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other crustaceans

H. J. Small'**, D. M. Neil!, A. C. Taylor!, R. J. A. Atkinson?, G. H. Coombs?

!Division of Environmental and Evolutionary Biology, and 3Division of Infection & Immunity, Institute of Biomedical

and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
2University Marine Biological Association, Millport, Isle of Cumbrae KA28 0EG, UK

4 present address: Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA

ABSTRACT: The Norway lobster Nephrops norvegicus (L.) from the coastal waters of Scotland is
seasonally infected by a parasitic dinoflagellate of the genus Hematodinium. Methods used to detect
infection include a morphological index (pleopod diagnosis) and several immunoassays. The present
study describes the development and application of a set of Hematodinium-specific polymerase chain
reaction (PCR) primers and DNA probes based on Hematodinium ribosomal DNA (rDNA). In the PCR
assay, a diagnostic band of 380 bp was consistently amplified from total genomic DNA isolated from
Hematodinium-infected N. norvegicus. The sensitivity of the assay was 1 ng DNA, which is
equivalent to 0.6 parasites. The primer pair also detected Hematodinium DNA in preparations of the
amphipod Orchomene nanus, indicating that the amphipod may be infected with the same Hemato-
dinium sp. infecting N. norvegicus. DNA probes detected Hematodinium parasites in heart,
hepatopancreas and gill tissues from N. norvegicus, and hepatopancreas and gill tissues from

Carcinus maenas, confirming Hematodinium infection in the latter.
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INTRODUCTION

Infection of the Norway lobster Nephrops norvegi-
cus by a parasitic dinoflagellate of the genus Hemato-
dinium has been described from a number of locations
around the West Coast of Scotland and the Irish Sea
(Field et al. 1992, 1998, Briggs & McAliskey 1996, 2002,
Appleton et al. 1997). In UK waters, the edible crab
Cancer pagurus has also recently been found to har-
bour Hematodinium spp. (Stentiford et al. 2002). Para-
sitic Hematodinium species have previously been
reported infecting several decapod crustaceans includ-
ing Callinectes sapidus (Newman & Johnson 1975,
Messick 1994, Messick & Shields 2000), Cancer pagu-
rus (Latrouite et al. 1988), Chionoecetes bairdi (Meyers
et al. 1987, Love et al. 1993), Chionoecetes opilio (Tay-
lor & Khan 1995), Necora puber (Wilhelm & Mialhe
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1996), Ovalipes ocellatus (MacLean & Ruddell 1978)
and Portunus pelagicus (Hudson & Shields 1994). In
each of the above examples, infection by Hemato-
dinium species caused serious mortalities in the host
decapod population.

Previous methods to diagnose infection of Nephrops
norvegicus by Hematodinium species include an
assessment of the external colouration of the carapace
and appendages of infected lobsters. However this
diagnostic method lacks sensitivity and only advanced
infections can be reliably identified (Stentiford et al.
2001a). The pleopods of infected lobsters can be exam-
ined under low power light microscopy for the aggre-
gation of parasites in the vasculature (Field & Appleton
1995). The severity of infection was classified on a
5-point scale, from apparently uninfected to an ad-
vanced infection. The pleopod method is reliable as a
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field method for identifying advanced infections, but
cannot detect tissue-based and low-level haemolymph
infection. Immunological methods including an indi-
rect fluorescent antibody technique (IFAT), Western
blot and enzyme linked immunosorbent assay (ELISA)
have all been developed using a polyclonal rabbit anti-
serum raised against a mixed in vitro culture of vegeta-
tive forms of Hematodinium from N. norvegicus (Field
& Appleton 1996, Stentiford et al. 2001b, Small et al.
2002). However, the polyclonal antibody cross-reacts
with epitopes found on other protozoan parasites
(Bushek et al. 2002) and may not recognise in vivo life
cycle stages of Hematodinium species that were ab-
sent from the original innoculum or present only in
other hosts. Because of the above concerns and the
need for more sensitive and specific diagnostic
methods, a molecular approach to parasite detection
was undertaken.

DNA-based diagnostic methods utilising the poly-
merase chain reaction (PCR) and in situ hybridisation
(ISH) assays have facilitated diagnosis of many marine
pathogens of shellfish (for review see Cunningham
2002). Nuclear ribosomal DNA (rDNA) is widely
acknowledged as a useful target for the definition of
genetic markers informative at several levels (Gasser &
Zhu 1999). The rate of evolution varies between differ-
ent regions of tDNA, resulting in target sequences
ranging from highly conserved to highly variable
(Hillis & Dixon 1991). PCR primers used to diagnose
Hematodinium infection in crustacean hosts have pre-
viously been reported (Hudson & Adlard 1994, Gruebl
et al. 2002). However, both primer sets used in those
studies were located in the conserved 18S and 5.8S
regions of the IDNA complex and are not specific for
individual Hematodinium species. Variable regions of
rDNA from other dinoflagellates have been identified
allowing species-specific PCR assays to be developed
(Litaker et al. 2003). We describe herein the develop-
ment and application of PCR and ISH assays for detec-
tion of Hematodinium species infection in Nephrops
norvegicus and other crustaceans.

MATERIALS AND METHODS

Sample collection and preparation. Norway lobsters
Nephrops norvegicus and other crustaceans used in
this study (unless indicated otherwise) were caught by
otter bottom-trawl (70 mm mesh size) south of Little
Cumbrae in the Clyde Sea Area, Scotland, UK.
Haemolymph samples were taken from the base of the
fifth pereiopod, using a sterile 1 ml disposable syringe
and 25-gauge needle, and were frozen at -20°C. Sam-
ples were assayed for the presence of Hematodinium
by the ELISA method of Small et al. (2002). Infected

and uninfected haemolymph samples were retained
for DNA isolation. For lobsters having a low-level
infection (as indicated by ELISA), a subsample of the
same haemolymph was used to estimate parasite cell
numbers (ml haemolymph™!) using an improved Neu-
bauer counting chamber.

Tissue samples from infected and uninfected lobsters
were fixed in Davidson's seawater fixative (20 ml
formalin [40 % v/v], 10 ml glycerol, 10 ml glacial acetic
acid, 30 ml 100% ethanol, 30 ml seawater) for 24 h,
dehydrated in an ethanol series and embedded in
paraffin wax. Several other samples of haemolymph
and tissue from crustacean and dinoflagellate species
commonly found in UK waters were also retained and
prepared for DNA extraction (see Table 1). Davidson's
fixed-tissue sections from a shore crab (Carcinus
maenas) collected from the English Channel with
a probable Hematodinium infection were obtained
from Dr. G. Stentiford (CEFAS Weymouth Laboratory).
H. perezi cells from in vitro culture (Small 2004) were
preserved in 100 % ethanol prior to DNA extraction.

To amplify parasite DNA for oligonucleotide primer
design, 1 X 10° parasites from an in vitro culture of
Hematodinium sp. isolated from the Norway lobster
(Appleton & Vickerman 1998) were collected by centri-
fugation (1000 x g for 4 min at 4°C), the resultant super-
natant was removed, and the sedimented cells pro-
cessed for DNA extraction (see next subsection). The
same centrifugation procedure was also carried out for
the free-living dinoflagellates Alexandrium tamarense
(Culture Collection of Algae and Protozoa, CCAP
1119/5), Gymnodinium catenatum (CCAP 1117/6)
(both 1 x 10° cells), H. perezi and a Mesanophrys-like
parasitic ciliate (5 x 10* cells) prior to DNA extraction.

To examine a possible secondary host for the Hema-
todinium sp. infecting Nephrops norvegicus, amphi-
pods Orchomene nanus were captured in baited traps
from the Hunterston Channel in the Clyde Sea area in
August 2001, March 2003 and August 2003, according
to the method of Moore & Wong (1995). Previous stud-
ies had indicated that there was a high prevalence of
Hematodinium sp. infection of Norway lobsters at this
location (J. Atkinson pers. comm.). Individual O. nanus
were held for 3 d in seawater at 12 °C prior to preserva-
tion in 100% ethanol or Davidson's seawater fixative
(only the March 2003 and August 2003 samples).
Genomic DNA samples were prepared from each
amphipod and assayed by PCR for the presence of
Hematodinium spp.

DNA extraction. Genomic DNA was extracted from
100 pl haemolymph samples, 100 mg tissue samples,
the in vitro Hematodinium sp., ciliate and dinoflagel-
late pellets, and from individual whole Orchomene
nanus according to standard procedures (Sambrook
et al. 1989). Briefly, samples were homogenised/
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resuspended in 250 pl extraction buffer (50 mM Tris,
5 mM EDTA, 100 mM NaCl, pH 8), 100 pl of 10%
SDS (w/v) and Proteinase K (0.28 ng pl™!) and incu-
bated at 56°C for 18 to 24 h. All DNAs were purified
by single-step standard phenol/chloroform (1:1)
extraction, precipitated in 550 pl 100 % ethanol using
20 pl 5 M NaCl, and resuspended in 50 ul sterile
deionised water. DNA concentrations and purity were
estimated by measuring the 260/280 optical density
ratios using a spectrophotometer (Gene Quant II,
Pharmacia Biotech), and adjusted to between 0.1 and
100 ng for experimental use.

Primary amplification, cloning and sequencing. The
first internal transcribed spacer (ITS1) and flanking
3' region of the 18S rDNA complex were amplified
independently from 2 Hematodinium genomic DNA
templates (in vitro culture and infected haemolymph),
using the forward primer 5' GTT CCC CTT GAA CGA
GGA ATT C 3' and reverse primer 5' CGC ATT TCG
CTG CGT TCT TC 3'. Primer sequences and amplifi-
cation conditions were as described by Hudson &
Adlard (1994). Amplification products were run on
1.5% (w/v) agarose gels, stained with ethidium bro-
mide, and viewed under UV illumination. Gel images
were obtained using a gel documentation system
(Appligene). Each amplification product of approxi-
mately 680 bp was excised from the agarose gel and
purified by the use of a QIA-quick gel-extraction kit
(Qiagen). Purified amplification products were ligated
into the pGEMT-Easy plasmid vector (Promega) and
used to transform Escherichia coli (Strain JM 109)
by heat shock according to the manufacturer's in-
structions. Transformed cells were plated onto Luria-
Bertani (LB) agar (bacto-agar [1.5% w/v] in LB me-
dium [NaCl, 10 g I'!; bacto-tryptone, 10 g I'!; yeast
extract, 5 g I'!, pH 7.5]), containing ampicillin (50 ng
ml™?Y), isopropyl-beta-D-thiogalactopyranoside (IPTG,
40 pg ml!) and 5-bromo-4-chloro-3-indolyl-beta-D-
galactopyranoside (X-gal, 100 ng ml™!), and grown
overnight at 37 °C. Positive transformations were iden-
tified by blue/white selection and selected colonies
were grown overnight in LB medium containing ampi-
cillin (50 pg m1™!). Recombinant plasmids were purified
using a miniprep kit (Qiagen) according to the manu-
facturer's instructions. Plasmid DNA concentrations
and purity were estimated by measuring the 260/280
optical density ratios. Ligation of correct products was
confirmed by restriction enzyme digestion (EcoRI) and
analysis of products on agarose gels. Bi-directional
sequencing of 1 clone from a single PCR reaction from
each template was performed by MWG-AG Biotech.

Primer and probe design. The nucleotide sequences
obtained from initial amplifications were aligned using
the software programmes ClustalX 1.81 (Thompson et
al. 1994) and BoxShade 3.21 (www.ch.embnet.org/

software/BOX_form.html). Sequences were compared
for similarity to those of other dinoflagellates by Basic
Local Alignment Tool searches (BLAST; Altschul et al.
1990) in GenBank. Suitable priming regions for PCR
exhibiting specificity for the Hematodinium sp. from
Nephrops norvegicus were identified from the se-
quence alignment (see Fig. 1) and by comparison with
previously published Hematodinium sp. sequences
(Hudson & Adlard 1996). We designed 4 oligonucleo-
tides, designated 18S F1, 18S F2, 18S R1, and ITS
R1 (see Table 2), for PCR and the synthesis of PCR-
generated DNA probes.

PCR assay sensitivity and specificity. The sensitivity
of the Hematodinium-specific primers 18S F2 and ITS
R1 for use in total genomic DNA sample screening by
PCR was assessed by serial dilution of a genomic DNA
sample from an infected lobster. The number of Hema-
todinium sp. cells in the infected haemolymph sample
was estimated using an improved Neubauer haemocy-
tometer, and total DNA was extracted by the previously
described methods. The amplification reaction mix-
tures contained 0.1 to 100 ng genomic DNA, 10 mM
Tris-HCI, pH 9.0, 50 mM KCI, 0.1 % Triton X-100 (v/v),
1.5 mM MgCl,, 100 pM dNTPs, 10 pmol each primer,
1 unit of Taqg polymerase (Promega), and sterile deio-
nised water to a final volume of 20 pl. Reactions were
overlaid with 10 pl of mineral oil. Thermal cycling con-
ditions were as follows: denaturation at 94°C for 30 s;
primer annealing at 57°C for 1 min; chain extension at
72°C for 1 min; repeated for 35 cycles, with a final cycle
incorporating a 7 min extension step at 72°C. A 5 jl
aliquot of each PCR reaction was checked for amplifica-
tion products by 1.5 % (w/v) agarose gel electrophoresis
and ethidium bromide staining. Images were captured
using a gel documentation system (Appligene).

The PCR primers were tested for specificity against
genomic DNA samples (100 ng) isolated from Hemato-
dinium-infected and uninfected Nephrops norvegicus,
H. perezi, Cancer pagurus, Callinectes sapidus, several
other crustacean species common to the UK (detailed in
Table 1), a Mesanophrys-like ciliate found infecting N.
norvegicus, and the free-living dinoflagellates Gymno-
dinium catenatum and Alexandrium tamarense. Reac-
tion conditions were as described above.

As part of ongoing studies, samples of Hemato-
dinium-infected haemolymph were obtained from
Nephrops norvegicus collected from the Clyde Sea
Area, the Fladen and North Minch fishing grounds in
Scotland, the Irish Sea and the Swedish Skagerrak
fishing grounds. Total genomic DNA from 100 pl
haemolymph samples was extracted and the PCR
assay performed as described above. Total genomic
DNA was also extracted from individual amphipods
(Orchomene nanus) and the PCR assay was carried out
as described above.
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DNA probe synthesis and in sifu hybridisation.
DNA probes were synthesised by incorporation of
digoxygenin-11-dUTP (DIG, Roche) during PCR using
primer sets 18S F2/ITS R1 and 18S F1/18S R1. PCR was
carried out using 100 ng of genomic DNA extracted
from parasite cells from an in vitro culture of Hemato-
dinium sp. Locations and sequences of the primers
used to synthesise the probes are given in Table 2.
Reaction conditions were followed as suggested by the
manufacturer, with annealing temperatures of 52 and
56°C for primers 18S F2/ITS R1 and 18S F1/18S R1,
respectively. Incorporation of DIG was indicated by an
increase in molecular mass when amplification prod-
ucts were visualised on ethidium bromide-stained
agarose gels. The labelled PCR product was gel-
extracted and purified using a QIAquick gel-extraction
kit (Qiagen). Probe concentration was estimated by
side-by-side comparison of a diluted series of the
probes and a DIG-labelled control of known concen-
tration in a spot test on nylon membrane following the
manufacturer's protocols.

Paraffin-embedded tissue sections from Hemato-
dinium sp.-infected Nephrops norvegicus and Carci-
nus maenas were cut at 6 pm thickness, placed on
salinised slides, and baked for 45 min at 60 °C. Sections
were de-paraffinised (xylene, 2 min), rehydrated in an
ethanol series (1 min each ethanol grade, 100, 90 and
70 % v/v), washed in distilled water, and permeabilised
with 10 to 50 ug ml?! Proteinase K in TNE buffer
(50 mM Tris-HCI, 10 mM NaCl, 1 mM EDTA, pH 7.4)
for 30 min at 37°C in a humid chamber. Proteolysis was
inactivated by two 1 min washes in 20 ml PBS (phos-
phate-buffered saline) followed by equilibration in
20 ml 2x SSC (saline sodium citrate). Samples were
prehybridised in 500 pl prehybridisation buffer (2 x
SSC [20 x SSC = 3 M NaCl, 0.3 M Na-citrate, pH 7.0],
50 % [v/v] formamide, 5 X Denhardt's solution and
100 pg ml~! herring sperm DNA) in a humid chamber
for 60 min at 37 °C. The prehybridisation buffer was re-
placed with 50 to 100 pl hybridisation buffer (2 x SSC,
50% [v/v] formamide, 5 X Denhardt’s solution, 100 pg
ml ! herring sperm DNA and 1% [v/v] dextran sul-
phate) containing 0.1 ng pl~! heat-denatured DIG-
labelled probe. After applying glass coverslips, sec-
tions were placed on a heating block at 95°C for 5 min
to denature the target DNA, then immediately put on
ice for 5 min and allowed to hybridise overnight in a
humid chamber at 42°C. Post-hybridisation washes
included 2 x SSC at room temperature, twice for 5 min,
and 0.1 x SSC at 42°C, once for 10 min, followed by
equilibration in 20 ml maleic acid buffer (100 mM maleic
acid, 150 mM NaCl, pH 7.5). Sections were blocked
with 500 nl blocking buffer (maleic acid buffer plus 1%
[w/v] blocking reagent: Roche) at 37°C for 15 min
followed by incubation for 1 h at 37°C with 500 pl of

Table 1. Use of Hematodinium-specific PCR primer set 18S F2

and ITS1 R1 against other dinoflagellate, ciliate and decapod

crustacean DNA samples. +: single amplification product of

380 bp; —: no amplification product or amplification product of
incorrect size

Genomic DNA template PCR
diagnosis

Alexandrium tamarense CCAP 1119/5 -
Gymnodinium catenatum CCAP 1117/6 -
Mesanophrys-like ciliate -
Carcinus maenas -
Necora puber -
Cancer pagurus -
Maja squinado -
Liocarcinus depurator
Pagurus bernhardus -
Callinectes sapidus

Hematodinium-infected Nephrops norvegicus
Hematodinium-infected Cancer pagurus
Hematodinium-infected Callinectes sapidus

I+ + 1

dilute anti-DIG-alkaline phosphatase antibody (Roche)
diluted 1:1000 in blocking buffer. Unbound antibody
was removed by two 5 min washes in 20 ml washing
buffer (maleic acid buffer plus 0.3% [v/v] Tween 20)
followed by one 5 min wash in 20 ml detection buffer
(100 mM Tris-HCI, 100 mM NaCl, 50 mM MgCl,, pH
9.5); 5-bromo-4-chloro-3-indolyl phosphate/nitro blue
tetrazolium (NBT/BCIP) was diluted (1/50 dilution of
stock solution) in detection buffer and 200 pl was
added to sections and incubated at room temperature
(22°C) in the dark for 2 to 6 h. The reaction was
stopped with a 20 ml TE buffer wash (10 mM Tris-HCI,
1 mM EDTA, pH 8.0). Slides were washed in double-
distilled H,O and counterstained with 1% (w/v) eosin
for 1 min, followed by ethanol dehydration (1 min each
ethanol grade, 100, 90 and 70 % v/v), and mounted in
aqueous mounting medium (histomount). Hybridisa-
tion conditions were optimised by varying the concen-
tration of Proteinase K (10 to 50 pg ml™!) and length of
incubation (15 to 60 min), and the concentration of
DIG-labelled DNA probes (0.1 to 1 ng ul~! heat-dena-
tured DIG-labelled probe). Negative controls included
samples treated without the addition of DIG-labelled
probe as well as the use of uninfected tissue sections.

RESULTS
Hematodinium rDNA sequences
A single 680 bp amplification fragment was pro-
duced when template DNA samples from the in vitro

culture were used in conjunction with the nucleotide
primers previously described by Hudson & Adlard
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NnHeml 1 GTTCCCCTTGAACGAGGAATTCCTAGTAAGCGCGAGTCATCAGCTCGTGCTGATTACGTC
NNHEMZ it i ittt i ittt e i e e e e e e e e
0
61 CCTGCCCTTTGTACACACCGCCCGTCGCTCCTACCGATTGAGTGATCCGGTGAATAATTC
........................ ISRy Tt
121 GGACGGCAGCCTTTTCCAGTTTCTGGAAGTGGCAGCTGGAAGTTTAGTGAACCTTATCAC
181 TTAGAGGAAGGAGAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATT
............................................. Ao
NnHeml 1 CGCACGAATAATCAATAAAAAACACCGTGAACCTTGGCCATTAGC-ACGAGCAAAAAAGC
NNHEMZ ittt i it e i ittt e e e e e e e e e e
NI e e e e e e e e e Gevevvvnnenn GG.G.evvvviinvnn
60 GCATGCGCATGCTGCATGCCCCCGCCGCCGCCGCCGCCTCCGCTGTGTGTGTGTGTGTGT
........... T..G T T T
120 G--GGGGTIGTTTGTGTGTGCGCGTTCGTGCTACTAAGGGCTGTGAGAGATGGGGAAC-CA
e Tevivennn. -
b, G..C.C...... A.C..CT AL A.TC..TCA......... A
177 CCTCTC-CAAATATTTCTCCAGGCCCACGTTTGTTTTCCTTAT--AATAACTCTCTAATT
...... T..TT.....T..T..ATAA.A.CG....C..T.C.ATG.C..TAC.C..C...
ITSR1
234 T-CACTTATTCAATT-ATAACTAAGCTTCTTCTCCCCTTCCCTTCTTCGTCCAGAAGAAG

292 AAGAAGGAGGAGGAGGAGGAGGA

Fig. 1. Hematodinium spp. Alignments of nucleotide sequences consisting of the 3' end of the 18S (upper alignment) and 5' end

of the first internal transcribed spacer (ITS1) region (lower alignment) of the ribosomal DNA gene complex from 2 isolates

sequenced as part of this study and the Nephrops norvegicus Hematodinium sp. sequence from Hudson & Adlard (1996) (Nn).

Isolate NnHem1: Hematodinium sp. from a continuous in vitro culture first isolated in 1992 (GenBank Accession No. DQ084245);

NnHem?2: Hematodinium sp.-infected N. norvegicus haemolymph sample from 2000 (GenBank Accession No. DQ084246).

Nucleotide region underlined in 18S sequence indicates V9 domain; boldface print indicates PCR primers 18S F2 and ITS R1;
dots: conserved nucleotides; dashes: missing nucleotides

(1994). However, multiple-reaction products were pro-
duced using template DNA from infected lobster
haemolymph, reiterating the need for the development
of molecular diagnostics with increased specificity.
The 680 bp products from both PCR amplifications
were successfully cloned into the plasmid vector,
sequenced and aligned with the Nephrops norvegicus
Hematodinium sp. sequence from Hudson & Adlard
(1996) (Fig. 1). The 3' end of the 18S gene was almost
totally conserved between all isolates, the only varia-
tion being 1 nucleotide at Position 236 bp. Comparison
of these sequences with sequences held at GenBank
using BLAST confirmed that the 3’ end of the 18S gene
has a high level of identity (95%) with other dino-

flagellate 18S rDNA gene sequences. Both sequen-
ces were deposited in GenBank (Accession Nos.
DQ084245 and DQ084246)

The 5' region of ITS1 showed only a small number of
nucleotide variations between the isolates sequenced
in this study (98% identical); however, conserved
regions were identified where primers could be
designed to anneal (Fig.1). Sequence similarity of the
published ITS1 region of the Hematodinium species
from Nephrops norvegicus (Hudson & Adlard 1996) to
the isolates used in this study and another (H. J. Small
unpubl. data) was much lower (77 %), justifying the
present efforts to obtain sequence information for
N. norvegicus Hematodinium sp. isolates.
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Table 2. Oligonucleotide primer sequences and annealing positions, designed to bind to Hematodinium 18S and ITS1 regions of
the rDNA gene complex for use in PCR assays and construction of DNA probes

Primer Sequence 5'-3' Position Purpose

18S F1 GTTCCCCTTGAAGGAGGAATTC 216-238 bp upstream Probe 2
18S/ITS1 boundary

18S F2 CAGTTTCTGGAAGTGGCAGCTG 80-102 bp upstream PCR and Probe 1
18S/ITS1 boundary

18S R1 AGCTGCCACTTCCAGAAACT 81-101 bp upstream Probe 2
18S/ITS1 boundary

ITSR1 GAAGGGAAGGGGAGAAGAAGC 256-277 bp downstream PCR and Probe 1
18S/ITS1 boundary

PCR primer design, sensitivity and specificity

A new forward primer was synthesised (18S F2)
which was specific to an area within the variable V9
domain of the 3' end of the 18S gene (80 to 102 bp
upstream of the 18S/ITS1 boundary). The V9 domain
has previously been shown to be highly conserved
between Hematodinium species compared with other
dinoflagellates (Hudson & Adlard 1996). A new
reverse primer was also synthesised (ITS R1), specific
to an area within the ITS1 sequence 256 to 277 bp
downstream of the 18S/ITS1 boundary. The positions
and sequences of primer sets are shown in Table 2 &
Fig. 1. Amplification of DNA from Hematodinium-
infected Nephrops norvegicus haemolymph using the
primer pair 18S F2 and ITS R1 led to the production of
a diagnostic band of 380 bp from 1 ng or more DNA
(Fig. 2). This band was not produced using a sample of
100ng DNA from uninfected haemolymph. Based on
initial cell counts of the parasite numbers in the
haemolymph, 1 ng genomic DNA is equivalent to
0.6 parasite cells. The Hematodinium-specific PCR
primer pair did not generate a PCR product of appro-
priate size when using genomic DNA preparations

1 2 3 4 5 6 7 8

— nd
1000~ —

= =

—— —
500 e
380 B ——

| —

S —

100 100 50 10 1 0.1
DNA Template (ng)

Fig. 2. Sensitivity of PCR assay for detection of Hematodinium
infecting Nephrops norvegicus. Lane 2: 100 ng ul™' N.
norvegicus host DNA control; Lanes 3 to 7: infected haemo-
lymph DNA template concentrations, 100, 50, 10, 1, 0.1 ng
pl~% Lanes 1 and 8: 100 bp molecular weight marker

from H. perezi, a Mesanophrys-like ciliate found in-
fecting N. norvegicus, 2 toxin-producing dinoflagellate
species, and a number of other crustacean species
(Table 1). However, the primer pair did generate an
appropriate reaction product when the PCR assay was
performed with genomic DNA templates prepared
from Hematodinium-infected N. norvegicus haemo-
lymph and Hematodinium-infected Cancer pagurus
hepatopancreas tissue.

Detection of Hematodinium in Nephrops norvegicus
and Orchomene nanus

Hematodinium infections in haemolymph samples of
Nephrops norvegicus from the Clyde Sea Area, North
Minch and Fladen were detectable by PCR (Fig. 3).
Hematodinium infections were also detected in N.
norvegicus haemolymph samples from the Irish Sea
and the Swedish Skagerrak (data not shown). Se-
quencing of reaction products confirmed that only
Hematodinium DNA was amplified. Variation in PCR
product intensity was observed between haemolymph
samples from the different locations, presumably re-

1 2 3 4 5 6

Fig. 3. Verification of PCR assay on Hematodinium-infected
Nephrops norvegicus haemolymph samples from different
geographical locations. Lane 1: 100 bp molecular weight
marker; Lanes 2 to 4: 100 ng pl~! total genomic DNA from
haemolymph of infected N. norvegicus collected from Clyde
Sea, Fladen and North Minch, respectively; Lane 5: N. norve-
gicus host DNA control (100 ng pl™!); Lane 6: Hematodinium
DNA control from in vitro culture (50 ng pl™!)
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Fig. 4. Nephrops norvegicus. Hybridisation of (A) Probe 1 and (B) Probe 2 with Hematodinium parasites (arrows) in myocardial
heart-tissue sections of the lobster. M: myocardium; E: epicardium. Scale bars = 100 pm

flecting differences in parasite loading of the samples
(as rDNA sequences were identical over the oligonu-
cleotide primer regions used: H. J. Small unpubl. data).

PCR screening of Orchomene nanus DNA samples
from August 2000 indicated that 5 of 13 amphipods
were potentially infected with Hematodinium sp.
However, when screening was repeated with larger
samples (n = 40) obtained in March 2003 and August
2003, no indication of infection was observed.

In situ hybridisation

DNA Probes 1 and 2 hybridised to parasite cells pre-
sent in paraffin-embedded myocardial heart tissue
sections, prepared from Hematodinium sp.-infected
Nephrops norvegicus (Fig. 4). There was negligible

background hybridisation observed for both DNA
probes used. A marked increase in signal intensity was
observed when using Probe 2 compared to Probe 1
against parasites in heart tissues. Alteration of DIG-
labelled Probe 1 concentration and incubation time did
not enhance hybridisation and, as a result, signal
intensity. Because of this, only Probe 2 was used in fur-
ther hybridisation studies. No signal was observed for
negative-control uninfected samples or preparations
where DNA Probe 2 was absent from hybridisation
reactions (Fig. 5). Probe 2 hybridised clearly with para-
site cells in the haemal space of the hepatopancreas
and gill filaments from infected N. norvegicus (Fig. 6).
Probe 2 also hybridised well with presumptive Hema-
todinium cells present in haemal spaces of the
hepatopancreas and gill filament tissue sections from
Carcinus maenas (Fig. 7).

Fig. 5. Nephrops norvegicus. In situ hybridisation control reactions on Hematodinium-infected N. norvegicus heart-tissue sec-
tions when Probe 2 is (A) present and (B) absent from hybridisation buffer. M: myocardium; E: epicardium. Scale bars = 100 pm
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Fig. 6. Nephrops norvegicus. Hybridisation of Probe 2 with Hematodinium cells in (A) haemal space of hepatopancreas and
(B) gills of N. norvegicus tissue sections. Ht: hepatopancreatic tubule; arrows indicate parasites. Scale bars = 100 pm

DISCUSSION

Methods developed for the diagnosis of Hemato-
dinium spp. infection in the Norway lobster include the
examination of lobsters for signs of gross infection by
carapace discolouration, monitoring aggregation of
parasites in the pleopods, and several immunoassays.
In this study, molecular probes were developed and
applied for the diagnosis of Hematodinium infection in
Nephrops norvegicus and other crustaceans. The
rDNA gene locus was chosen as a target region for the
design of molecular probes based on Hudson &
Adlard's (1996) finding that there was a significant
degree of sequence variation in this gene locus
between Hematodinium species. However, the TDNA
sequences obtained were never deposited in GenBank
or any other database; hence, amplification and se-
quencing of Hematodinium sp. isolates from N.
norvegicus were carried out as part of this study.
Cloning of the 3' end of the 18S and 5’ end of the ITS1
rDNA genes from Hematodinium species infecting N.
norvegicus revealed that the 3' end of the 18S gene
was conserved (apart from 1 polymorphic nucleotide
site) between the 2 isolates used in the study, but the
ITS1 sequences showed a number of nucleotide varia-
tions (5 over 315 bp). Of considerable importance is the
finding that Hudson & Adlard’s (1996) sequence of the
ITS1 rDNA region was only 77% identical to the
sequences obtained as part of this study and another
(H. J. Small unpubl. data), and cautions against inter-
pretation and use of any Hematodinium sp. sequences
published as part of that study. Sequencing of other
rDNA genes (and others such as actin) from Hemato-
dinium isolates from their various hosts is essential for
the design of molecular diagnostics, and required to

accurately delineate between species and strains of
this economically important parasite.

The primer set 18S F2 and ITS R1 efficiently ampli-
fied parasite DNA in the presence of host DNA, resul-
ting in the production of a diagnostic band of 380 bp
from genomic DNA samples of at least 1 ng, equivalent
to 0.6 parasite cells per sample. This is a considerable
improvement in sensitivity compared to the ELISA
(which requires about 5 x 10* parasites ml™!: Small et
al. 2002) The inhibitory effect of host DNA/PCR
inhibitors or method of DNA extraction from samples
has not been investigated, but warrants further consid-
eration as several diagnostic assays for other shellfish
pathogens have shown that these factors can effect the
sensitivity of PCR assays (Kleeman & Adlard 2000,
Audemard et al. 2004).

The PCR assay was further validated by amplifica-
tion of parasite DNA from samples of Hematodini-
um sp.-infected Nephrops norvegicus haemolymph
from geographically separate waters. The differences
in PCR product intensity (Fig. 3) probably represent
different levels of infection. This may also correlate
with a different seasonal pattern of infection from the
Clyde Sea Area, as the host moult period has been
implicated in Hematodinium infection seasonality
(Field et al. 1992) and N. norvegicus moulting is
thought to vary between geographical location in UK
waters (J. Atkinson pers. comm.). The primers used did
not produce any amplification signal when DNA tem-
plates prepared from several other crustacean species
were used, indicating that these primers can be used to
investigate whether the Hematodinium species infec-
ting N. norvegicus also occurs in these crustaceans.

In situ hybridisation studies using the DIG-labelled
DNA Probe 1, constructed using the same primers
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Fig. 7. Carcinus maenas. Hybridisation of Probe 2 with Hematodinium cells in (A) haemal space of hepatopancreas and (B) gill
tips of C. maenas tissue sections. Ht: hepatopancreatic tubule; arrows indicate parasites. Scale bars = 10 pm. (Material supplied
by Dr. G. Stentiford, CEFAS Weymouth Laboratory)

used for the PCR assay which span the 18S and ITS1
rDNA regions, localised individual parasites in lobster
tissues. However, the signal from the probe was weak
and could not be improved by either incubating the
section with a higher concentration of probe or by
increasing the incubation time. In contrast, Probe 2
constructed using Primers 18S F1 and 18S R1, which
amplify conserved 18S rDNA only, gave a very intense
signal when hybridising to parasite cells within
paraffin-embedded sections using the same reaction
conditions as Probe 1. Kleeman et al. (2002b) reported
variations in sensitivity and signal intensity between
different 18S/ITS1-based DIG-labelled probes for
Marteilia sydneyi and M. refringens. This suggests
that the observed difference in signal intensity
between Hematodinium Probes 1 and 2 may reflect the
availability of target sequence; ITS regions are excised
from the mRNA in the cell cytoplasm prior to ribosomal
construction and so are not available for probe hybridi-
sation. Alternatively, the shorter length of Probe 2 may
assist in increased binding to target sequences and
result in an increased signal. Probe 2, based on 18S
rDNA, efficiently hybridised to parasites in the
hepatopancreas and gill tissues of Nephrops norvegi-
cus and Carcinus maenas. The results presented
suggest that Probe 2 is able to detect Hematodinium
species in at least 2 different hosts and is likely to be
genus-specific owing to the conserved nature of the
18S rDNA. Consequently, it could be used to confirm
and investigate latent Hematodinium infection in a
wide range of crustacean hosts.

Several life history stages of Hematodinium sp. from
Nephrops norvegicus have been described from in
vitro cultures (Appleton & Vickerman 1998), but of
these only a few forms have been observed during

natural infection in the lobster. It was suggested by
Appleton & Vickerman (1998) that ingestion of Hema-
todinium dinospores takes place during suspension-
feeding by the lobster, and that initiation of infection
takes place after penetration of the gut wall by the
dinospores. Others have suggested that cuticle tissues
of crustaceans damaged during moulting may be the
sites of parasite entry (Eaton et al. 1991). Molecular
techniques have been used to identify the portal of
entry of PKX (phylum Myxozoa) in salmonids (Morris
et al. 2000), and to detect different life cycle stages of
Marteilia sydneyi (Kleeman et al. 2002a). The DNA
probes developed for Hematodinium will likely be
useful for addressing similar issues. They will be valu-
able in monitoring low-level infections in naturally and
experimentally infected lobsters, and also in the
identification of life history stages previously unseen.

One issue that we have addressed is the mecha-
nism of transmission of Hematodinium spp. The lack
of success in transmission experiments with cultured
Hematodinium and infected haemolymph (Vicker-
man 1994) indicates that an undiscovered inter-
mediate host may be required for completion of the
parasite life cycle and its ability to infect Nephrops
norvegicus (Appleton & Vickerman 1998). This hypo-
thesis has also been raised for a number of aquatic
pathogens, including Marteilia refringens, which
infects copepods and oysters (Audemard et al. 2002)
and the myxosporean Ceratomyxa shasta, which in-
fects an annelid worm and salmonids (Bartholomew
et al. 1997).

Several amphipods predate or scavenge dead crus-
taceans (Templeman 1954, Scarratt 1965), and have
previously been reported to be infected by dinoflagel-
lates (Johnson 1986). Messick & Shields (2000) also
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suggested that several amphipods collected during
prevalence studies for Hematodinium perezi in Calli-
nectes sapidus were potentially infected with this par-
asite. Thus, the PCR primers developed in the present
study were used to investigate Orchomene nanus as a
possible secondary host or transmission vector for
Hematodinium spp. This amphipod species is a gener-
alist scavenger, with a preference for crustacean car-
rion (Moore & Wong 1995), and as such probably feeds
on dead Nephrops norvegicus with large numbers of
parasites present. Analysis of samples of O. nanus col-
lected from the Clyde Sea Area and assayed by PCR
revealed that in August 2001, 5 of 13 amphipods were
positive for the presence of Hematodinium spp.
Sequencing of a PCR product from the amphipod
screen confirmed that it was Hematodinium DNA that
was amplified, with 98 % homology in the ITS1 region
to other Hematodinium isolates from the Norway lob-
ster (H. J. Small unpubl. data). Considering the size of
Hematodinium dinospores (11 to 20 pm long, 4.5 to
11.5 pm wide), they could be ingested by the amphi-
pod and result in the positive PCR signal from the gut
contents, or from infection of different tissues. How-
ever, the possibility of parasites adhering to the exte-
rior surface of the amphipod cannot be ruled out.
Unfortunately, no individual amphipods were retained
for in situ hybridisation studies to localise the parasite
in these samples. When amphipod sampling and the
PCR assay were repeated in March 2003 and August
2003, no Hematodinium DNA could be detected. Thus,
the determination of the prevalence of Hematodinium
in O. nanus, its location, and the importance, or not, of
O. nanus in the life cycle of Hematodinium spp.
requires further experimental research.

In conclusion, the combined use of the PCR primers
and DNA Probe 2 will prove valuable in confirming
Hematodinium species infection in crustaceans and
elucidating the life cycle of Hematodinium spp. in
Nephrops norvegicus and other hosts.
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