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range is completely described. In the definite case, some observa-

tions regarding its boundary are also made.
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1. Introduction

Let A be a bounded linear operator acting on a Hilbert space H endowed with the scalar product

〈., .〉. The classical numerical range is the subset of the complex plane C defined by

W(A) = {〈Af , f 〉/〈f , f 〉 : f ∈ H, f �= 0}.
This concept is a useful tool in the study of matrices and operators and has been extensively inves-

tigated, see e.g. [1,2]. In particular, it is known that W(A) is a convex set (the Toeplitz–Hausdorff

theorem) whose closure contains the spectrum σ(A) of A. So, in particular

< Research of the first author, as well as of the second author during his visits to the University of Coimbra, was supported by

Project PTDC/MAT/69613/2006.∗ Corresponding author.

E-mail addresses: bebiano@mat.uc.pt (N. Bebiano), ilya@math.wm.edu, imspitkovsky@gmail.com (I.M. Spitkovsky).

0024-3795/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2011.06.019

http://dx.doi.org/10.1016/j.laa.2011.06.019
http://www.sciencedirect.com/science/journal/00243795
www.elsevier.com/locate/laa
http://dx.doi.org/10.1016/j.laa.2011.06.019


1722 N. Bebiano, I.M. Spitkovsky / Linear Algebra and its Applications 436 (2012) 1721–1726

closW(A) ⊃ conv σ(A),

where of course clos and conv stand for the operations of taking closure and convex hull, respectively.

There are several classes of operators A for which a complete description of W(A) is known. We

mention here the case of low (2- or 3-) dimensional underlying spaceH on the one side, and of normal

and quadratic operators on infinite-dimensional H, on the other. However, in most of the cases there

is not much information beyond the general properties mentioned above.

In this paper we are concerned with the numerical ranges of Toeplitz operators. Let us introduce the

pertinent notation.

For any vector space X below, Xn (Xn×n) will stand for the space of n-columns (respectively, n × n

matrices) with entries in X . The role of X will be played, in particular, by the Lebesgue spaces L2 and

L∞ on the unit circle T and their subspaces (the Hardy spaces) H2 and H∞ consisting of functions

analytically extendable into the unit disk D. In addition, L2n will be supplied with the standard Hilbert

space structure, and P will stand for the Riesz projection, that is, the orthogonal projection of L2n onto

H2
n , acting entry-wise.

With any a ∈ L∞n×n there is associated themultiplication operator Ma acting on L2n according to

(Maf )(t) = a(t)f (t) a.e.

and the Toeplitz operator Ta defined on H2
n by the formula

Ta = PMaP.

The (matrix) function a is called the symbol of Ta.

For n = 1, the numerical range of Ta was characterized by Klein in [3]. Namely, W(Ta) is the

relative interior of conv σ(Ta). By Brown–Halmos theorem the latter set coincides with convR(a),
where R(a) stands for the essential range of a. (Recall that the latter by definition consists of z such

that the preimage of any neighborhood of z under a has positive measure.) In this form, Klein’s result

to some extent can be carried over to the case n > 1. This is discussed in Section 2. In Section 3 we

obtain a parallel result for the indefinite numerical range.

2. The definite case

A moment’s thought reveals that the numerical ranges of Toeplitz operators with n > 1 do not

have to be (relatively) open. Consider for example a 2×2 diagonal matrix function awith the diagonal

entries a1, a2 such thatR(a1) is a triple of non-collinear points z1, z2, z3 whileR(a2) = {z1, z2}. Since
Ta = Ta1 ⊕ Ta2 ,

W(Ta) = conv{W(Ta1),W(Ta2)}
is the triangle with the vertices z1, z2, z3 with the side (z1, z2) included and the other two excluded.

Note that in this example R(a) = R(a1), so that W(Ta) cannot be characterized completely only in

terms of R(a). However, its closure still can.

Theorem 1. The closures of the sets W(Ta) and W(Ma) are the same, and coincide with

conv {W(A) : A ∈ R(a)}. (1)

Proof. To show that

closW(Ta) = closW(Ma), (2)

one might proceed as follows. Since the sets in question are convex, it suffices to show that they have

the same supporting lines in every direction. Multiplying the symbol a by eiθ , we may without loss of

generality consider vertical supporting lines only, lying to the right of the respective sets. Their location

corresponds to the rightmost point of the spectrum of Re Ta = TRe a and ReMa = MRe a, respectively.
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Thus, it suffices to show that for a Hermitian symbol h the rightmost point of the spectrum of Th and

Mh is the same. Shifting h by a positive multiple of the identity, we may without loss of generality

suppose that it is positive definite. But then the rightmost point of the spectrum is indeed the same

and equals ess sup ‖h(t)‖.
It remains to compare the closure of sayW(Ma)with the set (1). Any point ofW(Ma), by definition,

is of the form∫
T

x∗(t)a(t)x(t) dt, (3)

where x is a unit vector in L2n . Approximating x and a by vector- (respectively, matrix-) functions with

finitely many values and keeping the values Aj of the approximation of a in the essential range of a, we

see that this approximation is a convex combination of expressions of the form x∗
j Ajxj , with xj being

unit vectors in Cn. Since

x∗
j Ajxj ∈ W(Aj),

their convex combinations lie in (1). Considering that convex hulls of compact sets in R
n are compact,

the integral (3) itself lies there. Thus,

closW(M(a)) ⊆ conv {W(A) : A ∈ R(a)} .

To prove the converse inclusion, we just need to show that for any A ∈ R(a) the set W(A) lies in

the closure of W(Ma), since the latter is convex. To this end, take z = x∗Ax (where x is an arbitrary

constant unit vector in Cn) and let

xs(t) =
{
x if ‖A − a(t)‖ < s,

0 otherwise.

Normalizing this vector-function in L2n (which we can do, because it differs from zero on a set of

positive measure for any s > 0, due to the definition of the essential range) and letting s → 0 we see

that the corresponding points in W(Ma) converge to z. �
Note that the first part of the proof of Theorem 1 among other things makes use of the fact that the

norms of Th and Mh are the same. Mimicking the proof of this fact, instead of simply using it, yields

the following.

Alternative proof of (2). Since Ta is a compression ofMa, the inclusionW(Ta) ⊆ W(Ma) holds. Of course,
this implies one of the inclusions in (2).

To prove the reverse inclusion, consider z ∈ W(Ma). Then z = 〈af , f 〉/〈f , f 〉 for some f ∈ L2n .

Approximating f by trigonometric polynomials g, we see that in any neighborhood of z there are

points of the form 〈ag, g〉/〈g, g〉. In its turn, g(z) = z−kh(z) for some k ∈ N and h ∈ Hn
2 . Since

multiplication by z is a unitary operator on L2n commuting withMa,

〈ag, g〉
〈g, g〉 = 〈ah, h〉

〈h, h〉 = 〈aPh, Ph〉
〈h, h〉 = 〈PaPh, h〉

〈h, h〉 ∈ W(Ta).

Consequently,W(Ma) ⊆ closW(Ta).
We chose to present the alternative proof here because it is more universal, and therefore useful in

the indefinite setting of Section 3.

To illustrate Theorem 1, consider

a =
⎡
⎣0 2φ

0 0

⎤
⎦ , (4)

where φ ∈ L∞ is such thatR(φ) ⊂ T.
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Theorem 2. Let a be given by (4). ThenW(Ta) is either the closure of the unit diskD orD itself, depending

on whether or not φ is the ratio of two inner functions.

As it was observed in [4], due to the Bourgain’s result [5] all unimodular functions on T are repre-

sentable as such ratios, up to the so called “trivial” factors. Nevertheless, both possibilities

occur.

Proof. Observe first of all that W(a(t)) = closD a.e. on T, so that the set (1) is the closed unit disk.

By Theorem 1 then

closW(Ta) = closD.

Being convex, the setW(Ta)must therefore containD. Moreover, this set is rotationally invariant, since

for any ω ∈ T

Tωa = ωTa = U∗TaU,

where U is the unitary operator of multiplication by a constant matrix⎡
⎣ω 0

0 1

⎤
⎦ .

Consequently, either W(Ta) = D or W(Ta) = closD, depending on whether or not 1 ∈ W(Ta). But
the latter inclusion holds if and only if∫

T

φ(t)ξ1(t)ξ2(t) dt = 1/2

for some ξ1, ξ2 ∈ H2 such that∫
T

(
|ξ1(t)|2 + |ξ2(t)|2

)
dt = 1.

This is only possible if |ξ1| = |ξ2| are constant a.e. on T (that is, ξ1 and ξ2 are inner functions, up to

constant multiples), while φ therefore is the ratio of these inner functions. �

3. The indefinite case

Recall that a self-adjoint involution J : H → H generates an indefinite inner product onH according

to the rule [f , g] := 〈Jf , g〉. A vector f ∈ H is called positive (negative, neutral) if [f , f ] > 0 (respectively,

< 0, = 0).

The indefinite numerical range of an operator A : H → H is then defined as

WJ(A) = {[Af , f ]/[f , f ] : f ∈ H, [f , f ] �= 0},
see e.g. [6], where this concept was first introduced, and [7]. For convenience we also consider

W
J
+(A) = {[Af , f ] / [f , f ] : f is positive},

W
J
−(A) = {[Af , f ] / [f , f ] : f is negative}.

Clearly,

WJ(A) = W
J
+(A) ∪ W

J
−(A). (5)

Recall that a set X ⊆ C is pseudo-convex if for any pair of distinct points x, y ∈ X either the line

segment [x, y] or the union of the rays {tx + (1 − t)y : t � 0 or t � 1} is contained in X.
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Theorem 3 [6]. The sets W
J
±(T) are convex while WJ(T) is pseudo-convex.

As in Section 2, we consider H = L2n . We also restrict ourselves to the case [f , g] := 〈Jf , g〉 =∫
T g∗(t)Jf (t) dt, where J is a self adjoint involution on Cn.

In the notation above,wedonot distinguish between J as an element ofCn×n and themultiplication

operator MJ .

Theorem 4. The closures of the sets W
J
+(Ta) and W

J
+(Ma) are the same, and coincide with the closure of

Z+ + K. Here Z+ is the union of all the rays of the lines passing through z± with z± ∈ conv{WJ
±(A) : A ∈

R(a)} having the endpoints z+ and not containing the respective z−, while K is the cone generated by

{[Ax, x] : A ∈ R(a), [x, x] = 0}.
Proof. The first part of the statement can be justified along the same lines as the alternative proof of

(2) described in Section 2.

As for the second part, consider any z ∈ W
J
+(Ma). By definition, z = [Maf , f ] / [f , f ] for some

positive f . Denote by T± and T0 the subsets of T on which the vector f (t) is positive/negative or

neutral, respectively (naturally, these subsets are defined modulo measure zero), and let

s± = ±
∫
T±

[f (t), f (t)] dt.

Then s+ > s− � 0, and

z =
(

s+
s+ − s−

z+ − s−
s+ − s−

z−
)

+ 1

s+ − s−
z0, (6)

where

z+ = 1

s+

∫
T+

[a(t)f (t), f (t)] dt, (7)

z− = − 1

s−

∫
T−

[a(t)f (t), f (t)] dt (8)

if s− > 0 and z− = 0 otherwise, while

z0 =
∫
T0

[a(t)f (t), f (t)] dt.

Approximating a and f as in the respective part of the proof of Theorem 1, we conclude that z± given

by (7), (8) belong to the closures of conv{WJ
±(A) : A ∈ R(a)}. Consequently, the expression in the

parentheses in (6) is in the closure of Z+, while the last summand in (6) obviously lies in the closure

of K . This proves that W
J
+(Ma) ⊆ clos(Z+ + K).

To proceed in reverse, note that points in Z+ + K have the form (6), in which s+ > s− � 0,

z0 ∈ K and z± ∈ conv{WJ
±(A) : A ∈ R(a)}. Let us approximate z+ by a finite convex combination of[

Ajfj, fj
]
/

[
fj, fj

]
with some positive vectors fj and Aj ∈ R(a), and let f take the value fj on sufficiently

small (and therefore non-overlapping) subsets Uj ⊂ T with positive measure such that a|Uj
are close

to Aj . Denote the union of these Uj by T+. Then

∫
T+

[a(t)f (t), f (t)] dt

/∫
T+

[f (t), f (t)] dt (9)

can be made arbitrarily close to z+. Scaling fj if needed, we may arrange for∫
T+

[f (t), f (t)] dt = s+
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toalsohold,whilenot changing thevalueof (9). Treating z− ina similarway,weconstructadisjointwith

T+ subset T− ⊂ T and extend f onto T− in such a way that
∫
T− [a(t)f (t), f (t)] dt is arbitrarily close

to−s−z− (of course, for s− = 0 it suffices to takeT− ofmeasure zero). Finally, onT0 = T\(T+∪T−)
let f assume finitely many neutral values in order to approximate the last summand in (6). Then∫

T

[a(t)f (t), f (t)] dt

/∫
T

[f (t), f (t)] dt

is an element of W
J
+(Ma) which can be made arbitrarily close to z of the form (6). Consequently,

Z+ + K ⊂ closW
J
+(Ma). �

The respective result for “-” sets can be proved similarly, or by switching from J to −J. Namely,

taking into consideration thatW
J
±(T) = W

−J
∓ (T) for any operator T while K changes to−K , we obtain

the following.

Theorem 5. The closures of the sets W
J
−(Ta) and W

J
−(Ma) are the same, and coincide with the closure of

Z− − K. Here Z+ is the union of all the rays of the lines passing through z± with z± ∈ conv{WJ
±(A) : A ∈

R(a)} having the endpoints z− and not containing the respective z+, while K is the same as in Theorem 4.

The final result is obtained by combining Theorems 4, 5 and using (5).

Theorem 6. Let Z± and K be as defined in Theorems 4, 5. The closures of the sets WJ(Ta) andWJ(Ma) are
the same, and coincide with the closure of (Z+ + K) ∪ (Z− − K).
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