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We show that for every invertible n × n complex matrix A there is

an n× n diagonal invertible D such that AD has distinct eigenvalues.

Using this result, we affirm a conjecture of Feng, Li, and Huang that

an n×nmatrix is not diagonally equivalent to amatrixwith distinct

eigenvalues if and only if it is singular and all its principal minors of

size n − 1 are zero.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Denote by Mn the set of n × n complex matrices. In [1], the authors pointed out that matrices

with distinct eigenvalues have many nice properties. They then raised the question whether every

invertible matrix inMn is diagonally equivalent to a matrix with distinct eigenvalues, and conjectured

that a matrix inMn is not diagonally equivalent to a matrix with distinct eigenvalues if and only if it is

singular and every principal minor of size n− 1 is zero. They provided a proof for matrices inMn with
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n ≤ 3, and demonstrated the complexity of the problem for matrices in M4 using their approach. In

this note, we affirm their conjecture by proving the following theorem.

Theorem 1.1. Suppose A ∈ Mn is invertible. There is an invertible diagonal D ∈ Mn such that AD has

distinct eigenvalues.

Once this result is proved, we have the following corollary.

Corollary 1.2. Let A ∈ Mn. The following are equivalent.

(a) A is not diagonally equivalent to a matrix with distinct eigenvalues.

(b) There is no diagonal matrix D such that AD has distinct eigenvalues.

(c) The matrix A is singular and all principal minors of size n − 1 are zero.

Proof. The implication (a)⇒ (b) is clear. Suppose condition (c) does not hold. Then eitherA is invertible

or A has an invertible principal submatrix of size n − 1. Assume the former case holds. There is an

invertible diagonal matrix D such that AD has distinct eigenvalues by Theorem 1.1. If the latter case

holds, we may assume without loss of generality that the leading principal submatrix A1 ∈ Mn−1

is invertible. By Theorem 1.1, there is an invertible diagonal matrix D1 ∈ Mn−1 such that A1D1 has

distinct (nonzero) eigenvalues. Let D = D1 ⊕ [0]. Then AD has distinct eigenvalues including zero as

an eigenvalue. Thus, (b) cannot hold. So, we have proved (a) ⇒ (b) ⇒ (c).

Recall that the characteristic polynomial of a matrix B ∈ Mn has the form det(xIn − B) = xn +
bn−1x

n−1+bn−2x
n−2+· · ·+b1x+b0,where (−1)jbn−j is the sumof j×jprincipalminors ofB. Suppose

condition (c) holds. Since the principal minors of D1AD2 are scalar multiples of the corresponding

principal minors of A, then D1AD2 has characteristic polynomial of the form det(xIn − D1AD2) =
xn + an−1x

n−1 + · · · + a2x
2 so that 0 is a root with multiplicity at least two. Thus, D1AD2 cannot have

n distinct eigenvalues. So, the implication (c) ⇒ (a) is proved. �
Note that the set of diagonal matrices is an n-dimensional subspace inMn. We can extend Theorem

1.1 to the following.

Corollary 1.3. Suppose V is a subspace of matrices in Mn.

(a) If there are invertible matrices R and S such that RVS = {RXS : X ∈ V} contains the subspace

of diagonal matrices, then for any invertible A ∈ Mn there is X ∈ V such that AX has distinct

eigenvalues.

(b) If there are invertible matrices R and S such that RXS has zero first row and zero last column for every

X ∈ V , then A = SR is invertible and AX is similar to RXS which cannot have distinct eigenvalues for

any X ∈ V .

Proof. (a) Suppose A is invertible. Then there is a diagonal matrix D such that S−1AR−1D has dis-

tinct eigenvalues by Theorem 1.1. Set X = R−1DS−1 ∈ V . Notice that AX has distinct eigenvalues as

S−1(AX)S = S−1(AR−1DS−1)S = (S−1AR−1)D.
Assertion (b) can be verified readily. �

2. Proof of Theorem 1.1

We will prove Theorem 1.1 by induction on n. The result is clear if A ∈ M1. Assume that the result

holds for all k × k invertible matrices with 1 ≤ k < n. Suppose A ∈ Mn is invertible. We consider two

cases.

Case 1. If all k × k principal minors of A are singular for k = 1, . . . , n − 1, then the characteristic

polynomial of A has the form xn − a0 and has n distinct roots. So, the result holds with D = In.



M.-D. Choi et al. / Linear Algebra and its Applications 436 (2012) 3773–3776 3775

Case 2. Suppose A has an invertible k × k principal minor. Without loss of generality, we may as-

sume that A =
⎡
⎣A11 A12

A21 A22

⎤
⎦ such that A11 ∈ Mk is invertible for some 1 ≤ k < n. Then the

Schur complement of A22 equals B = A22 − A21A
−1
11 A12 which is invertible; see [2, pp. 21–22].

By induction assumption, there are diagonal invertible D1 ∈ Mk and D2 ∈ Mn−k such that each

of A11D1 and BD2 has distinct nonzero eigenvalues, say, λ1, . . . , λk and λk+1, . . . , λn, respectively.

Thus, A11D1 and BD2 are diagonalizable and there are invertible S1 ∈ Mk and S2 ∈ Mn−k such

that S1A11D1S
−1
1 = �1 = diag (λ1, . . . , λk) and S2BD2S

−1
2 = �2 = diag (λk+1, . . . , λn). Let

Dr,s = rD1 ⊕ sD2. The proof is complete if one can find some suitable r and s so that ADr,s has

distinct eigenvalues. Notice that ADr,s has the same eigenvalues as

Ã =
⎡
⎣S1 0

0 sS2

⎤
⎦

⎡
⎣ Ik 0

−A21A
−1
11 In−k

⎤
⎦ ADr,s

⎡
⎣ Ik 0

A21A
−1
11 In−k

⎤
⎦

⎡
⎣S

−1
1 0

0 s−1S
−1
2

⎤
⎦

=
⎡
⎣r�1 + sS1A12D2A21A

−1
11 S

−1
1 S1A12D2S

−1
2

s2S2BD2A21A
−1
11 S

−1
1 s�2

⎤
⎦ .

Denote by D(a, d) the closed disk in C centered at a with radius d ≥ 0. Suppose the k × k matrix

S1A12D2A21A
−1
11 S

−1
1 has diagonal entries μ1, . . . , μk and let

d1 = k‖S1A12D2A21A
−1
11 S

−1
1 ‖, d2 = (n−k)‖S1A12D2S

−1
2 ‖, and d3 = k‖S2BD2A21A

−1
11 S

−1
1 ‖,

where ‖ · ‖ is the operator norm. By Geršgorin disk result (see [2, pp. 344–347]), the eigenvalues of Ã

must lie in the union of the n Geršgorin disks, which is a subset of the union of n disks

D(rλ1 + sμ1, sd1 + d2), . . . ,D(rλk + sμk, sd1 + d2), D(sλk+1, s
2d3), . . . ,D(sλn, s

2d3).

We can choose sufficiently large r > 0 and sufficiently small s > 0 so that these disks are disjoint,

and hence Ã has n disjoint Geršgorin disks. Then Ã has distinct eigenvalues. �

We thank Editor Zhan for sending us the two related Refs. [3,4]. In these papers, the author proved

following. Suppose A is an n× nmatrix and a1, . . . , an are complex numbers. Then there is a diagonal

matrix E such that A+ E has eigenvalues a1, . . . , an. Moreover, if all principal minors of A are nonzero,

then there is a diagonal matrix D such that AD has eigenvalues a1, . . . , an.
Note that the assumption on the principal minors of A is important in the second assertion. Obvi-

ously, if det(A) = 0, then one cannot find diagonal D such that AD has n nonzero eigenvalues. Even if

we remove this obvious obstacle and assume that A is invertible, one may not be able to find diagonal

D so that AD has prescribed eigenvalues. For example, if {E1,1, E1,2, . . . , En,n} is the standard basis for

Mn and A = E1,2 + · · · + En−1,n, then the eigenvalues of AD always have the form z, zw, . . . , zwn−1

for some z ∈ C, where w is the primitive nth root of unity.

It is interesting to determine the condition on A so that for any complex numbers a1, . . . , an, one
can find a diagonal D such that AD has a1, . . . , an as eigenvalues.
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