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The following question is considered: What is the smallest number

γ (k)with theproperty that for every family {X1, . . . , Xk}of k selfad-
joint and linearly independent operators ona real or complexHilbert

spaceH there exists a subspaceH0 ⊂ H of dimensionγ (k) such that

the compressions of X1, . . . , Xk toH0 are still linearly independent?

Upper and lower bounds for γ (k) are established for any k, and the

exact value is found for k = 2, 3. It is also shown that the set of all

γ (k)-dimensional subspaces H0 with the desired property is open

and dense in the respective Grassmannian. The k = 3 case is used to

prove that the ratio numerical range W(A/B) of a pair of operators

on a Hilbert space either has a non-empty interior, or lies in a line

or a circle.

© 2011 Elsevier Inc. All rights reserved.

1. General problem and statements of main results

LetH be a Hilbert space overFwith the inner product 〈·, ·〉, whereF stands for either the filedR of

real or C of complex numbers. Denote by L(H) the Banach algebra of linear bounded operators on H,

and let X[H0] stand for the compression of a selfadjoint operator X ∈ L(H) onto a (closed) subspace

H0 of H.

For every k = 1, 2, . . . , define the positive integer γF(k) as follows: For every linearly inde-

pendent k-tuple of bounded selfadjoint operators X1, . . . , Xk on H, there is a subspace H0 of H of

dimension γF(k) such that the compressions X1[H0], . . . , Xk[H0] are linearly independent; and there

exists a linearly independent k-tuple of bounded selfadjoint operators X′
1, . . . , X

′
k on H such that the

compressions X′
1[H′

0], . . . , X′
k[H′

0] are linearly dependent for every subspace H′
0 of H of dimension

γF(k) − 1.
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For example, it is easy to see that

γC(1) = γR(1) = 1. (1.1)

In this paper we address the problem of identifying the integers γC(k), γR(k). We came to this

problem from studies of generalized numerical ranges for Hilbert space operators [1–4]. It seems to

us however that the problem is independently interesting.

Bounds on γC(k), γR(k) can be easily given:

Proposition 1. For k = 1, 2, . . .,

2k − 1 � γF(k) �

⎧⎪⎪⎨⎪⎪⎩
⌈
k+1
2

⌉
if F = C,

k if F = R,

(1.2)

where �x� stands for the smallest integer greater than or equal to x.

Proof. Consider the linearly independent k-tuple of selfadjoint operators X1, . . . , Xk ∈ L(Fk) given

in the following matrix form:

X1 =
⎡⎣ 1 01×(k−1)

0(k−1)×1 0(k−1)×(k−1)

⎤⎦ , X2 =
⎡⎣ 0 eT1

e1 0(k−1)×(k−1)

⎤⎦ ,

. . . , Xk =
⎡⎣ 0 eTk−1

ek−1 0(k−1)×(k−1)

⎤⎦ ,

where e1, . . . , ek−1 are the standard unit coordinate vectors. Any �-dimensional subspace H0 has

intersection with Span {e2, . . . , ek} ⊂ F
k of dimension at least � − 1. Thus, in a suitable orthonormal

basis for H0, the compressions X̂j = Xj[H0] have the matrix form

X̂j =
⎡⎣ ∗ ∗

∗ 0(�−1)×(�−1)

⎤⎦ , j = 1, 2, . . . , k.

Thus, for these compressions to be linearly independent, it is necessary that k does not exceed the real

dimension of the space of all selfadjoint operators in L(F�) having the form

⎡⎣ ∗ ∗
∗ 0(�−1)×(�−1)

⎤⎦. This

real dimension is equal to � in the real case and to 2� − 1 in the complex case. So

k �

⎧⎪⎪⎨⎪⎪⎩
2� − 1 if F = C,

� if F = R.

(1.3)

These inequalities are satisfied in particular for some subspace H0 of dimension γF(k) for which

X̂1, . . . , X̂k are linearly independent. Letting � = γF(k) in (1.3), the inequalities in (1.2) on the right

follow.

To prove the inequalities on the left, let X1, . . . , Xk ∈ L(H) be linearly independent selfadjoints,

and let

Xj =
[
α(j)
p,q

]
p,q∈K

, j = 1, 2, . . . , k,
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be the matrix representations of the Xj ’s with respect to an orthonormal basis {ep}p∈K in H indexed

by K . The linear independence of the Xj ’s now implies that the (possibly infinite) linear system

k∑
j=1

xjα
(j)
p,q = 0, p, q ∈ K,

where x1, . . . , xk are real unknowns, has only the trivial solution. Thus, there is a subsystem of k

equations

k∑
j=1

xjα
(j)
pu,qv

= 0, u, v = 1, . . . , k, (1.4)

that has only the trivial solution. LettingH0 be the subspace ofH spanned by ep1 , . . . , epk , eq1 , . . . , eqk
we see that X1[H0], . . . , Xk[H0] are linearly independent, while dimH0 � 2k.

If there are any repetitions in the sequence {p1, . . . , pk, q1, . . . , qk}, then dimH0 < 2k and we

are done. Otherwise, let us go through another iteration of the procedure described above, with H
replaced by H0, Xj by Xj[H0], and {ep} by an orthonormal basis in which the matrix of X1 is diagonal,

and moreover α
(1)
1,1 
= 0. The respective subsystem (1.4) of k equations can then be chosen in such a

way that p0 = q0 = 1, thus guaranteeing that dimH0 � 2k − 1. �

In this paper we prove that the lower bounds for γF(k) specified in (1.2) are actually attained for

k = 2, 3 (note that the case k = 1 is trivial):

Theorem 2. Let X1, X2 ∈ L(H) be linearly independent selfadjoint operators. Then there exists a 2-

dimensional subspaceH0 ⊆ H such that X1[H0], X2[H0] are linearly independent (overR, or equivalently,

over C).

Theorem 3. Let X1, X2, X3 ∈ L(H) be linearly independent selfadjoint operators. Then there exists a 2-

dimensional subspace H0 ⊆ H in the complex case, and a 3-dimensional subspace H0 ⊆ H in the real

case, such that the compressions X1[H0], X2[H0], X3[H0] are linearly independent.

Determination of γF(k) for k � 4 remains an open problem.

Theorems 2 and 3 are proved in Sections 3 and 2, respectively. We return to the general prob-

lem in Section 4 where it is proved that the set of subspaces H0 of dimension γF(k) for which

X1[H0], . . . , Xk[H0] are linearly independent is open anddense. Finally, in Section5weapply Theorem

3 to prove a geometric property of the ratio numerical range (Theorem 6).

2. Proof of the main result: triples of operators

In order not to interrupt the exposition flow and for convenience of reference, we first prove an

elementary auxiliary result, which is needed for the proof of the complex version only.

Lemma 4. Let x1, x2, x3 be linearly independent (over C) vectors in a complex inner product space. Then

for every nonzero vector y1 lying in L = Span{x1, x2, x3} there exists y2 ∈ L \ {0}, y2 ⊥ y1, such that the

orthogonal projections of xj onto Span{y1, y2} are linearly independent over R.

Proof. Choose an orthonormal basis in Lwith its first vector collinear with y1. The first coordinate of

at least one vector xj in this basis must be different from zero, because otherwise they would be lying

in a 2-dimensional subspace and therefore linearly dependent. Scaling and renumbering if needed, we

may without loss of generality suppose that the first coordinate of x1 is one. Further adjusting x2 by

adding real multiples of x1 and x3 by adding real linear combinations of x1, x2 (which has no influence

on their linear dependence or independence over R) we may arrange for the first coordinate of x2 to

equal i or 0 while the first coordinate of x3 is 0.
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If the first coordinate of x2 is i, thenwemay choose y2 as any vector inL⊥
1 which is not orthogonal to

x3.Otherwise (that is, if thefirst coordinates of x2 and x3 arebothequal to zero) the linear independence

over R of the projections of x1, x2, x3 onto Span{y1, y2} will be guaranteed if y2 ⊥ y1 and the scalar

products 〈x2, y2〉, 〈x3, y2〉 are R-independent, that is, they are both nonzero and their ratio is not real.

In the notation

x2 =

⎡⎢⎢⎢⎣
0

ξ1

ξ2

⎤⎥⎥⎥⎦ , x3 =

⎡⎢⎢⎢⎣
0

η1

η2

⎤⎥⎥⎥⎦ , y2 =

⎡⎢⎢⎢⎣
0

ζ1

ζ2

⎤⎥⎥⎥⎦ ,

R-independence of 〈x2, y2〉, and 〈x3, y2〉 holds whenever ξ1 + ξ2z and η1 + η2z are R-independent,

where z = ζ2/ζ1, ζ1 
= 0, and also for ζ1 = 0, ζ2 
= 0, provided that ξ2 and η2 are R-independent.

Since x2 and x3 are linearly independent, there is a plenitude of vectors y2 satisfying these require-

ments. �

We now start the proof of Theorem 3. Let us consider separately two scenarios, depending on

whether or not the operators Xj are locally linearly independent, that is, whether or not there exist

u ∈ H such that the vectors Xju, j = 1, 2, 3, are linearly independent (over C). The interested reader

may consult, e.g., [5] and references therein for some general structural results on systems of locally

linearly dependent operators and the history of the subject. For our purposes, however, we merely

need the definition.

Case 1. Locally linearly dependent Xj , j = 1, 2, 3. Then

for all u ∈ H, the vectors X1u, X2u, X3u are linearly dependent. (2.1)

According to Proposition 1, it suffices to consider the case of finite (at most 5-) dimensional H. Of

course, we may also suppose that dimH � 3, because otherwise there is nothing to prove.

Denote bym be themaximal rank of all operators in the real span of X1, X2, X3. Passing to a different

basis of this span if needed, we may without loss of generality suppose that X1 has rank m. With an

appropriate choice of an orthonormal basis E = {ej} in H, X1 can be represented in the block matrix

form as

X1 =
⎡⎣� 0

0 0

⎤⎦ ,

where� = diag[λ1, . . . , λm], thediagonalmatrixwith realnonzeroλ1, . . . , λm on themaindiagonal.

Let

X =
⎡⎣ A B

B∗ D

⎤⎦ (2.2)

be the matching block matrix representation of any X from the real span of Xj . Then for sufficiently

small t the left upper block�+tA ofX1+tX is invertible alongwith�, and from the Schur complement

formula we conclude that X1 + tX is congruent to the direct sum of � + tA with

Z(t) = tD − t2B∗(� + tA)−1B.

Since the rank of X1 + tX should not exceed m, this is only possible if Z(t) = 0 for all t in some

neighborhood of zero. In particular, D = 0.

Consequently, the (i, j) entries of X2 and X3 are equal to zero if i, j > m.

Subcase 1a. There exists a pair (i, j) such that the (i, j) entries of the matrices of X2 and X3 (in the

same basis E that diagonalizes X1) are R-independent. Then i � m or j � m (since otherwise both

entries are zeros) and i 
= j (since otherwise they are both real). LetH0 = Span{ei, ej}. Then thematrix
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of X1[H0] is nonzero and diagonal, while the matrices of X2[H0] and X3[H0] have R-independent off-

diagonal entries. This makes the triple {Xj[H0] : j = 1, 2, 3} linearly independent, which settles the

subcase under consideration.

In the rest of the proof for Case 1 we may therefore suppose that the (i, j) entries of X2 and X3 are

R-dependent for any given pair (i, j).

Subcase 1b. The matrix of at least one of the operators X2, X3 in the basis {ej} is not diagonal.
There must be a nonzero entry in the off-diagonal part of the block

⎡⎣ A

B∗

⎤⎦ in representation (2.2) of

either X2 or X3. Relabeling vectors e1, . . . , em, switching between X2 and X3 if needed, and denoting

the matrix of X3 by (ξij), we may without loss of generality suppose that ξi1 
= 0 for some i > 1. Then

the (i, 1) entry of X2 equals rξi1 for some real r. Substituting X2 by X2 − rX3 we may suppose that

this entry is actually equal to zero. But then, from linear dependence of Xje1, j = 1, 2, 3 we conclude

that all entries in the first column of X2 (except maybe for its (1, 1)-entry) are equal to zero. Due to

selfadjointness, this also holds for the elements in the first row of X2. Finally, subtracting from X2 an

appropriate real scalar multiple of X1, we can set its (1, 1) entry to equal zero as well.

Now, if the ith diagonal entry of X2 (which we will denote by μi) is nonzero, then for H0 =
Span{e1, ei} the matrices of Xj[H0] for j = 1, 2, 3 take the form⎡⎣λ1 0

0 λi

⎤⎦ ,

⎡⎣0 0

0 μi

⎤⎦ ,

⎡⎣ ∗ ξ1i

ξi1 ∗

⎤⎦
respectively, and are therefore linearly independent.

We will show that the alternative (that is, the situation when μi = 0 whenever ξi1 
= 0) leads to a

contradiction, and therefore does not materialize. To this end, consider first i � m and apply (2.1) to

u = ei. SinceX1u = λiei andX3uhaving thefirst coordinate ξ1i are then linearly independent, it follows

that X2u must be their linear combination. Making use of the fact that the first and ith coordinates of

X2ei are equal to zero, we conclude that the whole ith column of X2 is equal to zero.

If i > m, we reach the same conclusion invoking (2.1) with u = e1 + tei and varying t. Indeed,

then X1u = λ1e1 while X3u has a nonzero ith coordinate for all except for maybe one value of t. Since

X2u = tX2ei, the ith column of X2 lies in the span of e1 and a vector with nonzero ith coordinate. This

is again possible only if the combination is trivial.

We have thus shown that the ith column (and therefore the ith row) of X2 is zero for any i such that

ξi1 
= 0.

Suppose that the matrix of X2 is nevertheless not diagonal. Then it must contain a nonzero entry

say in (s, j) position with 1 < j � m, j 
= i and s 
= 1, i, j. (Here i 
= 1 is any index such that ξi1 
= 0.)

Let us invoke (2.1) once again, this time for u = e1 + tej . For t 
= 0 the vector X2u = tX2ej has a

nonzero sth entry, while X1u = λ1e1 + tλjej . Consequently, X3u = X3e1 + tX3ej should be a linear

combination of X2ej and λ1e1 + tλjej , and therefore its ith coordinate is zero. However, for t small

enough it is different from zero.

The contradiction obtained shows that the matrix of X2 in the basis {ej} is

diag[0, μ2, . . . , μm, 0, . . . , 0]. Note thatμj 
= 0 for at least one value of j. From (2.1)with u = e1+tej
we conclude that for t 
= 0, X3u = X3e1 + tX3ej must be a linear combination of the linearly inde-

pendent vectors X1u = λ1e1 + tλjej and X2u = tμjej . Let i 
= 1 be any index such that ξi1 
= 0. Then

μi = 0, hence j 
= i. Thus, the ith coordinate of X1u and X2u = tμjej is zero, while for X3u it differs

from zero. The contradiction obtained concludes the consideration of this subcase.

The only remaining situation in Case 1 is as follows.

Subcase 1c. The matrices of all Xj in the basis E are diagonal.

Consistently with the notation and conventions made earlier, let X1 and X2 have the matrices

diag[λ1, . . . , λm, 0, . . . , 0] and diag[0, μ2, . . . , μm, 0, . . . , 0], respectively. By changing the order of
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vectors in E if necessary, wemay suppose thatμ2 
= 0. Subtracting then a suitable linear combination

of X1 and X2 from X3, we can reduce the matrix of the latter to

diag[0, 0, ν3, . . . , νm, 0, . . . , 0].
Now take u = e1 + e2 + ek with k 
= 1, 2. Since X1u = λ1e1 + λ2e2 + λkek , X2u = μ2e2 + μkek

and X3u = νkek , property (2.1) for this choice of u implies that νk = 0. In other words, X3 = 0, which

is in contradiction with linear independence of the set {X1, X2, X3}.
This concludes the consideration of Case 1. Note that in this case we were able to come up with

2-dimensional compressions, both in real and in complex setting.

Case 2. Locally linearly independent Xj , j = 1, 2, 3 i.e. X1u, X2u, X3u are linearly independent for

some u ∈ H.

We claim that then there exists a 3-dimensional subspaceH1 ofH and v ∈ H1 such that the vectors

Xj[H1]v, j = 1, 2, 3, are linearly independent. Indeed, if u ∈ Span{X1u, X2u, X3u}, wemay simply take

H1 = Span{X1u, X2u, X3u} and v = u.

Otherwise, let v be a perturbation of u so small that the set {v, X1v, X2v, X3v} =: � is still linearly

independent, while in addition 〈X1v, v〉 
= 0 (such a perturbation exists, since for any nonzero A ∈
L(H) the set of vectors x for which 〈Ax, x〉 
= 0 is dense in H). Let Z be the 4 × 3 matrix whose jth

column equals the coordinate vector of Xjv in the orthonormal basis {v1, . . . , v4} obtained from � by

the Gram–Schmidt procedure. Since the rank of Z equals three and its (1,1) entry is nonzero, for some

j0 = 2, 3 or 4 the deletion of the jth row of Z yields a nonsingular 3×3 submatrix. It remains to choose

H1 as the span of vj , j ∈ {1, 2, 3, 4} \ {j0}.
In the real setting, H0 = H1 is the desired 3-dimensional subspace. In the complex setting, we

need to go one step further. Namely, let us apply Lemma 4 to xj = Xj[H1]v, j = 1, 2, 3, and y1 = v. We

end up with a 2-dimensional subspace H0 = Span{y1, y2} and an orthonormal basis in it such that

the first columns of the matrices of Xj[H0] with respect to this basis are linearly independent over R.

But then Xj[H0] themselves also are linearly independent (over R or equivalently, over C).

3. Proof of the main result: pairs of operators

In the complex setting, if X1, X2 ∈ L(H) are linearly independent selfadjoints, we simply adjoin a

selfadjoint X3 ∈ L(H) so that X1, X2, X3 are linearly independent, and use Theorem 3 for X1, X2, X3.

Consider now the real case. Let X1, X2 ∈ L(H) be linearly independent selfadjoints, where H is a

real Hilbert space. By Proposition 1, we may (and do) assume thatH is at most 3-dimensional. In fact,

we may suppose that dimH = 3, since otherwise dimH = 2 and there is nothing to prove.

Step 1. Let us first show that X1 and X2 are locally linearly independent.

As in Section 2, with respect to a suitable orthonormal basis {ej},

X1 =
⎡⎣� 0

0 0

⎤⎦ , X2 =
⎡⎣ A B

B∗ 0

⎤⎦ ,

where � = diag[λ1, . . . , λm] with real nonzero λ1, . . . , λm. Arguing by contradiction, assume that

for every u ∈ Span {e1, . . . , em} \ {0} there exists a real number μu such that X2u = μuX1u. Take

linearly independent u, v ∈ Span {e1, . . . , em} (we leave aside for the time being the case m = 1),

and write:

X2u = μuX1u, X2u = μvX1v, X2(u + v) = μu+vX1(u + v).

Subtracting the first two equalities from the third, we obtain

0 = (μu+v − μu)X1u + (μu+v − μv)X1v.
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Linear independence of u and v and injectivity of X1 on Span {e1, . . . , em} yield
μu+v − μu = 0, μu+v − μv = 0.

Thus,μu = μv, and since u, v is an arbitrary linearly independent pair of vectors in Span {e1, . . . , em},
it follows that in fact μ := μu is independent of u ∈ Span {e1, . . . , em} \ {0}. The same conclusion

obviously holds also in the casem = 1. We now have A = μ�, B = 0, and X2 = μX1, a contradiction

with the linear independence of X1 and X2.

Step 2. Analogously to the proof in Section 2, the real setting of Case 2, it follows from the linear

independence of {X1u, X2u} that there exist a 2-dimensional subspace H1 of H and v ∈ H1 such that

X1[H1]v and X2[H1]v are linearly independent. Thus, X1[H1] and X2[H1] are linearly independent, and
the proof of Theorem 2 is complete.

4. Openness and denseness

LetH be real or complex Hilbert space. Fix a positive integer � � dimH. It is well known (the basic

references in the context of Banach space are [6–8], see also the English translation [9] of [7]) that

the set Gr� H of all �-dimensional subspaces of H is a connected complete metric space, called the

Grassmannian. In the Hilbert space setting, the standard metric on the Grassmannian is given by the

gap θ(M,N ) between two subspacesM,N ⊆ H:

θ(M,N ) = ‖PM − PN‖,
where PM stands for the orthogonal projection ontoM. Equivalently, themetric topology in Gr� H can

be given in terms of orthonormal bases: If f1, . . . , f� is an orthonormal basis in M ∈ Gr� H, then a

basis of open neighborhoods of M is given by

{Span{f ′1, . . . , f ′�} : {f ′1, . . . , f ′�} is orthonormal, ‖f ′j − fj‖ < 1/m, j = 1, 2, . . . , �},
for m = 1, 2, . . .. Indeed, if {fj}�j=1, {f ′j }�j=1 are orthonormal bases for M,M ∈ Gr� H, respectively,

and if ‖f ′j − fj‖ < α, j = 1, 2, . . . , �, for some positive α, then the formulas

PMx =
�∑

j=1

〈x, fj〉fj, PM′x =
�∑

j=1

〈x, f ′j 〉f ′j , x ∈ H

easily lead to the inequality ‖PM − PM′ ‖ � 2�α. Conversely, if ‖PM − PM′ ‖ � β forM′ ∈ Gr� H and

for some positive β , then let uj = PM′ fj , j = 1, 2, . . . , �, where {f1, . . . , f�} is a given orthonormal

basis forM. Using the inequalities
∣∣〈ui, uj〉 − 〈fi, fj〉∣∣ � 2β , we see that if β is sufficiently small, then

the Gram matrix of {u1, . . . , u�} is invertible, hence {u1, . . . , u�} are linearly independent. Now the

Gram–Schmidt procedure applied to {u1, . . . , u�} yields an orthonormal basis {f ′j }�j=1 forM′ satisfying
‖f ′j − fj‖ � Cβ , where the positive constant C depends on � only, as it follows from the well-known

formulas for this procedure, see e.g. [10, Theorem 9.1].

Theorem5. Let X1, . . . , Xk ∈ L(H) be linearly independent selfadjoint operators, whereH is anF-Hilbert

space, F = R or F = C. Then the set LinIndF {X1, . . . , Xk} of all γF(k)-dimensional subspaces H0 ⊆ H
such that the compressions X1[H0], X2[H0], . . . , Xk[H0] are linearly independent is open and dense in

GrγF(k)H.

Proof. Weprove the result for the complex caseonly; theproof in the real case is completely analogous.

We begin with denseness. Let

H1 ∈ LinIndC {X1, . . . , Xk},
and let H0 be any subspace of H of dimension � := γC(k). Assuming the intersection H1 ∩ H0 is

p-dimensional, let f1, . . . f� and g1, . . . , g� be orthonormal bases inH1 andH0, respectively, such that
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f1 = g1, . . . , fp = gp is a basis for H1 ∩ H0. (The situation when H1 ∩ H0 = {0} is not excluded; in
this case the proof goes through with obvious changes.) Consider

fj(t) :=
⎧⎪⎪⎨⎪⎪⎩

fj j = 1, 2, . . . , p; −∞ < t < ∞,

tfj + (1 − t)gj j = p + 1, . . . , �; −∞ < t < ∞.

It is easy to see that {f1(t), . . . , f�(t)} are linearly independent for every t ∈ R. Let {h1(t), . . . , h�(t)}
be an orthonormal system obtained from {f1(t), . . . , f�(t)} by using the Gram–Schmidt process.

Clearly,

{h1(1), . . . , h�(1)} = {f1, . . . , f�} and {h1(0), . . . , h�(0)} = {g1, . . . , g�}.
Moreover, H(t) := Span {h1(t), . . . , h�(t)} belongs to LinIndC {X1, . . . , Xk} if and only if the k × �2

matrix Z(t) whose jth row is

[ 〈Xjh1(t), h1(t)〉, . . . , 〈Xjh�(t), h�(t)〉,
�〈Xjh1(t), h2(t)〉, �〈Xjh1(t), h2(t)〉, . . . , �〈Xjh1(t), h�(t)〉, �〈Xjh1(t), h�(t)〉,
. . . , �〈Xjh�−1(t), h�(t)〉, �〈Xjh�−1(t), h�(t)〉 ]

has rank k. (We denote by �z and �z the real and imaginary parts of a complex number z.) Observe

that the determinants of the k × k submatrices of Z(t) are real analytic functions of the real variable

t and that at least one of those determinants is nonzero for t = 1. Since the zeros of a real analytic

function cannot accumulate within its domain of definition (unless the function is identically zero),

it follows that the same determinant is nonzero for all t ∈ (0, ε), where ε > 0 is sufficiently small.

Thus,

Span{h1(t), . . . , h�(t)} ∈ LinIndC {X1, . . . , Xk}, t ∈ (0, ε),

and

lim
t→0+ θ(H0, Span{h1(t), . . . , h�(t)}) = 0,

which proves the denseness of LinIndC {X1, . . . , Xk}.
Next, we prove that LinIndC {X1, . . . , Xk} is open.
LetH1 ∈ LinIndC {X1, . . . , Xk}, and let f1, . . . f� be an orthonormal basis forH1. For any orthonor-

mal system {h1, . . . , h�} we denote by Z({h1, . . . , h�}) the k × �2 matrix whose jth row is

[ 〈Xjh1, h1〉, . . . , 〈Xjh�, h�〉, �〈Xjh1, h2〉, �〈Xjh1, h2〉, . . . ,
�〈Xjh1, h�〉, �〈Xjh1, h�〉, . . . , �〈Xjh�−1, h�〉, �〈Xjh�−1, h�〉 ],

for j = 1, 2, . . . , k. Then at least one k×kminor of Z({f1, . . . f�}) is nonzero. Clearly, there exists δ > 0

such that the determinant of the same k × k submatrix of Z({h1, . . . , h�}) is nonzero for every ortho-

normal system {h1, . . . , h�} satisfying ‖hj − fj‖ < δ, j = 1, 2, . . . , k. From our description of a basis

of open neighborhoods given at the beginning of this section, the openness of LinIndC {X1, . . . , Xk}
follows. �

5. Application to ratio numerical ranges

For A, B ∈ L(H), B 
= 0, the ratio numerical range W(A/B) was introduced in [3] as

W(A/B) = {〈Ax, x〉/〈Bx, x〉 : 〈Bx, x〉 
= 0}.
Note that W(B/I) is simply the classical numerical range (or the field of values) W(A) of A and that in

the particular case of finite dimensional H and 0 /∈ W(B) the set W(A/B) was studied earlier in [1].

On the other hand, if dimH < ∞ and A, B are such that
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〈Bx, x〉 = 〈Ax, x〉 = 0 �⇒ x = 0, (5.1)

then W(B/A) coincides with the numerical range of the matrix pencil λB − A treated in [11,2].

From [11] it follows in particular that, under condition (5.1) and in the finite dimensional case,

W(A/B) is either contained in a line or a circle, or has anon-empty interior.Wewill show that condition

(5.1) is redundant and the statement actually holds in any dimension.

Theorem 6. The ratio numerical range W(A/B) either lies in a line, or in a circle, or has a non-empty

interior.

Proof. Using the standard notation

�(X) = 1

2
(X + X∗), �(X) = 1

2i
(X − X∗)

for X ∈ L(H), let us denote by r(A, B) the number of linearly independent (over R) operators among

�(A), �(A), �(B), �(B). According to [3, Theorem 3.1] W(A/B) lies in a line or a circle if and only if

r(A, B) � 2. So, we need only to verify that if r(A, B) � 3, then W(A/B) has non-empty interior.

By Theorem 3, it is possible to find a 2-dimensional subspace H0 such that for the compressions

A0, B0 of A, B onto H0 we still have r(A0, B0) � 3. Since W(A0/B0) ⊂ W(A/B), it suffices to consider

the case dimH = 2.

Recall the obvious properties W((A − λB)/B) = W(A/B) − λ and W(A/B) \ {0} = 1/W(B/A)
due to which the interiors of W(A/B) and W(B/(A − λB)) are (or are not) empty simultaneously.

ConsideringW(B/(A − λB)) with λ = tr(A)/ tr(B) instead ofW(A/B) if tr(B) 
= 0, we therefore may

without loss of generality suppose that B is traceless.

Wemay suppose in addition that for someunit vector x ∈ H, 〈Ax, x〉 = 〈Bx, x〉 = 0, since otherwise

(5.1) holds. Choosing this x as the first vector of an orthonormal basis of H, we obtain the following

matrix representations:

A =
⎡⎣ 0 a12

a21 a22

⎤⎦ , B =
⎡⎣ 0 b12

b21 0

⎤⎦ . (5.2)

Note that a22 
= 0 due to the condition imposed on r(A, B).
In the definition ofW(A/B) only unit vectors inH both coordinates of which are nonzero will have

an impact. Denoting by s the ratio of their absolute values and by θ the difference of arguments, we

think ofW(A/B) as the range of the function

f (s, θ) = a22s + a12e
iθ + a21e

−iθ

b12e
iθ + b21e

−iθ
(5.3)

on the set {s > 0, θ 
= arg(−b21/b12) mod π if |b12| = |b21|}.
Suppose the interior ofW(A/B) is empty. Then the Jacobian of themapping (5.3) is identically zero,

that is, the ratio
∂ f
∂θ

/
∂ f
∂s

must be real for all admissible values of s and θ . A direct computation shows

that this ratio is a linear function of s, namely

∂ f

∂θ
(s, θ)

/
∂ f

∂s
(s, θ) = m(θ)s + n(θ),

where

m(θ) = −i
b12e

iθ − b21e
−iθ

b12e
iθ + b21e

−iθ
(5.4)

and

n(θ) = i

a22

(
a12e

iθ − a21e
−iθ − (a12e

iθ + a21e
−iθ )

b12e
iθ − b21e

−iθ

b12e
iθ + b21e

−iθ

)
. (5.5)

So, both m(θ) and n(θ) must be real for all θ such that b12e
iθ + b21e

−iθ 
= 0.
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From (5.4) we conclude then that |b12| = |b21|. Applying a diagonal unitary similarity to A and

B given by (5.2), which of course does not change W(A/B) and r(A, B), we may then arrange that

b12 = b21. Scaling both A and B by their inverse (which once again will not change the ratio numerical

range and the number r(A, B)) we may even suppose that b12 = b21 = 1. Under this condition (5.5)

simplifies to

i

a22

(
a12e

iθ − a21e
−iθ − i(a12e

iθ + a21e
−iθ ) tan θ

)
= i

a22

(
a12e

iθ (1 − i tan θ) − a21e
−iθ (1 + i tan θ)

)
= i

a22
(1 − i tan θ)eiθ (a12 − a21),

which can be real for all the admissible (and thus, by continuity, for all) values of θ only if a12 = a21.

But then �(B)(= B), �(B)(= 0), �(A) and �(A) lie in the span of two matrices,

⎡⎣0 1

1 0

⎤⎦ and

⎡⎣0 0

0 1

⎤⎦.

This contradiction with r(A, B) � 3 completes the proof. �
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