

[W&M ScholarWorks](https://scholarworks.wm.edu/)

[Arts & Sciences Articles](https://scholarworks.wm.edu/aspubs) **Articles** [Arts and Sciences](https://scholarworks.wm.edu/as) Arts and Sciences

2012

Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues

Zejun Huang

Nung-Sing Sze

Chi-Kwong Li William & Mary, ckli@wm.edu

Man-Duen Choi

Follow this and additional works at: [https://scholarworks.wm.edu/aspubs](https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1563&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Huang, Zejun; Sze, Nung-Sing; Li, Chi-Kwong; and Choi, Man-Duen, Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues (2012). Linear Algebra and Its Applications, 436(9), 3773-3776. 10.1016/j.laa.2011.12.010

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

[Linear Algebra and its Applications 436 \(2012\) 3773–3776](http://dx.doi.org/10.1016/j.laa.2011.12.010)

Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues

Man-Duen Choi^a, Zejun Huang ^b, Chi-Kwong Li^{c,1}, Nung-Sing Sze^{b,*}

^a *Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4*

^b *Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong*

^c *Department of Mathematics, College of William & Mary, Williamsburg, VA 23187-8795, USA*

ARTICLE INFO ABSTRACT

Article history: Received 6 November 2011 Accepted 7 December 2011 Available online 20 January 2012

Submitted by R.A. Brualdi

AMS classification: 15A18

Keywords: Invertible matrices Diagonal matrices Distinct eigenvalues

We show that for every invertible $n \times n$ complex matrix A there is an $n \times n$ diagonal invertible *D* such that *AD* has distinct eigenvalues. Using this result, we affirm a conjecture of Feng, Li, and Huang that an $n \times n$ matrix is not diagonally equivalent to a matrix with distinct eigenvalues if and only if it is singular and all its principal minors of size $n - 1$ are zero.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Denote by M_n the set of $n \times n$ complex matrices. In [\[1](#page-4-0)], the authors pointed out that matrices with distinct eigenvalues have many nice properties. They then raised the question whether every invertible matrix in *Mn* is diagonally equivalent to a matrix with distinct eigenvalues, and conjectured that a matrix in *Mn* is not diagonally equivalent to a matrix with distinct eigenvalues if and only if it is singular and every principal minor of size $n - 1$ is zero. They provided a proof for matrices in M_n with

∗ Corresponding author.

E-mail addresses: choi@math.toronto.edu (M.-D. Choi), huangzejun@yahoo.cn (Z. Huang), ckli@math.wm.edu (C.-K. Li), raymond.sze@inet.polyu.edu.hk (N.-S. Sze).

¹ This research was done while he was visiting The Hong Kong University of Science & Technology in 2011 under the support of a Fulbright Fellowship. Li is an honorary professor of The University of Hong Kong, Taiyuan University of Technology, and Shanghai University.

 $n \leq 3$, and demonstrated the complexity of the problem for matrices in M_4 using their approach. In this note, we affirm their conjecture by proving the following theorem.

Theorem 1.1. *Suppose* $A \text{ ∈ } M_n$ *is invertible. There is an invertible diagonal* $D \text{ ∈ } M_n$ *such that AD has distinct eigenvalues.*

Once this result is proved, we have the following corollary.

Corollary 1.2. *Let* $A \in M_n$ *. The following are equivalent.*

(a) *A is not diagonally equivalent to a matrix with distinct eigenvalues.*

(b) *There is no diagonal matrix D such that AD has distinct eigenvalues.*

(c) *The matrix A is singular and all principal minors of size n* − 1 *are zero.*

Proof. The implication (a)⇒(b) is clear. Suppose condition (c) does not hold. Then either *A* is invertible or *A* has an invertible principal submatrix of size *n* − 1. Assume the former case holds. There is an invertible diagonal matrix *D* such that *AD* has distinct eigenvalues by Theorem [1.1.](#page-2-0) If the latter case holds, we may assume without loss of generality that the leading principal submatrix $A_1 \in M_{n-1}$ is invertible. By Theorem [1.1,](#page-2-0) there is an invertible diagonal matrix $D_1 \n\t\in M_{n-1}$ such that A_1D_1 has distinct (nonzero) eigenvalues. Let $D = D_1 \oplus [0]$. Then AD has distinct eigenvalues including zero as an eigenvalue. Thus, (b) cannot hold. So, we have proved (a) \Rightarrow (b) \Rightarrow (c).

Recall that the characteristic polynomial of a matrix $B \in M_n$ has the form $det(xI_n - B) = x^n +$ $b_{n-1}x^{n-1}+b_{n-2}x^{n-2}+\cdots+b_1x+b_0$, where $(-1)^jb_{n-j}$ is the sum of $j\times j$ principal minors of B . Suppose condition (c) holds. Since the principal minors of D_1AD_2 are scalar multiples of the corresponding principal minors of *A*, then D_1AD_2 has characteristic polynomial of the form det($xI_n - D_1AD_2$) = $x^n + a_{n-1}x^{n-1} + \cdots + a_2x^2$ so that 0 is a root with multiplicity at least two. Thus, *D*₁*AD*₂ cannot have *n* distinct eigenvalues. So, the implication (c) \Rightarrow (a) is proved. \Box

Note that the set of diagonal matrices is an *n*-dimensional subspace in *Mn*. We can extend Theorem [1.1](#page-2-0) to the following.

Corollary 1.3. *Suppose* V *is a subspace of matrices in* M_n *.*

- (a) If there are invertible matrices R and S such that $RVS = \{RXS : X \in V\}$ contains the subspace *of diagonal matrices, then for any invertible* $A \in M_n$ *there is* $X \in V$ *such that AX has distinct eigenvalues.*
- (b) *If there are invertible matrices R and S such that RXS has zero first row and zero last column for every* $X \in V$, then $A = SR$ is invertible and AX is similar to RXS which cannot have distinct eigenvalues for *any* $X \in V$ *.*

Proof. (a) Suppose *A* is invertible. Then there is a diagonal matrix *D* such that *S*−1*AR*−1*D* has dis-tinct eigenvalues by Theorem [1.1.](#page-2-0) Set $X = R^{-1}DS^{-1} \in V$. Notice that AX has distinct eigenvalues as $S^{-1}(AX)S = S^{-1}(AR^{-1}DS^{-1})S = (S^{-1}AR^{-1})D$.

Assertion (b) can be verified readily. \Box

2. Proof of Theorem [1.1](#page-2-0)

We will prove Theorem [1.1](#page-2-0) by induction on *n*. The result is clear if $A \in M_1$. Assume that the result holds for all $k \times k$ invertible matrices with $1 \leq k < n$. Suppose $A \in M_n$ is invertible. We consider two cases.

Case 1. If all $k \times k$ principal minors of *A* are singular for $k = 1, \ldots, n - 1$, then the characteristic polynomial of *A* has the form $x^n - a_0$ and has *n* distinct roots. So, the result holds with $D = I_n$.

Case 2. Suppose *A* has an invertible $k \times k$ principal minor. Without loss of generality, we may assume that $A =$ \overline{a} \mathbf{L} *A*¹¹ *A*¹² *A*²¹ *A*²² $\overline{}$ | such that A_{11} ∈ M_k is invertible for some $1 ≤ k < n$. Then the

Schur complement of A_{22} equals $B = A_{22} - A_{21}A_{11}^{-1}A_{12}$ which is invertible; see [\[2,](#page-4-1) pp. 21–22]. By induction assumption, there are diagonal invertible $D_1 \in M_k$ and $D_2 \in M_{n-k}$ such that each of $A_{11}D_1$ and BD_2 has distinct nonzero eigenvalues, say, $\lambda_1, \ldots, \lambda_k$ and $\lambda_{k+1}, \ldots, \lambda_n$, respectively. Thus, $A_{11}D_1$ and BD_2 are diagonalizable and there are invertible $S_1 \in M_k$ and $S_2 \in M_{n-k}$ such that $S_1A_{11}D_1S_1^{-1} = \Lambda_1 = \text{diag}(\lambda_1, \ldots, \lambda_k)$ and $S_2BD_2S_2^{-1} = \Lambda_2 = \text{diag}(\lambda_{k+1}, \ldots, \lambda_n)$. Let $D_{r,s} = rD_1 \oplus sD_2$. The proof is complete if one can find some suitable *r* and *s* so that *AD_r*,*s* has distinct eigenvalues. Notice that *ADr*,*^s* has the same eigenvalues as

$$
\tilde{A} = \begin{bmatrix} S_1 & 0 \\ 0 & sS_2 \end{bmatrix} \begin{bmatrix} I_k & 0 \\ -A_{21}A_{11}^{-1} & I_{n-k} \end{bmatrix} AD_{r,s} \begin{bmatrix} I_k & 0 \\ A_{21}A_{11}^{-1} & I_{n-k} \end{bmatrix} \begin{bmatrix} S_1^{-1} & 0 \\ 0 & s^{-1}S_2^{-1} \end{bmatrix}
$$

$$
= \begin{bmatrix} r\Lambda_1 + sS_1A_{12}D_2A_{21}A_{11}^{-1}S_1^{-1} & S_1A_{12}D_2S_2^{-1} \\ s^2S_2BD_2A_{21}A_{11}^{-1}S_1^{-1} & s\Lambda_2 \end{bmatrix}.
$$

Denote by $D(a, d)$ the closed disk in $\mathbb C$ centered at *a* with radius $d \geq 0$. Suppose the $k \times k$ matrix $S_1A_{12}D_2A_{21}A_{11}^{-1}S_1^{-1}$ has diagonal entries μ_1,\ldots,μ_k and let

$$
d_1 = k \|S_1 A_{12} D_2 A_{21} A_{11}^{-1} S_1^{-1} \|
$$
, $d_2 = (n-k) \|S_1 A_{12} D_2 S_2^{-1} \|$, and $d_3 = k \|S_2 B D_2 A_{21} A_{11}^{-1} S_1^{-1} \|$,

where $\|\cdot\|$ is the operator norm. By Geršgorin disk result (see [\[2](#page-4-1), pp. 344–347]), the eigenvalues of \tilde{A} must lie in the union of the *n* Geršgorin disks, which is a subset of the union of *n* disks

$$
D(r\lambda_1 + s\mu_1, sd_1 + d_2), \ldots, D(r\lambda_k + s\mu_k, sd_1 + d_2), D(s\lambda_{k+1}, s^2d_3), \ldots, D(s\lambda_n, s^2d_3).
$$

We can choose sufficiently large $r > 0$ and sufficiently small $s > 0$ so that these disks are disjoint, and hence \tilde{A} has n disjoint Geršgorin disks. Then \tilde{A} has distinct eigenvalues. $\;\;\Box$

We thank Editor Zhan for sending us the two related Refs. [\[3](#page-4-2)[,4\]](#page-4-3). In these papers, the author proved following. Suppose A is an $n \times n$ matrix and a_1, \ldots, a_n are complex numbers. Then there is a diagonal matrix *E* such that $A + E$ has eigenvalues a_1, \ldots, a_n . Moreover, if all principal minors of *A* are nonzero, then there is a diagonal matrix *D* such that *AD* has eigenvalues a_1, \ldots, a_n .

Note that the assumption on the principal minors of *A* is important in the second assertion. Obviously, if det(*A*) = 0, then one cannot find diagonal *D* such that *AD* has *n* nonzero eigenvalues. Even if we remove this obvious obstacle and assume that *A* is invertible, one may not be able to find diagonal *D* so that *AD* has prescribed eigenvalues. For example, if $\{E_{1,1}, E_{1,2}, \ldots, E_{n,n}\}$ is the standard basis for M_n and $A = E_{1,2} + \cdots + E_{n-1,n}$, then the eigenvalues of *AD* always have the form *z*, *zw*, ..., *zw*^{n−1} for some $z \in \mathbb{C}$, where *w* is the primitive *n*th root of unity.

It is interesting to determine the condition on *A* so that for any complex numbers a_1, \ldots, a_n , one can find a diagonal *D* such that *AD* has *a*1,..., *an* as eigenvalues.

Acknowledgments

Research of Choi was supported by a NSERC grant. Research of Huang was supported by a HK RGC grant. Research of Li was supported by a USA NSF grant, and a HK RGC grant. Research of Sze was supported by HK RGC grants.

References

- [1] X.-L. Feng, Z. Li, T.-Z. Huang, Is every nonsingular matrix diagonally equivalent to a matrix with all distinct eigenvalues? Linear
- Algebra Appl., 436 (2012) 120–125.
[2] R.A. Horn, C.R. Johnson, Matrix Analysis, Cam
-
-
- [4] S. Friedland, Inverse eigenvalue problems, Linear Algebra Appl. 17 (1977) 15–51.