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ABSTRACT

The circulation of the Chesapeake effluent into
the Atlantic coastal waters was simulated with a steady
state model which described the flow pattern averaged
over several tidal cycles. Considering the surface
circulation only, the flow field was simulated by a
two dimensional jet flowing into a semi-infinite flow
field with an ambient velocity. The Navier-Stokes
equations were transformed to a coupled set consisting
of a dynamic vorticity equation and a stream function/
vorticity equation, and the coupled equations were non
dimensionalized. The non-dimensionalized equations
were written in finite difference form and solved
numerically for the appropriate boundary conditions.
In particular, the circulation patterns for the steady
state were developed for various computational para-
meters. These parameters were divided into two cate-
gories: one, the parameters that characterize the
flow; and two, the computational parameters that
determine the stability and efficiency of the model.
Two computational techniques were investigated, the
boundary value scheme and the explicit time dependent
scheme. The results were presented for the boundary
value scheme and the circulation patterns were
discussed.

vi
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I INTRODUCTION

Early studies of the Atlantic coastal currents have
emphasized the general circulation from Florida to Nan-
tucket, followed by studies of the currents of sections of
the Atlantic coast. One of the sections is the region from
Cape lienlopen to Cape Hatteras. A major component of the
surface circulation is the effluent of the Chesapeake Bay.
The circulation of Chesapeake Bay water into the Atlantic
Ocean influences the distribution and abundance of the
fisheries, the flushing rate of the Chesapeake Bay, and the
erosion and deposition of beach material of the Atlantic
coast.

Miller (1952) used drift bottles and reported the
formation of gyres in the coastal waters off Cape Charles
and off Cape Henry. Bumpus and Lazarier (1965) computed
surface currents from drift bottle recoveries in a study
of the Atlantic from Nantucket to Cape Hatteras. The range
of the speeds measured by Bumpus and Lazarier (1965) was
1l to 10 nautical miles per day and generally to the south
to soutihwest in direction.

Norcross and Stanley (l1967) proposed a general circul-
ation pattern for each month from drift bottle recovery data.
The area covered seven zones paralleling the coast, with the
velocity inferred from the frequency and location of drift

bottles recovered. They noted a strong surface wind depen-



dence in the summer for the surface currents, with a weak
reversal of the currents in June, July and August.

Bumpus, Lynde and Shaw (1973) published an atlas of
oceanographic data of the Atlantic Coastal Zone from Nan-
tucket to Cape Hatteras, including a summary of surface
current measurements. For each month, the average surface
velocities ranged from 1 to 15 nautical miles per day, to
the south and southwest, with an average speed of 10
nautical miles per day. The currents measured at the
fixed locations of the lightships at the entrance of
Chesapeake Bay and at Diamond Shoals agree with both the
speed and direction computed by drift bottle methods.

Bue (1970) computed the average flux over a tidal
cycle through the mouth of the Chesapeake Bay from the
fresh water runoff in the entire drainage basin. He
determined the flux to be 75,000 c.f.s.

Thus far the surface circulation has been measured
on a scale that does not illustrate the detailed circu-
lation patterns. The interest in the detailed circulation
has motivated a study of the dynamics of the circulation.
This study investigated the steady state circulation of
the Atlantic Coastal region contiguous to the mouth of
the Chesapeake Bay. Particular attention was paid to
the conditions of the existence or absence of the recir-
culating gyres, that were speculated by the previous
investigators. The region was simulated as a two

dimensional jet entering a flow field with an ambient



velocity. The main features of the circulation were
determined by the ambient velocity of the oceanic drift
and the velocity of the Chesapeake effluent through the
Bay mouth. For the idealized jet the two dimensional.
Navier-Stokes equations govern the surface description
when neglecting all variation with depth. The Navier-
Stokes equations were transformed to a coupled set
consisting of a dynamic vorticity equation and a stream
function/vorticity equation, and the coupled equations
were non diﬁensionalized. The non-dimensiocnalized
equations were written in finite difference form and
solved numerically for the appropriate boundary conditions.

Figure 1 defines the limits of the computational region.
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II EQUATIONS

The dynamic equations for incompressible flow include
the frictional forces, the inertial terms, and the affect of
the rotation of the earth. The two dimensional form is given

by the two eqguations:

du du 3u 1l 3p 34u 34u
— + U — + V — = 2QVsing = = — — + v + - (1)
at ax oy p  9xX ax2  3y?| .

and
Vv v v 1 93p 32v a2y
_— + U — + Vv.— + 2Qusing = - — — + V|[— + — (2)
ot ax dy p 3y ax2  ay2?],

where u is the velocity in the x direction (east-west), v the
velocity in the y direction (north-south), t the time, p the
density, p the pressure, Q the angular velocity of the earth,
e the latitude, and v the kinematic viscosity, or eddy vis-—
cosity in the case of turkulent flow.
The continuity equation for incompressible flow is
su av
—_— 4 — =0 (3)
X Yy
Because eguation (3) holds everywhere in the flow field, the
velocity components can be written in terms of a stream func-

tion such that

u = — (4a)



3y
v o= - — (4b)

9x
The asymmetry of the flow determines the local rate of
rotation and this local rotation is defined as the local vor-

ticity, as

AV ou
o= o o (5)
9xX Ay

or using equations (4a) and (4b),

32y 32y
w = - - (6)
ax?2 3y 2

To simplify the notation, let 2Qsine = £ and note that f is
a function of y only.

To eliminate the pressure term, take the partial deri-
vative of y for equation (1), the partial derivative of x for
eguation (2), and subtract the first equation from the second.
Noting that the operations of differentiation are interchange-
able and rewriting the equation, the two dynamic equations

reduce to the single equation

dw dw dw af 32w 32w
— 4+ U— + vV — = ~Vv— + v |[— F — (7)
at ax 5y dy ax? ay?

; . N . . df ; . .
where w is the vorticity. The term v— can be approximated by
ay
the term gv where B, beta plane approximation, equals the
quantity 2%€9S® yhere K is the radius of the earth. The dyn-
R



amic equation becomes

ow ow dw 320 32w

— + U -—+ v — = -8V + v + (8)

3t ax 3y ax2  av2?y ,
or

dw  dY dw Y dw 3y 320 324

—_—F —— - — — =8 — + Vv |— + (9)

3t 3y 89X  3X dy X ax2  ay?

To insure generality, the equations are non-dimension-

alized.

The scaling factors are L , the width of the mouth of
o
the Chesapeake bay and VO, the ambient velocity of the Atlan-
tic Ccean. All guantities can pe non-dimensicnalized through

these scales as following:

t
t* = - ve = V/VO
LYo
VT = W/LV
x* = x/LO .
BY = —
y® = y/L 2
o Vo/Lg
u® = u/v 1/Re = v/L V

oo

Substituting these nondimensionalized quantities into

equation (9) yields,

duw” Ay’ dw” 3Y” dw” PR 1 32w~ 32u-
+ - » = 87 am— + — + (10)
at” 3y~ 8x”  ax” 3y~ 3x~ Re |ax"2  ay~?

and substituting into equation (6) yields



azw.a 82’\")'
w? = - - - (11)
Ix-?2 ay ~ 2

A1l succeeding equations will be derived from these non-
cdimensional forms and the primes will be dropped for conven-
ience. The finite difference form of equations (1C) and (11)
is defined for a grid with constant spacing. A typical sec-
tion is given in Figure 2.

. For the steacy state solution, the finite difference
form of eguation (10) is

v (i, j+1) - ¢(i,3-1) w(i+l,3) - w(i-1,3)

) 2h 2h
+-¢(i+1,j) - vi-1,3) ) (i, 3+1) - wii,j=1)
2h . 2h
fv(i+l,3) - v(i-1,3)
= B +

2h

1 fw(i+l,3) + w(i=1,3) + w(i,j-1) + w(i,j+l) - 4w(i,{ﬁ

Re h2 J (12)

For equation (11) the form is

Y (it+l,3)+y (i-1,3)+v(1i,3+1)+ULi,]J-1) -4y (1i,3)

w (1i,3) = -
h? (13)
bguation (12) is regrouped as
4 E ll)(l,3+1) - ‘i’(lr]-l)
— w(i,j) =[— + * w(i+l, )
Re \ﬁe 4
(1 yii,5+1) - (i, 3-1)
+] — - w(i=1,73)
Mﬁe 4 °
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‘P(i+llj) - Ii)(i—l,j)] .

+|— - w(i,j+1)
tge 4 J ’
r . ; . .
1 p(i+1l,3) - y(i-1,3)
+|— + T w(i,j-1)
Re 4
\_
p(i+l,3) - ¢(i-1,3)
+ Bh

2 (14)

Thhe equation (13) is regrouped as

P (i+1l, ) +yp (i-1,3)+v (i,3+1)+y(i,3-1)+h23w (i, )
lt"(ilj) =

4 (15)

These are the two eguations to compute values for the vor-
ticity, equation (14), and the stream function, eguation (15),
in the interior. The values on the boundaries must be treated
separately, incorporating the boundary conditions with the
particular geometry.

For the explicit time dependent scheme the term QW i1l
ot

be included in the dynamic equation and the finite differ-
ence form is w_(i,3) - & (i,3)- Transforming to the

27

finite difference form for central time differences, the egua-
tion becomes, for t the non dimensional time step,

'Nn(llj)‘ - wo(llj)

21
-
P13+ = (1,371 ey (i41,3) - o (i-1,3)
2h . zh J

.
U)(l"'lrj) - ‘P(i‘llj); En(i,j‘t”'l) = wp(ilj‘l;}

2h L 2h J

+

11



12

(o (i+1,5) - v (i-1,9)
.

2h
. i—{’mp(iﬂ,j) + o (i-1,3) + w (1,3+41)
Re L h2
wp(i,jfl) - 2wn(i,j) - 2wo(i.j)
h? (16)

+

where g refers to vorticity for the previous time step, Wy

refers to vorticity for the present time step and Wy refers
to vorticity for the new time step, with all other terms
having the same definition as in the boundary value scheme.

The equation (16) is rewritten in the computational

form of the equation as

2 1 1 2
v | wgli,g) =|— - 6 (i+1,3)
Reh? 21 n 21 Reh? o ’
. )
1 lﬂ(l,]‘*‘l) - W(lrj-l)
Re n
ﬁ o (i,5+1) - w(i,j-1))
. - - e (i-1,75)
g{ehz 4n2 y P
1 v (i+l,5) - w(i-l,jﬂ |
+ -— L] (i'j+l)
Ren? 4n2 J P
1 plitl,§) - w(i-l,j)] |
+ + | cg(1,3-1)
@e‘n2 4h?
p(i+l,3) - w(i-l,j)]'
+ B8
2h J (17)

The stream function that corresponds to this format is



given as

v(i;3) =

w(i+l.j)+¢(i-l,j)+¢(i,j+l)+w(i.j-l)+h2mp(i.j)

4

(18)

13



III COFIPUTATIOQN TLCHNIQUE

Fromm (1963) and Fromm and Harlow (196€3) described
a method to solve the central time difference ecuations (17)
and (18) explicitly for a two-dimensional grid with con-
stant spacing. Using this technique as a method for solving the
equations, the problem, defined as a jet flowing into a flow field
with ambient wvelocity, can be scolved numerically. The geom-
etry of this problem is given in Figure 3 for the computation
region CDEF, with the jet entering through the opening AB.
The constant grid spacing h 1s defined as the distance AB
divided by the number of intervals ketween AB. The distance
from C to D and from F to E is Nh and the distance from C to
F and from D to E is Mh where N is the number of intervals in
the x direction to the right boundary and M is the number of
intervals from the top to the bottom boundary. The boundaries
from C to A and from B to F correspond to the coast lines to
the north and south of the bay mouth.

To check solutions computed with the explicit time scheme,
steady state sclutions are cormputed and compared to results
from computed solutions considering the problem as a boundary
value problem. The solutions of boundary value problems can
e computed from equations (1l4) and (15) by applying the boun-
dary conditions and computing the solutions until they con-
verge.

Computing the steady-state solutions by boundary value

problems has several advantages: one, by considering the

14
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problem with one less variabkle, the solutions are less com-
plicated; two, by examining the computational parameters, the
optimum value for eacii one can be determined for the time
dependaent equation; and three, the efficiency and speed can
be estimated by the boundary-value scheme.

The computation region given in Figure 3 holds for a
two-dimensional jet flowing into a semi~-infinite flow field
with an ambient velocity. The boundary value problem for
this region treats the flow as uniform along pg, with a pre-
scribed velocity distribution along CD and with a prescribed
velocity distribution in the jet AE. For the boundary CA and
BF, the no slip velocity condition holas, and along FE, there
is no advection in the x direction. The minimum domain to
satisfy the boundary conditions and the grid spacing h define
the number of grid points for the computation region.

In this scheme the eguations (14) and (l5) are solved
until the values y and w converge. To begin the calculation,
both variables ¢ and w are assigned initial values at each
grid point corresponding to a flow field with a parabolic
layer from the wall and uniform flow extending from the boun-
dary layer to the far right hand boundary.

The technigue is outlined as follows:

() Compute the values for the vorticity at the wall.

(B) Compute the values for the vorticity in the int-

erior using equation (14).
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(C) Solve the stream function by iterating equation
(15) to convergence.
(D) Compute the values for the vorticity at the wall.
(E) Compare the new wall vorticities with the previous
values.
(F) If the values do not converge repeat steps B through
E.
(G) Plot flow field if the values converge.
The flow diagram for the computer program is given in Appen-
dix A.
To solve for the vorticity at the wall, one must apply

the boundary conditions; i.e. = 0 and 3y = 0. Because

3y
ax Yy
equation (14) does not apply at the boundary, a finite diff-
erence form must be found for the vorticity at the wall.

The vorticity can be expanded in a Taylor series from the
wall to the vortiéity in the interior. Macagno and Hung
(1970) described a particular expansion, including second
order terms in the Vorticity, with the following equation:

3 1 . h2
w(i,j) = — (i, 3) - v(2,9)] - —w (2,3) + — V2u
h? 2 8

1,3 (19)

where V2w is evaluated at the wall. The operator V2w

1,3
for the steady flow.

Therefore, the vorticity at the wall is computed by the
equation

3 1
w(l,j) = --&(l:j) - w(z.j):,-' —w (2,3) (20)
h? 2
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| where the operator is evaluated from

the top of the jet to the bottom of the jet for a prescribed

function of Y. The vorticity along the top is given as

32

<

w(i,l) = - for i varying from 1 to Lk where the op-

N

Ix
i,1

erator is evaluated at the top, where the stream function ¢
has a boundary layer with thickness Lb from the boundary. The
flow is assumed to be uniform at the right boundary and the
vorticity for uniform flow is zero. The bottom boundary is
assunmed to have no advection in the x direction, and expressed
as a linear combination of values in the y direction near the
‘bottom boundary.

Hlacagno and Hung (1970) described a method for precdict-
ing the values at the bottom boundary from the interior values.
The vorticity values and the stream function values -are given
by

w(i,M) = w(i,M-4) - 2w(i,M-3) + 2w(i,}-1) (21)
and

Y (i,M-4) - 2¢(i,H=-3) + 2y (i,M-1) (22)

v (irM)
where the index i ccvers the entire interval from F to E.
At the beginning of each computation the boundary
values are computed first and the interior values next. The
vorticity is computed first, then the stream function is com-
puted. The values at the boundary for the stream function are

prescribed except at the kottom boundary which is given by



equation (22).

The wvorticity at the boundary is computed by equation
(20) along the wall and equation (21) at the bottom and
prescribing in the jet, the top and the far right boundary.

For the interior region equation (l4) computes the
vorticity values for that particular boundary value of the
vorticity and the previous values of the stream function.
This constitutes the next iteration for the vorticity.

The stream function is computed by iterating equation
(15) over the interior and applying eqguation (22) at the
bottom. To aié convergence, the following eguation computes

the stream function with over relaxation parameter £,
ll)(lpj) = wo(lrj) + z@T(irj) - "bo(l'ja (23)

where ¥,(1,]j) is the temporary value, computed by equation
(15) and bg is the stream function value from the previous
iteration. The stream function value Vo is updated to the
over-relaxed value vy, i.e. wo(i,j) = y{i,j) and equation (15)
is used to compute wT(i,j)- This process is repeated until
the stream function converges for the given boundary values
of the stream function and the vorticity wvalues at the inter-
ior. The test for convergence e; is an error limit of the
normalized difference of the stream function values between
successive iterations, i.e. ygp - Yo is less than el.

Yo

19
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This completes the iteration over both variables, y and
w. To begin the next iteration for the vorticity, first com-
pute a new vorticity at the wall from equation (20). Checking
the convergence of the method, the error limit 62 is compared
to the normalized difference between the vorticity values at
the boundary for successive iterations. When the values of
the vorticity at the boundary have converged, the flow field
features are characterized by the plots of the stream func-
tion. The steady-state solutions will form a basis for eval-
uating the time dependent solution.

The computational technique for the time dependent scheme
is similar to the boundary value scheme. The computation
region for the time dependent scheme is given by Figure 3.

The flow is uniform at the right hand boundary, prescribed
along the top and in the jet, and the boundary conditions at

the wall are 3y = 0 and 3y = 0. The initial values for the
Ay 9xX

stream function and the vorticity are determined by the boun-
dary layer thickness from the wall. The flow diagram for the
time dependent program is given in Appendix B.

For the time dependent case, the initial values are ass-
igned to each variable and the jet applied impulsively, as in
the boundary value technique. From this point, the first
time step is computed for the vorticity by equation (17) and
for the stream function by equation (18). Again, the conver-
gence of the method is tested for each time step until the

steady state solution is achieved. The computation



begins with the values at the boundary positions, and then
the interior is computed using egquation (17) for the vor-
ticity and equation (18) for the stream function.

For the time depencent scheme, the vorticity at the
wall is solved using the method outlined by Macagno and Hung

(1969) where the operator, 724 _ evaluated at the boun-
(i,3) ’

dary, is not necessarily zero. because this operator is
not zero, the vorticity wvalues at the wall must be esti-
mated, then iterated to convergence. The followinag finite

difference equation estimates the vorticity at the wall

3 1
w(1,3) = ;@u.j) - w-(z,jﬂ - < ag(2,3) (24)

The following equation is iterated to convergence

3 1 |
wy(1,3) = —7(%(1,j) - w(z,ja - — wy(2,3)
h4 z
l .
+ (o (1,341 40 (1,3-1) =50, (2,3) +4u(3,3) ~w _7(4,3-9 (25)
3 N H o b I

where W, is the vorticity at the next time step. The test
for convercence of the vorticity at the wall is 53.

After the boundary values are determined for the vor-
ticity for the new time step, the interior values are deter-
mined by computing equation (17). The vorticity at the

kottom boundary is given by

21
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o (1) = v (1,1-4) = 2w (i,H-3) + 20 (i,4-1) . (26)

Now .the stream function is computed using equation (18)
and the boundary values of the stream function. This compu-
tation is similar to the boundary value scheme, with the vor-
ticity value at the new time step used in equation (18). The
stream function at the bottom boundary is given by equation
(22) and the interior values are over relaxed by equation (23).
The stream function converges when the normalized difference
is less than_el.

The convergence of the method is a test of the error
tolerance sz with the normalized difference between the vor-
ticities -at the boundary for the present time step and the
new time step. The procedure repeats for the vorticity and
stream function until the vorticity converges. The conver-
gent solutions will be plotted and compared to the boundary

value scheme.



Iv RESULTS

Preliminary runs establish the size of the computation
region given in Figure 3. To satisfy the boundary conditions
of zero velocity at the wall, a parabolic boundary layer is
assumed initially along the wall. The first velocity profile
of the jet is parabolic. The grid spacing h, determined by
the number of intervals to describe the width of the jet, is
a constant. The values el and 52 are chosen for a particular
error tolerance for the solutions.

The computation time depends on the total number of
grid points and the number of iterations to achieve conver-
gence for the stream function at each step. To minimize
the computation time, the domain is minimized and the con-
vergence criteria is chosen to minimize both the error and
the computation time. The domain was determined by the poten-
tial flow solution of a jet with a uniform velocity entering
a flow field with a uniform cross stream. The distance in
the x-direction was 10.0 from the wall, and the distance in
the y-direction was 9.5 above and below the axis of the jet.
The jet velocity u, was 1.0 and the cross stream velocity
Vo Was -1.0. The minimum domain was the minimum distance in
each direction that satisfied the boundary conditions for
the problem. For the minimum domain the distance in the x-
direction was 4.0 and the distance in the y-direction was 6.5
above and below the axis of the jet. Figure 4 outlines the
potential flow for the minimum domain.

After limits are established for the computation region,

23
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Figure 4. Stream function graph of the potential flow solution.
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typical values for the Chesapeake Bay are assigned to the
parameters, and the prescribed flow field at the top boundary
and at the jet are chosen. The parabolic velocity profile

of the top boundary depends on the boundary layer thickness,
Lb. The parabolic velocity profile with center velocity u”
is weighted so that the total discharge of the jet approx-
imates the flux through the cross section of the Chesapeake
Lay mouth determined by Bue (1970). Table I summarizes the
non—-dimensionalized parameters characteristic of the Chesa-
peake Bay region.

The boundary-value scheme does not converge for typical
values of the region. The vorticity values at the wall near
the jet oscillate during the computation from one iteration
.of the vorticity to the next iteration. To reduce the gra-
dient of the vorticity along the wall and in the jet, a
fourth order velocity profile for the jet is used in the com-
putation. The boundary scheme for this jet velocity profile
does not converge eithier, because the values of the vorticity
at the wall do not converge.

he next step is to define the range of each parameter
where the boundary value technique will be stable and converge
to a solution. The problem is reduced by considering a non
rotating coordinate system and finding the range of the other
parameters for a non rotating coordinate system, i.e. B = 0.
The dynamic parameters are assigned minimal values, but the
computational parameters remain the same. The computational

paraneters are the size of the computation region, the location
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TABLE 1
The values of the non—dimgnsional parameters for the Chesapeake
a
Non-dimensionalized !
parameter Value Reference
u” 0.05 Bue (1970)
v -1.0 Bumpus et al (1973)
B~ 3 x 10783
Re 300 Bowden (1962)
Lb .5
h .1
el,ez 1074
L 1.6
T~ 1.0*% Harlow and Amsden

(1971)

* for time dependent scheme only
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of the jet akis, the convergence criteria, El and e_, the

Z
grid size h, and the over relaxation parameter %. The dyna-
mic parameters are the center velocity of the jet uo, the
velocity profile of the jet, the boundary layer width Lk, and
the viscosity related by the Reynolds numbker Re. For all
cases, thne ambient velocity of the computation region is VO
which is equal to -1.C, the scaling factor in the velocity
domain in the -y direction. Table II summarizes the range of
values for a non rotating coordinate system and lists the fig-
ure nunber for the plot of the stream function corresponding
to those values for each parameter.

From Figures 5 through 8 the stream lines define the
velocity and the features of the circulation of several cases
of the aynamic parameters, To illustrate the asyvmmetry of
the flow field and advection of the vorticity, Figure 9 is the
vorticity regime with the same dynamic parameters as those in
Figure 5.

The large, negative vorticity values at tihie bottom of
thie jet at the wall mark a strong shear indicated by the
stream lines in Figure 5 and by the vorticity contours con-
tained in Figure 9.

In Figure 10 the vorticity contours. correspond to the
flow field in Figure 8. The solutions would not converge for
Reynolds number greater than 50 for a fourth order jet with a
center velocity magnitude 0.05. For smaller Reynolds number
the method cenverged for jets with magnitude 0.5 and 1.0. For

larger Reynolds numbers, the method does not converge for any



Table II. lion dimensional computational parameters

Figure number 5
u” 0.5
v -1.0
B~ 0
Re 1.0
Lb 6.5
h 0.1
€ 1074
1
£ 10—2
2
L l.6
Ccmputation
size * 4.0x%13.0

* jet centered on left wall

3.8
0.1
107
10

1.6

4.0%13.0

7 8
0.05 0.05
~1.0 ~1.0
0 0
20.0 50.0
3.8 3.8
0.1 0.1
1674 1074
1072 1072
1.6 1.6

4.0313.0 4.0X13.0

28
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Figure 5. Stream lines from boundary value scheme.
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value of the jet center velocity.

In the time dependent technique the values in Table I
are run for a fourth order jet. These do not converge; the
vorticity at the wall near the jet oscillates. Repeating
the values of Table II, all cases do not converge. The
time step for the time dependent scheme is 0.02 for stability
requirements.

For koth time dependent scheme and the boundary value
scheme, the methods do not converge for a rotating coordinate
system; i.e. B not equal to zero.

For the cases of the time dependent scheme that do not
converge, tie vorticity at the wall near the jet does not
converge to a solution, because these positions have large

oscillations in the vorticity values.



v CONCLUSION

The finite difference form of the lNavier-Stokes equa-
tions can be solved numerically for a two dimensional jet
entering a flow field with an ambient velocity. The steady
state solutions are computed by a boundary value scheme
applying equation (14) and (15) with the appropriate boun-
dary conaitions. The boundary value method converges for
a range of jet velocity values on the order of those assumed
for the steady state at the mouth of the Chesapealke Bay.

The boundary value scheme does not converge for a Reynolds
number larger than 50, which is smaller than tvpical values=
for the coastal sea around the Chesapeake Bay mouth.

The time dependent scheme does not converge for any
value of the parameters. The non-converging cases have
large oscillations in the values of the vorticity on the wall
near the jet. Reducing the gradient of the vorticity in
the jet does not reduce these oscillations.

The critical part of the calculation is the determination
of the vorticity at the boundary. For the boundary wvalue
scheme and the explicit time dependent schenie, the bouncdary
vorticity does not depend on the vorticity and stream func-
tion values in the interior near the boundary at the current
iteration, but uses the values from the previous iteration
as estimates for the current iteration. This severely

limits the explicit time scheme for stability requirements.
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The stream lines in Figures 5, 6, 7 and 8 do not
form closed loops that would indicate the existence of a
gyre. It may be concluded by this study that a gyre is
not a stable feature of the circulation averaged over
several tidal cycles, if the gyre does exist. The gyre
might be generated and dissipated in response to the
tidal current fluctuation and a model that has an intra-
tidal time scale may be more appropriate for investigating
the existence of absence of a gyre.

In addition to changing the time scales, the method
can be improved by considering the stresses at the sur-
face and the bottom. A vertically integrated model would
include the stresses at the surface and bottom in a two
dimensional form. To improve the stability of the compu-
tation, a more stable scheme is to treat values at the
boundary and in the interior at the same time step, i.e.,
an implicit time séheme-

By neglecting these stresses, the application of the
solutions of a two dimensional model to the coastal sea
around the Chesapeake Bay mouth would be difficult to

relate drift data.



Appendix A.
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Flow Diagrar and Program Listing of Eoundary
Value Scheme. '
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Read all computation
.parameters

Initialize the variables
at each grid point for a
boundary layer flow

Rpply the jet impulsively
and solve for the stream
function iterating egua-
tions 15, 22 and 23 to
convergence

Compute the vorticity at
the wall with equation (20)

Compute the vorticity in
the interior with equa-
tion (14)

Iterate the stream func-
tion with Egquation 15, 22
and 23 to convergence

Compute the vorticity at
the wall with Equation (20)

Has the vorticity at the
wall converged?

Print the final wvalues
of the variables
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Appendix B.

Flow Diagram of the Time Dependent Scheme.
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Read all computation
parameters

Initialize the variables
at each grid point for a
boundarv layer flow

Apply the jet impulsively
and solve for the stream
function iterating equa-
tions 18, 22, and 23 to
convergence

Iterate the vorticity at
the wall with Egquations
24 and 25 to convergence

Compute the vorticity in
the interior with equa-
tion (17)

Iterate the stream func-
tion with equations 18,
22 and 23 to convergence

Iterate the vorticity at
the wall with equations
24 and 25 to convergence

Ikas the method converged?

Print the final wvalues
of the wvariables
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