2012

I=2 π π S-wave scattering phase shift from lattice QCD

S. R. Beane
S. R. Beane
E. Chang
W. Detmold
William & Mary

K. Orginos
William & Mary, kostas@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.
I = 2 ππ S-wave scattering phase shift from lattice QCD

S. R. Beane,1,2 E. Chang,3 W. Detmold,4,5 H. W. Lin,6 T. C. Luu,7 K. Orginos,4,5 A. Parreño,3 M. J. Savage,6 A. Torok,8 and A. Walker-Loud9

(NPLQCD Collaboration)

1Albert Einstein Zentrum für Fundamentale Physik, Institut für Theoretische Physik, Sidlerstrasse 5, CH-3012 Bern, Switzerland
2Department of Physics, University of New Hampshire, Durham, New Hampshire 03824-3568, USA
3Departament d’Estructura i Constituents de la Matèria. Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, E08028-Spain
4Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795, USA
5Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA
6Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195, USA
7N Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
8Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
9Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 20 September 2011; published 16 February 2012)

The π⁺ π⁺ s-wave scattering phase shift is determined below the inelastic threshold using lattice QCD. Calculations were performed at a pion mass of mπ ~ 390 MeV with an anisotropic mγ = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ≈ 2.0, 2.5, 3.0 and 3.9 fm, and with a lattice spacing of bγ ~ 0.123 fm in the spatial direction and bγ ~ bγ/3.5 in the time direction. The phase shift is determined from the energy eigenvalues of π⁺ π⁺ systems with both zero and nonzero total momentum in the lattice volume using Lüscher’s method. Our calculations are precise enough to allow for a determination of the threshold scattering parameters, the scattering length a, the effective range r, and the shape parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation theory: mπγγ = 3 + O(mπγ2/Aπγ). Chiral perturbation theory is used, with the lattice QCD results as input, to predict the scattering phase shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.

I. INTRODUCTION

Pion-pion (ππ) scattering at low energies is the theoretically simplest and best-understood hadronic scattering process. Its simplicity and tractability follow from the pseudo-Goldstone boson nature of the pion, a consequence of the spontaneously broken chiral symmetry of QCD, and the pseudo-Goldstone boson nature of the pion, a consequence of the chiral limit. Its simplicity and tractability follow from the theoretically simplest and best-understood hadronic scattering theory, which is used dispersion theory to relate scattering amplitudes without using the known pion-mass dependence of the LEC’s. Chiral perturbation theory is used, with the lattice QCD results as input, to predict the scattering phase shift (and threshold parameters) at the physical pion mass. Our results are consistent with determinations from the Roy equations and with the existing experimental phase shift data.

DOI: 10.1103/PhysRevD.85.034505
PACS numbers: 12.38.Gc

parameters very accurately is important theoretically because Roy-equation [5–7] determinations of ππ scattering parameters, which use dispersion theory to relate scattering data at high energies to the scattering amplitude near threshold, have also reached a remarkable level of precision [8–10], and the results of the two methods can now be compared and contrasted.

There have been independent lattice QCD determinations of the π⁺ π⁺ scattering length; with three flavors (n_f = 2 + 1) of light quarks using domain-wall valence quarks on asqtad-improved staggered sea quarks [11,12], and with two flavors (n_f = 2) of light quarks using twisted-mass quarks [13] and improved Wilson quarks [14–17]. These determinations are in agreement with the Roy equation values. The first calculation of the π⁺ π⁺ scattering phase shift was carried out by the CP-PACS Collaboration, who exploited the finite-volume strategy to study s-wave scattering with n_f = 2 improved Wilson fermions [14,15] at pion masses in the range mπ ~ 500–1100 MeV. The amplitudes obtained from the Lattice QCD calculations were extrapolated to the physical mass using a polynomial dependence upon the pion mass, instead of using the known pion-mass dependence of the...
amplitude based upon the symmetries of QCD encapsulated in χPT. In a recent paper, the Hadron Spectrum Collaboration (HSC) studied the s wave $\pi^+\pi^+$ phase shift with pion masses in the range $m_\pi \approx 390$–520 MeV [18]. Further, they have provided the first lattice QCD calculation of the $\pi^+\pi^+$ phase shift in the d-wave ($l = 2$) [18].

In this work, which is a continuation of our high statistics lattice QCD explorations [19–23], we determine the $\pi^+\pi^+$ scattering amplitude below the inelastic threshold. Calculations are performed with four ensembles of $n_f = 2 + 1$ anisotropic clover gauge-field configurations at a single pion mass of $m_\pi \sim 390$ MeV with a spatial lattice spacing of $b_s \sim 0.123$ fm, an anisotropy of $\xi \sim 3.5$, and with cubic spatial volumes of extent $L \sim 2.0$, 2.5, 3.0 and 3.9 fm. Predictions are made for a number of threshold parameters which encode the leading momentum-dependence of the scattering amplitude, and dictate the scattering length, effective range and shape parameters in the effective range expansion (ERE) of the inverse scattering amplitude. The lattice QCD predictions are found to be in agreement with the experimental data. Beyond the threshold region, the LEC’s that contribute to the two-flavor chiral expansion of the scattering amplitude are determined, allowing for a prediction of the phase shift at the physical pion mass to be performed at next-to-leading order (NLO). The predicted phase shift is in agreement with the experimental data.

The Maiani-Testa theorem demonstrates that S-matrix elements cannot be determined from stochastic lattice calculations of n-point Green’s functions at infinite volume, except at kinematic thresholds [24]. Lüscher showed that by computing the energy levels of two-particle states in the finite-volume lattice, the $2 \to 2$ scattering amplitude can be recovered [25–34]. These energy levels are found to deviate from those of two noninteracting particles by an amount that depends on the scattering amplitude (evaluated at that energy) and varies inversely with the lattice spatial volume in asymptotically large volumes. In this paper, Lüscher’s method is used to extract the phase shift from the lattice-determined energy levels, in the center-of-mass (CoM) system and in boosted (lattice = laboratory) systems. The results of the lattice QCD calculations are presented in Sec. IV and relevant fits that are used to determine the effective range parameters, up to and including the shape parameter, are discussed. Sec. V includes a summary of the relevant χPT formulas, the chiral fits to the lattice data, and the prediction for the $\pi^+\pi^+$ phase shift up to the inelastic threshold at the physical pion mass. Finally, a summary of our predictions and a discussion of the systematic uncertainties are given in Sec. VI.

II. DETAILS OF THE LATTICE QCD CALCULATIONS

A. Anisotropic clover lattices

Anisotropic gauge-field configurations have proven useful for the study of hadronic spectroscopy [35–38], and, as the calculations required for studying multihadron systems rely heavily on spectroscopy, we have put considerable effort into calculations using ensembles of gauge fields with clover-improved Wilson fermion actions with anisotropic lattice spacing that have been generated by the HSC. In particular, the $n_f = 2 + 1$ flavor anisotropic clover Wilson action [39,40] with stout-link smearing [41] of the spatial gauge fields in the fermion action with a smearing weight of $\rho = 0.14$ and $n_f = 2$ has been used. The gauge fields entering the fermion action are not smeared in the time direction, thus preserving the ultralocality of the action in the time direction. Further, a tree-level tadpole-improved Symanzik gauge action without a 1×2 rectangle in the time direction is used.

The present calculations are performed on four ensembles of gauge-field configurations with $L^3 \times T$ of $16^3 \times 128$, $20^3 \times 128$, $24^3 \times 128$ and $32^3 \times 256$ lattice sites, with a renormalized anisotropy $\xi = b_s/b_t$ where b_s and b_t are the spatial and temporal lattice spacings, respectively. The spatial lattice spacing of each ensemble is $b_s = 0.1227 \pm 0.0008$ fm [37] giving spatial lattice extents of $L \sim 2.0$, 2.5, 3.0 and 3.9 fm, respectively. The same input light-quark mass parameters, $b_t m_s = -0.0840$ and $b_t m_s = -0.0743$, are used in the production of each ensemble, giving a pion mass of $m_\pi \sim 390$ MeV. The relevant quantities to assign to each ensemble that determine the impact of the finite lattice volume and temporal extent are $m_\pi L$ and $m_\pi T$, which are given in Table I. In addition, we tabulate the pion masses on the four

<table>
<thead>
<tr>
<th>$L^3 \times T$</th>
<th>$16^3 \times 128$</th>
<th>$20^3 \times 128$</th>
<th>$24^3 \times 128$</th>
<th>$32^3 \times 256$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L(fm)</td>
<td>~ 2.0</td>
<td>~ 2.5</td>
<td>~ 3.0</td>
<td>~ 3.9</td>
</tr>
<tr>
<td>$m_\pi L$</td>
<td>3.888(20)(01)</td>
<td>4.8552(84)(35)</td>
<td>5.799(16)(04)</td>
<td>7.7347(74)(91)</td>
</tr>
<tr>
<td>$m_\pi T$</td>
<td>8.89(16)(01)</td>
<td>8.878(54)(22)</td>
<td>8.836(85)(02)</td>
<td>17.679(59)(73)</td>
</tr>
<tr>
<td>m_π (t.l.u.)</td>
<td>0.06943(36)(0)</td>
<td>0.06936(12)(0)</td>
<td>0.06903(19)(0)</td>
<td>0.069060(66)(81)</td>
</tr>
</tbody>
</table>
lattice volumes. As discussed in detail in Ref. [22], exponential finite-volume corrections to the pion masses are negligible for these volumes, a necessary condition for the application of Lüsher’s finite-volume method for obtaining phase shifts. Additionally, the predicted exponential finite-volume corrections to pion scattering near threshold are expected to be negligible [42]. Multiple light-quark propagators were calculated on each configuration in the four ensembles. The source locations were chosen randomly in an effort to minimize correlations among propagators.

B. Determination of the anisotropy parameter, ξ

In the continuum and in infinite volume, the energy-momentum relation for the pion is that of special relativity, $E^2 = m^2 + |p|^2$. In lattice QCD calculations, this relation is more complicated due to the finite lattice spacing (including the violation of Lorentz invariance) and the finite volume, resulting in E^2 being a nontrivial function of p, which has a polynomial expansion at small momentum. Retaining the leading terms in the energy-momentum relation, including the lattice anisotropy ξ, the energy and mass in temporal lattice units, and the momentum in spatial lattice units (s.l.u) are related by

$$
(b_i E_\tau(n))^2 = (b_i m_\tau)^2 + \frac{1}{\xi^2} \left(\frac{2\pi b_i}{L} \right)^2 n^2.
$$

(1)

The lattice QCD calculations of the energy of the single pion state at a given momentum $p = \frac{2\pi}{L} n$ (where n is an integer triplet) allow for a determination of ξ, and hence establish the single-particle energy-momentum relation that is crucial for determining the scattering amplitude from the location of two-particle energy eigenvalues. We obtain $\xi = 3.469(11)$ where the statistical and systematic uncertainties have been combined in quadrature. This is consistent with the value determined by Dudek et al. of $\xi = 3.459(4)$ [18]. A fit to a higher order polynomial provides a result that is consistent with this value but with larger uncertainties in the contributing terms. It is important to use the lattice determined value of ξ, and to propagate its associated uncertainty, as small variations in this parameter are amplified in the determination of the scattering amplitude from two-particle energy eigenvalues when the interaction is weak (and the energy of the two-particle state is consequently near that of the noninteracting system).

III. THE FINITE VOLUME METHODOLOGY

The formalism that was put in place by Lüscher to extract two-particle scattering amplitudes below the inelastic threshold from the energy eigenvalues of two-particle systems at rest in a finite cubic volume [27,28] was extended to systems with nonzero total momentum by Rummukainen and Gottlieb [30]. Subsequent derivations have verified and extended [15,31–34] the work in that paper. The use of boosted systems allows for the amplitude to be determined at more values of momentum (in the CoM), between those defined by $\frac{2\pi}{L} n$. Here the results that are relevant to the present analysis of the boosted $\pi\pi$ systems, and to systems at rest, are restated.

Using the notation of Ref. [31], the energy in the CoM frame is denoted by E', which is related to the energy E and momentum P_{cm} in the “laboratory system” (the total lattice momentum) by $E'^2 = E^2 - |P_{cm}|^2$. In what follows, it is useful to define $P_{cm} = |P_{cm}|$. The γ-factor is straightforwardly defined by $\gamma = E/E'$, and E' is also related to the magnitude of the momentum of each π^+ in

FIG. 1 (color online). The two-pion EMP’s for the first six levels (here n indicates the level) with $P_{cm} = 0$ (top), 1 (middle) and $\sqrt{2}$ (bottom) in units of the temporal lattice spacing on the $32^3 \times 256$ ensemble. Only one half of the temporal lattice points are shown.
functions defined by Lu"scher [27,28], which in turn are related to the lattice momentum-vectors. The function $Z_{\phi}^0(1; \tilde{q}^2)$ is a generalization of the functions defined by Lu"scher [27,28],

$$Z_{\phi}^0(1; \tilde{q}^2) = \sum_r \frac{|r|^2 Y_{\phi}(\Omega r)}{|r|^2 - \tilde{q}^2},$$

(3)

where the Y_{ϕ} are spherical harmonics and the sum is over vectors defined by

$$r = \frac{1}{\gamma} \left(n - \frac{1}{2} d \right) + n_\perp = \gamma^{-1} \left(n - \frac{1}{2} d \right),$$

(4)

which in turn are related to the lattice momentum-vectors by $k = \frac{2}{\sqrt{L}} n = \frac{2}{\sqrt{L}} (n || + n_\perp)$. The n are triplets of integers and the decomposition of n is along the direction defined by the boost-vector d. Lu"scher presented a method [27,28] which can be used [30] to accelerate the numerical evaluation of the sum in Eq. (3), and a generalization of that method leads to

$$Z_{\phi}^0(1; \tilde{q}^2) = \sum_r e^{-\lambda |r|^2 - \tilde{q}^2} \left| r \right|^L g_{Y_{\phi} Y_{\phi}}(\Omega r)$$

$$+ \delta_{L,0} Y_{\phi} \frac{4 \gamma^2}{\sqrt{L}} \int_0^\Lambda dt e^{i \tilde{q}^2 t} - \frac{2 \sqrt{\gamma}}{\gamma} e^{\lambda \tilde{q}^2} \right\} + \sum_{\omega \neq 0} e^{-i \pi \omega d \cdot \gamma \omega} Y_{\phi}(\Omega \gamma \omega)$$

$$\times \int_0^\Lambda dt \left(\frac{\pi^2}{L} \right)^{3/2 + L} e^{i \tilde{q}^2 t} e^{-(\pi \gamma |\tilde{q}|^2 / L)},$$

(5)

where

$$\tilde{q}^2 = \gamma w|| + w_\perp.$$

(6)

The value of the sum is independent of the choice of Λ, and $\Lambda = 1$ has been used in previous works [15].

The energy-level structure resulting from $Z_{\phi}^0(1; \tilde{q}^2)$ has been discussed previously, e.g. Ref. [30]. For the present calculations of boosted systems it is important to identify the closely spaced energy levels. This is because the amplitudes extracted from such levels are subject to large systematic and statistical uncertainties due to the rapid variation of $Z_{\phi}^0(1; \tilde{q}^2)$ in their vicinity, and also due to the difficulty in separating the states contributing to the correlation functions. The energy levels associated with two noninteracting particles are located at the poles of $Z_{\phi}^0(1; \tilde{q}^2)$, and Eq. (4) gives

$$d = (0,0,0): \tilde{q}^2 = 0, 1, 2, 3, 4, 5, \ldots$$

$$d = (0,0,1): \tilde{q}^2 = \frac{1}{4} \gamma^2 + 1, \frac{9}{4} \gamma^2 + 1, \frac{49}{4} \gamma^2 + 1, \frac{49}{4} \gamma^2 + 1, \frac{49}{4} \gamma^2 + 1, \ldots$$

and so forth, where the underbraces denote states that become degenerate as $\gamma \rightarrow 1$. We stress that the relations summarized in this section are only valid below inelastic threshold.

<table>
<thead>
<tr>
<th>k^2/m^2_π</th>
<th>$L^3 \times T$</th>
<th>P_{cm}</th>
<th>level</th>
<th>$k \cot \delta/m_\pi$</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0068(54(81))</td>
<td>$32^3 \times 256$</td>
<td>0</td>
<td>$n = 0$</td>
<td>-4.49(35)(52)</td>
<td>-1.06(12)(18)</td>
</tr>
<tr>
<td>0.0172(14)(23)</td>
<td>$24^3 \times 128$</td>
<td>0</td>
<td>$n = 0$</td>
<td>-4.24(32)(49)</td>
<td>-1.82(19)(30)</td>
</tr>
<tr>
<td>0.0309(17)(27)</td>
<td>$20^3 \times 128$</td>
<td>0</td>
<td>$n = 0$</td>
<td>-4.25(21)(34)</td>
<td>-2.37(18)(29)</td>
</tr>
<tr>
<td>0.0715(32)(48)</td>
<td>$16^3 \times 128$</td>
<td>0</td>
<td>$n = 0$</td>
<td>-3.80(15)(22)</td>
<td>-4.03(25)(35)</td>
</tr>
<tr>
<td>0.1641(20)(23)</td>
<td>$32^3 \times 256$</td>
<td>1</td>
<td>$n = 0$</td>
<td>-3.33(38)(48)</td>
<td>-7.10(8)(1.0)</td>
</tr>
<tr>
<td>0.378(5)(11)</td>
<td>$20^3 \times 128$</td>
<td>1</td>
<td>$n = 0$</td>
<td>-4.1(0.4)(1.0)</td>
<td>-8.6(8)(3.6)</td>
</tr>
<tr>
<td>0.3838(42)(85)</td>
<td>$32^3 \times 256$</td>
<td>$\sqrt{2}$</td>
<td>$n = 0$</td>
<td>-1.65(12)(28)</td>
<td>-20.6(1.5)(3.1)</td>
</tr>
<tr>
<td>0.7323(53)(88)</td>
<td>$32^3 \times 256$</td>
<td>0</td>
<td>$n = 1$</td>
<td>-2.78(29)(57)</td>
<td>-17.2(1.7)(2.9)</td>
</tr>
<tr>
<td>0.9233(51)(73)</td>
<td>$32^3 \times 256$</td>
<td>1</td>
<td>$n = 1$</td>
<td>-2.14(16)(26)</td>
<td>-24.1(1.6)(2.6)</td>
</tr>
<tr>
<td>1.373(13)(22)</td>
<td>$24^3 \times 128$</td>
<td>0</td>
<td>$n = 2$</td>
<td>-2.10(19)(36)</td>
<td>-29.2(2.3)(4.3)</td>
</tr>
<tr>
<td>1.582(9)(16)</td>
<td>$32^3 \times 256$</td>
<td>0</td>
<td>$n = 1$</td>
<td>-1.19(09)(14)</td>
<td>-46.5(2.3)(3.5)</td>
</tr>
<tr>
<td>1.969(2)(04)</td>
<td>$20^3 \times 128$</td>
<td>0</td>
<td>$n = 1$</td>
<td>-2.33(32)(56)</td>
<td>-31.6(3.5)(5.6)</td>
</tr>
</tbody>
</table>
FIG. 2 (color online). The two-pion energies in units of the temporal lattice spacing for the lattice ensembles considered in this work. The (vertical) thickness of each level indicates the uncertainty of the energy determination. Each state is labeled according to its center-of-mass momentum P_{cm}, and its excitation level n. The noninteracting levels are denoted by dashed (black) lines. Notice that the $32^3 \times 256 \ P_{cm} = \sqrt{2}$, $n = 0$ and $P_{cm} = 0$, $n = 1$ levels are nearly degenerate.

IV. $\pi^+ \pi^+$ SCATTERING ON THE LATTICE

A. Lattice phase shift

The scattering of pions in the $I = 2$ channel is perturbative at low momentum and at small light-quark masses, as guaranteed by χPT. In a finite volume, this translates into two-pion energies that deviate only slightly from the noninteracting energies; i.e., the sum of the pion masses (or boosted pion masses for moving systems). We have analyzed $\pi^+ \pi^+$ correlation functions with $P_{cm} = 0, 1, \sqrt{2}$ (in units of 2π) and with various (noninteracting) momentum projections among the pions. It is straightforward to partially diagonalize this system of correlation functions into the energy eigenstates at intermediate and long times. This is achieved by assuming that the two-pion energy levels are close to their noninteracting values, and then varying the linear combination of correlation functions in order to maximize the plateau region. (Coupled exponential fits to the various correlators with the same P_{cm} lead to consistent determinations). As an example, in Fig. 1 we show the two-pion effective mass plots (EMP’s) on the $32^3 \times 256$ ensemble with $P_{cm} = 0, 1, \sqrt{2}$. Six energy levels can be clearly identified in the EMP’s in Fig. 1 for each of the values of P_{cm}. [Note that these levels clearly show the near degeneracies of the noninteracting system as established in Eq. (7)]. However, only the first few levels, when propagated through the eigenvalue equation, lead to statistically significant values for the phase shift. While the energies of other levels are established, the structure of the eigenvalue

FIG. 3 (color online). Results of the lattice QCD calculations processed through the energy-eigenvalue relation to give values of $k \cot \delta/m_\pi$. The (circles, squares, triangles, diamonds) ([black, red, blue, green]) correspond to the ensembles $[16^3 \times 128, 20^3 \times 128, 24^3 \times 128, 32^3 \times 256]$. Statistical and systematic uncertainties are shown as the inner and outer error-bars, respectively. The vertical (blue) line at $k^2 = m_\pi^2$ indicates the limit of the range of validity of the ERE set by the t-channel cut. The inelastic threshold is at $k^2 = 3m_\pi^2$.

FIG. 4 (color online). Results of the lattice QCD calculations processed through the energy-eigenvalue relation to give values of the phase shift δ. The phase shift at low energies is shown as an inset. The (circles, squares, triangles, diamonds) ([black, red, blue, green]) correspond to the ensembles $[16^3 \times 128, 20^3 \times 128, 24^3 \times 128, 32^3 \times 256]$. Statistical and systematic uncertainties are shown as the inner and outer error-bars, respectively. The vertical (blue) line at $k^2 = m_\pi^2$ indicates the limit of the range of validity of the ERE set by the t-channel cut. The inelastic threshold is at $k^2 = 3m_\pi^2$.

TABLE III. ERE parameters extracted from the lattice QCD calculations of $k \cot \delta/m_\pi$.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Fit A: $k^2/m_\pi^2 < 0.5$</th>
<th>Fit B: $k^2/m_\pi^2 < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_\pi a$</td>
<td>0.230(10)(16)</td>
<td>0.226(10)(16)</td>
</tr>
<tr>
<td>$m_\pi r$</td>
<td>12.9(1.5)(2.9)</td>
<td>18.1(2.4)(4.7)</td>
</tr>
<tr>
<td>$m_\pi ar$</td>
<td>2.95(20)(42)</td>
<td>4.06(30)(57)</td>
</tr>
<tr>
<td>P</td>
<td>-</td>
<td>$-0.001 \ 23(30)(55)$</td>
</tr>
<tr>
<td>χ^2/dof</td>
<td>0.83</td>
<td>0.79</td>
</tr>
</tbody>
</table>
The states that have been analyzed to produce amplitudes and phase shifts are given in Table II, and are shown in Fig. 2. Note that momenta are quoted in units of m/C^2 to formulate the subsequent analysis in a manner that is independent of the scale setting. The values of $k \cot \delta/m_\pi$ resulting from the energy eigenvalues are shown in Fig. 3 and Fig. 4, respectively. Note that while the $323/256$ levels appear discrepant, we believe this is likely a statistical fluctuation. Also, the phase shift we have extracted from the first excited state in the 243×128 ensemble disagrees with the equivalent extraction presented in Ref. [18]. While we find a phase shift of $\delta = -29.2 \pm 2.3 \pm 4.3^\circ$ at $k^2 \sim 0.21$ GeV2, Ref. [18] finds $\delta \sim -13 \pm 2^\circ$ at $k^2 \sim 0.2$ GeV2. Our result is consistent with the phase shifts at the nearby momenta calculated on the 323×256 ensemble.

B. The effective range expansion parameters

The ERE is an expansion of the real part of the inverse scattering amplitude in powers of the CoM energy,

$$\frac{k \cot \delta}{m_\pi} = -\frac{1}{m_\pi a} + \frac{1}{2} m_\pi r \left(\frac{k^2}{m_\pi^2} \right) + P(m_\pi r)^2 \left(\frac{k^2}{m_\pi^2} \right)^2 + \ldots,$$

(8)
where \(m_\pi a \) and \(m_\pi r \) are the scattering length and effective range in units of \(m_\pi^{-1} \), and \(P \) is the shape parameter.\(^2\) Here \(k = |k| \) is the magnitude of each pion’s momentum in the CoM. Such an expansion is expected to be convergent for energies below the \(t \)-channel cut, which is set by \(\pi \pi \) exchange in the \(t \) channel. The \(t \)-channel cut starts at \(k^2 = m_\pi^2 \), while the inelastic threshold is \(k^2 = 3m_\pi^2 \).

As the calculations of \(k \cot \delta / m_\pi \) are approximately linear in \(k^2 \) in the region \(k^2/m_\pi^2 < 0.5 \), the scattering length and the effective range are fit (fit A) using Eq. (8) with \(P \) and the other higher order terms set to zero. The extracted values of \(m_\pi a \) and \(m_\pi r \) are given in Table III, and the resulting fit is shown in Fig. 5, along with the 68% confidence interval error ellipses for the two-parameters. In the region \(k^2/m_\pi^2 < 1 \) the lattice QCD calculations exhibit term curvature consistent with quadratic (and higher) dependence on \(k^2 \). In fit B the three leading ERE parameters are fit to the results of the lattice QCD calculations. The fits are compared to the lattice QCD calculations in Fig. 6, which also shows the 68% confidence interval error ellipse for the two-parameter subspace of the three-parameter fit. It is clear from Table III that the fit parameters are consistent within the combined statistical and systematic uncertainties. In what follows, where we use \(\chi PT \) to predict the parameters at the physical point, the spread in value of the ERE parameters will serve as a useful gauge of the systematic uncertainty introduced in the fitting of the scattering amplitude. It is noteworthy that the data allows a significant determination of the shape parameter, \(P \).

\(^2\)For a modern discussion of the effective range expansion and its regime of validity, see Ref. [29].

V. CHIRAL INTERPOLATIONS

A. Motivation

Although these lattice QCD calculations have been performed only at one value of the pion mass, as we will see, the effective range and threshold scattering parameters satisfy low-energy theorems mandated by chiral symmetry, and therefore each scattering parameter can be used to fix the corresponding LEC that appears at NLO in \(\chi PT \). Thus the scattering parameters at the physical point can be predicted at NLO in \(\chi PT \). This is, in a sense, a chiral interpolation rather than an extrapolation since one is interpolating between the pion mass of the lattice QCD calculation and the chiral limit. Unfortunately, the pion decay constant, \(f_\pi \), has not yet been accurately computed on the anisotropic lattice ensembles that have been used in this work. However, \(\chi PT \) and the results of mixed-action lattice QCD calculations [43] can be used to determine \(f_\pi \) (and its uncertainty) evaluated at the pion mass of the present lattice QCD calculations up to lattice spacing artifacts. Specifically, in what follows we use \(\sqrt{\frac{m_{\text{phys}}}{m_\pi}} = m_{\text{phys}}/m_\pi = 2.59(13) \) at \(m_\pi = 390 \text{ MeV} \).

B. Threshold parameters in \(\chi PT \)

The relation between the \(\pi^+ \pi^+ \) s-wave scattering amplitude \(t(s) = \frac{f_{\pi}^2}{s} \delta(s) + 1 \) and the phase shift \(\delta \) is given by [4]

\[
t(s) = \left(\frac{s}{s - 4} \right)^{1/2} \frac{1}{2} i \left[\frac{1}{2} e^{2i\delta(s)} - 1 \right],
\]

where \(s = 4(1 + k^2/m_\pi^2) \) and \(k = |k| \) is the magnitude of the three-momentum of each \(\pi^+ \) in the CoM frame. The NLO scattering amplitude can be expressed in terms of three LEC’s, \(C_1, C_2, \) and \(C_4 \) [2,3]:

\[
t(k) = -\frac{m_\pi^2}{8\pi f_\pi^2} - \frac{m_\pi^4}{f_\pi^2} \left(C_1 - \frac{31}{384\pi^2} \right) - \frac{k^4}{f_\pi^4} \left[-\frac{1}{4\pi} + \frac{m_\pi^2}{f_\pi^2} \left(\frac{301}{1152\pi^3} - \frac{1}{128\pi^2} C_2 - 7 C_1 \right) \right]
\]

\[
+ \frac{k^4}{f_\pi^4} \left[\frac{14}{45^2} \frac{m_\pi^2}{f_\pi^2} \left(\frac{9}{8} C_1 - \frac{9}{512\pi^2} C_2 + 216\pi C_4 \right) \right] - \frac{1}{4\pi f_\pi^3} \left(\frac{3}{32} m_\pi^4 + \frac{5}{12} m_\pi^2 k^2 + \frac{5}{9} k^4 \right) \log \left(\frac{m_\pi^2}{f_\pi^2} \right)
\]

\[
+ \frac{1}{16\pi^3 f_\pi^3} \left(\frac{3}{4} m_\pi^4 + m_\pi^2 k^2 + k^4 \right) \sqrt{\frac{k^2}{k^2 + m_\pi^2}} \log \left(\frac{k^2 + m_\pi^2}{k^2 - m_\pi^2} + 1 \right)
\]

\[
+ \frac{1}{8\pi^3 f_\pi^3} \left(\frac{3}{16} m_\pi^4 + \frac{7}{9} m_\pi^2 k^2 + \frac{11}{18} k^4 \right) \sqrt{\frac{k^2 + m_\pi^2}{k^2 - m_\pi^2} + 1}
\]

\[
\times \sqrt{\frac{k^2 + m_\pi^2}{k^2}} \log \left(\frac{k^2 + m_\pi^2}{k^2} - 1 \right) - \frac{m_\pi^4}{128\pi^4 f_\pi^4} \left(1 + 13 \frac{m_\pi^2}{12} \frac{k^2}{f_\pi^2} \right) \log^2 \left(\frac{k^2 + m_\pi^2}{k^2} - 1 \right).
\]

The \(C_i \) can be expressed in terms of the \(l_i \equiv l_i(\mu = m_\pi) \), the familiar low-energy constants of two-flavor \(\chi PT \) [2],

\[
C_1 = -\frac{1}{2\pi} (4l_1 + 4l_2 + l_3 - l_4) - \frac{1}{128\pi^3}; \quad C_2 = 32\pi (12l_1 + 4l_2 + 7l_3 - 3l_4) + \frac{31}{6\pi};
\]

\[
C_4 = \frac{1}{5184\pi^4} (212l_1 + 40l_2 + 123l_3 - 69l_4) + \frac{701}{622080\pi^4}.
\]

The behavior of the amplitude near threshold \((k^2 \to 0) \) can be written as a power-series expansion in the CoM energy.
Re \(t(k) = -m_\pi a + k^2 b + k^4 c + O(k^6) \),

where the threshold parameters \(b \) and \(c \) are referred to as slope parameters. Matching the threshold expansion in Eq. (12) to the ERE in Eq. (8) gives [4]:

\[
m_\pi r = - \frac{1}{m_\pi a} - \frac{2m_\pi^2 b}{(m_\pi a)^2} + 2m_\pi a; \tag{13}
\]

\[
P = -\frac{(m_\pi a)^3[(m_\pi a)^2 - 4(m_\pi a)^4 + 8(m_\pi a)^6 - 4(m_\pi a)^2 + 2(m_\pi a)^3)b m_\pi^2 - 8(b^2 + m_\pi a)c m_\pi^4]}{8(m_\pi a - 2(m_\pi a)^3 + 2b m_\pi^2)^3}. \tag{14}
\]

These equations can be inverted to obtain \(b \) and \(c \) from the lattice-determined ERE parameters. Expanding the NLO amplitude in Eq. (10) in powers of \(k \), one finds NLO \(\chi PT \) expressions for the ERE and threshold parameters:

\[
m_\pi a = \frac{z}{8\pi} + z^2 C_1 + \frac{3z^2}{128\pi^2} \log z, \quad m_\pi r = \frac{24\pi}{z} + C_2 + \frac{17}{6\pi} \log z, \quad m_\pi^2 b = \frac{z}{4\pi} - \frac{z^2}{36 \pi^3} \log z,
\]

\[
P = -\frac{23z^2}{13824\pi^2} + z^2 C_4 + \frac{613z^4}{995328\pi^4} \log z, \quad m_\pi^2 c = -\frac{z^2}{8} \left(\frac{19}{8} C_1 - \frac{9}{512\pi^2} C_2 + 216\pi C_4 + \frac{5}{36 \pi^3} \log z \right), \tag{15}
\]

where \(z \equiv m_\pi^2/f_\pi^2 \) and \(C_3 = 24\pi C_1 + \frac{1}{8\pi} C_2 \). It is important to note that the shape parameter \(P \) and the threshold parameter \(c \) do not receive contributions from LO \(\chi PT \); i.e., they vanish in current algebra.

C. Chiral interpolation of threshold parameters

Using the ERE parameter set from fit B given in Table III, with statistical and systematic uncertainties combined in quadrature, the four functions \(C_1, C_2, C_3, C_4 \) can be determined. The ERE parameters in Table III give

\[
C_1^{NLO} = -0.00237(52), \quad C_2^{NLO} = 5.2(52),
\]

\[
C_3^{NLO} = -0.02(0.10), \quad C_4^{NLO} = 9.0(4.0) \times 10^{-6},
\]

where the superscripts denote that these constants are evaluated at NLO in \(\chi PT \), and from which follow, using Eq. (15), the predictions at the physical point\(^3\) of

\[
m_\pi a = 0.0417(07)(02)(16),
\]

\[
m_\pi r = 72.0(5.3)(5.3)(2.7),
\]

\[
m_\pi^2 b = 2.96(11)(17)(11),
\]

\[
P = -2.022(58)(12)(76) \times 10^{-4},
\]

\[
b = -0.832(50)(0)(31) \times 10^{-1} m_\pi^2,
\]

\[
c = 0.013(33)(01)(0) m_\pi^{-4},
\]

\(^3\)Note that the precise NPLQCD result for the scattering length, \(m_\pi a = -0.04330(42) \), computed in Ref. [12] with domain-wall valence quarks on staggered sea quarks, is more precise than the result of Eq. (17).

FIG. 7 (color online). The dashed (green) line denotes the physical line, and the horizontal solid (purple) line denotes the LO \(\chi PT \) prediction, which is \(m_\pi^2 ar = 3 \) in the chiral limit. The band denotes the 68% confidence interval interpolation of the results of the lattice calculation (the red rectangle) from fit B. The lattice QCD + \(\chi PT \) prediction at the physical point is the (red) star on the physical line, and the Roy equation prediction [8] is the (black) circle on the physical line.
where and systematic uncertainties and the statistical uncertainty added in quadrature, as described above).

With Eq. (11), the fit values of the C_i in Eq. (16) can be used to constrain various combinations of the l_i, and the renormalization group can be used to express these constraints in terms of the scale-independent dimensionless barred quantities, the \bar{l}_i [2].

$$\bar{l}_3 - 4\bar{l}_4 = -29(27), \quad \bar{l}_1 - 6\bar{l}_4 = -32(25)$$

$$2\bar{l}_1 - 3\bar{l}_3 = 28(29), \quad \bar{l}_1 + 4\bar{l}_2 = 15.8(6.7),$$

where statistical and systematic uncertainties have been combined in quadrature. With increased precision in the determination of the ERE parameters, such determinations of the LECs could become competitive with other methods.

These results may seem surprisingly accurate for a lattice QCD calculation performed at a single pion mass. As mentioned previously, it is the chiral symmetry constraints on the scattering parameters in the approach to the chiral limit that is responsible for the precision. The scattering length obtained here is consistent within uncertainties with the previous lattice QCD determinations [11–13]. Further, the scattering length and threshold parameters are found to agree with determinations from the Roy equation (with chiral symmetry input) [8],

$$m_\pi a = 0.0444(10), \quad b = -0.803(12) \times 10^{-1} m_\pi^2;$$

$$m_\pi^2 ar = 2.666(0.083),$$

at the 1σ-level. Figure 7 provides a comparison of the lattice calculation (and interpolation) and the Roy equation value of $m_\pi^2 ar$.

The l_i are related to the \bar{l}_i via

$$l_i = \frac{32}{\pi^2} \left(\bar{l}_i + \log \left(\frac{m_\pi^2}{\mu^2} \right) \right),$$

where $\gamma_1 = \frac{1}{3}, \quad \gamma_2 = \frac{2}{3}, \quad \gamma_3 = -\frac{1}{2} \text{ and } \gamma_4 = 2.$

D. Chiral interpolation of the phase shift

The $\pi^+ \pi^+$ scattering phase shifts calculated with lattice QCD, which extend above the range of validity of the ERE but remain below the inelastic threshold, can be used to predict the phase shift at the physical value of the pion mass. While the chiral expansion may break down for scattering at sufficiently high energies, we ignore this issue and fit the NLO χPT amplitude (one-loop level) to the results of the lattice QCD calculations at all of the calculated energies, the maximum invariant mass being $\sqrt{s} \sim 1340$ MeV.

The results of the lattice QCD calculations given in Table II are fit to the formula

$$\frac{k \cot \delta}{m_\pi} = \sqrt{1 + \frac{k^2}{m_\pi^2} \left(\frac{1}{t_{LO}(k)} - \frac{t_{NLO}(k)}{(t_{LO}(k))^2} \right)} + i \frac{k}{m_\pi},$$

where t_{LO} and t_{NLO} are the LO and NLO contributions to $t(k)$ in the chiral expansion, given in Eq. (10). The result of the fit is shown in Fig. 8; in the left panel the fit (of $C_1, C_2,$ and C_4 to $k \cot \delta/m_\pi$ is shown, and in the right panel, the fit values of $C_1, C_2,$ and C_4 (fully correlated) are used to predict the phase shift at the pion mass of the lattice QCD calculations, $m_\pi \sim 390$ MeV. The 68% confidence intervals for $C_1, C_2,$ and C_4 from this fit are

$$C_1^{NLO} = (-0.0040, -0.0013), \quad C_2^{NLO} = (2.67, 24.1),$$

$$C_4^{NLO} = (-1.7, +3.6) \times 10^{-5},$$

with a χ^2/dof = 2.1 (for the fit with the statistical and systematic uncertainties combined in quadrature). The interpolated ERE parameters are

$$m_\pi a = 0.0412(08)(16), \quad m_\pi r = 80.0(9.58)(3.0),$$

$$P = -1.85(31)(07) \times 10^{-4},$$

with a χ^2/dof = 1.9. This agreement is at the 2σ level.

The fits to the NLO χPT data points are given in Table II. The error bars for $C_1, C_2,$ and C_4 are shown in the left panel of Fig. 8, and the result of the fit is shown in the right panel. The 68% confidence intervals for $C_1, C_2,$ and C_4 from this fit are

$$C_1^{NLO} = (-0.0040, -0.0013), \quad C_2^{NLO} = (2.67, 24.1),$$

$$C_4^{NLO} = (-1.7, +3.6) \times 10^{-5},$$

with a χ^2/dof = 2.1 (for the fit with the statistical and systematic uncertainties combined in quadrature). The interpolated ERE parameters are

$$m_\pi a = 0.0412(08)(16), \quad m_\pi r = 80.0(9.58)(3.0),$$

$$P = -1.85(31)(07) \times 10^{-4},$$

with a χ^2/dof = 1.9. This agreement is at the 2σ level.
FIG. 9 (color online). The shaded band is the lattice QCD prediction of the phase shift at the physical value of the pion mass, $m_\pi \sim 140$ MeV using NLO χPT with the statistical and systematic uncertainties combined in quadrature. The data is experimental (black and grey) taken from Refs. [45–48]. The red vertical line denotes the inelastic (4π) threshold.

which are consistent within uncertainties, but less precise, than the threshold determinations of Eq. (17). Here the second uncertainty is a naive dimensional analysis estimate of the effects of higher orders in the chiral expansion and lattice spacing artifacts. For a better determination of the threshold parameters from the global fit, one requires more accurate lattice QCD calculations and the $\pi^- \pi^+$ amplitude beyond NLO in the chiral expansion. In Fig. 9 the fit values of C_1, C_2, and C_4 are used to predict the phase shift at the physical value of the pion mass, $m_\pi \sim 140$ MeV, which is compared to the experimental data of Refs. [45–48]. Figure 10 compares the phase shift prediction to the lattice QCD phase-shift determination by CP-PACS [15], and the Roy equation determinations of the phase shift from Refs. [8,9]. One should keep in mind that the interpolated phase shift is valid above the inelastic threshold, and to remain perturbatively close to the actual value for momenta below the chiral symmetry breaking scale. At LO in the expansion, the phase shift reaches $\delta = \pi/4$ when $k^2 = 4 f_\pi^2 \sim 0.22$ GeV2 (using $f_\pi = 132$ MeV), consistent with the phase shift shown in Fig. 10. Clearly, it is reasonable to take the limit $m_\pi \ll k$ for this value of $k (k \sim 470$ MeV). Further, at this value of k, the NLO terms are approximately equal to the LO terms, providing an estimate of the convergence region of the chiral expansion for the scattering process.

It is also worth noting that while it is formally invalid to use the Lüscher relation in Eq. (2) for the scattering of pions above inelastic threshold, χPT indicates that the error introduced into phase-shift determinations is small, occurring at NNLO in the chiral expansion. This is not expected to be true for other scattering processes (those not involving the pseudo-Goldstone bosons). Therefore, while strictly speaking the results presented in Ref. [18] above inelastic threshold arise from an invalid application of Eq. (2), the expected deviation from the true result is

\begin{align}
\cot \delta &= -\frac{4\pi f_\pi^2}{k^2} + \frac{40}{9\pi} \log \left(\sqrt{\frac{k^2}{f_\pi^2}} + \frac{38\pi^2}{k^2} \right) \\
&= -\frac{9}{32} C_2 + \frac{3456}{32} C_4 - \frac{224}{45\pi}.
\end{align}

The phase shift can be defined this way even in the chiral limit because at LO and NLO the only intermediate states contributing to the scattering amplitude involve two pions. Inelastic channels, such as four-pion intermediate states, which would invalidate the relation in Eq. (9), first contribute to the scattering amplitude at NNLO. This is what allows for the phase shift to be predicted above the inelastic threshold, and to remain perturbatively close to the actual value for momenta below the chiral symmetry breaking scale. At LO in the expansion, the phase shift reaches $\delta = \pi/4$ when $k^2 = 4 f_\pi^2 \sim 0.22$ GeV2 (using $f_\pi = 132$ MeV), consistent with the phase shift shown in Fig. 10. Clearly, it is reasonable to take the limit $m_\pi \ll k$ for this value of $k (k \sim 470$ MeV). Further, at this value of k, the NLO terms are approximately equal to the LO terms, providing an estimate of the convergence region of the chiral expansion for the scattering process.

It is also worth noting that while it is formally invalid to use the Lüscher relation in Eq. (2) for the scattering of pions above inelastic threshold, χPT indicates that the error introduced into phase-shift determinations is small, occurring at NNLO in the chiral expansion. This is not expected to be true for other scattering processes (those not involving the pseudo-Goldstone bosons). Therefore, while strictly speaking the results presented in Ref. [18] above inelastic threshold arise from an invalid application of Eq. (2), the expected deviation from the true result is
expected to be small (at momenta for which the chiral expansion is converging), suppressed by two orders in the chiral expansion. Clearly, precision calculations of the phase shift above the inelastic threshold cannot rely upon a methodology that does not include the effects of inelastic processes. As all of the calculations in our work are below the inelastic threshold, the present analyses and predictions do not suffer from this inconsistency.

VI. SUMMARY AND CONCLUSION

The increases in high-performance computing capabilities and the advent of powerful new algorithms have thrust lattice QCD into a new era where the interactions among hadrons can be computed with controlled systematic uncertainties. While calculation of the basic properties of nuclei and hypernuclei is now a goal within reach, it is important to consider the simplest hadronic scattering processes as a basic test of the lattice methodology for extracting scattering information (including bound states) from the eigenstates of the QCD Hamiltonian in a finite volume. In this work, we have calculated the \(\pi^+ \pi^- \) scattering amplitude using lattice QCD over a range of momenta below the inelastic threshold. Our predictions for the threshold scattering parameters, and hence the leading three terms in the ERE expansion, are consistent with determinations using the Roy equations \([8,9]\) and the predictions of chPT. In particular, our determination of \(m^2_{\pi} \cot \theta / m_{\pi} \) from an interpolation of a fit to the low momentum values of \(k \cot \theta / m_{\pi} \) is consistent with the LO prediction of \(\chi \)PT of \(m^2_{\pi} \cot \theta / m_{\pi} = 3(1 + \mathcal{O}(m^2_{\pi} / \Lambda^2_{\chi})). \)

Further, the resulting predictions for the phase shift at the physical pion mass—using NLO \(\chi \)PT—are in agreement with experimental data, and are even more precise in the low-momentum region.

The lattice QCD calculations presented here were performed at one lattice spacing simply due to the lack of computational resources, therefore, an extrapolation of the ERE parameters to the continuum limit (as was performed in the work of CP-PACS \([15]\)) could not be performed. The discretization of the quark fields that has been employed gives rise to lattice spacing artifacts at \(\mathcal{O}(b^2) \), and we expect such contributions to be small for these calculations.

References
