 1, 2, . . . ,μ, form the sign characteristic of the pair (A, H). Thus, the sign

characteristic attaches a sign to every block associated with a real eigenvalue in the canonical form.

Themost important tool forobtaining themain results of thispaper is the so-calledpartial Brunovsky

form developed in [16].

Theorem 2.2 (Partial Brunovsky form, [16, Theorem 2.10]). Let

A =
(
Jn1(λ̂)⊕�1

)
⊕ · · · ⊕

(
Jnm(λ̂)⊕�m

)
⊕ Ã ∈ C

n×n, (2.2)

where n1 > · · · > nm and σ (̃A) ⊆ C \ {λ̂}. Moreover, let a = �1n1 + · · · + �mnm denote the algebraic

multiplicity of λ̂ and let B = uvT , where u ∈ C
n and

v =

⎡⎢⎢⎢⎢⎣
v(1)

...

v(m)

ṽ

⎤⎥⎥⎥⎥⎦ , v(i) =
⎡⎢⎢⎣
v(i,1)

...

v(i,�i)

⎤⎥⎥⎦ , v(i,j) ∈ C
ni , j = 1, . . . , �i, i = 1, . . . , m.

Assume that the first component of each vector v(i,j), j = 1, . . . , �i, i = 1, . . . , m is nonzero. Then the

following statements hold:

(1) The inverse of the matrix

S :=
⎛⎝ �1⊕

j=1

Toep(v(1, j) ⊕ · · · ⊕
�m⊕
j=1

Toep(v(m,j)

⎞⎠⊕ In−a

exists and

SAS−1 = A, SBS−1 = w

⎡⎢⎢⎣eT1,n1 , . . . , eT1,n1︸ ︷︷ ︸
�1 times

, . . . , eT1,nm , . . . , e
T
1,nm︸ ︷︷ ︸

�m times

, zT

⎤⎥⎥⎦ , (2.3)

where w = Su, and for some appropriate vector z ∈ C
n−a.

(2) The matrix S(A + B)S−1 has at least �1 + · · · + �m − 1 Jordan chains associated with λ̂ given as

follows, starting with eigenvectors:

(a) �1 − 1 Jordan chains of length at least n1:

e1 − en1+1, . . ., en1 − e2n1;
...

. . .
...

e1 − e(�1−1)n1+1, . . ., en1 − e�1n1;
(2.4)

(b) �i Jordan chains of length at least ni for i = 2, . . . , m:

e1 − e�1n1+···+�i−1ni−1+1, . . ., eni − e�1n1+···+�i−1ni−1+ni;
e1 − e�1n1+···+�i−1ni−1+ni+1, . . ., eni − e�1n1+···+�i−1ni−1+2ni;
...

. . .
...

e1 − e�1n1+···+�i−1ni−1+(�i−1)ni+1, . . ., eni − e�1n1+···+�i−1ni−1+�ini .

(2.5)
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The vectors in (2.4) and (2.5) are in their totality linearly independent. But generally speaking we

do not claim that the vectors in (2.4) and (2.5), whenmultiplied on the left by S−1, form a basis for the

root subspace of A + B associated with λ̂.

To illustrate Theorem 2.2, let m = 2, �1 = �2 = 2, n1 = 3, n2 = 2, λ̂ = 0 and Ã empty, in other

words,

A = J3(0) ⊕ J3(0) ⊕ J2(0) ⊕ J2(0) ∈ C
10×10.

Then S(A + uvT )S−1 = S(A + B)S−1 has the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 1 0 w1 0 0 w1 0 w1 0

w2 0 1 w2 0 0 w2 0 w2 0

w3 0 0 w3 0 0 w3 0 w3 0

w4 0 0 w4 1 0 w4 0 w4 0

w5 0 0 w5 0 1 w5 0 w5 0

w6 0 0 w6 0 0 w6 0 w6 0

w7 0 0 w7 0 0 w7 1 w7 0

w8 0 0 w8 0 0 w8 0 w8 0

w9 0 0 w9 0 0 w9 0 w9 1

w10 0 0 w10 0 0 w10 0 w10 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the wj ’s are the components of w = Su.

3. Main results

In this section, we let H ∈ C
n×n be Hermitian and invertible, and consider the perturbations of

eigenvalues as well as the sign characteristic under generic H-selfadjoint rank one perturbations. We

will restrict ourselves to perturbations of the form B = uu∗H. Note that rank one perturbations of the

form −uu∗H can be treated in a similar fashion, or alternatively consider −H in place of H.

Applying the general results from [16] to this particular situation, we obtain the following result

on the effect of generic H-selfadjoint rank one perturbations of H-selfadjoint matrices.

Theorem 3.1. Let H ∈ C
n×n be Hermitian and invertible, let A ∈ C

n×n be H-selfadjoint, and let λ ∈ C. If
A has the Jordan canonical form(

Jn1(λ)⊕�1
)

⊕ · · · ⊕
(
Jnm(λ)⊕�m

)
⊕ Ã, (3.1)

where n1 > · · · > nm and where σ (̃A) ⊆ C \ {λ} and if B ∈ C
n×n is a rank one perturbation of the form

B = uu∗H, then generically (with respect to 2n independent real variables that represent the real and

imaginary components of u) the matrix A + B has the Jordan canonical form(
Jn1(λ)⊕�1−1

)
⊕
(
Jn2(λ)⊕�2

)
⊕ · · · ⊕

(
Jnm(λ)⊕�m

)
⊕ J̃ ,

where J̃ contains all the Jordan blocks of A + B associated with eigenvalues different from λ.

Proof. This follows immediately from Theorem 2.1, and [16, Theorems 3.1 and 3.2]. �

Observe that Theorem 3.1 describes the Jordan structure after generic structured rank one pertur-

bations, but does not discuss the canonical form of the pair (A + uu∗H, H) (cf. Theorem 2.1). More

precisely, Theorem 3.1 gives no information concerning the relation between the signs in the sign

characteristic of (A, H) corresponding to an eigenvalue λ, and the signs in the sign characteristic of the

pair (A + uu∗H, H) corresponding to the same eigenvalue λ.
The following example is illustrative.

Example 3.2. Consider the matrices

A = 0n×n, H =
[
Iκ+ 0

0 −Iκ−

]
,
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where κ+ + κ− = n. Then A + uu∗H = uu∗H. Assume that u∗Hu /= 0, which is a generic condition.

Then u is an eigenvector of A + uu∗H corresponding to the nonzero eigenvalue u∗Hu. Let v1, . . . , vn−1

be anH-orthogonal basis for (Span{Hu})⊥ (which exists because of Theorem 2.1). The signs in the sign

characteristic of (A, H) corresponding to the zero eigenvalue of A + uu∗H are then given by the signs

of the numbers v∗
i Hvi, i = 1, . . . , n − 1. Considering the basis u, v1, . . . , vn−1 of C

n and computing the

sign characteristic of H using this basis, we see the following:

Sign characteristic of the eigenvalue zero Sign of the eigenvalue u∗Hu
# of signs + 1 # of signs − 1

u∗Hu > 0 κ+ − 1 κ− +1
u∗Hu < 0 κ+ κ− − 1 −1

It is easy to see that the sets

Ω+ := {u ∈ C
n : u∗Hu > 0}, Ω− := {u ∈ C

n : u∗Hu < 0}
are the two connected components of the set of vectors u for which u∗Hu /= 0. Observe that on each

of the components Ω+ and Ω−, the sign characteristic of the eigenvalue 0 (of algebraic multiplicity

n − 1) of A + uu∗H is constant (as a function of u), but it is different for the different connected

components.

This situation turns out to be typical, as the following theorem shows. In the theorem, “generically"

means “generically with respect to the real and imaginary components of u".

Theorem 3.3. Let H ∈ C
n×n be Hermitian and invertible and let A ∈ C

n×n be H-selfadjoint. Assume that

the pair (A, H) has the canonical form (̂A, Ĥ) with

Â=
μ⊕
j=1

((
Jn1, j(λj)

⊕�1, j
)

⊕
(
Jn2, j(λj)

⊕�2, j
)

⊕ · · · ⊕
(
Jnmj , j

(λj)
⊕�mj, j

))

⊕
ν⊕

j=1

⎛⎝ qj⊕
s=1

[Jks, j(τj) 0

0 Jks, j(τj)
∗
]⎞⎠ , (3.2)

where λj ∈ R, n1, j > · · · > nmj, j , j = 1, . . . ,μ, and τj ∈ C \ R, k1, j � · · · � kqj, j , j = 1, . . . , ν (note that

we group together Jordan blocks of the same size for real eigenvalues λj , but not so for nonreal eigenvalues),

and with

Ĥ=
μ⊕
j=1

⎛⎜⎝
⎛⎝�1, j⊕

s=1

σ1,s, jRn1, j

⎞⎠⊕
⎛⎝�2, j⊕

s=1

σ2,s, jRn2, j

⎞⎠⊕ · · · ⊕
⎛⎜⎝�mj, j⊕

s=1

σmj,s, jRnmj , j

⎞⎟⎠
⎞⎟⎠

⊕
ν⊕

j=1

⎛⎝ qj⊕
s=1

[
0 Iks, j
Iks, j 0

]⎞⎠ ,

where σi,s, j ∈ {+1,−1}, s = 1, . . . , �i, j , i = 1, . . . , mj, j = 1, . . . ,μ. If B ∈ C
n×n is a rank one perturba-

tion of the form B = uu∗H, then:
(a) generically the pair (A + B, H) has the canonical form (A′, H′), given by

A′ =
μ⊕
j=1

((
Jn1, j(λj)

⊕�1, j−1
)

⊕
(
Jn2, j(λj)

⊕�2, j
)

⊕ · · · ⊕
(
Jnmj , j

(λj)
⊕�mj, j

))
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⊕
ν⊕

j=1

⎛⎝ qj⊕
s=2

[
Jks, j(τj) 0

0 Jks, j(τj)
∗
]⎞⎠⊕ A′

3,

H′ =
μ⊕
j=1

⎛⎜⎝
⎛⎝�1, j−1⊕

s=1

σ ′
1,s, jRn1, j

⎞⎠⊕
⎛⎝�2, j⊕

s=1

σ2,s, jRn2, j

⎞⎠⊕ · · · ⊕
⎛⎜⎝�mj, j⊕

s=1

σmj,s, jRnmj , j

⎞⎟⎠
⎞⎟⎠

⊕
ν⊕

j=1

⎛⎝ qj⊕
s=2

[
0 Iks, j

Iks, j 0

]⎞⎠⊕ H′
3,

where A′
3 consists of Jordan blocks with eigenvalues different from the eigenvalues of A, and where

the list
(
σ ′
1,1, j , . . . , σ

′
1,�1, j−1, j

)
is obtained from

(
σ1,1, j , . . . , σ1,�1, j , j

)
by removing either exactly one

sign +1 or exactly one sign −1;
(b) generically all eigenvalues of A + uu∗H which are not eigenvalues of A are simple;
(c) let Ω ⊆ C

n be the generic (with respect to the real and imaginary parts of vectors) set such that

for every u ∈ Ω properties (a) and (b) hold. Then, within each connected component Ω0 of Ω , the

sign characteristic of the pair (A + uu∗H, H), u ∈ Ω0, corresponding to those among the λj ’s that

are eigenvalues of A + uu∗H, is constant, and the sign characteristic of any simple real eigenvalue

γ = γ (u) of A + uu∗H which is different from the λj ’s is also constant, assuming γ (u) is chosen to

be a continuous function of u ∈ 
0.

We see in Theorem 3.3 that the sign characteristic of the pair (A + B, H) for the eigenvalue λj is the

same as this for (A, H), except that, for the set of Jordan blocks with eigenvalue λj and maximal size,

one sign is dropped.

The rather long proof of Theorem 3.3 will be given in Section 4.

4. Proof of Theorem 3.3

Proof of parts (a) and (c). First note that the Jordan canonical form of A + B in part (a) follows by

applying Theorem 3.1 to each eigenvalue of A and taking advantage of the fact that the intersection of

finitely many generic sets is again generic. We next show the part of the assertion concerning the sign

characteristic. To this end, pick a fixed eigenvalue λj = λ̂ and assume without loss of generality that

the pair (A, H) is in canonical form, where the diagonal blocks have been permuted in such a way that

the blocks associated with λ̂ come first.

For simplicity, let ni := ni, j , �i := �i, j ,m := mj , and σi,s := σi,s, j , i.e. A and H have the forms

A =
(
Jn1(λ̂)⊕�1

)
⊕
(
Jn2(λ̂)⊕�2

)
⊕ · · · ⊕

(
Jnm(λ̂)⊕�m

)
⊕ Ă,

H =
⎛⎝ �1⊕

i=1

σ1,iRn1

⎞⎠⊕
⎛⎝ �2⊕

i=1

σ2,iRn2

⎞⎠⊕ · · · ⊕
⎛⎝ �m⊕

i=1

σm,iRnm

⎞⎠⊕ H̆,

where Ă contains all the blocks associated with eigenvalues different from λ̂. Let

u =

⎡⎢⎢⎢⎢⎢⎢⎣
u(1)

...

u(m)

ũ

⎤⎥⎥⎥⎥⎥⎥⎦ , u(i) =

⎡⎢⎢⎢⎣
u(i,1)

...

u(i,�i)

⎤⎥⎥⎥⎦ , u(i,k) =

⎡⎢⎢⎢⎢⎣
u
(i,k)
1

...

u
(i,k)
ni

⎤⎥⎥⎥⎥⎦ ∈ C
ni , ũ ∈ C

n−a,
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where a = ∑m
i=1 �ini denotes the algebraic multiplicity of the eigenvalue λ̂. By Theorem 2.2, the

transformation matrix S that brings A + B into partial Brunovsky form takes the form S = Ŝ ⊕ In−a,

where

Ŝ =
⎛⎝ �1⊕

i=1

Toep
(
σ1,iRn1u

(1,i)
)⎞⎠⊕ · · · ⊕

⎛⎝ �m⊕
i=1

Toep
(
σm,iRnmu

(m,i)
)⎞⎠ .

Note that the inverse of the matrix S exists if u
(k,i)
ni /= 0 for k = 1, . . . , �i, i = 1, . . . , mwhich is gener-

ically (in the sense of the theorem) the case. Now S(A + B)S−1 is in partial Brunovsky form (2.3) and

S−∗HS−1-selfadjoint, where

S−∗HS−1 = Ĥ ⊕ H̃, Ĥ =
⎛⎝ l1⊕

i=1

H(1,i)

⎞⎠⊕ · · · ⊕
⎛⎝ lm⊕

i=1

H(m,i)

⎞⎠
and where each H(k,i) ∈ C

ni×ni takes the form

H(k,i) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 . . . 0 σk,i|u(k,i)

ni |−2

... q q ∗
0 q q

...

σk,i|u(k,i)
ni |−2 ∗ . . . ∗

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.1)

Note that by Theorem 3.1 the algebraic multiplicity of the eigenvalue λ̂ of A + B is a − n1, thus the

Jordan chains (2.4) and (2.5) form a basis of the corresponding root space.

We are now going to compute the sign characteristic of the eigenvalue λ̂ of (A + B). We do this by

using the description of the sign characteristic given in [9, Section 5.8] (see also the alternative “second

description" in [7]). Thus, let Ψ1 = Ker(A − λ̂In) and let ν(x) be the maximal length of a Jordan chain

of A beginning with the eigenvector x ∈ Ψ1 \ {0}, and let Ψi denote the subspace of Ψ1 spanned by all

x ∈ Ψ1 with ν(x) � i, i = 1, . . . , n1. Observe that

Ψ1 ⊇ Ψ2 ⊇ · · · ⊇ Ψn1

and

dimΨn1 = �1 − 1, dimΨn2 = �1 − 1 + �2, . . . , dimΨni = �1 − 1 + �2 + · · · + �i.

Finally, let

fi(x, y) := x∗Hy(i), x ∈ Ψi, y ∈ Ψi \ {0},
where y = y(1), y(2), . . . , y(i) is a Jordan chain of A associated with λ̂ with the eigenvector y, and let

fi(x, 0) = 0. Then by [9, Theorem 5.8.1] the value fi(x, y) does not depend on the choice of y(2), . . . , y(i).

Furthermore, there exists a selfadjoint linear transformation Gi : Ψi → Ψi such that

fi(x, y) = x∗Giy for all x, y ∈ Ψi

and the number of positive (negative) eigenvalues of Gi, counting multiplicities, coincides with the

number of positive (negative) signs in the sign characteristic of (A, H) corresponding to the Jordan

blocks of size i associated with the eigenvalue λ̂. Thus, it remains to calculate the signature of a matrix

representation Mni of Gni for i = 1, . . . , m in order to compute the sign characteristic of λ̂. Note that

there are �1 − 1 + �2 + · · · + �i eigenvectors in the chains (2.4) and (2.5) which are in Ψni , so these

eigenvectors form a basis of Ψni and we will compute the matrix representation Mni with respect to

this basis. First let i > 1. Note that by [9, Theorem 5.8.1 (iii)] we have Ker Gni = Ψni+1, so it is sufficient

to consider those basis vectors that are in Ψni , but not in Ψni+1, i.e. the vectors
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e1 − eηi,1+1, e1 − eηi,2+1, . . . , e1 − eηi,�i
+1,

whereηi,k := �1n1 + · · · + �i−1ni−1 + (k − 1)ni, k = 1, . . . , �i. Then, the (κ ,π)-entry ofMni is given

by

fni

(
e1 − eηi,κ+1, e1 − eηi,π+1

)
=
(
e1 − eηi,κ+1

)∗
S−∗HS−1

(
eni − eηi,π+ni

)

=
⎧⎨⎩0 if κ /= π ,

e∗ηi,κ+1H
(i,κ)eηi,κ+ni = σi,κ

∣∣∣u(i,κ)
ni

∣∣∣−2
if κ = π ,

because S−∗HS−1 is block diagonal and, since e∗1H(1,1)eni = 0, becauseH(1,1) ∈ C
n1×n1 has the special

form (4.1) and ni < n1. Thus, Mni is diagonal and the number of positive (negative) eigenvalues of

Mni equals the number of positive (negative) signs among σi,1, . . . , σi,�i . This means that the sign

characteristic of (A + B, H) corresponding to the blocks of size ni associated with the eigenvalue λ̂ is

the same as that for (A, H).
For i = 1, setting η1,k := �1n1 + · · · + �i−1ni−1 + kni, k = 1, . . . , �1 − 1 we similarly obtain that

the (κ ,π)-entry of the (�1 − 1) × (�1 − 1) matrix Mn1 takes the form

fn1

(
e1 − eηi,κ+1, e1 − eη1,π+1

)
=
(
e1 − eη1,κ+1

)∗
S−∗HS−1

(
en1 − eη1,π+n1

)

=
⎧⎪⎨⎪⎩
σ1,1

∣∣∣u(1,1)
n1

∣∣∣−2
if κ /= π ,

σ1,1

∣∣∣u(1,1)
n1

∣∣∣−2 + σ1,κ

∣∣∣u(1,κ)
n1

∣∣∣−2
if κ = π.

Thus, we have

Mn1 =

⎡⎢⎢⎢⎢⎢⎣
σ1,2

∣∣∣u(1,2)
n1

∣∣∣−2
0

. . .

0 σ1,�1

∣∣∣u(1,�1)
n1

∣∣∣−2

⎤⎥⎥⎥⎥⎥⎦+ σ1,1

∣∣∣u(1,1)
n1

∣∣∣−2

⎡⎢⎢⎢⎣
1 . . . 1

...
. . .

...

1 . . . 1

⎤⎥⎥⎥⎦ ,

i.e. Mn1 is a Hermitian rank one perturbation of a Hermitian diagonal matrix. The result then follows

using an interlacing theoremwhich is a special case ofWeyl’s Theoremon eigenvalues. Indeed, assum-

ing thatMn1 is invertible (which is a generic condition with respect to the real and imaginary parts of

the components of u), let there be π signs +1 among σ1,1, . . . , σ1,�1 . Then by [11, Corollary 4.3.3 and

Theorem 4.3.4] it is guaranteed that Mn1 has at least π − 1 and at most π positive eigenvalues. Thus,

the sign characteristic of (A + B, H) corresponding to the Jordan blocks of size n1 associated with the

eigenvalue λ̂ is the same as that for (A, H), except that exactly one sign is dropped.

Part (c) follows from results on perturbation of sign characteristic [22, Theorem 3.6], [3].

It remains to prove part (b) of the theorem. In the proof, the following two examples of matrices

Z and their characteristic polynomials χ(Z) = det(xI − Z) will be used. The first example is well

known.

Example 4.1. Let

Z(1)(λ,α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 . . . 0

0 λ
. . .

...

...
. . .

. . . 1

α . . . 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = Jm(λ) + αeme
T
mRm ∈ C

m×m, λ ∈ C, α ∈ C \ {0}.

Then χ(Z(1)(λ,α)) = (x − λ)m − α; in particular, Z(1)(λ,α) hasm distinct eigenvalues.
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Example 4.2. Let

Z(2)(τ ,α)=
[
Jm(τ ) 0

0 Jm(τ )∗
]

+
[
αem

αe1

] [
αem

αe1

]∗ [
0 Im

Im 0

]
∈ C

2m×2m,

τ ∈ C, Im τ > 0, α ∈ C \ {0}.
Using the Laplace expansion theorem for determinants with respect to the first m rows of det(xI −
Z(2)(τ ,α)), and omitting terms that are obviously vanishing, we find

χ
(
Z(2)(τ ,α)

)
= χ

(
Z(1)(τ , |α|2)

)
χ
(
Z(1)(τ̄ , |α|2)

)
− |α|4

=
(
(x − τ)m − |α|2

) (
(x − τ̄ )m − |α|2

)
− |α|4.

Elementary calculations show that Z(2)(τ ,α) is guaranteed to have 2m distinct simple eigenvalues if

α is chosen so that

|α|2 <
|τ̄ − τ |m

2
.

Indeed, assuming that x0 is a common zero of χ(Z(2)(τ ,α)) and of ∂
∂x

χ(Z(2)(τ ,α)), we have (with

β = |α|2):
(x0 − τ)m(x0 − τ̄ )m − β(x0 − τ)m − β(x0 − τ̄ )m = 0, (4.2)

(x0 − τ)m−1(x0 − τ̄ )m + (x0 − τ)m(x0 − τ̄ )m−1−β(x0 − τ)m−1−β(x0 − τ̄ )m−1 = 0.

(4.3)

Multiplying (4.3) by x0 − τ and using (4.2), after simple algebraic manipulations, we get

(x0 − τ)m+1 = β(τ̄ − τ).

Analogously,

(x0 − τ̄ )m+1 = β(τ − τ̄ ).

These two identities are contradictory if β is sufficiently small, namely if β <
|τ̄−τ |m

2
.

We denote byΩ ′ the generic set of vectors u ∈ C
n forwhich Theorem3.3 (a) holds.Wemay assume

that Ω ′ is open.

Lemma 4.3. Let Ω ′ be the generic set of vectors u ∈ C
n for which Theorem 3.3 (a) holds. Then there exists

ε > 0 and an open dense (in {u ∈ C
n : ‖u‖ < ε}) set Ω

′′ ⊆ Ω ′ such that for every u ∈ Ω
′′
, ‖u‖ < ε,

the Jordan form of A + uu∗H is as in Theorem 3.3, where A3 has only simple eigenvalues different from any

of the λj ’s and from any of the τk’s and τk’s.

Proof. The proof follows the same approach as that of [16, Lemma 2.5]. However, additional consid-

erations are needed here, due to the presence of paired nonreal eigenvalues τj , τj .
Denote by D(z, ε) the closed disc of radius ε centered at z ∈ C. Let ε > 0 be so small that for

every u ∈ C
n with ‖u‖ < ε, all eigenvalues of A + B lie within the union of the closed pairwise

nonintersecting discs of radius ε centered at each of the points λ1, . . . , λμ, τ1, τ1, . . . , τν , τν . We also

suppose that ε is so small that(
1

2
εn

)2

<
1

2
min

k=1,2,...,ν
{|τk − τk|s, s = 1, 2, . . . , n}.
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(This is to make sure that in a subsequent application of Example 4.2 the values of the parameter α in

that example are such that the simplicity of the relevant eigenvalues is guaranteed.) It will be assumed

from now on in the proof that ‖u‖ < ε.
Letχ(λj , u) for j = 1, 2, . . . ,μ, andχ(τk, u),χ(τk, u) for k = 1, 2, . . . , ν , be the characteristic poly-

nomials of the independent variable x for the restrictions of A + B to its spectral invariant subspaces

corresponding to the eigenvalues of A + B within the disc D(λj , ε) (or the discs D(τk, ε), D(τk, ε),
respectively). Notice that the coefficients of χ(λj , u), χ(τk, u), χ(τk, u) are real analytic functions of

the real and imaginary parts of u. Indeed, this follows from the formula for the projection onto the

spectral invariant subspace

1

2π i

∫
Γ
(zI − (A + B))−1dz,

for a suitable closed simple contour Γ .

Let q(λj , u), resp., q(τk, u), be the number of distinct eigenvalues of A + B in the disc D(λj , ε), resp.,
D(τk, ε). (We need not consider separately the number of distinct eigenvalues of A + B in the disc

D(τk, ε), since it is equal to q(τk, u) in view of the H-selfadjointness of A + B.) Let

qmax(λj) = max
u∈Cn,‖u‖<ε

{q(λj , u)}, qmax(τk) = max
u∈Cn,‖u‖<ε

{q(τk, u)}.
Next, we fixλj , and denote by S(p1, p2) the Sylvester resultantmatrix of the two polynomials p1(x),

p2(x) (see e.g. [1,5]); note that S(p1, p2) is of square size degree (p1) + degree (p2) and recall the well

known fact (see [15] for example) that the rank deficiency of p1(x), p2(x) coincides with the degree of

the greatest common divisor of the polynomials p1(x) and p2(x). We have

q(λj , u) = rank S
(
χ(λj , u),

∂χ(λj , u)

∂x

)
− (n1, j + · · · + nmj, j) + 1.

The entries of S
(
χ(λj , u),

∂χ(λj ,u)

∂x

)
are scalar (independent of u) multiples of the coefficients of

χ(λj , u), and therefore the set Q(λj) of all vectors u ∈ C
n, ‖u‖ < ε, for which q(λj , u) = qmax(λj)

is the complement of the set of common zeros of finitely many real analytic functions of the real and

imaginary parts of u. In particular, Q(λj) is open and dense in {u ∈ C
n : ‖u‖ < ε}.

On the other hand, still for a fixed λj , consider

u0 := 1

2
εn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1

...

u1,μ

u2,1

...

u2,ν

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

partitioned conformably with the partitioning in (3.2), where all the entries u1,i and u2,k are zero,

except for u1, j which has 1 in the n1, jth position and zeros elsewhere. One checks easily (cf. Example

4.1) that in the disc D(λj , ε) the matrix A + u0u
∗
0H has:

(1) n1, j simple eigenvalues different from λj; and

(2) the eigenvalue λj with partial multiplicities �1, j − 1 times n1, j and �i, j times ni, j , i = 2, . . . , mj .

If by chance u0 is not in Ω ′, then we slightly perturb u0 to obtain a new vector u′
0 ∈ Ω ′ such that (1)

and (2) are still valid for thematrix A + u′
0(u

′
0)

∗H. (This is possible becauseΩ ′ is generic, the property
of eigenvalues being simple persists under small perturbations, and the total number of eigenvalues of

A + uu∗H within D(λj , ε), counted with multiplicities, is equal to n1, j + · · · + nmj, j , for every u ∈ C
n,

‖u‖ < ε.) SinceΩ ′ is open, clearly there exists δ > 0 such that (1) and (2) are valid for everyA + uu∗H,
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whereu ∈ C
n and‖u − u0‖ < δ. Since the set of all suchu’s is open inC

n, it follows fromtheproperties

of the set Q(λj) established in the preceding paragraph that in fact we have

q(λj , u) = qmax(λj), for all u ∈ C
n, |u − u0‖ < δ.

So for the following open dense (in {u ∈ C
n : ‖u‖ < ε}) set

Ω
(1)
j := Q(λj) ∩ Ω ′

the following property holds: For every u ∈ Ω
(1)
j , the part of the Jordan form of A + uu∗H correspond-

ing to the eigenvalues within D(λj , ε) consists of(
Jn1, j(λj)

⊕�1, j−1
)

⊕
(
Jn2, j(λj)

⊕�2, j
)

⊕ · · · ⊕
(
Jnmj , j

(λj)
⊕�mj, j

)
and n1, j simple eigenvalues different from λj .

Apply now a similar argument to the blocks associated with nonreal eigenvalues (τj , τ
∗
j ) for a fixed

j (j = 1, 2, . . . , ν), using instead of u0 the vector

u′
0 := 1

2
εn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′
1,1
...

u′
1,μ

u′
2,1
...

u′
2,ν

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

partitioned conformably with the partitioning in (3.2), where all the entries u′
1,i and u′

2,� are zeros

except for u′
2, j which has 1 in the k1, jth and k1, j + 1th positions and zeros elsewhere. Note that the

2k1, j × 2k1, j matrix

Φ(α) :=
[Jk1, j(τj) 0

0 Jk1, j(τj)
∗
]

+
[
αek1, j
αe1

]
·
[
αek1, j
αe1

]∗ [ 0 Ik1, j
Ik1, j 0

]
has 2k1, j (necessarily simple) distinct eigenvalues none of which is equal to τj , τj , for every complex

α /= 0with |α| sufficiently small. (See Example 4.2.) Consequently, in the union of the discs D(τj , ε) ∪
D(τj , ε) the matrix A + u′

0

(
u′
0

)∗
H has:

(1) k1, j simple eigenvalues different from τj , τj; and
(2) the eigenvalues τj , τj each with partial multiplicities k2, j , . . . , kqj , j .

As a consequence we obtain an open dense (in {u ∈ C
n : ‖u‖ < ε}) set Ω

(2)
j such that the part of the

Jordan form of A + uu∗H, where u ∈ Ω
(2)
j , corresponding to the eigenvalues withinD(τj , ε) ∪ D(τj , ε)

consists of (more precisely, is similar to)[Jk2, j(τj) 0

0 Jk2, j(τj)
∗
]

⊕ · · · ⊕
[Jkqj , j

(τj) 0

0 Jkqj , j
(τj)

∗
]

and 2k1, j simple eigenvalues different from τj , τj .
Now let

Ω
′′ =

(
∩μ

j=1Ω
(1)
j

)
∩
(
∩ν

j=1Ω
(2)
j

)
∩ Ω ′

to satisfy Lemma 4.3. �

Proof of part (b). Letχu(x) be the characteristic polynomial (in the independent variable x) ofA + B =
A + uu∗H. Then the number of distinct roots of χu(x) is given by the rank of the Sylvester resultant
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matrixS
(
χu(x),

∂
∂x

χu(x)
)
minus n − 1 (cf. the proof of Lemma4.3). Therefore, the setΩ0 of all vectors

uonwhich thenumber of distinct roots ofχu(x) ismaximal, is a generic set. By Lemma4.3, themaximal

number of distinct roots of χu(x) is equal to

n1,1 + · · · + np,1 +
p∑

j=1

min{gj − 1, 1}.

Thus, for the generic set U = Ω0 ∩ Ω ′ the Jordan structure of A + uu∗H is described by (a) and (b), as

required. �

5. Local behavior of the sign characteristic: new real eigenvalues

Wecontinueour studyof the local behaviorof the signcharacteristic ofH-selfadjointmatricesunder

generic H-selfadjoint rank one perturbations. In Section 3, we have considered the real eigenvalues of

the perturbed matrices that are also the eigenvalues of the original matrix. Here, we consider “new"

real eigenvalues of the perturbedmatrix – those that are not eigenvalues of the originalmatrix – under

small generic rank one perturbations. To this end we use the description of the sign characteristic in

termsof “analytic eigenvalues". This techniquewasused in [6,7], and inmore general contexts in [8,21].

We provide the necessary background in the next subsection.

5.1. Analytic eigenvalues and sign characteristics

Let H ∈ C
n×n be Hermitian and invertible, and let A be H-selfadjoint. The function xH − HA of the

real variable x clearly takes Hermitian matrix values. It is well known (Rellich’s theorem, see e.g. [12],

a proof can be also found in [6, Chapter S.6]) that the eigenvalues μ1(x), . . . ,μn(x) of xH − HA can be

enumerated so that theybecome real analytic functions of x. So letμA
1(x), . . . ,μ

A
n(x)be the eigenvalues

of xH − HA, for every x ∈ R, and assume that they are analytic functions of x. Clearly, λ0 ∈ R is an

eigenvalue of A if and only if λ0 is a zero of one of the functions μA
j (x). The following lemma was

proved in [7].

Lemma 5.1. Let λ0 be a real eigenvalue of A, and let

μA
j1
(x), . . . ,μA

js
(x)

be all the functions among the μA
j (x)’s that have a zero at λ0. Suppose that λ0 is a zero of μA

jw
(x) of

multiplicity κw, w = 1, 2, . . . , s. Then the partial multiplicities of λ0 as an eigenvalue of A are κ1, . . . , κs,

and the sign in the sign characteristic of (A, H) associated with the multiplicity κw coincides with the sign

of the nonzero real number
(
μA

jw

)(κw)
(λ0) (the κwth derivative of μA

jw
(x) evaluated at λ0).

Now fix a nonzero vector u ∈ C
n, and let B = ±uu∗H. For the subsequent analysis we choose the

sign−; if the sign is+, then just replaceH with−H to reduce the consideration to the case of the sign

−. Analogously we have the analytic eigenvalues μA+B
1 (x), . . . ,μA+B

n (x) of xH − H(A + B). Note that

xH − H(A + B) − (xH − HA) = Huu∗H
is positive semidefinite. Thus, by the well known monotonicity property of eigenvalues of Hermitian

matrices [11, Corollary 4.3.3], we have

#
{
j : μA+B

j (x) � q
}

�#
{
j : μA

j (x) � q
}

(5.1)

for every x ∈ R and every real number q. (Here, #L denotes the cardinality of a finite set L.)

We also note the following fact:

Lemma 5.2. For a fixed real x, suppose that there are s eigenvalues (countedwithmultiplicities) of xH − HA

in the real interval [α,β]. Then there are at least s eigenvalues of xH − H(A − uu∗H) in the interval

[α − ‖uu∗H‖,β + ‖uu∗H‖].



4040 C. Mehl et al. / Linear Algebra and its Applications 436 (2012) 4027–4042

For the proof, observe that Lemma 5.2 follows easily from Mirsky’s inequality for eigenvalues of

two Hermitian matrices [4,19].

5.2. The sign characteristic of new real eigenvalues: main result

Let H ∈ C
n×n be Hermitian and invertible, and let A ∈ C

n×n be H-selfadjoint. Fix a real eigenvalue

λ0 of A. Let n1 > · · · > np be the distinct partial multiplicities of A corresponding to λ0, and let there

be �j blocks in the Jordan form of A having size nj and eigenvalue λ0, for j = 1, 2, . . . , p, with the signs

ξj,k = ±1, k = 1, 2, . . . , �j attached to the partial multiplicities nj, . . . , nj (repeated �j times) in the

sign characteristic of (A, H) associated with the eigenvalue λ0. Recall (Theorem 2.1) that the signs ξj,k ,
for every fixed j, are uniquely determined up to a permutation. For the purpose of our analysis, it will

be convenient to distinguish ξ1,1 and classify the various possibilities according to the value ξ1,1 = 1

or ξ1,1 = −1.

We distinguish two cases: (e) n1 is even; (o) n1 is odd. According to Theorem 3.3, for a generic set

(with respect to the real and imaginary parts of the components) of vectors u ∈ C
n, we have one of

the following four (not necessarily mutually exclusive) situations:

(e+) n1 is even, ξ1,1 = 1, and at the eigenvalue λ0 the H-selfadjoint matrix A − uu∗H has distinct

partial multiplicities n1 > · · · > np repeated �1 − 1, �2, . . . , �p times, respectively (if �1 = 1, then n1
is omitted), with signs in the sign characteristic ξ1,k , k = 2, . . . , �1 corresponding to the partial multi-

plicities n1 (repeated �1 − 1 times) and ξj,k , k = 1, 2, . . . , �j corresponding to the partial multiplicities

nj (repeated �j times) for j = 2, 3, . . . , p.
(e−) n1 is even, ξ1,1 = −1, and all other properties as described in (e+).

(o+) n1 is odd, ξ1,1 = 1, and all other properties as described in (e+).

(o−) n1 is odd, ξ1,1 = −1, and all other properties as described in (e+).

In addition, we shall assume ‖u‖ is sufficiently small, so that A − uu∗H has generically n1 eigen-

values ν1, . . . , νn1 (which may be real or complex) different from λ0 that are clustered around λ0. By

Theorem 3.3, we may assume that generically the eigenvalues ν1, . . . νn1 are all simple. Renumbering

the eigenvalues so that ν1, . . . , νm are real and the rest are nonreal, we let (generically) ν1 < · · · < νm.
(Note that m may depend on u, but this dependence is not reflected in the notation.) Thus, there is

a sign ηq associated with νq, q = 1, 2, . . . , m, in the sign characteristic of (A − uu∗H, H). Obviously,
m� n1.

We now state our main result on the “new" eigenvalues νq and their sign characteristic. Denote by

Ω the open generic (with respect to the real and imaginary parts of the components of u) set of vectors

u ∈ C
n for which one of (e+), (e−), (o+), (o−) holds and the eigenvalues ν1, . . . , νn1 are all distinct,

simple, and none of them is equal to λ0.

Theorem 5.3

(a) Under the above notation, and assuming that u ∈ Ω and ‖u‖ is sufficiently small (the sufficiency of

the smallness of ‖u‖ is determined by the pair (A, H) only), m is even and η1 + · · · + ηm = 0 in

cases (e+) and (e−), and m is odd and η1 + · · · + ηm = ±1 in cases (o±).

(b) Assuming in addition that the geometric multiplicity ofλ0 as the eigenvalue of A is equal to one, then:
(b1) if (e+) holds, then the νq are all nonreal, i.e. m = 0;
(b2) if (e−) holds, then for some odd k, k < m, we have

ν1 < ν2 < · · · < νk < λ0 < νk+1 < · · · < νm,

with ηq = (−1)q−1, for q = 1, 2, . . . , m.

(b3) if (o+) holds, then ν1 < ν2 < · · · < νm < λ0, with ηq = (−1)q−1, for q = 1, 2, . . . , m.
(b4) if (o−) holds, then λ0 < ν1 < ν2 < · · · < νm, with ηq = (−1)q, for q = 1, 2, . . . , m.

We emphasize that the number m in Theorem 5.3 may depend on u ∈ Ω (although this is not

reflected in the notation).
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Proof. Fix a disc {z ∈ C : |z − λ0| < δ}, where δ is chosen so that λ0 is the only eigenvalue of A in

the disc. Part (a) concerning the number m follows easily from the fact that the number of nonreal

eigenvalues of A + B in a disc {z ∈ C : |z − λ0| < δ} is even and the total number of eigenvalues

of A + B in the disc is equal to n1�1 + · · · + np�p (for sufficiently small ‖u‖). The statements about

ηj ’s then follow from the general perturbation theory for H-selfadjoint matrices, see, for example, [9,

Chapter 9].

We prove (b). We give a detailed proof for the cases (b1) and (b2) only, the proof in the other cases

is obtained by analogous considerations. Thus, let n1 be the even algebraic multiplicity of λ0, with

the sign −1. Following the analysis and notation of Section 5.1, let μA(x) be the analytic (as function

of the real variable x) eigenvalue of xH − HA so that μA(x) has a zero at λ0 of multiplicity n1 and

(μA)(n1)(λ0) < 0. Clearly, there exists δ > 0 such that λ0 is the only zero of any μA(x) in the interval

[λ0 − δ, λ0 + δ] and that the graphs of all other analytic eigenvalues of xH − HA do not intersect the

closed rectangle

{(λ0 + w, y) ∈ R
2 : |w| � δ, |y| � δ}. (5.2)

In view of Lemma 5.2, there exists ε > 0 such that for every u ∈ Ω , ‖u‖ < ε, there is exactly one

analytic eigenvalue μA+B(x) of xH − H(A − uu∗H) = xH − H(A + B) that intersects the rectangle

(5.2). Moreover, by taking ε smaller if necessary, we may assume also that μA+B(λ0 ± δ) /= 0 and

that μA(λ0 ± δ) and μA+B(λ0 ± δ) have the same sign. Because of these conditions, and taking into

account thatμA(λ0 ± δ) < 0 (since λ0 is the only zero ofμA(x) on the interval [λ0 − δ, λ0 + δ]), and
we are in the case (b2)), we have

μA+B(λ0 ± δ) < 0. (5.3)

On the other hand, property (5.1) (applied with x = λ0 and q = 0) yields

μA+B(λ0) > 0. (5.4)

In view of Lemma 5.1, inequalities (5.3) and (5.4) now easily lead to the desired conclusion in the case

(b2).

Suppose now that n1 is even with the sign +1. Let μA(x) and μA+B(x) be the analytic eigenvalues

of xH − HA and of xH − H(A + B), respectively, having the properties as in the case (b2), for u ∈ Ω

with‖u‖ sufficiently small. By property (5.1),wehaveμA+B(x) � μA(x) for every x ∈ [λ0 − δ, λ0 + δ].
Since μA+B(λ0) /= 0, we must have μA+B(x) > 0 for all x ∈ [λ0 − δ, λ0 + δ], and the result follows.

�

Example 5.4. To illustrate Theorem 5.3, we consider the matrices

A = J4(0), H = −R4.

Thus, we are in the case (b2) of Theorem 5.3, so for a given sufficiently small vector u, the following

situations are possible for the eigenvalues of the matrix A − uu∗H:

(i) two real eigenvalues, one positive, one negative;

(ii) four real eigenvalues, one negative, three positive;

(iii) four real eigenvalues, three negative, one positive.

Indeed, it seems that all three possibilities can be realized by arbitrarily small perturbations. For an

example realizing (iii), one can take the vector

u := ε

⎡⎢⎢⎣
1

2

1
1
10

ε

⎤⎥⎥⎦ .

Then Matlab computations show that for ε = 10−1, 10−2, . . . , 10−16 the matrix A − uu∗H has one

positive and three negative eigenvalues. For example, by taking ε = 10−3, the eigenvalues ofA − uu∗H
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are −0.000885, −0.000113, −0.000092, and 0.001093. However, it should be noted that if ε is kept

fixed, but the vector u is scaled down in norm by ũ = τu, then the situation changes from (iii) to

(i). E.g., taking in the above example ε = 10−3 and τ = 1/10, the eigenvalues of A − ũũ∗H become

−0.000062, 0.000162, and−0.000050 ± 0.000087i. Numerical experiments suggest that this is true

in general: for a fixed vector u that realizes situations (iii), scaling down the norm of u has the effect

that at some point the situation changes from (iii) to (i) and continues to be (i) when the norm is scaled

further down.

6. Conclusions

We have discussed the perturbation theory for selfadjoint matrices in an indefinite inner product

under generic selfadjoint rank one perturbations. We have derived the Jordan structures of the per-

turbed matrices and also characterized the behavior of the sign characteristic associated with the real

eigenvalues under these perturbations.
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